
Solvable Theory of a Strange Metal at the Breakdown of a Heavy Fermi Liquid

Erik E. Aldape,1, ∗ Tessa Cookmeyer,1, 2, ∗ Aavishkar A. Patel,1 and Ehud Altman1, 2

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

We introduce an effective theory for quantum critical points (QCPs) in heavy fermion systems,
involving a change in carrier density without symmetry breaking. Our new theory captures a
strongly coupled metallic QCP, leading to robust marginal Fermi liquid transport phenomenology,
and associated linear in temperature (T ) “strange metal” resistivity, all within a controlled large
N limit. In the parameter regime of strong damping of emergent bosonic excitations, the QCP
also displays a near-universal “Planckian” transport lifetime, τtr ∼ ~/(kBT ). This is contrasted
with the conventional so-called “slave boson” theory of the Kondo breakdown, where the large N
limit describes a weak coupling fixed point and non-trivial transport behavior may only be obtained
through uncontrolled 1/N corrections. We also compute the weak-field Hall coefficient within the
effective model as the system is tuned across the transition. We further find that between the two
plateaus, reflecting the different carrier densities in the two Fermi liquid phases, the Hall coefficient
can develop a peak in the critical crossover regime, like in recent experimental findings, in the
parameter regime of weak boson damping.

I. INTRODUCTION

The properties of heavy fermion materials (HFMs)
have been a continued source of fascination, calling fun-
damental concepts of solid state physics into question [1].
An important ingredient in the physics of the HFMs is the
coexistence and interplay of conduction electrons with a
half filled localized valence electron band behaving as lo-
cal spin-1/2 moments [2]. Early on, a mechanism was
proposed whereby the valence levels (VLs) effectively hy-
bridize with the conduction electrons through Kondo-like
screening of their spin [3, 4]. This mechanism explains
the establishment of a heavy Fermi liquid (FL) with a
large Fermi surface (FS) that includes both the conduc-
tion and valence electrons as required by Luttinger’s the-
orem. However, many of these materials can be tuned
through quantum critical points (QCPs) at which the
large FS gives way to one with a small volume, equal to
the filling of the conduction band alone [5–8].

Reconstruction of the FS can occur through two dis-
tinct routes. The first is through symmetry break-
ing, such as an antiferromagnetic transition, as seen in
CeRhIn5 [5]. In this case the emergent small FS sat-
isfies Luttinger’s theorem within the new reduced Bril-
louin zone. However recent experiments with a related
material, CeCoIn5 [8] suggest a FS changing transition
without symmetry breaking.

Such a transition has a simple description within a
scheme [4, 9] in which the Kondo interaction is expressed
as a coupling to a bosonic valence fluctuation, i.e. c†σfσb.
Here, cσ represents the conduction electron with spin in-
dex σ, and fσ is a fermion operator carrying the spin of
the singly occupied VLs. Hybridization between the con-
duction and valence bands emerges with condensation of
the boson b, leading to the creation of a heavy FL phase.

As emphasized by Senthil et. al. [9], besides carry-
ing a physical electron charge, this boson is also charged
under an emergent U(1) gauge field that fixes the local
occupation of the VLs. Therefore, condensation of b in

the heavy FL phase leads to confinement through the
Higgs mechanism. In the gapped (uncondensed) phase
of the boson, on the other hand, the VLs effectively de-
couple from the Fermi sea and form a U(1) spin liquid.
This phase is referred to as a fractionalized Fermi liquid
(FL?), and it was argued that it supports a small FS
[10], thereby obeying a generalized form of Luttinger’s
theorem [11].

This so-called “slave boson” theory [4, 9] describes a
route for a transition involving change in the FS vol-
ume without symmetry breaking. However, the standard
large N approach [4] used to approximate the theory fails
to capture essential properties of QCPs seen in HFMs;
it does not offer a robust explanation of the ubiquitous
“strange metal”, with its linear in temperature (T ) re-
sistivity ρxx at the QCP [8, 12]. The essential problem
in the theory is that the feedback of the single critical
boson on a large number of N fermion species is sup-
pressed by 1/N . The conduction electrons are therefore
non-interacting at the large N saddle point. Thus, the
same feature that makes this theory solvable also pre-
vents it from describing a fully strongly coupled QCP.

In this paper, we introduce a valence fluctuation the-
ory, which captures a strongly coupled QCP showing
marginal Fermi liquid (MFL) phenomenology [13] and
strange metal T -linear resistivity, in a solvable limit. We
start from the same degrees of freedom as in the slave
boson theory described above [4, 14]. However we intro-
duce a different large N limit, which allows controlled
calculation of transport properties nonperturbatively.

The new large N limit is inspired by recent work on
“low rank” Sachdev-Ye-Kitaev (SYK) models, in which
N fermion flavors interact via random Yukawa couplings
with αN boson flavors [15–20]. Recently, this approach
has been used to compute quantum critical properties
and quantum chaos in the 2+1-dimensional Gross-Neveu-
Yukawa model, namely, massless Dirac fermions coupled
to a critical boson field [21]. The critical exponents found
at the saddle point level are in excellent agreement with
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those obtained from conformal bootstrap, even for mod-
erate values of N . The key advantage compared to the
standard large N limit is that, because both the fermion
and boson numbers scale with N , the saddle point equa-
tions include self-consistent feedback between them, al-
lowing us to capture a strongly coupled QCP.

We implement the large N scheme in the Kondo lat-
tice problem by introducing N flavors of the spin-1/2
fermions cσ and fσ, and of the valence fluctuation (spin-
0) boson b, while retaining the global su(2) spin sym-
metry. We consider two distinct models of the fermion-
boson couplings grijk. In Model I, the couplings are spa-
tially disordered, and in Model II they are flavor random
but translationally invariant. Thus, the randomness in
Model II is just a theoretical tool. Integrating over it
may be viewed as averaging over an ensemble of trans-
lationally invariant models that all yield identical long
wavelength behavior.

