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We investigate spin chains with bilinear-biquadratic (BLBQ) spin interactions as a function of
an applied magnetic field h. At the Uimin-Lai-Sutherland (ULS) critical point we find a gapless to
gapless transition revealed by the dynamical structure factor S(q, ω) as a function of h. At h = 0, the
envelope of the lowest energy excitations goes soft at two points q1 = 2π/3 and q2 = 4π/3, dubbed
the phase A. With increasing field, the spectral peaks at each of the gapless points bifurcate, making
in total four soft modes, and combine to form a new set of excitations that soften at a single point
q = π at hc1 ≈ 0.94. Beyond hc1 the system enters another gapless B-phase until the transition at
hc2 = 4 to the fully polarized phase. We compare the ULS model results with those for the AKLT
model as a representative of gapped Haldane phase. We explain the mechanism of the gapless to
gapless transition in the ULS model using its conserved charges and a spinon band picture. We also
discuss the universality of central charges of the BLBQ family of models subjected to a magnetic
field.

I. INTRODUCTION

Quantum magnetism has been a subject of intense
study, from exact solutions in one dimensions, to long
range ordered states in higher dimensions, to quantum
spin liquids arising from geometric frustration and com-
peting interactions. Among various quantum magnetic
systems, 1D spin systems are rather unique. In con-
trast to its higher dimensional counterparts, particles in
one dimensional systems are highly affected by quantum
fluctuations which prevent the breaking of continuous
symmetries, and are much more likely to exhibit collec-
tive behavior because they cannot avoid the effects of
interactions.

One dimensional magnetic systems have a long history
that dates back to 1931 when the exact solution of the
spin-1/2 Heisenberg chain was found by Bethe [1], predict-
ing algebraic correlations in the ground state and gapless
excitations. The mechanism of such gaplessness was given
by the Lieb-Shultz-Mattis theorem whereby the separa-
tion between the ground and first excited state energies of
a half-integer spin chain was shown to vanish in the ther-
modynamic limit [2]. Haldane’s generalization to larger
spin-S SU(2) chains, using a mapping to a non-linear
sigma model, showed that one dimensional Heisenberg
antiferromagnets with integer spins have an excitation
gap [3–5], later observed in experiments [6, 7]. Following
Haldane’s prediction, much research has been done to
study quantum phase transitions (QPTs) of integer spin
chains under the influence of quadratic spin interactions
and magnetic field [8–11]. While these papers have pro-
vided some understanding of the magnetic properties of
the BLBQ model, the static and dynamic properties of
BLBQ models coupled to an external magnetic field have
not been explored and is the topic of this paper.

The BLBQ Hamiltonian is a good description of
(quasi) one-dimensional quantum magnetic systems such
as CsNiCl3 [6, 12, 13], LiVGe2O6 [14, 15]. Recently we

also proposed that such models naturally arise in strong
spin-orbit coupled Mott insulators, such as OsCl4, in
which the transition metal is in the 5d4 electronic config-
uration [16, 17].

Our two main discoveries of the BLBQ spin-1 quantum
chain as a function of h are: (1) a continuous phase
transition from the gapped Haldane phase to a gapless
intermediate phase that precedes the polarized phase; and
(2) a continuous phase transition from a gapless phase
to another intermediate gapless phase for the Uimin-Lai-
Sutherland (ULS) critical Hamiltonian (see Eq. 1). In
case (2), while both phases harbor gapless excitations,
their nature are different, with modes that go soft at
different points in the Brillouin zone. There have been
reports on electronic gapless to gapless phase transitions in
metals that can be interpreted as a Lifshitz transition [18],
whereby the topology of the Fermi surface of the metal
changes at the transition, resulting in a new metallic phase
that gives rise to anomalies in the electronic properties [19].
We show that the QPT in the BLBQ model mentioned
above can also be understood as a Lifshitz-type phase
transition involving 3 spinon bands arising from the SU(3)
symmetry at the ULS point, with 4 soft magnon modes
decreasing to 1 soft mode across the transition. We
compare the static and dynamical signatures of the field-
induced phases of the BLBQ model at different points.
We propose material candidates of BLBQ magnets where
our predictions for the dynamical structure factor may
be observable by inelastic neutron spectroscopy.

The paper is organized as follows. Section II briefly
reviews the BLBQ model and the phase diagram as a
function of external magnetic field. Section III introduces
definitions and computational methods. Section IV dis-
cusses the results for the AKLT model as a representative
of the Haldane phase of the BLBQ, to be compared with
those of the ULS model. Our main results are shown in
section V where we present both statics and dynamics
of the ULS model and the phase transitions in a field.
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FIG. 1. Left panel: phase diagram of the spin-1 bilinear-biquadratic (BLBQ) model parameterized by the angle θ: H =∑
〈ij〉 cos θ Si · Sj + sin θ (Si · Sj)2. ∆ denotes the gap which can be zero or finite in different phases. We focus on two

representative points: the Affleck-Kennedy-Lieb-Tasaki (AKLT) model at θ ≈ 0.1024π (β = 1/3), and the critical ULS model at
θ = π/4 (β = 1). VBS refers to the valence bond solid ground state of the AKLT model at h = 0. Right panel: schematic phase
diagram of BLBQ parameterized by β and h reproduced from Ref.[9]. Phase boundaries are marked by black solid lines. black
dashed line marks a cross-over to an effective spin-1/2 XXZ model in a field within the B phase; at β = 1 the mapping is to an
effective spin-1/2 Heisenberg model. We obtain the evolution of the static and dynamical correlation functions in the gapless
phase A , B-phase and Haldane phase along the two red dashed lines.

Section VI includes discussions of DMRG, the single mode
approximation, extraction of the central charge of these
models, and prospective materials to where our predic-
tions may be observed. Section VI concludes with a
summary and open questions.

II. MODEL

It was first argued by Haldane, and later rigorously
proved, that one dimensional Heisenberg antiferromag-
nets with integer spins have an excitation gap and finite
correlation length [3, 5]. This gapped one-dimensional
integer-spin Heisenberg antiferromagnet can be consid-
ered a particular case of the Haldane phase in a more
generic spin-1 bilinear biquadratic Hamiltonian (BLBQ)
[20], defined on a chain of L sites by,

HBLBQ =
∑

〈ij〉
Si · Sj + β(Si · Sj)2, (1)

where we have set the exchange energy J = 1. Its well-
known phase diagram, parameterized by β or the related
angle tan θ = β, is shown in Fig. 1. In this paper, we will
discuss the dynamical properties in these one-dimensional
quantum magnets, particularly at the Affleck-Kennedy-
Lieb-Tasaki (AKLT), Uimin-Lai-Sutherland (ULS), and
Heisenberg points marked in the figure. In addition, we
add an external magnetic field h yielding the Hamiltonian:

H = HBLBQ + h
∑

i

Szi . (2)

where h is measured in units of the exchange energy.

We calculate the static and dynamical structure factors
using the DMRG algorithm [21, 22] for the Hamiltonian
defined in Eq. 2 to provide direct signatures that can be
probed by neutron spectroscopy. Specifically we study
β = 1 for the critical ULS model for which we find two
transitions: a gapless to gapless transition at hc1 and a
second transition from a gapless to a polarized phase at
hc2. We contrast the behavior of the critical ULS point
with the AKLT model at β = 1/3 as a representative
of Haldane phase that also shows two transitions but of
different character: a gapped to gapless transition at hc1,
followed by a transition at hc2 to a polarized phase.

Besides the unbiased DMRG results, we provide inter-
pretations of the gapless to gapless QPT using a spinon
band picture. In the discussion section we apply a single
mode approximation (SMA) analysis for the gapped-to-
gapless transitions of AKLT Hamiltonian under a field,
which shows the extent to which magnons in the Haldane
and phase B can be captured by a single mode excitation,
and indicate the degree of fractionalization. We also pro-
vide insights of universality of these phases via central
charges. Finally we describe the candidate materials with
5d4 electronic configuration and strong spin-orbit cou-
pling that are suitable to observe the gapless-to-gapless
phase transition in the orbital sector.

In the following, we define Sz ≡
∑
i S

z
i , and Eβ(Sz) the

ground state energy of the BLBQ model at the parameter
β without a field in spin sector Sz. Because both HBLBQ

and the field term commute with Sz, Sz is a conserved
quantum number of H. This implies that for every h,
the ground state of Eq. (2) with energy Eβ(h) is an
eigenstate of HBLBQ with energy Eβ(h)− hSz for some
−L ≤ Sz ≤ L. Moreover, this eigenstate is the ground
state of the sector or block of HBLBQ with that value of
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Sz, so that by mapping each h to its Sz sector, we can
find the ground state of Eq. (2) for any h. Therefore,
for a finite size system the QPT of the new Hamiltonian
depends on the re-distribution of the energy spectrum of
HBLBQ: the QPT is driven by level crossings at certain
hc1 at which an old excited state becomes the new ground
state.

To guide the discussion in this paper, we depict a
schematic phase diagram of the BLBQ model at various
values of β for the BLBQ model in an applied magnetic
field in Fig. 1 based on our DMRG results. We find that
the gap in the Haldane phase closes at a critical field
hc1 and the system enters a gapless B-phase. In a small
AKLT chain solved by ED (see Supplemental Fig.S7 [23]),
this gaplessness can be viewed as a successive falling of
excited states to the new ground states after the first
level crossing at hc1, and becomes a critical region in the
thermodynamic limit.

The system at the ULS point is gapless with 2 incom-
mensurate soft modes, followed by the gapless phase A
when subjected to a small magnetic field. We found that
this phase A has 4 soft modes instead of 2 and persists for
a large range of external fields before reaching the first crit-
ical point at hc1. At this point we find a gapless-to-gapless
transition. In a small system solved by ED, the magneti-
zation of the ULS model under a field exhibits steadily
increasing steps, and is predicted to increase smoothly
within the two phases in a large system as a function of
h, until ultimately reaching the transition point of the
polarization field [24]. The calculation by DMRG shows
more subtle structure prior to the gapless-to-gapless phase
transition at hc1 ≈ 0.94, and that the magnetization is in
fact zigzag instead of smooth even for large systems. We
will explain the behavior at this transition quantitatively
by exploiting the SU(3) symmetry of the BLBQ model at
the ULS point and developing a picture of Lifshitz-type
transition that involves depopulation of spinon bands.

III. COMPUTATIONAL METHODS

Statics: We first investigate the static signatures of the
BLBQ model on a chain of L sites using density matrix
renormalization group (DMRG) [21, 22]. We calculate
the spin-spin correlation function between spins separated
by a distance R defined by:

CS(R) =
1

L
|
∑

i

〈Si · Si+R〉|, (3)

where i labels the sites. We also calculate the momentum-
space correlations

S(q) =
1

L2

∑

i,j

eiq(ri−rj)〈Si · Sj〉, (4)

in order to elucidate the nature of the ground state. Here,
ri and rj are the real-space coordinates of sites i and j, and

k represents the crystal momentum. It is well-known that
exponentially decaying spin-spin correlations indicate the
presence of a spectral gap, whereas a power-law decay of
correlations implies a gapless critical state [25, 26]. Hence,
although the static spin-spin correlations do not provide
information about the dispersion of the modes, they can
nevertheless provide qualitative information about the
nature of the ground state for varying external fields h.