In both models, we obtain a QCP showing linear in T
resistivity up to logarithmic corrections, however these
critical points describe transitions between slightly dif-
ferent phases. In Model I, we obtain the linear in T re-
sistivity at the QCP only if the heavy FL transitions to a
“layered FL?” phase, where the spinons fσ and boson b
are deconfined only within two-dimensional (2D) planes.
In Model II, on the other hand, the MFL is obtained at
a transition to a fully three-dimensional (3D) FL? phase.
Moreover, not only is the resistivity linear in T at the
QCP, the transport lifetime always takes the universal
“Planckian” value τtr ≈ ~/(kBT ). Model I by contrast
can be tuned between a strongly damped ”Planckian”
regime, and a weakly damped MFL charaterized by a
sub-Planckian linear in T relaxation rate. Interestingly,
in the weakly damped MFL regime, we find an enhance-
ment of the Hall coefficient RH in the critical regime,
similar to recent experimental findings in CeCoIn5 [8].

The rest of the paper is organized as follows: in Section
II, we review the standard large N approach to Kondo
lattice models and then introduce the new large N limit.
In Sections III and IV we solve two models, with and
without translation invariance, in this large N limit, and
calculate transport quantities. We find strange metal
behavior with T -linear resistivity at the QCP, and the
evolution of the Hall resistivity across the QCP confirms
a change of carrier density, with an additional enhance-
ment of the Hall coefficent near criticality.

II. LARGE N KONDO LATTICE MODELS

In HFMs, rare earth or actinide ions contribute a lat-

tice of localized valence spins ~S coupled to the mobile
conduction electrons cσ. The essential low energy physics
of HFMs are generally believed to be captured by the
Kondo lattice model and variations of it [2]:

H =
∑
k,α

εc,kc
†
k,αck,α + JK

∑
r,α,β

(~Sr · c†r,α~σαβcr,β), (1)

where εc,k is the momentum (k) space dispersion of
the conduction electrons. The localized valence spin at
lattice site r can be expressed in terms of Abrikosov
fermions or spinons:

~Sr =
∑
α,β

f†r,α
~σαβ

2
fr,β , nfr =

∑
α

f†r,αfr,α = 1, (2)

which can potentially hybridize with the conduction elec-
trons c. The Kondo interaction can be written in a way
that makes the hybridization manifest by substituting
(2) into a simplified form of (1) [22], and decoupling the
quartic interaction by the introduction of a Hubbard-
Stratonovich boson b:

JK
∑
r,α,β

(~Sr · c†r,α~σαβcr,β)→ g
∑
r,α,β

(c†r,αfr,αbr + H.c.),

(3)

subject to the constraint nfr − b†rbr = 1. At the mean-
field level the boson br is equal to the hybridization
〈∑α cr,αf

†
r,α〉. Microscopically, one can view the boson

as a bound singlet of a valence spin with a conduction
electron. The addition of a boson to a site r must be
accompanied by removal of a spinon frσ. Thus, the con-
straint nfr = 1 required for description of valence spins
in terms of the fermions, is generalized to the above con-
straint in presence of the bosons. The fixed occupancy
constraint implies a U(1) gauge structure in these de-
grees of freedom [9, 10]. The b and f then carry charges
1 and −1 respectively under a U(1) gauge field that they
are minimally coupled to, with the fixed occupancy con-
straint enforced by its time component acting as a La-
grange multiplier [23]. In the FL? phase, characterized
by a small FS, the boson is gapped and the gauge theory
is in the deconfined phase. The heavy FL phase with
a large Fermi surface is established at a QCP at which
the boson b condenses, thereby confining the gauge field
through the Higgs mechanism.

Condensation of the valence fluctuations provides a
simple understanding for the main features of the heavy
FL phase [2, 24, 25]. As evident from (3), the condensed
boson hybridizes the f fermions with the conduction elec-
tron. Thus, the Fermi surface must grow to encompass
the full density of conduction and valence electrons. The
coherent mixing between the mobile conduction electrons
with the localized f spinons also explains the large ef-
fective mass, which is the hallmark of the heavy FL
phase. However, an exact description of the aforemen-
tioned Higgs transition within this model is in general
hard, as it involves fluctuating gauge fields coupled to
multiple matter particles.

The standard approach to make analytic progress in
the valence fluctuation theory has been to artificially en-
large the su(2) spin symmetry to su(N), and take the
large N limit. The large number N of c and f fermion
species, controls an exact saddle point solution equivalent
to a static mean-field theory, where br = 〈∑α cr,αf

†
r,α〉 is
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obtained self-consistently [4, 26, 27]. Because the criti-
cal fluctuations of the boson and the gauge field are sup-
pressed, the conduction electrons remain non-interacting,
or at least good quasiparticles. Hence, this large N limit
is not a good starting point for obtaining non-trivial crit-
ical transport properties, and in particular, the strange
metal phenomenology that we want to describe. The
main point of this paper is to introduce a new large
N limit that retains solubility of the problem yet de-
scribes non-quasiparticle physics already at the saddle
point level. The most important difference between our
approach and the previous large N theories is that we
keep the fermion spin indices σ su(2) instead of promot-
ing them to su(N), and instead endow all three species
c, f, b with a flavor index i = 1, . . . , N . The large N
modification we make then is:

cσ, fσ, b→ ci,σ, fi,σ, bi, i ∈ 1, . . . , N, σ ∈ 1, 2. (4)

One can also continuously vary the ratio of the numbers
of flavors of each particle type, however here we fix the
same N for all particles. Because all the species have a
comparable number of flavors, their self-energies all re-
main O(1) within the large N limit.

The second new feature in our generalized largeN limit
is the introduction of a random ensemble of interaction
constants, similar to recently studied “low-rank” SYK
models, which involve fermions with random Yukawa
coupling to bosons [15–21]. The random interactions
should be viewed as a mathematical construct imple-
menting a particular type of controlled large N limit. We
therefore consider the following family of model Hamil-
tonians;

H =
∑

λ∈{cσ,fσ,b}

Hλ +Hint,

Hλ =

N∑
i=1

∑
k

(ελ,k − µλ)λ†k,iλk,i,

Hint =
1

N

N∑
i,j,l=1

∑
r,σ

(grijlc
†
r,i,σfr,j,σbr,l + H.c.),

N∑
i=1

(∑
σ

f†r,i,σfr,i,σ − b†r,ibr,i
)

= −Nκ.

(5)

Here grijl are complex Gaussian random variables. We
have included emergent dispersions ελ,k for λ = fσ, b,
which are expected to be generated when integrating out
higher energy modes. The last line of (5) is the large N
generalization of the occupancy constraint in (3) (κ is a
free parameter).