Dynamics: The dynamical structure factor S(q, ω) as a
function of frequency ω and momentum q can be mea-
sured with inelastic neutron scattering, adding to their
importance. S(q, ω) is defined as usual

Sαβ(q, ω) =
1

L

∑

r

e−iqr
∫ ∞

−∞
dt 〈Sαc (t)Sβc+r(0)〉 eiωt (5)

which is related to Eq.(4) by S(q) =
∫
S(q, ω)dω. To

evalute Eq.(5) under open boundary condition (OBC)
by DMRG, we take the central site c, and compute the
dynamical structure factor by its analytic continuation
which is given by the real space function:

Sα,β(r, c, ω) = 〈g.s.|Sαr
1

ω + iδ +H − E0
Sβc |g.s.〉, (6)

for all sites r, where |g.s.〉 is the ground state of the
Hamiltonian H (either for the AKLT or ULS model),
with or without magnetic field, E0 the corresponding
ground state energy, and δ a small broadening factor to
ensure the convergence of the Green’s function. From the
Fourier transform we obtain S(q, ω) and by integrating
over all momenta, the density of states S(ω) ≡ S(c, c, ω).

For Sz = 0 or at h = 0 the static and dynamic cor-
relation functions involving xx, yy, and zz are all equal
due to rotational symmetry. However, in a finite field,
while xx and yy correlations remain equal, they can differ
from the zz correlations. In what follows, we discuss the
dynamical behavior of both S+S− and SzSz (the SzSz

dynamics are shown in the supplemental material [23]).
Reference [27] describes in detail our Krylov-space ap-

proach of dynamical DMRG. The supplemental material
[23] provides evidence of convergence with the number of
states m kept within DMRG, and shows when finite size
effects in the dynamical structure factor can be neglected.
We have used δ = 0.05 as the broadening factor, and have
scanned the frequencies in increments of ∆ω = 0.025 in
units of energy. Both statics and dynamics are computed
with DMRG with a desired truncation error 10−7 that
requires us to retain up to a maximum number of m = 800
states.

Entanglement: The von Neumann entanglement entropy
SvN also serves as another important signature of the
model. SvN of a subsystem A of the quantum spin chain
with the rest of the chain is calculated by the reduced
density matrix ρA:

ρA = TrB
[
|g.s.〉 〈g.s.|

]
, (7)

S = −Tr
[
ρA log(ρA)

]
(8)
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and provides a way to probe its entanglement structure.
The second order transition point in a field is directly
reflected in the discontinuity of entanglement entropy,
which, in the low field regime, can be used as a benchmark
especially for exactly solvable models like AKLT.

In addition, we also use entanglment properties to probe
the possible conformal field theory (CFT) description
of gapless modes. The entanglement entropy of 1+1
dimensional CFT under OBC satisfies

S(n) = SCFT (n) + SOSC(n) + const (9)

where n is the bond position. The first two terms SCFT (n)
and SOSC(n) are defined as [28, 29]

SCFT (n) =
c

6
log

[
2L

π
sin
(πn
L

)]

SOSC(n) =
∑

a

F a
(n
L

) cos(2aπn/N)

|L sin(nπ/L)|∆a

(10)

where c = N − 1 is the central charge and ∆a the scaling
dimension of the SU(N) Wess-Zumino-Witten (WZW)
theory, N defines the SU(N) symmetry of the effective
CFT, L the total length of chain and F a(n/L) is a uni-
versal scaling factor which has only one scaling dimension
a = 1 for SU(2) and SU(3), and it can be treated ap-
proximately as a constant [30, 31]. We fit our data from
DMRG against Eq.(10) and extract the central charge c
in the gapless phases as an indicator of their universality
class. Extracting central charge using Eq.(10) involves the
fitting of oscillatory waves with fine periodicity, therefore
we have increased the number of states to m = 3000 to
enhance the accuracy of the fitting. With this value of m
we indeed obtain c = 2 for the ULS model from Eq.(10),
exactly as expected by the SU(3) WZW theory.

IV. HALDANE PHASE

This section discusses the static and dynamical proper-
ties of the AKLT model, as a representative of the Haldane
phase under an external field. It is defined by Eq. (1)
with β = 1

3 and a ground state energy [32] E0/L = −2/3.
The Hamiltonian in an external field is:

HAKLTZ =
∑

〈ij〉
Si · Sj +

1

3
(Si · Sj)2 + h

∑

i

Szi , (11)

The AKLT Hamiltonian is not integrable. While some of
its stationary eigenstates can be constructed explicitly [33,
34], less in known about the signatures of its excited states
beyond the VBS ground state and about its dynamical
properties, and are discussed below.

A. Statics of AKLT

In this subsection we discuss the static behavior of an
AKLT chain when subjected to magnetic field. We will

look into its entanglement properties, magnetization and
two-point correlations that probe phase transitions.

The magnetization is obtained both by simulating the
model with a field, and also by using the relation

h(Sz) = E(Sz + 1)− E(Sz), (12)

with E(Sz) = Eaklt(Sz) being the ground state energy of
the AKLT model in the Sz symmetry sector without the
field. Since the total magnetizationSz ≡

∑
i S

z
i is a good

quantum number, it can only increase in integer steps.
As a result, we can compute quantum sectors of different
Sz separately, and the energy differences thereof can be
attributed to different magnetic field h(Sz). Figure 2(a)
shows the magnetization per site vs magnetic field, where
two critical points can be identified by kinks in the total
magnetization. Due to the non-zero gap above its |V BS〉
ground state, the zero-magnetization phase is protected
before the gap is closed by the increasing magnetic field
at hc1 ≈ 0.75±0.02, after which the magnetization begins
to increase until saturation at a polarization field hc2 = 4.
Further evidence from the von-Neumann entropy shown
in Fig 2(b) also reflects the same transition.

It is worth pointing out that hc2 = 4 marks the phase
transition point to the polarized phase for all Hamiltonians
in the BLBQ family. We briefly sketch the proof below:
The critical value hc2 is the lowest field at which the BLBQ
system becomes fully saturated. For this to happen, the
sector with Sz = L− 1 has to have lower energy than the
sector with Sz = L, and the field needed satisfies

EBLBQ(L)− hc2L = EBLBQ(L− 1)− hc2(L− 1), (13)

where EBLBQ(L′) is the ground state energy of BLBQ
Hamiltonian without field in sector Sz = L′. We use PBC,
which coincides with OBC in the thermodynamic limit
L→∞. The sector with Sz = L has only one state, with
all spins having m = 1 with the total energy contribution
from HBLBQ given by EBLBQ = (1+β)L. Now the sector
with Sz = L− 1 has exactly L states, and all states have
L − 1 spins with m = 1 and one spin with m = 0. We
call |kp〉 the state with m = 0 on the p-th site. Then

HBLBQ |kp〉 = |kp+1〉+ |kp−1〉+[(1+β)L−2] |kp〉 , (14)

which can be solved by a Fourier transform. The
|Sz = L− 1〉 ground state can then be written as

|Sz = L− 1〉 =
∑

p

(−1)p |kp〉 , (15)

with energy (1 + β)L− 4; using Eq. (13) yields hc2 = 4.
Moreover, the Von Neumann entropy of the ground state
of the Sz = L − 1 sector is exactly equal to ln(2), and
that of the fully saturated state is 0. Therefore, the Von
Neumann entropy has a discontinuity at h = hc2 ≡ 4, as
expected, due to the second order nature of the transition.
To conclude the phase diagram, we have identified three
different phases: the SPT phase for 0 < h < hc1, the
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FIG. 2. Results of AKLT model under a field (a) Magnetization per site sz as a function of h ≥ 0, showing two second-order
phase transitions. Data obtained from different system sizes converges rapidly and coincide with each other (b) von Neumann
entanglement entropy SvN as a function of h at central bond computed for the same set of system sizes. (c) Static structure
factor under different external field. (d) Real space correlation functions at h = 0.0, 0.5 for the VBS state, and h = 0.9, 1.0 for
the gapless phase B. Curves of the same phase coincide. (e) Correlation function of longitudinal and transverse components at
different fields of phase B. (f) Exponent of real-space correlation function fitted by S(R) ∼ R−η in the phase B.

gapless intermediate phase for hc1 < h < 4, and the fully
saturated phase for h > 4, that we now further explore.

Note that in the thermodynamic limit |hc1| =
limL→∞ |hc1(L)|, the results depend on the boundary con-
ditions: for open boundary conditions (OBC), |hc1(L)| =
Eaklt(Sz = 2) − Eaklt(Sz = 1) > 0, because the ground
state is four-fold degenerate with Sz = 0 and Sz = 1. For
periodic boundary conditions (PBC), the ground state
is unique with Sz = 0 and then |hc1(L)| = Eaklt(Sz =
1)− Eaklt(Sz = 0) > 0 [32].

Figure 2(b) shows von Neumann entanglement entropy
as a function of h at the central bond of AKLT. At small
fields the VBS ground state is unchanged, and Sρ = log 2
due to the pair of dangling spin-1/2 bonds at both ends.
The Haldane-B transition at hc1 is evident by the sudden
jump from the VBS plateau to a peak. Then Sρ drops at
higher fields within the phase B and becomes zero beyond
the transition at hc2 to a product state. The decreasing
SvN in phase B of AKLT is qualitatively different from
that of the ULS model; in the latter it is a constant in the
entire phase as shown in Sec.V. Moreover, it is interesting
that the Sρ of the AKLT model converges at high field
close to hc2 = 4 to about the same value as Sρ of the ULS
model. We can understand this behavior qualitatively
in terms of a single mode approximation as discussed in
Sec.VI B.

The correlation functions of the AKLT model are shown
in real space (Figure 2(d)) and in momentum space (Fig-

ure 2(c)) for different h. In the VBS phase 0 < h < hc1,
the ground state correlation function of Eq.(11) remains
the same as that of the AKLT model’s VBS state, because
the field is not strong enough to change the nature of the
ground state from the h = 0 VBS ground state.

The two-point correlation function of a VBS state can
be calculated analytically, having an exponential behavior
under OBC [35]:

Sαα(r) = (−1)n 〈Sα0 Sαr 〉 =
1

3

(
1

3

)|r|

Sαα(q) =
2(1− cos(q))

5 + 3 cos(q)

(16)

which is an exact result in the thermodynamic limit arising
from the hidden string order [36, 37]. The finite corre-
lation length and the static structure factor of the VBS
phase in Eq.(16) is consistent with the fitting of our nu-
merical data in Figure 2(d): the correlation function of the
VBS ground state of spin-1 AKLT chain decays exponen-
tially, and the static structure factor has a smooth peak at
q = π. In the gapless intermediate phase, hc1 < h < hc2,
the correlations decay following a power-law correlation,
indicating that the gap has vanished. This is as expected,
because the SPT phase cannot make a transition to a
trivial phase without either breaking the symmetry or
closing a gap.

The correlation function of the VBS Haldane phase
is known from Eq.(16) analytically and agrees with our
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FIG. 3. Dynamic results of AKLT model under a field. S+−(q, ω) at field h = 0 (sz = 1/200), h = 0.5 (sz = 1/200), h = 1.0
(sz ≈ 0.3), and at field h = 1.5 (sz ≈ 0.5). (a-c) are within phase A while (d) in within phase B. Dynamical structure factors
are obtained by 200-site DMRG under OBC.

numerics. At higher fields in phase B, we have numer-
ical results for the longitudinal and transverse correla-
tions, Fig.2(d,e). By fitting the total S(R) ∝ R−η or
the transverse correlations for hc1 < h < hc2 (since the
longitudinal correlations are constant), we obtain the field
dependence of the exponent η shown in Fig.2(f). We find
that η varies continuously with increasing field, which
is reminiscent of the dependence of the exponent on the
Tomonaga-Luttinger liquid interaction parameter. Also,
as h approaches hc2, η → 0.7, which is close to that of the
ULS model at large field, supporting the claim of Fig.1
that both AKLT and ULS can be effectively captured by
XXZ model when h is close to (and smaller than) hc2.
This is discussed in greater detail in Sec.V.