We consider two models for the coupling tensors grijl.
In Model I these are taken to be uncorrelated between
different sites r, whereas they are identical on all sites in
Model II:

Model I: grijl g
r′
i′j′l′ = g2δrr′δii′δjj′δll′ ,

Model II: grijl g
r′
i′j′l′ = g2δii′δjj′δll′ . (6)

Thus, Model I is spatially disordered, and should be
viewed as a depiction of HFMs with spatially disordered
Kondo couplings. Model II, on the other hand, is trans-
lationally invariant and should be viewed as a model
for clean systems. The averaging over flavors in both
models eliminates various intractable Feynman diagrams
[19, 21, 28], thus allowing controlled access to the QCP
at strong coupling.

While the f and b are also additionally coupled to
the emergent U(1) gauge field a, the coupling constant

scales as 1/
√
N : Hλa ∼ (a/

√
N)
∑N
i=1 λ

†
iλi, for λ = f, b.

This ensures that the gauge field fluctuations do not
contribute to the f, b self-energies in the large N limit.
Nonetheless, integrating out the emergent gauge field
propagator leads to exact Ioffe-Larkin constraints on the
current correlators [29, 30], tantamount to imposing se-
ries addition of the conductivities of f, b (Appendix D).

In both models we assume simple quadratic disper-
sions ελ = k2/(2mλ) for all three species c, f, b. We
choose the masses to be appropriate for the creation of a
heavy FL phase upon condensing the bosons, hybridizing
a heavy f with the freely mobile conduction electrons c,
and b arising from hybridization of c with the heavy f .
We therefore take the hierarchy mb > mf � mc. This
choice of masses implies the bandwidths of c and f are
large relative to that of b. The c, f chemical potentials
are chosen such that the respective densities are close to
equal, motivated by stoichiometric considerations, and
by an observed near doubling in Hall coefficient across
the transition from the heavy FL to FL? in CeCoIn5 [8].

The transition between the FL? and heavy FL phases
occurs, as in previous theories, through condensation of
the boson b. A natural parameter that can control the
transition across the QCP in experiments is the total
physical charge density, nel = 〈nb〉 + 〈nc〉, while the VL
occupation and hence 〈nf 〉 − 〈nb〉 = −κ is held fixed.
However, for convenience of calculation we tune κ in-
stead. The two approaches are approximately equivalent
in the regime we consider, where the bandwidths of c
and f are much larger than that of b, with the differ-
ence between them amounting to small relative changes
in the c, f occupations, which only make small changes
in the physical properties of c, f , and therefore will not
significantly alter our results.

As in the case of previous work on SYK-like models
[19, 21, 28], the averaging over the coupling tensors in
the large N limit yields exact coupled Schwinger-Dyson
(SD) equations for the Green’s functions of the three
species c, f, b, which we solve self-consistently through-
out the phase diagram. The self-energies for these SD
equations are shown in Fig. 1. Using these, we compute
non-perturbatively the T -dependent conductivity tensors
in the two models, focusing in particular, on the critical
regime.

In the analysis of Model I, we assume a special FL?

phase, in which the emergent gauge field, and thus also
the f and b particles that are charged under it, are all de-
confined only within individual 2D planes. The physical
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FIG. 1. The only contributing diagrams to the self-energies
of the three particle species. All others are suppressed by
the large N limit or averaging over grijl. The averaging over
the coupling tensors is indicated by the dotted lines, with its
correlator given by (6). The dotted lines carry momentum for
Model I but do not for Model II.

3D system is a stack of these 2D layers. The behavior of
the resistivity across the transition between the layered
FL? and the heavy FL phase is shown in Fig. 2(a). In
the quantum critical regime ρxx shows a quasi-linear T
dependence (linear with a logarithmic correction).

The nature of the critical MFL depends on a dimen-
sionless coupling strength γ between the bosons and
fermions. For sufficiently strong coupling, the bosons
are overdamped, and the QCP displays a near-universal
“Planckian” transport lifetime τ ∼ ~/(kBT ), which is
independent of all microscopic details of the model (up
to logarithmic factors). In the opposite regime of weak
damping (γ � 1), the critical behavior provides an ex-
ample of a skewed MFL [31], in which the scattering
rates of particle and hole excitations about the electron
FS are different. The resistivity is linear in T but sub-
Planckian, and the fermion self-energies are asymmetric
about ω = 0. On tuning across the QCP, the in-plane
Hall coefficient RH computed for weak out-of-plane mag-
netic fields transitions between two plateau values that
correspond to the different effective carrier densities of
the FL? and FL phase. In the weakly damped regime
this change of RH is non-monotonic, developing a peak
in the quantum critical region as a function of the tuning
parameter κ (Fig. 2(b)). This enhancement of RH near
criticality is reminiscent, yet much more modest than
that observed in experiments on CeCoIn5 [8].

For Model II, we consider a fully 3D deconfined FL?

phase. We show that ρxx is quasi-linear in T in the criti-
cal region if the f FS at the QCP matches that of the con-
duction electrons, and if the f fermions and b bosons ad-
ditionally rapidly relax momentum via impurity scatter-
ing and/or self-interactions on the lattice. This is closely
related to the work of Paul et. al. [32], who find a MFL
for matching FS’s coupled to a complex bosonic field
under certain phenomenological assumptions. Within
Model II however, this result is exact in the large N limit.
We further show that the two FS’s may be naturally self-
tuned to matching at the QCP, in order to maximize the
free energy released when the bosons condense. Unlike in

Model I, we find that the bosons in Model II are always
overdamped, leading to Planckian transport lifetime at
low temperatures independent of the coupling strength.
Because of the overdamped nature of the bosons there is
no enhancement of RH in Model II.

III. MODEL I: SPATIALLY DISORDERED
COUPLINGS

In this section we solve for the Green’s functions in
Model I and calculate transport temperature dependence
of transport quantities across the transition. We identify
two regimes of the critical behavior, depending on the
boson-fermion coupling strength. The calculation is ex-
act in the large N limit.