B. Dynamics of AKLT

We next present dynamical information of the AKLT
model when subjected to a magnetic field, where we show
explicitly the evolution of magnon bands with increasing
field. Figure 3 shows the dynamics in the S+S− sectors,
for different fields h, calculated using DMRG with the
correction vector method [38] on a L = 200 OBC chain.
(The S−S+ and SzSz dynamics can be found in the
supplemental material). These results should be compared
with those of the ULS model to be discussed in the next
section. For zero field, the S+S− and SzSz dynamics
coincide, but start differing once the field is turned on
since the field breaks time reversal symmetry. For h < hc1,

the SzSz dynamics is similar to that at h = 0, as can
be confirmed analytically, because, (i) the ground state
remains a VBS state, and, (ii) H −E0 does not depend
on field, as the energy contribution of field in H and E0

cancels out. On the other hand, the S+S− dynamics
already shows a change: It moves down in energy exactly
by h. This can also be confirmed analytically, because,
(i) the ground state remains the VBS state, and, (ii)

1

ω −H(h) + E0(h)
S±i |VBS〉 =

1

ω̄± −H(h = 0) + E0(h = 0)
S±i |VBS〉, (17)

with ω̄± = ω ± h, and implies that the peak that is
present at q = π for h = 0 at ω = hc1 moves down (for
S+) linearly with h, so that at h = hc1 it exactly touches
ω = 0.

For hc1 < h < hc2 ≡ 4 (phase B), the SzSz dynamics
(see Fig.S3 of Supplemental [23]) has a peak at q = π and
ω ≈ hc1, a peak that decreases in intensity as h increases,
and develops a FM peak that increases with increasing
h for q = 0. Meanwhile, hc1 < h < hc2 ≡ 4, the S+S−

dynamics has a peak at q = π and ω = 0, and two nearly
linear branches of weak intensity, both going up in energy
and away from q = π to q < π, q > π: one with negative
slope and to q > π, and one with positive slope; these
branches slowly converge to each other and toward q = π
as the field h goes to hc1. In other words, the slope of
these branches slowly tends to infinity (become vertical)
as h increases to hc1. Moreover, as h increases, the overall
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intensity of the S+S− dynamics decreases, and becomes
exactly zero at h = hc2 ≡ 4. It is worth pointing out
that, the gapless mode at q = π in AKLT’s phase B has
a varying dispersion as magnetic field increases. This can
be seen from Fig.3(c,d), where the dispersion is stretched
to a wider energy range and the slope of the dispersion
decreases, where the high energy tail gets heavier that
reflects the increasing fractionalization from Fig.3(c) to
(d). We explain this behavior in the discussoin below using
the single mode approximation. It shows the dispersion
at fields close to but smaller than hc2 resembles that of
the phase B of ULS (β = 1) and should be approximately
the same as q = π mode in Fig.5(d).

At even higher fields, we have the trivially ferromagnetic
h ≥ hc2 ≡ 4 phase has no S+S− dynamics, but has non-
zero S−S+ dynamics, and trivially FM SzSz dynamics
proportional to δ(ω)δ(k).

V. ULS CRITICAL POINT

This section presents our main results on the QPTs in
the Uimin-Lai-Sutherland (ULS) model corresponds to
the parameter β = 1 of the BLBQ Hamiltonian family
[39–41]. Under an external field the Hamiltonian is given
by:

HULSZ =
∑

〈ij〉
Si · Sj + (Si · Sj)2 + h

∑

i

Szi (18)

The ULS model has SU(3) symmetry, which is broken
to U(1) × U(1) by the application of a magnetic field h
in the z-direction [9, 17]. The ground state of the ULS
model with an h field then becomes the ground state of a
block Hamiltonian with a fixed Sz of the model without
a field.

In the 70s, Uimin, Lai, and Sutherland used the Bethe
ansatz method to describe the power law correlations
in the ground state [39–41]. Kiwata [8] studied the be-
havior of the ULS model under a magnetic field, and
estimated the critical magnetic field hc at which the mag-
netization curve has a cusp, and showed that hc is a
boundary between two states: the phase at lower fields
containing excitations with m = +1, 0,−1 and the higher
field phase containing only m = +1, 0. Later, Fáth and
Littlewood [9] showed that in a field, one can identify a
massless phase that is connected to the gapped Haldane
phase and phase A with “depleting bands”. These studies
provide some intuition of distinct dynamics in each spinon
sector. While the aforementioned works have provided a
good understanding of the magnetic properties of the ULS
Hamiltonian, their dynamics and critical behavior near
the transition have not been explored. In this section we
will discuss the relevant static phenomena first, followed
by numerical and analytical analysis of its dynamics that
lead to testable predictions for experiments.

A. Static Response of ULS Model

Figure 4(a) shows the magnetization as a function of
h, where Eq. (18) is evaluated for the ULS model using
DMRG. Similar to the description in section IV A, we
use the relation h(Sz) = E(Sz + 1)− E(Sz) to find the
magnetization under different magnetic field h. We see a
second-order phase transition at hc1 ≈ 0.94. As explained
in previous section IV A, the transition to the fully satu-
rated phase occurs at hc2 = 4. Figure 4(b) shows the Von
Neumann entanglement entropy obtained by integrating
out half the system with a cut at the center bond, as a
function of h.

The transition to the intermediate phase at hc1 de-
mands a different explanation from the one for the gapped
AKLT model and other gapped models within the Hal-
dane phase. In the ULS model there is no energy gap,
hence it is not a priori clear why the phase A of ULS
is protected as h increases. As we show next, the SU(3)
symmetry of the ULS model can be exploited to explain
the stability of the gapless phase A and the transition
at hc1. For this purpose, it is helpful to map the ULS
Hamiltonain onto a fermion model, in which spin-1 op-
erators are decomposed into partons by the mapping

Si ≡ ψ†iSiψi with ψi = (ai,1, ai,0, ai,−1) describing 3 anni-
hilation components of a fermionic spinor corresponding
to m = 1, 0,−1. We follow the fermionizing approach of
Ref. [42] to show that the ULS Hamiltonian (with some
auxiliary constants) can be written as

HULS − const =
∑

〈ij〉
Si · Sj + (Si · Sj)2 − const

= −
∑

〈ij〉;mm′

a†i,maj,ma
†
j,m′ai,m′

(19)

where we have defined the auxiliary constant term const =

ninj + 3ni with ni =
∑
m a
†
imaim being the total on-

site occupation number operator. This representation is
faithful as long as there is 1 particle per site:

∑

m=−1,0,1

a†n,man,m = 1 (20)

(See appendix.IX B). The fermionic representation helps
understand if the system has a larger symmetry than
apparent, without having to write HULS in terms of gen-
erators of the Lie algebra of SU(3). Equation (19) can be

compactly written as −∑〈ij〉(ψ
†
iψj)(ψ

†
jψi). This expres-

sion is invariant under any symmetry transformations in
{U ∈ GL(3,C)|U†U = I, det(U) = 1} = SU(3), which
directly shows the SU(3) symmetry of the ULS point.
From this representation, we see three conserved quanti-
ties, by computing the following commutators

[N̂m, HULS ] ≡
[∑

i

a†i,mai,m, HULS

]
= 0, (21)

where we have defined N̂m to be the total occupation
number operator of m-type fermion of the whole lattice.
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FIG. 4. Results of ULS model under a field (a) Magnetization per site sz as a function of h. Inset is the zoom-in segment of the
magnetization in phase A which shows a zig-zag pattern regardless of system size. (b) von-Neumann entanglement entropy SvN
as a function of h for a cut at the central bond for the same lattice and again computed with the DMRG. (c) Static structure
factor at h = 0, 0.5 for the first phase, and h = 1.0 for the intermediate phase respectively (d) Real space correlation function
for the same set of fields. (e) Correlation function of longitudinal and transverse components at different fields of phase B. (f)
Exponent of real-space correlation function fitted by S(R) ∼ R−η for phase A and B separated by the vertical dashed line

Let Nm be the eigenvalue of N̂m, which must be an integer
because it is a good quantum number. We can hereafter
identify N−1 as the number of sites with m = −1, N0

the number of sites with m = 0, and N1 number of sites
with m = 1. The ULS model then conserves N0, N1, and
N−1 separately. Because the sum of the three equals the
number of sites L, there are two linearly independent (l.i.)
quantities; thus the ULS model has two local symmetries.

Let us choose the total Sz and the total N1: [HULS , Sz]
= [HULS , N1] = 0. A field h in the z direction does not

change these symmetries, because
∑
i S

z
i =

∑
i a
†
i,1ai,1 −

a†i,−1ai,−1 obviously commutes with all Nm. We can

then label the energy of the ULS in each block (Sz,N1)
with EULS(Sz,N1), and the energy of the ULS with field
as EULS(Sz,N1) + hSz. Because we choose h ≥ 0, N1

tends to decrease as h increases, and Sz tends to become
more negative, so that |Sz| increases as h increases. For
h < hc1, the system can decrease its energy by either
increasing |Sz|, or, by decreasing N1 (because both are
conserved and l.i.), or, both. Decreasing N1 while at the
same time increasing |Sz| increases EULS(Sz,N1) but
decreases hSz, so the two terms compete.

At first, it costs more to constantly increase |Sz|, and
the system must instead zigzag |Sz|. But at some large
enough field h, the field term wins and decreasing |Sz| is
no longer advantageous energetically. This happens when
N1 cannot be decreased any further, that is, when N1

reaches its minimum value: zero. This point marks the
second order phase transition at h = hc1 . From h > hc1
onward, there are no longer ground states with m = 1
sites, the magnetization Sz equals −N−1, and N1 = 0.

Figure.4(d,e) shows the numerical results of the decay
of the real space correlations (both longitudinal and trans-
verse) for the ULS model subjected to different fields. The
power law exponent η(h), as shown in Fig.4(f), varies con-
tinuously in both phase A and phase Bs but changes dra-
matically at transition hc1, indicating an abrupt change
in the underlying Tomonaga-Luttinger theory. As the
field increases toward hc2, η gradually decreases and con-
verges η → 0.7, consistent with the behavior in the AKLT
model.

Figure.4(e) shows the power-law decay of longitudinal
components Sz0S

z
R of phase B, which is again almost con-

stant, thus the decay of S(R) is mainly attributed to
the transverse components Sx0S

x
R and Sy0S

y
R like in the

AKLT model. This behavior can be quantitatively de-
scribed by exploiting the SU(3) symmetry at ULS point
and its spinon bands. In the fermion representation, Sz =
n1 − n−1, hence the longitudinal correlator is

〈
Szi S

z
j

〉
=

〈ni,1nj,1〉+ 〈ni,−1nj,−1〉 − 〈ni,1nj,−1〉 − 〈ni,−1nj,1〉. Not-
ing that spinon of 1-type is completely depleted in phase
B, the longitudinal correlator is reduced to

〈
Szi S

z
j

〉
= 〈ni,−1nj,−1〉 (22)

for the ULS model in an intermediate field. Also Fig.4(e)
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shows that, within phase B, the transverse correlator is
almost constant, indicating that n−1 in the phase B is
approximately ordered with

〈n−1〉 '
√
〈Szi Szj 〉, ∀ 0 < i, j ≤ L (23)

Using
∑
m 〈ni,m〉 = 1 and the fact that n1 = 0 in phase

B, we must have

〈n0〉 ' 1−
√
〈Szi Szj 〉 (24)

implying that n0 is also ordered in phase B. In fact for
the polarized phase h > hc2, our numerical calculation
indeed gives 〈Szi Szj 〉 = 1, ∀ 0 < i, j ≤ L, consistent with
〈n−1〉 = 1 and complete depletion 〈n0〉 = 0. This provides
a description of the phase transition via depopulation of
bands and its resemblance to Lifshitz transition.