A. Self-energies and phase diagram

The starting point for obtaining the phase diagram
and calculating the transport properties in this model at
large N are the coupled Schwinger Dyson equations for
the Green’s functions of the three species:

Gc(iω) =
1

V

∑
k

1

iω − εc,k + µc − Σc(iω)
,

Gf (iω) =
1

V

∑
k

1

iω − εf,k + µf − Σf (iω)
,

Gb(iω) =
1

V

∑
k

1

−iω + εb,k + ∆b − Σb(iω)
,

(7)

where V is the system volume. The self-energies Σc,f,b
in the large N limit are given exactly by the diagrams in
Fig. 1, which read

Σc(iω) = g2T
∑
iω′

Gf (iω′)Gb(iω − iω′),

Σf (iω) = g2T
∑
iω′

Gc(iω
′)Gb(iω

′ − iω),

Σb(iω) = −2g2T
∑
iω′

Gc(iω
′)Gf (iω′ − iω).

(8)

Here V is the system volume, and the factor of 2
in the equation for Σb arises from the su(2) spin
degeneracy of c and f . The self-energies only in-
volve momentum-averaged Green’s functions Gλ(iω) =
(1/V )

∑
kGλ(iω, k) because the random interactions in

Model I are uncorrelated between different sites. In the
relevant regime where the fermion bandwidths are the
largest scales, their momentum-averaged Green’s func-
tions take the simple form Gc,f (iω) = −(i/2)νc,f sgn(ω)
[33], where νc,f are the respective spinless densities of
states at the Fermi energies. This allows to calculate the
boson self-energy Σb

Σb(iω) = −2g2T
∑
iω′

Gc(iω
′)Gf (iω′ − iω) = −γ|ω|+ Cb,

(9)
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here γ = g2νcνf/(2π) = g2(3nc)
1/3mcmf/(2π

4/3) is
a dimensionless coupling constant characterizing the
strength of the boson damping. We will explain the ef-
fects of its magnitude on the physics of the system in the
subsequent paragraphs. The T -independent constant Cb
can be absorbed by the T = 0 chemical potential of the
bosons.

With the Green’s functions in hand, the phase diagram
is obtained by solving for the boson gap ∆b(T ) and the
fermion chemical potential µf (T ) that would satisfy the

FIG. 2. (a) The phase diagram for Model I. We have
ρxx − ρxx(T = 0) ∼ Tα ln(Λ/T ), and the color indicates
the value of α = d ln(ρxx/ ln(Λ/T ))/d ln(T ). We exclude the
(gray) crossover region where our approximate treatment of
the 3D condensed phase breaks down. (b) The plot of RH at
weak out-of-plane magnetic field vs. κ − κc. RH transitions
non-monotonically between two plateau values controlled by
the effective carrier densities in the FL? and heavy FL phases
respectively. The value of RH is enhanced in the quantum
critical region. The dashed lines indicate points within the
gray region that are omitted. Due to the different dimension-
ality of f and c, the plateau value on the right is only roughly
1/(nc+nf ). (c) The boson “soft gap”, ∆bmb, and the strength

of the boson condensate, 〈br,1〉 = r0
√
N , are plotted vs. κ−κc

at low temperature. ∆b is finite when κ < κc and is expo-
nentially suppressed when κ > κc, at which point inter-layer
instabilities allow for a 3D boson condensate to form, forc-
ing ∆b = 0. Again, we omit the crossover between these two
regimes (gray region). Here γ = 0.02 � 1, nc = nf = 1,
Λmb = π2/2, mb = 5mf = 50mc (we set ~ = kB = al = 1
everyhwere, where al is the lattice constant).

constraint 〈nf 〉 − 〈nb〉 = −κ. In the relevant regime of
large fermion bandwidth (or Fermi energy) compared to
the temperature, the change in the fermion occupation
with temperature is negligible. Therefore fixing κ is es-
sentially equivalent to fixing the boson occupation

〈nb〉 = T
∑
ω

Gb(iω) = κ+ 〈nf 〉, (10)

where 〈nf 〉 is treated as a constant. The phase transi-
tion, associated with condensation of the boson, is then
tuned by the parameter κ, analogous to the fixed length
constraint in the O(N) rotor model at large N [34]. Sim-
ilar to the rotor model, the boson occupation is fixed by
solving for the variation of the “soft gap” ∆b(T ) in the
boson Green’s function (8) with temperature.

The defining features of the zero temperature phases
tuned by κ are shown in Fig. 2(c). In the FL∗ phase,
obtained for κ < κc, the zero temperature gap ∆b(0) is
positive and vanishes continuously as κ approaches the
critical value κc. For κ > κc, on the other hand, one of
the boson flavors is condensed at T = 0 and acquires a
condensate amplitude |〈br,1〉| = r0

√
N . This leads to the

hybridization of the f and c fermion bands, which char-
acterizes the heavy FL phase. Details of the calculation
are given in Appendix B.

The temperature dependence of the soft gap ∆b(T ) is
crucial for determining the thermodynamic and trans-
port properties. Solving the constraint equation at crit-
icality we find that soft gap grows quasi-linearly with
temperature as ∆b(T ) ∼ Tw1(γ, T ), where w1 varies
quasi-logarithmically with T [35]. Details of the calcu-
lation are given in appendix Appendix C. In the FL?

phase (κ < κc) ∆b(T ) exhibits the critical behavior for
T � ∆b(0), while its temperature dependence is expo-
nentially suppressed for T � ∆b(0).

In the heavy FL phase (κ > κc) the temperature
dependence of ∆b is more subtle because the b and f
fermions are no longer confined to hop within planes in
this phase. Once a condensate is established, the inter-
layer interactions generate inter-layer hopping terms of
the b and f partons of strength proportional to r2

0, thus
establishing a fully 3D Higgs phase (for full details see
Appendix F). The approximate description of the Higgs
phase in terms of a self-consistent 3D condensate remains
valid in the heavy FL phase below a crossover temper-
ature scale T ∗ that vanishes at the QCP. Above the
crossover scale T ∗ the b sector is dominated by 2D critical
fluctuations [36]. In computing the transport properties
for κ > κc we will treat these two regimes separately,
leaving out the more complicated crossover regime (gray
region in Fig. 2(a)).