Now that 〈Szi Szj 〉 is a constant in phase B (both n0 and
n−1 are ordered), the decay of S(R) = 〈S0 · SR〉 is entirely
attributed to transverse spin components like 〈Sxi Sxj 〉,
which arise from the exchange of particles between the
two spinon bands. It is simple to check that within
phase B the transverse contribution is related to a kinetic
exchange of spinons among two flavors at a given site,
described by,

〈
Sxi S

x
j

〉
= 〈KiKj〉

Ki ≡
1√
2

(
a†i,0ai,−1 + ai,0a

†
i,−1

) (25)

Hence even though spinons are ordered in the orginal
lattice, transverse correlations of spins nonetheless show
a power law decay.

B. Dynamics of ULS Model

It was shown in Ref. [11] that at β = 1, the spin-1 chain
has an exact mapping to a Schwinger boson representation
by projecting out the antiparallel states in the bond-
operator representation at large enough magnetic field
before saturation at hc2. Thus in a large enough magnetic
field the spin-1 chain can be considered a spin-1/2 chain.
This boson representation gives a very good picture for
understanding the magnetization of spin-1 ULS at large
field qualitatively. There are two more questions we can
ask based on this insight: how does the SU(3) system
continuously transit to an effective SU(2) system, and,
how can we describe the dynamical evolution from a spin-
1 chain to its effective spin-1/2 map. In this subsection
we will discuss these questions using the results of the
dynamical correlations for the ULS model obtained from
DMRG.

Figure 5 shows the S+S− component of the dynamical
structure factor calculated using DMRG for a lattice
of 200 sites with open boundary conditions, with and
without field a h, as indicated. (The SzSz and S−S+

components are shown in the Supplement [23]). Before

the first transition at hc1, the dynamical structure factor
S(q, ω) in Fig. 5(a) shows that a wide range of frequencies
are excited at a given momentum, in contrast to the
gapped Haldane phase that shows sharper modes. At low
energies, the spectrum for the ULS model has two gapless
incommensurate modes at q ∼ 2π/3, 4π/3 corresponding
to the two peaks shown in Fig. 4(c) at h = 0. This
is a distinct fingerprint observable by inelastic neutron-
scattering. The broad spectrum provides clear evidence
for fractionalized excitations.

Adding a field breaks the SU(3) symmetry of the ULS
model into U(1)×U(1). As shown in Fig. 5(b), this re-
duction of symmetry is accompanied by the bifurcation
of the two incommensurate modes that are both two-fold
degenerate, resulting in 4 distinct gapless modes. Upon
increasing the field, we find that the two pairs of modes
move in opposite directions in momentum space. Near hc1
one pair of modes recombines into a degenerate mode at
π, the other pair moves further away from each other and
becomes fainter as the field reaches hc1. Finally, as shown
in Fig. 5(d), at h = 1.5 > hc1 we see only one gapless
mode at π while the other pair is completely washed out.

Importantly, in Fig. 5(h) which shows the dynamical
structure factor at h = 1.0, the S(q, ω) is not as sharp and
linear as in the AKLT model or Heisenberg model shown
in the Supplement[23], instead it forms a fan emanating
from the gapless point at q = π to higher energies with
decreasing spectral weight. This behavior resembles the
spectrum of a spin-1/2 Heisenberg chain obtained by
Bethe ansatz [1, 43, 44].

In order to understand how the phase transition is re-
flected in the bifurcation in dynamical structure factor
shown in Fig.5(a-d), we adopt a fermion band representa-
tion of the problem. Let km denote the fermi momentum
of the spinon of m-flavor. The single-particle density
of m-flavor spinon can thus be approximated by ρm '∫ km
−km dk/2π = km/π. Notice that the spinon representa-

tion is faithful iff ni ≡ 1, and that ρm =
∑
i 〈ni,m〉 /N ,

the 3 fermi momenta are thus related by

∑

m=−1,0,1

km = π (26)

The magnetic field contribution in terms of spinons is

hSz =
∑

i

h(a†i,1ai,1 − a†i,−1ai,−1) (27)

without which all 3 bands are degenerate, hence on the
ULS point km = π/3 for all 3 bands. As SU(3) is broken
by a small but non-zero field, k0 will remain intact, yet
the other two momenta will change by k1,3 = π/3± h/v,
where v is the spinon velocity.

Next we show this fermion band picture provides an
explanation of the dynamical spectral function shown in
Fig.5. Low energy spinons of the SU(3) model can be
approximated by a pair of chiral fermions [45]

ai,m ≈ fL,m(x)e−ikmx + fR,m(x)eikmx (28)
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FIG. 5. S+−(q, ω) dynamics of ULS model at field h = 0 (sz = 1/200) , h = 0.5 (sz ≈ 0.16), h = 0.9 (sz ≈ 0.50), and h = 1.5
(sz ≈ 0.60). (a-c) are within phase A while (d) is within phase B. Results of dynamics are obtained by 200-site DMRG under
under OBC.

where fL,m and fR,m respectively denote left and right chi-
ral fermion annihilation operators relevant for m-spinon
with momenta km = π/3. Therefore, in the low energy
sector for h � vkm, the magnon excitation can be ap-
proximated by

S+(x) ≈ f†R,1fL,0e−i(k1+k0)x + f†L,1fR,0e
i(k1+k0)x

+ f†R,0fL,−1e
−i(k0+k1)x + f†L,−1fR,0e

i(k1+k0)x

(29)

in terms of the scattering channels between left and right
chiral fermions. From previous analyses of fermion bands,
it is readily seen that the momenta relevant for these
processes are

k1 + k0 = 2π/3− h/v,
k0 + k−1 = 2π/3 + h/v · (30)

This explains the bifurcation of modes at q = 2π/3 and
q = 4π/3 shown in Fig.5(f). Further increasing h towards
hc1 leads to the reduction of fermi momentum k1, thus
the de-population of spinon of m = 1 type. Its complete
de-population happens at h = hc1 - exactly the end of
the zigzag magnetization pattern. In other words, hc1
can be viewed as the chemical potential µ1 ≡ hc1 of
the 1-type spinon, which touches the bottom of the 1-
type spinon band and gives a zero occupation at ground
state. Therefore upon entering the B-phase, all excitation
channels in S+ relevant for fR/L,1 vanish, and the only
modes left are those with k1 +k0 = k0 = π. This explains
the “recombination” of modes shown in Fig.5(a-d).

Furthermore, this fermionic band picture also allows
us to explain the square-root-like scaling behavior in the
magnetization for 0 < hc1−h = δh < hc1 near the critical
point hc1. As is clear from Eq.(27), varying h is equivalent
to a varying chemical potential µ′1(h) of relevant spinon.
Its dispersion for small δh > 0 can then be written as

ε1,q − µ′1 = ε1,q − δh · (31)

Assuming a parabolic dispersion ε1,q = αq2 of the 1-type
spinon near the bottom of the band, where α is a constant,
at the Fermi momentum we have

k1 = (δh/α)1/2 (32)

From Eq.(27) it’s magnetization near hc1 can be evaluated
by

Sz = |k1 − k−1| = k−1 − (δh/α)1/2 (33)

which immediately determines the critical exponent of
magnetization near hc1:

δSz(hc1) ∝ δh1/2 (34)

which agrees with numerical results in Fig.4(a). The
same physics takes place at the second phase transition
near hc2 = 4, where, instead of 1-type spinon, it is the
0-type spinon that gets depopulated due to the shift
of its fermi momentum k0, or equivalently its chemical
potential µ0. Because of the complete depopulation of
1-type spinon at hc1, the constraint of Eq.(26) changes
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into k0 + k−1 = π. The Zeeman term relevant for (-1)-

type spinon −ha†n,−1an,−1 raises the chemical potential
µ0, thus continuously lowers the energy of the lowest
occupied state. This leads to the transfer of spinons
from m = 0 into m = −1 band. Assuming a parabolic
band of 0-type spinon again gives the same magnetic
critical exponent Sz(hc2) ∝ δh1/2. Ultimately at hc2 the
m = 0 band becomes completely unoccupied and we
obtain k−1 = π as in Fig.5(d).

Moreover, the magnetic critical exponent on the right
side of hc1 (hc2 > h > hc1) is readily derived starting
from the phase B. Noting that h

∑
i S

z
i is a good quantum

number, previous analysis on Sz(hc2) ∝ δh1/2 applies to
the all ULS models of phase B, including those near hc1
from the right side. Taylor expansion of the aforesaid
square root scaling at finite δh = h−hc1 > 0 immediately
gives a linear dependence on δh. The same argument
applies to the critical behavior at small h near h = 0. In
all, near h = 0 we have

Sz(h) ∝ h1 (35)

near hc1 we have

Sz(h) ∝
{

(hc1 − h)1/2, h < hc1
(h− hc1)1, hc1 < h

(36)

and near hc2

Sz(h) ∝ (hc2 − h)1/2, h < hc2 (37)

Therefore, in this spinon band language, the two phase
transitions at hc1 and hc2 are both continuous transition
in the thermodynamic limit, as a “topological” phase
transition of the Lifshitz type that involves 3 distinct
spinon bands: the fermi surface (point) of the 1-type
spinon vanishes at hc1; the fermi surface (point) of the
0-type spinon vanishes and gives rise to the emergence of
the (-1)-type at hc2.

To further understand the end of the phase diagram
shown in Fig.5(d), we would like to point out that it
was obtained in Refs. [10, 11] that in the spin-1/2 bond
operator representation of spin-1, the spin states anti-
parallel to the applied field can be projected out, thus the
bond operator representation can be approximated by

S+

√
2
∼ u†tz ≡ S+,

S−√
2
∼ t†zu ≡ S−,

Sz ∼ 1

2
(u†u− t†ztz) +

1

2
≡ Sz +

1

2

(38)

where t†z creates a triplet state of spin-1/2 bond by t†z |0〉 =

1/
√

2(|↑↓〉 + |↓↑〉) and u† the bosonic creation operator
defined by u† |0〉 = |↑↑〉. Eq. (38) is the Schwinger boson
representation of the pseudo-spin-1/2 operators. Applying
such projection produces an effective spin-1/2 anisotropic
Heisenberg model subject to an effective magnetic field:

Heff ∝
∑

〈ij〉
Sxi Sxj + Syi Syj + ∆Szi Szj + heff

∑

i

Szi (39)

where heff = (h + β − 1)/2 and ∆ = (1 + β)/2. This
explains the resemblance between the spin-1/2 system
and spin-1 system near saturation at hc2. Such a mapping
from the spin-1 system to the spin-1/2 system is exact
for β = 1 at h & hc1. In particular, for β = 1 and
h = hc2 = 4 where ULS model is polarized, the effective
field in Eq.(39) becomes heff = 2, which is exactly the
field that polarizes the spin-1/2 XXZ model [46]. At fields
above but close to hc1, we expect the dynamical structure
factor of the ULS model’s gapless intermediate phase to
coincide with that of the spin-1/2 model calculated by
Bethe ansatz, whose intensity decreases as field becomes
stronger. Figure 4(c) (for h = 1.0 > hc1) validates such a
mapping in the intermediate phase of ULS. Moreover, the
evolution of dynamical structure factor shows explicitly
how the mapping into spin-1/2 model emerges from the
bifurcation and recombination of degenerate soft modes.