We now turn to the fermion Green’s functions, showing
first that they accquire a MFL self-energy at the QCP.
To calculate the fermionic self-energies Σc,f we need the
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momentum-averaged b Green’s function:

Gb(iω) =

∫
ddk

(2π)d
1

−iω + k2/2mb + γ|ω|+ ∆b

≈ mb

2π
ln

(
Λ

−iω + γ|ω|+ ∆b

)
, d = 2,

(11)

where Λ = π2/(2mb) is the boson bandwidth. We al-
ways consider sufficiently low frequency and temperature
such that max(|ω|, γ|ω|,∆b)� Λ. This ensures that self-
energies remain smaller than the bandwidths of their re-
spective species and thereby will keep our computations
self-consistent. The logarithmic form in (11) is only ob-
tained for 2D bosons. The QCP is defined by ∆b = 0;
when inserted into (11) and (8), we obtain MFL self-
energies:

Σc(iω, T = 0) = g2

∫
dω′

2π
Gf (iω′)Gb(iω − iω′)

=
γmb

2πνc

[
iω ln

(√
1 + γ2

eΛ/|ω|

)
+ cot−1(γ)|ω|

]
+ Cc.

Σf (iω, T = 0) = g2

∫
dω′

2π
Gc(iω

′)Gb(iω
′ − iω)

=
γmb

2πνf

[
iω ln

(√
1 + γ2

eΛ/|ω|

)
− cot−1(γ)|ω|

]
+ Cf . (12)

The constants Cc,f can be absorbed into µc,f .

The parameter γ, related to the strength of damping of
the b bosons, allows us to tune between different physical
regimes. In general we expect γ to increase with the
strength of the Kondo coupling g. In the limit of γ � 1,
the analytic continuation of (12) to real frequency gives

Im[Σc,f,R](ω, T = 0) = − γmb

4νc,f
|ω|, (13)

which is the traditional MFL form [13]. On the other
hand, when γ � 1, the fermion self-energies (12) are
asymmetric about ω = 0:

Im[Σc,R](ω, T = 0) =
γmb

2πνc,f
|ω|
(
−π

2
− cot−1(γ)sgn(ω)

)
,

(14)

Im[Σf,R](ω, T = 0) =
γmb

2πνc,f
|ω|
(
−π

2
+ cot−1(γ)sgn(ω)

)
.

Thus, in this regime, our model provides a concrete ex-
ample of a “skewed” MFL [31]. This skewed MFL is
expected to have a nonvanishing Seebeck coefficient in
the T → 0 limit due to the asymmetric inelastic scat-
tering rate in (14) [31, 37]. The nonvanishing Seebeck
coefficient as T → 0, and the asymmetric frequency de-
pendence of the electron spectral function, provide ex-
perimentally detectable signatures of the small γ regime
[38].

In the FL? phase, where ∆b(T = 0) > 0, we obtain, in
a similar fashion to (12),

Σc,f (iω, T = 0) = −γmb ln(Λ/∆b(T = 0))

πνc,f
iω

+ i
γ2mb

2πνc,f∆b(T = 0)
ω2. (15)

The O(ω2) term leads to a Fermi liquid ω2 scattering
rate on the real frequency axis, and hence a scattering
rate ∝ ω2 +π2T 2 upon analytic continuation to the ther-
mal circle for T > 0. The O(ω) term leads to a renor-
malization of the Fermi liquid quasiparticle weights, and
hence an enhancement of the conduction electron effec-
tive mass, given by

m∗c = mc

(
1 +

γmb

πνc
ln

(
Λ

∆b(T )

))
. (16)

Here, we extended the result to small nonvanishing tem-
peratures by replacing ∆b(0) → ∆b(T ). Since ∆b(T =
0) ∼ κc − κ vanishes on approach to the QCP, the zero
temperature effective mass diverges, consistent with ex-
perimental findings in HFMs [12, 39]. In the critical re-
gion ∆b ∝ T up to logarithmic corrections. Thus, the
divergence of m∗c is cut-off logarithmically by the tem-
perature at criticality.

We now calculate the imaginary part of the fermion
self-energies at finite T , necessary for computing con-
ductivities. The c fermion self-energy in the Lehmann
representation is given by:

Σc(iω, T ) = −g2

∫
dεdε′

(2π)2
Af (ε)Ab(ε

′)
nB(ε′) + nF (−ε)

ε′ + ε− iω ,

(17)
where nB , nF are the Bose and Fermi functions at tem-
perature T , Af (ε) = −2Im[GRf (ε)] = νf is the fermion

spectral function, and Ab(ε) the boson spectral function.
We analytically continue iω → ω + iδ to obtain

Im[Σc,R(ω, T )] = −g2νf

∫
dε

4π
Ab(ε)(nB(ε) + nF (ε− ω)).

(18)
This expression also holds for Im[Σf,R] with the change
νf → νc and ω → −ω. The boson spectral function is
derived in Appendix B and is given by:

Ab(ω) =
mb

π

[
πΘ(ω −∆b) + tan−1

(
γω

∆b − ω

)]
, (19)

where Θ(x) is the Heaviside step function. Note that the
temperature dependence of Ab comes entirely from its
dependence on ∆(T ). We have shown that in the critical
region ∆b ∝ T up to logarithmic corrections. Therefore,
up to these corrections, the spectral function can be ex-
pressed as Ab(ω/T, z), with z = ∆b/T a temperature
independent constant. Using this expression in (18) and
scaling the integration variable immediately gives a T -
linear result up to the logarithmic corrections. We will
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show that this property implies near T -linearity of the
resistivity.

In the two limits γ � max(1,∆b/T ) and γ � 1 we
obtain explicit expressions for the imaginary parts of the
self-energy in the critical region (Appendix C). For large
γ we have

Im[Σc,R(ω, T )] ≈ − γmb

2πνc
T

[
∆b

γT
ln

(
Λe

∆b

)

+ π ln
(

2 cosh
( ω

2T

))]
; ∆b/(γT ) < 1,

∆b ≈
πγT

ln
(

Λ
Tγe

)W0

(
2
√
e

π2
ln

(
Λ

Tγe

))
, (20)

where W0(z) is the Lambert W function. For γ � 1, (12)
is well approximated by:

Im[Σc,R(ω, T )] ≈ −γ
2mb

2πνc
T
(

1 + eω/T
)
, |ω| . T. (21)

Like at T = 0 (14), this self-energy is asymmetric be-
tween positive and negative frequencies, and is therefore
skewed.

B. Conditions for Planckian dissipation

It has been proposed that inelastic relaxation times,
in most if not all situations, cannot be much smaller
than the quantum mechanical “Planckian” time scale
τP = ~/(kBT ) (see [40] and references therein). There is
a growing list of materials, showing strange metal behav-
ior at low temperatures, which seem to be close to this
limit, namely they relax on the Planckian time scale up
to a constant of order one [41–45]. Since the self-energies
calculated above imply relaxation times proportional to
1/T , it is interesting to ask how systems described by
Model I line up with the proposed Planckian bound.

Note however, that the correct quasiparticle relaxation
time cannot be extracted directly as the inverse ImΣR.
Rather it is renormalized by the same factor as the mass.
To see this, we eliminate the prefactor of the ω term
to obtain the standard Fermi liquid form of the Green’s
function

Gc,R(ω, k) =
Z

ω − Zξk − iZIm [Σc,R(ω)]
(22)

with Z = m/m∗c . From this we can immediately obtain
1/τc = Z Im (Σc,R(ω = 0)). This is the same timescale
extracted from analysis of transport data pertaining to
strange metal QCPs [41–45] using the Drude formula for
quasi particle transport τ = m∗σxx/(ne

2). In the ex-
periments the effective quasiparticle mass is measured
slightly away from the critical point. Note that we focus

here on the relaxation rates of the conduction electrons
because, as shown in Sec. III C below, they dominate the
transport.

In the strongly damped regime, where γ � 1,∆b/T ,
equations (16) and (20) give

τc =

(
πνc
γmb

+ ln

(
Λ

γT

))
~

kBT

≈ ln

(
Λ

γT

)
~

kBT
, (23)

At realistic temperatures τc can be viewed as Planckian
relaxation modified only by a slowly varying logarithmic
function of temperature and nearly independent of the
microscopic couplings. The result provides an appealing
potential explanation for observation of near Planckian
relaxation across different materials, with O(1) propor-
tionality constants that vary only slightly between mate-
rials [41].

In the weakly damped regime γ � 1 equations (16)
and (21) give

τc =
1

γ

(
πνc
γmb

+ ln

(
Λ

T ln(π/γ)

))
~

kBT
, (24)

which is manifestly nonuniversal. The proposed Planck-
ian lower bound is still obeyed, but exceeded by a large
factor of at least 1/γ. Thus we do not expect Planckian
transport in the weak damping regime.

C. Transport

The computation of transport properties is greatly sim-
plified in Model I due to the spatially disordered cou-
pling grijl. To clarify this point, let us first ignore the

effects of the emergent U(1) gauge field. In this case
the Kubo formula for Model I takes a particularly simple
form involving only the bare bubble diagram for each of
the three species (the first diagram in the series shown in
Fig. 3). To see this, first note that only vertex corrections
with non-crossing boson lines can potentially contribute
in the large N limit. However, in such diagrams, the mo-
mentum integral on the loop containing the bare current
vertex is decoupled from the rest of the diagram due to
averaging over the site-uncorrelated couplings grijl. Once
decoupled, these loop integrals vanish because the cur-
rent vertices and the propagators on the loop have oppo-
site parities under spatial inversion. Note that all cross
species current correlations must involve vertex correc-
tions, which vanish by the same mechanism. Thus the
conductivities associated with the different species can
be separately calculated from their respective bubble dia-
grams. Physically, these diagrams describe current decay
due to scattering of fermions on critical bosons, which is
not momentum conserving due to the spatially disordered
couplings.

The effects of the emergent U(1) gauge field on trans-
port can now be included by integrating it out exactly
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= +

f

f

b b +

b

b

f f + · · ·

FIG. 3. The diagrams that contribute to the c conductivity. These diagrams are not suppressed by the large N limit, but
only the first (bubble) diagram is nonzero in Model I; in Model II, the corrections to the bubble do not identically vanish,
but their effects are nevertheless suppressed (see main text). As in Fig. 1, dotted lines indicate the averaging over the flavor
random couplings grijl, which carry momentum in Model I (but not in Model II). Consequentially, the momentum integrals in
the left and right loops of the correction diagrams are decoupled only in Model I. The diagrams that contribute to the f and b
conductivities are analogous to the ones above. The diagrams that contribute to the cross-correlations of currents of different
species are analogous to the vertex diagrams correcting the bubble diagram above, and also vanish in Model I (but not in
Model II).

in the large N limit. This leads to a Ioffe-Larkin com-
position rule for the in-plane conductivities of the three
species, described by the respective bubble diagrams (see
Appendix D) [29, 30]:

σσσ =

(
σxx σxy
−σxy σyy

)
= σσσc+(σσσ−1

b +σσσ−1
f )−1 ≡ σσσc+σσσbf . (25)

In other words, the conductivities of the f fermions and
the bosons, which carry a U(1) gauge charge, are added
in series and their combined current is added in parallel
to that of the conduction electrons.

The transport properties of the two phases can be eas-
ily understood from this composition rule. In the heavy
fermi liquid phase, obtained for κ > κc, the boson is
condensed and therefore contributes zero resistance to
the in-series addition. The total conductivity is then a
result of adding the f and c fermions currents in paral-
lel, consistent with the expected increase of the carrier
number associated with the large Fermi surface. In the
FL∗ phase, obtained for κ < κc, the boson conductivity
vanishes at zero temperature due to the soft gap. The
combined conductivity of the bosons with the f fermions
also vanishes due to the series addition. Therefore the
total conductivity is equal to just that of the conduction
electrons σσσ = σσσc, compatible with a small fermi surface
consisting of only those electrons.

We now argue that in the quantum critical region
at finite temperatures the transport is also dominated
by the conduction electrons. To obtain the boson con-
tribution σb, note that in the critical regime we have
∆b(T ) ∼ T (up to logarithms), which retains the scaling
of the Green’s function as 1/ω. A simple scaling analysis
of the bubble diagram then shows that σσσb ∼ T 0, much
smaller than σf ∼ 1/T . Thus, the small boson conduc-
tivity bottlenecks the series addition with the spinons.
Then the total conductivity is dominated by the much
larger σc ∼ 1/T added in parallel. We confirm by exact
numerical evaluation that indeed the total conductivity
in the critical region is dominated by the conduction elec-
trons (Fig. 4 inset).