VI. DISCUSSION

A. Central Charge

In this section we turn to a brief discussion of the central
charge to provide insight into their effective underlying
CFT descriptions Many pioneering works have been done
for the spin-1 antiferromagnetic chain using the NLσM [3,
4], which has been recently extended from the Heisenberg
model with β = 0 to the BLBQ Hamiltonian with a wider
range of β > 0 [47].

Field AKLT Heisenberg

∆ > 0 > 0

h = 0 q0 NA NA

c NA NA

∆ > 0 > 0

|h| < hc1 q0 NA NA

c NA NA

∆ 0 0

hc1 < |h| < hc2 q0 π π

c c→ 1 c→ 1

TABLE I. Summary of energy gap ∆, momentum of gapless
modes q0, and central charge c of Heisenberg and AKLT model
under different fields. The central charge of the ULS model at
fields corresponding to the XXX intermediate phase is c = 1
due to its mapping to the spin-1/2 chain. Although such a
mapping is no longer exact on the path from β = 1 to β = 0,
the behavior of the central charge in the B and XXZ phases
is shown in Fig.6(d). Away from the phase transition at the
corresponding hc1 the central charge is close to c = 1. The
right arrow in the table c→ 1 indicates that the central charge
is unity only away from the transition within the accuracy of
the numerical results.

While NLσM captures the presence of the elementary
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FIG. 6. Entanglement entropies as a function of bond position n and fits to the data (red solid line) for (a) the spin-1/2
Heisenberg model with c = 1, which is equivalent to ULS under a field larger than hc1 (b) AKLT model, (c) spin-1 Heisenberg
model. (d) shows central charge c as a function extracted from EE of AKLT and spin-1 Heisenberg model within the intermediate
phase. Results obtained from 200-site DMRG under OBC.

magnon at q = π in the extended region of the Haldane
phase, it fails to accurately capture correlation functions
beyond the AKLT point at β = 1/3. In this section,
we investigate a possible field theory starting from the
Haldane phase boundary at the ULS point at β = 1 by
looking into the central charge of the phase B. We show
that perturbation of β is irrelevant in phase B, that is, a
theory with c = 1 is robust for a very wide range of β in
the gapless regions that emerge in the ULS or Haldane
model under a field.

It is well-known that in the continuum limit an antifer-
romagnetic spin-1/2 chain can be described by an SU(2)
WZW theory with central charge c = 1, which can be
generalized to many other 1+1-dimensional quantum crit-
ical systems with higher SU(N) symmetries with central
charge c = N − 1. We present below the entanglement
entropy at different bonds in models studied in previous
sections, and investigate the existence of possible effective
CFT correspondence by extracting the central charge in
the phase B.

The ULS model at h = 0 can be captured by a SU(3)
WZW theory with c = 2. Under hc1 < h < hc2, ULS
model can be mapped exactly to a spin-1/2 Heisenberg
model [10, 11], hence in the low energy regime this inter-
mediate phase should have an effective CFT with central
charge c = 1. As we move away from the ULS point by
increasing β from β = 1, the mapping to the spin-1/2

Heisenberg model is no longer exact in the intermediate
phase because the anti-parallel states in the bond-operator
representation cannot be projected out, unless the field
is close to saturation at hc2. The deviation from the
effective spin-1/2 chain can be seen from the difference in
their spectral weight distribution of intermediate phase
shown in Fig. 3(d) and Fig. 5(d). However, as we are
to show next, the c = 1 theory can be robust against a
non-perturbative deviation of β = 1 where the mapping
to the spin-1/2 model is not valid.

The entanglement entropy of 1+1 dimensional CFT
under OBC satisfies

S(n) = SCFT (n) + SOSC(n) + const (40)

where n is the bond position. The first two terms are as
defined in Eq.(10). Figure.6 shows results of entanglement
entropy (EE) as a function of bond position n, and is
fitted by Eq. (10) to extract the central charge at different
fields. As a benchmark we show in Fig. 6(a) the EE(n)
of the spin-1/2 Heisenberg model with c = 1, which is
equivalent to ULS model under fields hc1 < h < hc2.
Fig. 6(b) shows the EE(n) of the AKLT model near the
first critical field hc1(β = 1/3) ≈ 0.75.

It is worth pointing out that while the EE of the spin-
1/2 Heisenberg model oscillates strongly under OBC, the
EE of AKLT’s intermediate phase does not, hence we can
drop the SOSCn term in Eq. (10). When δh1 = h− hc1 <
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0.1, i.e. hc1 < h < 0.85, the central charge c ≈ 0.5
deviates from spin-1/2 chain’s c = 1 which reflects the
invalidity of the mapping, yet, as shown in Fig. 6(d), the
central charge converges rapidly after δh1 > 0.1 to c = 1
and remains such up to saturation at hc2 = 4. In the
spin-1 Heisenberg model where β = 0, the central charge
also quickly converges to c = 1, but this time EE oscillates
with larger amplitude and periodicity than that of AKLT
for small δh1 = h − hc1 as shown in Fig. 6(c). In the
Heisenberg model, the central charge converges to c = 1
beyond δh1 > 0.4, i.e. h > 0.8 and remains the same until
saturation, and the oscillation of EE also disappears after
the convergence like that of the AKLT. Hence, although β
deviates non-perturbatively from β = 1 to AKLT model
with β = 1/3, or to Heisenberg model with β = 0, a
central charge c = 1 continues to describe the gapless
intermediate phase.

B. Single Mode Approximation

Motivated by the sharp signal of the dynamical struc-
ture factor in Fig.3(a-d) and Fig.5(d), we investigate the
extent to which a single mode approximation (SMA) can
describe the spectrum of the aforementioned models.

To understand the the nature of the excitations in
the intermediate phase B of H(h;β) we turn to Bijl and
Feynman’s SMA method[48], which successfully described
the phonon-roton curve in 4He and was later used to
explain the antiferromagnetism in extended Heisenberg
models with a Haldane gap [35, 49, 50]. SMA assumes the
existence of well-defined modes with a sharp dispersion
S(q, ω) ∝ S(q)δ(ω − ω(q)). It was shown previously that
SMA works well in capturing the gap above the AKLT
ground state [51]. As we discuss below, SMA is able to
capture the essence of the field-induced gapless modes at
fields above but close to hc1 near the Haldane-phase B
boundary (see Fig.1) with good accuracy. However, SMA
becomes too coarse of an approximation to capture the
gapless modes at higher fields in the B intermediate phase
due to increasing magnon fractionalization.

Though the AKLT chain does not order unless it is
in the saturated phase h > 4, when the requirement for
SMA to be valid is rigorously met, nevertheless, we find
that SMA can capture the essence of the modes when the
fractionalization of the magnon modes is weak, and the
deviation from SMA provides a quantitative measure of
the degree of fractionalization. One point to note is that
the gap deduced by SMA is the upper bound of the actual
gap as is evident from Fig.1. The strength of SMA is
that it provides qualitative information on the excitations
based only on the static structure factor, without detailed
information on the dynamical information. In order to
compare with the well-known result by Arovas, Auerbach
and Haldane [35] we scale down the Hamiltonian by 1/2
hereafter in this section. By SMA we assume the magnon

excitations can be described by

Sαq |g.s.〉 =
1

L

∑

i

eiqriSαi |g.s.〉 (41)

where |g.s.〉 is the ground state of Hamiltonian H which
can be readily computed by DMRG, α = x, y, z are three
different magnon branches. This is a good approximation
if the magnon dispersion is strongly peaked at the energy
of the state Sαq |g.s.〉. The dispersion within SMA is then
given by

ωSMA =
〈g.s.|[Sα−q, [H,Sαq ]]|g.s.〉

2 〈g.s.|Sα−qSαq |g.s.〉
(42)

where the denominator is simply the static structure factor
evaluated in the ground state. In the presence of inversion
symmetry (or PBC) commutators in the numerator can
be worked out directly. Here we choose the Sz magnon
branch and the energy is evaluated to be:

ωSMA =
(1− cos q)C(β)

S(q)
(43)

where C(β) is a collection of correlators between nearest
neighbors. It is also independent of q and fully determined
by the choice of the magnon branch, the parameter β in
the BLBQ Hamiltonian. For a derivation of ωSMA readers
can refer to Appendix IX A. Futhermore, in the Sz branch
the z-field term of the commutators in Eq. (42) vanishes,
thus we can simply use the non-perturbed Hamiltonian
for the numerator. The spectrum becomes gapless, i.e.
ωSMA = 0 when the structure factor S(q) diverges, as
seen from Eq.(43).

We make no attempt to apply SMA to the phase A be-
cause it is an extremely fractionalized phase that strongly
violates S(q, ω) ∝ S(q)δ(ω−ω(q)). It turns out that, even
though for hc1 < h < hc2 the ULS gives much sharper
signal in dynamical structure factors shown in Fig. 5(d),
SMA is a poor approximation to capture the dynamical
information, which is reflected by a non-zero minimum of
ωSMA in Figure.7(f). This can be qualitatively accounted
by the fact that, at least for fields close to but smaller than
saturation field hc2 = 4, the behavior of spin-1 BLBQ
chains very much resembles that of a spin-1/2 Heisenberg
chain, and can be mapped exactly to spin-1/2 chain for
ULS point [10, 11]. The dynamical solution of spin-1/2
chain from Bethe ansatz is qualitatively consistent with
phase B of ULS shown in Fig. 5(d), both of which have
a S(q, ω) that resembles a fuzzy fan area of fractional-
ized signal emanated from q = π. SMA loses too much
information by ignoring these fractionalized modes.

Figure.7 shows the single mode dispersion ωSMA at
different fields obtained for different L. Fig. 7(a-e) show
results for the AKLT model. In the VBS ground state,
the SMA dispersion can be solved exactly: ωSMA =
5(5 + 3 cos k)/27 with the SMA gap ωSMA(π) = 0.370,
which is very close to the number ∆ ≈ 0.350 given by ED.
At h = 0.8, which is slightly larger than hc1 and belongs to
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FIG. 7. SMA results (solid lines) compared with S(q, ω) obtained by DMRG (intensity plot) in (a) AKLT VBS state; (b-e)
AKLT phase B at h = 0.8, h = 1.8, h = 2.8 h = 3.8 > hc1 calculated for different L. The gap of the VBS state is remarkably
close to the exact result of ∆V BS = 0.350. Within the phase B of AKLT, at field slightly larger than hc1, e.g. h = 0.8 in (a),
the (upper bound of) gap given by ωSMA(k) is close to zero and decreases as L increases, indicative of a gapless mode in the
thermodynamic limit. However as h keeps increasing in (b,c), the gapless mode is no longer captured by SMA. (f) ULS: SMA
and DMRG for the gapless intermediate phase at h = 1.5 > hc1 ≈ 0.94. The upper bound is not tight enough to capture the
gapless mode at π.

the gapless phase B of AKLT, the lowest excitation energy
for L = 180 obtained by SMA is about ωSMA ∼ 0.03 at
q = π, which is tiny compared to that of the VBS state.
This upper bound of the gap is affected by the finite size
L and decreases with increasing L, so we can speculate
that there is a gapless mode at fields larger than but close
to hc1 within the intermediate phase, and the slope of the
two nearly linear branches slowly tends to infinity as h gets
close to hc1, which actually represents a one-dimensional
Bose condensation at the critical point [52]. Such Bose
condensation breaks down as the field h increases beyond
hc1.

Figure.7(b-e) shows the same SMA calculation at larger
fields within phase B of AKLT. As the field h increases
within B and gets further away from the Haldane-B bound-
ary, the lowest excitation energy captured by SMA no
longer converges to zero. This can be readily seen in the
static structure factor S(q) in Fig.2(d), that the spiky
S(q) of phase B at q = π decreases as magnetic field h in-
creases, hence the approximated gap by ωSMA in Eq.(43)
becomes larger. In other words, since the existence of
a gapless mode is already guaranteed by the diverging
correlation length, a non-zero gap in SMA means the
upper bound of the gap is not asymptotically tight, which
suggests the assumption S(q, ω) ∝ S(q)δ(ω − ω(q)) is
no longer accurate for the dynamical structure factor at
higher field away from Haldane-B boundary and the Bose
condensate breaks down. Further increase of magnetic

field enhances fractionalization and ultimately the system
resembles a spin-1/2 model somewhere near saturation
field hc2, where all spin states anti-parallel to the applied
field can be asymptotically projected out as in the case of
the A-B transition in the ULS model in a field. Therefore,
from the calculated data in Fig.7, we can speculate that
the SMA result of AKLT after some large enough field
between Fig.7(d) and (e) should be the same as an effec-
tive XXZ model under an effective magnetic field, whose
S(q, ω) is similar to that of the phase B of ULS shown in
Fig.7(f). This qualitatively explains the shape of intensity
distribution in Fig.7(e), thus the heavier tail at higher
energy in AKLT phase B shown in Fig.2(k,l), and the
decreasing of entanglement entropy at larger fields shown
in Fig.2(c).

C. Material Candidates

In this subsection we discuss candidate materials with
d4 configuration where the field-induced Lifshitz-type tran-
sition of ULS Hamiltonian may be observed. Contrary
to common wisdom that d4 materials are non-magnetic
in both strong spin orbital coupling (SOC) and Hund’s
coupling limits [53], our recent study using the full multi-
orbital Hubbard model of d4 configurations indicates that
a magnetic phase transition is possible in a realistic param-
eter regime [16, 54]. For example, Ca2RuO4 was shown to
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have finite magnetic moments [55–57], and experiments
on double perovskite iridates [58–64], honeycomb ruthen-
ates [65–67] have also revealed non-trivial magnetism for
the d4 configuration.

In our previous work [17] using DMRG on the model de-
rived for d4 transition metal oxides we also find a gapless-
to-gapless transition with increasing SOC. The behavior
near the transition point of the d4 model captured by a
mean-field theory described by a ULS model comprised
of only L = 1 orbital degrees of freedom at β = 1 with
an additional spin-orbital interaction. In the following we
briefly describe the origin of the model and its connection
with the ULS Hamiltonian in the orbital sector.

The effective Hamiltonian for d4 materials is effectively
described by [16, 17]:

Hd4 =− J
∑

〈ij〉
(Si · Sj)P(Li + Lj = 1)

+ λ
∑

i

Li · Si,
(44)

The effective coupling constants J and λ represent fer-
romagnetic exchange and spin-orbit interactions. The
projection operator in the first term, P(Li + Lj = 1) =
− 1

8L
2
〈ij〉(L

2
〈ij〉 − 6), is defined on a bond connecting or-

bital sectors of two adjacent sites. For a two site problem,
the total orbital angular momentum can be LT = 0, 1
or 2. Therefore, the projector P(Li + Lj = 1) = 0, 1, 0
for LT = 0, 1, 2 respectively. For J > 0, this projector
makes the L〈ij〉 = 0 and 2 quantum sectors energeti-
cally unfavorable on the two-site bond, while preferring
L〈ij〉 = 1 angular momentum on the bond. Upon expand-
ing the projector we arrive at the explicit form of the
Hamiltonian:

Hd4 =
J

2

∑

〈ij〉
(Si · Sj)

(
(Li · Lj)2 + Li · Lj − 2

)

+ λ
∑

i

Li · Si,
(45)

In Ref.[17] we have shown that the model exhibits an
emergent spin-orbital separation in a spin-orbital interact-
ing system. Therefore we can factorize our Hamiltonian
into a spin and orbital part, similar to a mean-field ap-
proximation,

Hd4 ≈
J

M2
S

2
∑

〈ij〉

(
(Li · Lj)2 + Li · Lj − 2

)

+ λMS

∑

i

Lzi

(46)

where we assume M2
s '

∑
〈ij〉〈Si · Sj〉 and treat the spin-

orbit coupling in the Ising limit with MS =
∑
i |〈Szi 〉|.

This approximation is justified by the numerical results
that shows the magnetization of spins remains large for
weak enough SOC. In summary, the similarity with Ref. [9]
lead us to expect that our model (Eq. 44) can be well

approximated by only the orbital term in the Hd4 Hamil-
tonian with a Zeeman field Lz (Eq. 46). The first term
in Hmf is exactly the ULS Hamiltonian up to a constant.
Therefore the effective Hamiltonian can be interpreted
as the ULS Hamiltonian with an additional Zeeman field.
Setting the energy scale J = 1 we have:

Heff =
∑

〈ij〉

(
(Li · Lj)

2 + Li · Lj

)
+ heff

∑

i

Lzi , (47)

where Li are the spin-1 Pauli operators at site i, and
heff = 2λ/Ms is the strength of an effective external
Zeeman field experienced by the orbital degree of freedom.
This is an orbital analog of ULS model with a field, as
discussed in Sec.V Eq.(18). Therefore we expect our
predictions in Sec.V are useful to guide explorations for
5d4 transition metal oxides like OsCl4, Ca2RuO4, and
other double perovskite iridates.

VII. SUMMARY AND OUTLOOK

In summary, we have investigated the one-parameter
bilinear biquadratic Hamiltonian family for two parameter
values β = 1/3, the AKLT model as a representative of
the Haldane phase, which is compared with β = 1, the
ULS critical point and shown the process by which the
ground state evolves under a magnetic field. Both models
undergo two second order transitions: the AKLT model
first transitions from the Haldane phase to a gapless phase
B, and then to the fully saturated phase at field hc2 = 4.
The ULS critical point, already gapless at zero field, goes
through a second transition to the gapless phase B before
reaching the fully polarized phase at hc2 = 4. We showed
that the gapless to gapless transition in ULS model under
a field can be understood as a Lifshitz type transition that
involves 3 distinct spinon bands in the gapless to gapless
transition. In the spinon band language, the two phase
transitions at hc1 and hc2 are both continuous transition
in the thermodynamic limit, as a “topological” phase
transition of the Lifshitz type that involves 3 distinct
spinon bands: the fermi surface (point) of the 1-type
spinon vanishes at hc1; the fermi surface (point) of the
0-type spinon vanishes and gives rise to the emergence of
the (-1)-type at hc2. We have scrutinized the universality
of central charge in the gapless phase B which can be
effectively captured by a CFT with c = 1. We expect our
predictions of the spin dynamics will open the door for
inelastic neutron scattering measurements in candidate
materials of relevant quasi-one dimensional d4 materials
[16, 17]. Future theoretical work will involve the nature
of edge modes of BLBQ models under OBC, the effect of
thermal fluctuations on symmetry protected topological
states in addition to a field, and a field-theoretic approach
to determine the effective CFT to describe the gapless
intermedate phases.
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IX. APPENDIX

A. Derivation of C(β) of SMA

In this section we sketch the derivation of C(β) men-
tioned in Eq. (43). As an example we will derive the SzSz
channel. Here we use the conventional BLBQ parameter-
ized by β:

H =
∑

i,i+1

(
~Si · ~Si+1

)
+ β

(
~Si · ~Si+1

)2

(48)

The evaluation of SMA can be reduced to the evaluation
of commutator in Eq. (42).

[
Sα−q, [Hβ , S

α
q ]
]

=
∑

inn′

([
Sαn′ , ~Si · ~Si+1

]
Sαn − Sαn

[
Sαn′ , ~Si · ~Si+1

]) e−iq(n−n′)

L

− β
([
Sαn′ ,

(
~Si · ~Si+1

)2
]
Sαn − Sαn

[
Sαn′ ,

(
~Si · ~Si+1

)2
])

e−iq(n−n
′)

L
≡ HL +HQ

(49)

where we have moved to Fourier basis. To two terms in
above equation have are from the linear and quadratic
term of BLBQ Hamiltonian respectively. We evaluate the
linear term first then the quadratic term. The linear term
in the commutator is

∑

inn′

([
Szn′ , ~Si · ~Si+1

]
Szn − Szn

[
Szn′ , ~Si · ~Si+1

])
e−iq(n−n

′)

(50)
Noting that if n 6= i and n 6= i+ 1, then the commutation
factor of linear term must vanish. So we only need to add
up these two indices. In presence of inversion symmetry
the summation becomes, this gives

HL = −2(1− cos q)
1

L

∑

i

Syi S
y
i+1 + Sxi S

x
i+1 (51)

where the normalized sum over i contributes to C(β). This
alone will be the SMA for the spin-1 Heisenberg chain.
Note that the two point correlation in the summation
will evaluate to a negative number in antiferromagnetic
chain, so the dynamical signal is proportional to 1− cos q.
In a similar way we apply the inversion symmetry to
HQ and have which is again proportional to 1 − cos q.
So, in arbitrary units we may ignore the multiple-point
correlation functions that are independent of momentum
during the evaluation of single-mode dynamical structure
factor. In fact for AKLT model C(β) ∼ 1 [50] so the
arbitrary units should be very close to the actual value.

B. Fermionization of ULS Model

In this section we show a detailed derivation of ULS’s
fermionic representation. Rewriting the Hamiltonian in
the fermion language is allows us readily notice the SU(3)
symmetry as mentioned in the main text, and is a useful
tool in finding conserved charges that is not explicit other-

wise. For spin-1 sites, define spin-1 operator Si = ψ†i ~Sψi,
where ~S is spin matrix in spin-1 Hilbert space:

Sz =




1 0 0
0 0 0
0 0 −1


 , S+ =




0
√

2 0

0 0
√

2
0 0 0


 (52)

and ψ = (ai,1, ai,0, ai,−1)T , with ai,m(a†i,m) being fermion

annihilation (creation) operator of spin-m at site i. So
we have

Sz = a†1a1 − a†−1a−1 (53)

S+ =
(
S−
)†

=
√

2
(
a†1a0 + a†0a−1

)
(54)

There is a constraint that the spin on each site is 1, thus

1

2
S2 =

1

2
SzSz +

1

4

(
S+S− + S−S+

)

= (n− n0n1 − n0n−1 − n1n−1)
!
= 1

(55)

where nm is the on-site occupation number operator of

m-type fermion, and ni =
∑
m a
†
imaim being the total
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on-site occupation number operator. The standard ULS
Hamiltonian in spin language is written as

HULS =
∑

〈ij〉
Si · Sj + (Si · Sj)2 − 2I (56)

note the identity I is spanned in 3⊗ 3 Hilbert space. The
on-site identity is I0 =

∑
α 〈α|I0|α〉 a†αaα =

∑
α a
†
αaα =

n, hence I = ninj . Therefore we can make use of the
fermion representation of identity as auxiliary parameters.
Let us define a diagonal constant c = ninj + 3ni, then
the equivalent ULS Hamiltonian H can be expressed by.