The longitudinal resistivity of the conduction elec-
trons, derived from the bubble diagram in Fig. 3, takes

the form [33] (see also Appendix A):

ρc,xx = T

(
nc

8mc

∫ ∞
−∞

dω
sech2(ω/(2T ))

|Im[Σc,R(ω, T )]|

)−1

. (26)

In the critical region Im[Σc,R(ω, T )] ∼ T for |ω| . T ,
so that the integral in (26) is independent of T at lead-
ing order. Thus we get nearly T -linear resistivity in the
critical strange metal.

In the FL? phase we found in (15) that
|Im[Σc,R(ω, T )]| ∝ ω2 + π2T 2. Plugging this into
(15) gives ρxx ∝ T 2 as in a normal Fermi liquid
(Fig. 2(a)).

In the heavy FL phase, the boson conductivity di-
verges due to the condensation of 〈br,1〉 ∼ r0

√
N and the

Ioffe-Larkin composition rule therefore implies the par-
allel addition of the c and f conductivities. The conden-
sate also generates inter-layer hopping of the bosons and
spinons, which in return stabilize the condensate, within
this mean-field treatment, at nonvanishing low tempera-
tures. Details of this self-consistent model are described
in Appendix F.

Note that the c and f fermions continue to couple to
the N−1 uncondensed gapless boson flavors b2,...,N . The
3D boson dispersion for b2,...,N implies that we must com-
pute the equivaluent of (11) with an additional integral
over the out-of-plane momentum, which leads to it having
a ω1/2 frequency dependence (instead of ln(ω)), and sub-
sequently to Im[Σc,f,R] ∼ const.+ max(T 3/2, ω3/2). This

results in a resistivity that behaves as ρxx ∼ const.+T 3/2

at low T as seen in Fig. 2(a), where the constant contri-
bution to Im[Σc,f,R] (and therefore ρxx) is generated by
scattering off of the condensed b1 mode. TheN−1 uncon-
densed boson modes leading to the T 3/2 correction exist
only as an artifact of the large N limit, and they will not
be present in the physical N = 1 limit. Therefore, in the
physical system we expect the finite T corrections to the
resistivity in the heavy FL phase to be weaker than T 3/2.

At nonzero out-of-plane magnetic fields, B 6= 0, σσσ may
be computed by expressing the Kubo formula in the ba-
sis of Landau levels, since the local self-energies are spa-
tially independent. Vertex corrections to the current cor-
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relation functions continue to vanish even when B 6= 0
(Appendix A). As a result of integrating out the emer-
gent U(1) gauge field, the in-plane σσσb,f are computed in
presence of renormalized magnetic fields produced by the
response of the emergent U(1) gauge field to the (weak)
external magnetic field B (Appendix D):

Bf = B
χb

χf + χb
, Bb = B

χf
χf + χb

. (27)

Here χy is the diamagnetic susceptibility for species y.
We set χf = 1/(24πmf ), i.e. the free fermion Landau
diamagnetic susceptibility, corrections to which are sup-
pressed by the large f bandwidth (see Appendix E), and
χb to its zero field value as we are only concerned with
small B.

In the FL? phase and the quantum critical region, since
the transport is dominated by the conduction electrons
as discussed above, we can express the weak-field Hall
coefficient as

RH ≈ RcH =
σc,xy

(σc,xx)2

= −4T

nc

∫∞
−∞ dω sech2 (ω/(2T )) Im[Σc,R(ω, T )]−2(∫∞
−∞ dω sech2 (ω/(2T )) Im[Σc,R(ω, T )]−1

)2 .

(28)
When Im[Σc,R(ω, T )] is independent of ω, we get RH ≈
−1/nc. Thus an enhancement of RH beyond this value
requires a strong frequency dependence of Im[Σc,R(ω, T )]
at |ω| . T , as otherwise RH would be independent of
the self-energy. In the FL? phase, Im[Σc,R(ω, T )] ∝
ω2 + π2T 2, and RH ≈ −1.05/nc. We find that in
the quantum critical region, for weak damping γ � 1,
RH ≈ −4/(3nc), which can be obtained by inserting
(21) into (28). Therefore, there is an enhancement of
RH upon entering the quantum critical region from the
FL? phase. In the strongly damped γ � 1 regime, the
frequency dependence of Im[Σc,R(ω, T )] in the quantum
critical region (20) is weaker than that in (21), and conse-
quently RH ≈ −1.07/nc in the quantum critical region,
which is a negligible enhancement over the FL? phase.
In Fig. 4 we demonstrate the enhancement of RH for
γ � 1, seen when crossing from the FL? phase to the
quantum critical region as a function of T , by comput-
ing the total conductivity numerically without any ap-
proximations. The enhancement of RH is suppressed by
magnetic field and sharpened (as a function of κ) with
decreasing temperature. 2(b) shows the enhancement of
RH in the crossover between the two regimes as a func-
tion of the tuning the parameter κ at constant temper-
ature. This enhancement is more modest than that ob-
served in experiments on CeCoIn5 [8].

We have noted already that upon tuning κ into the
heavy FL phase (κ > κc), the total conductivity ten-
sor is simply σc + σf , because the boson is supercon-
ducting and connected in series to the f . Moreover, in
the presence of an external magnetic field, the Meissner
effect generated by the superconducting boson leads to

FIG. 4. RH vs. T in Model I for various B and ∆κ = κ− κc,
computed numerically without any approximations. RH is
roughly constant within the critical region and is higher than
the expected RH ≈ −1/nc seen in the FL? region (blue and
orange curves). A larger B suppresses RH slightly. There
is a large enhancement in the crossover region between the
condensed bosons and the quantum critical region, when we
ignore inter-layer instabilities for κ > κc (green curve). (In-
set) ∆ρxx ≡ ρxx − ρxx(T = 0) vs. T for different values of
∆κ. The other parameters are the same as in Fig. 2.

a divergent susceptibility χb that screens the magnetic
field seen by the boson, while the f fermions see the full
magnetic field up to the small Landau diamagnetism.
Consequently the Hall effect is just as it would be for
a Fermi liquid composed of both the c and f fermions,
|RH |nc = nc/(nc+nf ) = 1/2. Thus, as seen in Fig. 2(b),
|RH |nc changes from ≈ 1 in the FL? phase to ≈ 1/2 in
the heavy FL phase.