HULS = HULS − c =
∑

〈ij〉
Si · Sj + (Si · Sj)2 − c

= −
[∑

〈ij〉
a†i,1aj,1a

†
j,1ai,1 + a†i,0aj,0a

†
j,1ai,0 + a†i,−1aj,−1a

†
j,−1ai,−1 + a†i,1aj,0a

†
j,0ai,1 + a†i,0aj,−1a

†
j,−1ai,0

+
∑

〈ij〉
a†i,1aj,−1a

†
j,−1ai,1 + a†i,0aj,1a

†
j,1ai,0 + a†i,−1aj,0a

†
j,0ai,−1 + a†i,−1aj,1a

†
j,1ai,−1

]

= −
∑

〈ij〉;mm′

a†i,maj,ma
†
j,m′ai,m′ = −

∑

〈ij〉
(ψ†iψj)(ψ

†
jψi)

(57)

It is then obvious that HULS remains invariant under
transformations in SU(3) ≡ {U ∈ GL(3,C)|U†U =
I, det(U) = 1}. It is then straightforward to show the
3 conserved quantities explicitly by the fermion repre-

sentation. That is, [Nn, HULS ] =
[∑

n a
†
nan, HULS

]
= 0.

Hence the total occupation number Nm of m = −1, 0, 1
are good quantum numbers separately.
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9 G. Fáth and P. B. Littlewood, Phys. Rev. B 58,

R14709 (1998), URL https://link.aps.org/doi/10.

1103/PhysRevB.58.R14709.
10 H.-T. Wang, J.-L. Shen, and Z.-B. Su, Phys. Rev. B 56,

14435 (1997), URL https://link.aps.org/doi/10.1103/

PhysRevB.56.14435.
11 H.-T. Wang, H. Q. Lin, and J.-L. Shen, Phys. Rev. B 61,

4019 (2000), URL https://link.aps.org/doi/10.1103/

PhysRevB.61.4019.
12 Z. Tun, Buyers, W. J. L., Armstrong, R. L., Hirakawa,

K., and B. Briat, Phys. Rev. B 42, 4677 (1990), URL
https://link.aps.org/doi/10.1103/PhysRevB.42.4677.

13 I. A. Zaliznyak, S.-H. Lee, and S. V. Petrov, Phys. Rev. Lett.
87, 017202 (2001), URL https://link.aps.org/doi/10.

1103/PhysRevLett.87.017202.
14 P. Millet, F. Mila, F. C. Zhang, M. Mambrini, A. B.

Van Oosten, V. A. Pashchenko, A. Sulpice, and A. Stepanov,
Phys. Rev. Lett. 83, 4176 (1999), URL https://link.aps.

org/doi/10.1103/PhysRevLett.83.4176.
15 J. Lou, T. Xiang, and Z. Su, Phys. Rev. Lett. 85,

2380 (2000), URL https://link.aps.org/doi/10.1103/

PhysRevLett.85.2380.
16 O. N. Meetei, W. S. Cole, M. Randeria, and N. Trivedi,

Phys. Rev. B 91, 054412 (2015), URL https://link.aps.

org/doi/10.1103/PhysRevB.91.054412.
17 S. Feng, N. D. Patel, P. Kim, J. H. Han, and N. Trivedi,

Phys. Rev. B 101, 155112 (2020), URL https://link.aps.

org/doi/10.1103/PhysRevB.101.155112.
18 I. Lifshitz (1960).
19 M. Rodney, H. F. Song, S.-S. Lee, K. Le Hur, and E. S.

Sørensen, Phys. Rev. B 87, 115132 (2013), URL https:

//link.aps.org/doi/10.1103/PhysRevB.87.115132.
20 I. Affleck and E. Lieb, Letters in Mathematical Physics 12,



18

57 (1986).
21 S. R. White, Phys. Rev. Lett. 69, 2863 (1992), URL https:

//link.aps.org/doi/10.1103/PhysRevLett.69.2863.
22 S. R. White, Phys. Rev. B 48, 10345 (1993), URL https:

//link.aps.org/doi/10.1103/PhysRevB.48.10345.
23 See Supplemental Material at [URL will be inserted by

publisher] for a description and usage of the computer
code.

24 J. B. Parkinson, Journal of Physics: Condensed Mat-
ter 1, 6709 (1989), URL https://doi.org/10.1088%

2F0953-8984%2F1%2F37%2F017.
25 M. B. Hastings and T. Koma, Communications in Math-

ematical Physics 265, 781 (2006), ISSN 1432-0916, URL
https://doi.org/10.1007/s00220-006-0030-4.

26 B. Nachtergaele and R. Sims, Communications in Math-
ematical Physics 265, 119 (2006), ISSN 1432-0916, URL
https://doi.org/10.1007/s00220-006-1556-1.

27 A. Nocera and G. Alvarez, Phys. Rev. B 94, 053308 (2016).
28 P. Calabrese and J. Cardy, Journal of Statistical

Mechanics: Theory and Experiment 2004, P06002
(2004), URL https://doi.org/10.1088%2F1742-5468%

2F2004%2F06%2Fp06002.
29 P. Calabrese, M. Campostrini, F. Essler, and B. Nienhuis,

Phys. Rev. Lett. 104, 095701 (2010), URL https://link.

aps.org/doi/10.1103/PhysRevLett.104.095701.
30 J. D’Emidio, M. S. Block, and R. K. Kaul, Phys. Rev. B

92, 054411 (2015), URL https://link.aps.org/doi/10.

1103/PhysRevB.92.054411.
31 P. Kim, H. Katsura, N. Trivedi, and J. H. Han, Phys. Rev.

B 94, 195110 (2016), URL https://link.aps.org/doi/

10.1103/PhysRevB.94.195110.
32 I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Commun.

Math. Phys. 115, 477 (1988).
33 D. P. Arovas, Physics Letters A 137, 431 (1989),

ISSN 0375-9601, URL http://www.sciencedirect.com/

science/article/pii/0375960189909213.
34 I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys.

Rev. Lett. 59, 799 (1987), URL https://link.aps.org/

doi/10.1103/PhysRevLett.59.799.
35 D. P. Arovas, A. Auerbach, and F. D. M. Haldane, Phys.

Rev. Lett. 60, 531 (1988), URL https://link.aps.org/

doi/10.1103/PhysRevLett.60.531.
36 M. den Nijs and K. Rommelse, Phys. Rev. B 40,

4709 (1989), URL https://link.aps.org/doi/10.1103/

PhysRevB.40.4709.
37 S. M. Girvin and D. P. Arovas, Physica Scripta T27, 156

(1989), URL https://doi.org/10.1088%2F0031-8949%

2F1989%2Ft27%2F027.
38 T. Kühner and S. White, Phys. Rev. B 60, 335 (1999).
39 B. Sutherland, Phys. Rev. B 12, 3795 (1975), URL https:

//doi.org/10.1103/PhysRevB.12.3795.
40 G. V. Uimin, JETP Letters 12, 225 (1970), URL http://

www.jetpletters.ac.ru/ps/1730/article_26296.shtml.
41 C. K. Lai, J. Math. Phys. 15, 1675 (1974), URL https:

//doi.org/10.1063/1.1666522.
42 Y. Q. Li, M. Ma, D. N. Shi, and F. C. Zhang, Phys. Rev.

Lett. 81, 3527 (1998), URL https://link.aps.org/doi/

10.1103/PhysRevLett.81.3527.
43 M. Mourigal, M. Enderle, A. Klöpperpieper, J.-S. Caux,
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SIZE EFFECTS AND CONVERGENCE
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FIG. 1: S+S− dynamics for the ULS model at zero field for Above, left: L = 60 sites, m = 500 kept states; Above, right: L = 60
sites, m = 1000 kept states; Below, left: L = 80 sites, m = 500 kept states; Below, right: L = 100 sites, m = 500 kept states.

This section provides evidence that the results presented in the paper are converged. We analyze convergence first
with the DMRG parameter m, the number of kept states. Figure 1 shows a comparison of the S+S− dynamics for the
ULS model at zero field and with L = 60 sites for (a) m = 800 and (b m = 100 states, indicating that none of the
details discussed in the paper is affected by doubling the number of kept states, so that we have worked with correct
accuracy for the level of detail needed to make the conclusions reached in the paper.

Figure 1 also shows the effect of increasing the number of sites from (a) L = 60 to (c) L = 80 to (d) L = 100 while
maintaining a constant m = 800. Again, no relevant changes are noticeable that would change the conclusions reached
in the paper.

Note that although m = 800 is enough for the convergence of dynamical structure factors, it turned out that,
for the ULS critical point, we need significantly larger amount of kept states to produce an accurate von Neumann
entanglement entropy S(n) that is able to capture the correct central charge. In order to get the central charge for
ULS model, we kept m = 3000 states which produces the expected c = 2 for the SU(3) WZW theory. In contrast,
smaller m < 2000 will give a fitted central charge c < 2 though it captures other dynamic/static features with good
accuracy. This discrepancy of kept states between central charge calculation and other dynamical/static signature is
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highly likely to originate from the fine figures of oscillation term SOSC(n) under OBC, which is defined in Eq.(9,10) of
the main text, though the envelope from SCFT only needs a much smaller m.

ADDITIONAL DYNAMICS DATA

This section contains additional dynamics figures that did not fit in the paper. Figure 2 shows the density of states
SzSz for the AKLT model, and computed with the DMRG on a 60-site lattice with OBC, in different spins sectors, as
indicated. Figure 3 shows the SzSz dynamics for the AKLT model on a L = 60 site lattice, for the magnetic fields
indicated. We compute and show the SzSz dynamics separate from the S+S− dynamics, because they differ in the
presence of a magnetic field. As explained in the main text, the SzSz dynamics is similar to that at h = 0, because, (i)
the ground state remains a VBS state, and, (ii) H −E0 does not depend on field, as the energy contribution of field in
H and E0 cancels out.
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FIG. 2: DOS for the AKLT model, as defined in the text
and computed with DMRG on a 60-site lattice with OBC,
in different spin sectors, as indicated.
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FIG. 3: First row: Szz(q, ω) at field hz = 0 (sz = 1/60), and at
field hz = 0.5 (sz ≈ 0.16). Last row: Szz(q, ω) at field hz = 1.0
(sz ≈ 0.50), and at field hz = 1.5 (sz ≈ 0.60). This is a 60-site
DMRG run under OBC for the AKLT model.
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FIG. 4: DOS for the ULS model, as defined in the text
and computed with DMRG, in different spin sectors as
indicated, on a 60-site lattice with OBC.
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FIG. 5: First row: Szz(q, ω) at field hz = 0 and at field hz = 0.5.
Last row: Szz(q, ω) at field hz = 1.5, and at field hz = 3. This
is a 60-site DMRG run under OBC for the ULS model.
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FIG. 6: First row: S−+(q, ω) at field hz = 0 (sz = 1/60), and at field hz = 0.5 (sz ≈ 0.16). Last row: S−+(q, ω) at field hz = 0.9
(sz ≈ 0.50), and at field hz = 1.5 (sz ≈ 0.60). This is a 60-site DMRG run under OBC for the ULS model.

L=8 L=10 L=12

FIG. 7: Energy spectrum (measured against g.s. energy E0) of AKLT model with L = 8, 10, 12 obtained by ED. Two vertical
dashed lines mark the Haldane-B transition at hc1 and B-saturated transition at hc2 = 4. Within the intermediate phase
hc1 < h < hc2 = 4.00, the number of level crossings rises as system size grows. It is expected to fill the entire phase, hence a
gapless phase with power-law decaying of correlation function. The blue curves are to guide the eye.

Figure 4 shows the DOS of the ULS model for the parameters indicated. Figure 5 shows the SzSz dynamics for the
ULS model, on a L = 60 lattice for the magnetic fields indicated in the caption of the figure.

Figure 6 shows the S−S+ dynamics for the ULS model, on a L = 60 lattice for the magnetic fields indicated in the
caption of the figure. This dynamical structure factor component differs from the S+S− one at non-zero magnetic field.

Finally, in order to have an intuition of the Haldane-B transition we show in Fig.7 the energy spectrum of AKLT
model with L = 8, 10, 12 obtained by ED. In the small system, there are successively level crossings in the intermediate
phase (marked by blue lines), the number of which increases as the system size L becomes larger. One may perceive
the gapless phase in a large finite system as a region filled up with these crossings.

Spin-1 Heisenberg Model

As a benchmark model here we show the results of spin-1 Heisenberg model (Haldane Model). It corresponds to the
parameter β = 0 of the BLBQ family and it also lies in the Haldane phase.

HULSZ =
∑

〈ij〉
Si · Sj + h

∑

i

Szi (1)

The Heisenberg model’s SU(2) symmetry breaks down when applying a magnetic field h in the z-direction. Its ground
state with h field becomes then the ground state of the block with some total Sz of the model without field. In the
spin-1 Heisenberg model, there is a second-order phase transition at hc1 ≈ 0.5 in units of energy. As explained in the
appendix of maintext, the value hc2 = 4 is the point where the fully saturated phase is reached. The behavior of
von-Neumann entanglement entropy and magnetization are similar to that of AKLT except at a different hc1, where
the haldane gap protects the original ground state until the field reaches the energy scale at which the gap closes and
a level crossing made the old excited state the new ground state.
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FIG. 8: First row: Szz(q, ω) at field h = 0 and at field h = 0.5 (sz ≈ 0.05). Last row: Szz(q, ω) at field h = 0.75 (sz ≈ 0.10),
and at field h = 2 (sz ≈ 0.40). This is a 60-site DMRG run under OBC for the spin-1 Heisenberg model.
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FIG. 9: First row: S+−(q, ω) at field h = 0 and at field h = 0.5 (sz ≈ 0.05). Last row: S+−(q, ω) at field h = 0.75 (sz ≈ 0.10),
and at field h = 2 (sz ≈ 0.40). This is a 60-site DMRG run under OBC for the spin-1 Heisenberg model.

Figure 8 shows the SzSz component of the dynamical structure factor calculated with the DMRG for a lattice of 60
sites with open boundary conditions, with and without field h, as indicated. Figure 9 shows the S+S− component of
the dynamical structure factor calculated with the DMRG for a lattice of 60 sites with open boundary conditions, with
and without field h, as indicated. At h < hc1 there is a non-zero Haldane gap as expected. The spin-1 Heisenberg
model with zero field is exactly solvable via the bosonic perturbation on the Neel state. It gives a sharp dispersion of
spin waves with a spectral gap ∆ ∼ 0.41 [1] which is consistent with results shown in Fig.9(a).

By comparing the spin-1 Heisenberg model results with those of the AKLT or the ULS, we see that the quadratic
term introduced by a not too large β does not significantly affect the low energy spectrum of gapless intermediate
phases. For example, the AKLT model with β = 1/3 retains most of the signature in its linearly-dispersed modes at
π, and, as we show in the next subsection, can be quantitatively captured by the single mode approximation with
good accuracy. Yet the effects of β get stronger as it increases. As can be seen from the dynamical properties of
the ULS model, β enhances the scattering of magnon excitations and results in the fractionalized signal seen in the
dynamical structure factor. This qualitatively agrees with the inaccuracy of NLσM description of BLBQ for large β
that it is incapable of capturing the correct gap in Haldane phase, especially after crossing the AKLT point at β = 1/3
[2]. However, as shown in the main text, such strong effect of the increment of β on magnons, remarkably, is not as
evidently reflected in its CFT description: although the change of β strongly fractionalizes the magnon density of
states, their effective CFT description with a central charge c = 1 remains the almost same.
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DATA SOURCES

Data sources are distributed with supplemental. In file inputsPaper103.tar.xz we include input files to be delivered
to DMRG++ for all figures in the main text and supplemental. In sourcesPaper103.tar.xz we include data and tex file
for generating static and dynamical structure factors of ULS, AKLT and spin-1 Heisenberg model, and their SMA
analysis and central charge.

HOW TO REPRODUCE THE NUMERICAL RESULTS

The DMRG++ computer program [3] can be obtained with:

git clone https://github.com/g1257/dmrgpp.git

and PsimagLite with:

git clone https://github.com/g1257/PsimagLite.git

To compile:

cd PsimagLite/lib; perl configure.pl; make

cd ../../dmrgpp/src; perl configure.pl; make

The documentation can be found at https://g1257.github.io/dmrgPlusPlus/manual.html or can be obtained
by doing cd dmrgpp/doc; make manual.pdf.

The data needed for all the figures is in RawData.tar.gz.
To reproduce figure 2, a ground state run needs to be made with ./dmrg -f akltGsL60Field0.ain where all inputs

are in RawData.tar.gz. After the ground state run has finished, the batches and inputs for all frequency runs can be
generated with

export PSC=/path/to/dmrgpp/scripts

perl -I${PSC} ${PSC}/manyOmegas.pl InputDollarizedAkltL60Field0.inp batchDollarized.pbs test

that can be launched by replacing test with submit. When all frequency runs have finished, the post-processing to
obtain the .pgfplots files is (after setting PSC as before)

perl -I${PSC} ${PSC}/procOmegas.pl -f InputDollarizedAkltL60Field0.inp -p

At zero field, we can add the symmetry sector TargetSzPlusConst= line, which should equal to Sz + L, where Sz is
the symmetry sector to be targeted, and L the number of sites. We use Sz plus the constant L so that the number
is always a non-negative integer. At non-zero field, the local symmetry Sz is also conserved, but we may not know
what value it should take, and therefore we do not provide the line TargetSzPlusConst= in the input file, so that the
diagonalization includes all symmetry sectors.

DETAILED DERIVATION OF C(β)

Here we use the conventional BLBQ parameterized by β:

H =
∑

i,i+1

(
~Si · ~Si+1

)
− β

(
~Si · ~Si+1

)2
(2)

the commutator in SMA becomes

[
Sα−q, [Hθ, S

α
q ]
]

=
∑

inn′

[
Sαn′ ,

[
cos θ

(
~Si · ~Si+1

)
+ sin θ

(
~Si · ~Si+1

)2
, Sαn

]]
e−iq(n−n

′)

L

=
∑

inn′

cos θ
([
Sαn′ , ~Si · ~Si+1

]
Sαn − Sαn

[
Sαn′ , ~Si · ~Si+1

]) e−iq(n−n′)

L

+ sin θ

([
Sαn′ ,

(
~Si · ~Si+1

)2]
Sαn − Sαn

[
Sαn′ ,

(
~Si · ~Si+1

)2]) e−iq(n−n
′)

L

(3)

Next we evaluate the cos(linear) and sin(quadratic) terms seperately.
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Linear term: The linear cos part is

∑

inn′

([
Szn′ , ~Si · ~Si+1

]
Szn − Szn

[
Szn′ , ~Si · ~Si+1

])
e−iq(n−n

′) (4)

THe first term above gives

−
∑

inn′

(
−iSxi Syn′S

z
nδn′,i+1 − iSyn′S

x
i+1S

z
nδn′,i + iSyi S

x
n′Sznδn′,i+1 + iSxn′S

y
i+1S

z
nδn′,i

)
e−iq(n−n

′)

=
∑

in

(
iSxi S

y
i+1S

z
ne
iq(i+1) + iSyi S

x
i+1S

z
ne
iqi − iSyi Sxi+1S

z
ne
iq(i+1) − iSxi Syi+1S

z
ne
iqi
)
e−iqn

(5)

the second term is (including - sign)

∑

inn′

(
−iSznSxi Syn′δn′,i+1 − iSznSyn′S

x
i+1δn′,i + iSznS

y
i S

x
n′δn′,i+1 + iSznS

x
n′S

y
i+1δn′,i

)
e−iq(n−n

′)

=
∑

in

(
−iSznSxi Syi+1e

iq(i+1) − iSznSyi Sxi+1e
iqi + iSznS

y
i S

x
i+1e

iq(i+1) + iSznS
x
i S

y
i+1e

iqi
)
e−iqn

(6)

If n 6= i and n 6= i+ 1, then the commutation factor of cos term must vanish. So we only need to add up these two
indices. This gives

∑

i

[
2iSxi S

z
i S

y
i+1(cos q − 1)− 2iSyi S

z
i S

x
i+1(cos q − 1)− 2iSzi S

x
i S

y
i+1(cos q − 1) + 2iSzi S

y
i S

x
i+1(cos q − 1)

]

= 2i(cos q − 1)
∑

i

(
Sxi S

z
i S

y
i+1 − Syi Szi Sxi+1 − Szi Sxi Syi+1 + Szi S

y
i S

x
i+1

)

= 2i(cos q − 1)
∑

i

[Sxi , S
z
i ]Syi+1 + [Szi , S

y
i ]Sxi+1

= 2(cos q − 1)
∑

i

Syi S
y
i+1 + Sxi S

x
i+1

(7)

This alone will be the SMA for the Haldane chain.

Quadratic term The sin term reads

∑

inn′

([
Szn′ ,

(
~Si · ~Si+1

)2]
Szn − Szn

[
Szn′ ,

(
~Si · ~Si+1

)2])
e−iq(n−n

′) (8)

In the same we we expand it

∑

in

(
~Si · ~Si+1

)(
iSxi S

y
i+1e

iq(i+1) + iSyi S
x
i+1e

iqi − iSyi Sxi+1e
iq(i+1) − iSxi Syi+1e

iqi
)
Szne

−iqn

+
(
iSxi S

y
i+1e

iq(i+1) + iSyi S
x
i+1e

iqi − iSyi Sxi+1e
iq(i+1) − iSxi Syi+1e

iqi
)(

~Si · ~Si+1

)
Szne

−iqn

− Szn
(
~Si · ~Si+1

)(
iSxi S

y
i+1e

iq(i+1) + iSyi S
x
i+1e

iqi − iSyi Sxi+1e
iq(i+1) − iSxi Syi+1e

iqi
)
e−iqn

− Szn
(
iSxi S

y
i+1e

iq(i+1) + iSyi S
x
i+1e

iqi − iSyi Sxi+1e
iq(i+1) − iSxi Syi+1e

iqi
)(

~Si · ~Si+1

)
e−iqn

(9)

It’s readily to see this equation evaluates to zero if n 6= i, i+ 1. In presence of inversion symmetry the summation
becomes

∑

i

(
~Si · ~Si+1

)(
2i(cos q − 1)Sxi S

z
i S

y
i+1 − 2i(cos q − 1)Syi S

z
i S

x
i+1

)

= 2i(cos q − 1)
∑

i

(
~Si · ~Si+1

) (
Sxi S

z
i S

y
i+1 − Syi Szi Sxi+1

)
+
(
Sxi S

y
i+1 − Syi Sxi+1

) (
~Si · ~Si+1

)
Szi −

− Szi
(
~Si · ~Si+1

) (
Sxi S

y
i+1 − Syi Sxi+1

)
−
(
Szi S

x
i S

y
i+1 − Szi Syi Sxi+1

) (
~Si · ~Si+1

)
(10)
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Here we make no attempt to simply the above equation because it is independent of momentum thus will not enter
qualitatve behavior of dynamical structure. Hence we see the common factor 2(cos θ − 1) as is discussed in the main
text, and is multiplied by the average correlators between nearest neighbors. The later is independent of momentum k
so we can leave them off when studying the field dependence of the dispersion of a Hamiltonian.
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