Note, however that the calculation performed to ob-
tain these plots is interrupted in the grayed out crossover
region of Fig. 2(a) between the critical and heavy FL
regime. We can attempt to capture RH in this region
by continuing the calculation from the critical regime,
with the boson fluctuations decoupled between 2D layers,
down to low temperatures. In this case we find a strong
enhancement of the Hall coefficient over an intermediate
temperature window (Fig. 4) in the weakly damped γ �
1 regime. The enhancement is dominated by the con-
tribution of the boson conductivity σσσb to the total con-
ductivity σσσ . The strong non-monotonic behavior stems
from a competition between two effects. On the one hand
the boson gap decreases rapidly with decreasing temper-
ature and becomes exponentially suppressed below the

grayed out crossover regime, ∆b ∼ T exp
[
− 2π(κ−κc)

Tmb

]
.

This leads to a large σb,xy due to bosons excited above
the small gap. On the other hand, the susceptibility χb
diverges rapidly ultimately leading to vanishing of Bb and
hence also of σσσb at zero temperature. The interplay be-
tween these two effects leads to the sharp peak in |RH |
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versus temperature seen in Fig. 4. This strong enhance-
ment is more reminiscent of the experimental results on
CeCoIn5 [8].

We note that when the boson is strongly damped, with
γ � 1, this mechanism for enhancement of RH is not
effective because the boson becomes nearly particle-hole
symmetric with Gb(iω) ≈ Gb(−iω).

IV. MODEL II: TRANSLATIONALLY
INVARIANT COUPLINGS

In this section we consider the model (5) with random
tensor couplings that are the same on all lattice sites,

satisfying grijl g
r′
i′j′l′ = g2δii′δjj′δll′ . We also assume that,

in the FL? phase, the U(1) gauge field is fully deconfined
in three dimensions. Due to the momentum conservation,
the SD equations (with self-energies given by Fig. 1) now
involve momentum dependent (rather than momentum-
averaged) Green’s functions. We further specialize to the
case where the c and f FS match [32], which we will
demonstrate is a natural condition. We will then continue
to compute the transport quantities in parallel to the
analysis of Model I.

A. Matched Fermi surfaces

We argue that the matching of the FS’s of c and f
fermions is not as fine tuned a condition as it might ap-
pear. First, an equal site occupation n ≈ 1/2 in both
bands is in many cases a natural result of stoichiometry
[8]. But though having equal Fermi surface volumes is a
necessary condition, it does not necessarily imply match-
ing. A key point is that the f fermions are emergent
degrees of freedom (partons), whose dispersion is gener-
ated dynamically, unlike the dispersion of the c which
is fixed by microscopic material parameters. Below we
argue that the dynamical variable that controls the dis-
persion of the f fermions self tunes to match the FS of
the c fermions at the critical point as such matching max-
imizes the free energy relieved by condensation of the b.

To demonstrate the energetic mechanism behind the
matching of the FS’s, we assume that the c and f FS’s
are ellipsoidal, with the dispersions

εc,k =
k2
x

2mc,x
+

k2
y

2mc,y
+

k2
z

2mc,z
,

εf,k =
k2
x

2mf,x
+

k2
y

2mf,y
+

k2
z

2mf,z
,

(29)

and that they have the same volume

VFS = µ3/2
c

√
2mc,xmc,ymc,z/(3π

2)

= µ
3/2
f

√
2mf,xmf,ymf,z/(3π

2).
(30)

The ratios rα={c,f};β={y,z} = mα,β/mα,x control the
shape of the Fermi surfaces. We will treat the param-
eters of the f dispersion as variational parameters that

minimize the ground state energy of the system upon bo-
son condensation. When the boson is uncondensed, the
grand free energy of the non-interacting fermion system
at T = 0 is F0 = −(2/5)VFS(µc + µf ), not taking into
account the fluctuations of the bosons. Upon condensing
b → b0, and ignoring the remaining boson fluctuations,
the mean-field Hamiltionian is

H0 =
∑
k,σ

[
(εc,k − µc) c†k,σck,σ + (εf,k − µf ) f†k,σfk,σ

]
+ b0

∑
k,σ

[
c†k,σfk,σ + H.c

]
+ E(b0), (31)

where E(b0) ∼ −b20 +b40 < 0 is the grand free energy aris-
ing from the purely bosonic part of the Hamiltonian. We
then determine the change in grand free energy at T = 0
of the two fermion bands produced by diagonalizing the
2× 2 c, f Hamiltonian;

F − F0 =
∑
±

∫
d3k

2π3

(
(εc,k − µc) + (εf,k − µf )

±
√

(εc,k − εf,k + µf − µc)2 + 4b20

)
× θ
(
µc + µf − εc,k − εf,k

∓
√

(εc,k − εf,k + µf − µc)2 + 4b20

)
+

2

5
VFS(µc + µf ) + E(b0).

(32)

We can now consider the set of parameters for f that
maximize δF ;c,f = F0 − F + E(b0), which is the fermion
contribution to the grand free energy relieved by bo-
son condensation. The total grand free energy relieved,
F0 − F , then is also maximized for fixed b0. We know
that, physically, the f bandwidth is much smaller than
the conduction electron bandwidth, so we fix µf at some
value µf � µc. Eliminating mf,x through this and the
constraint on V , we then vary the remaining parameters
rf ;y and rf ;z. We indeed find that δF ;c,f is maximized
when rf ;y,z = rc;y,z respectively (Fig. 5), implying the
matching of the c and f Fermi surfaces in our toy mean-
field calculation. We will study the renormalization of
the f dispersion at strong coupling beyond the mean-field
level (which can be obtained by exact numerical solution
of the SD equations and by minimizing the total inter-
acting grand free energy at the large N saddle point) in
future work.
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FIG. 5. The relative grand free energy relieved, δF ;c,f/(b
2
0F0),

vs the eccentricity ratios controlling the shape of the ellip-
soidal f Fermi surface relative to that of the c Fermi sur-
face, for µf = µc/10. We use V = 20

√
2/(3π2), mc,x = 1.0,

rc;y = 0.8, rc;z = 1.2. It is maximized when the f and c Fermi
surfaces are of the same shape, i.e. rf ;y = rc;y and rf ;z = rc;z
(star).

B. Self-energies and phase diagram

The SD equations for Model II with the matched FS
that we have motivated are given by:

Gc(iω, k) =
1

iω − εc,k + µc − Σc(iω, k)
,

Gf (iω, k) =
1

iω − εf,k + µf − Σf (iω, k)
,

Gb(iω, k) =
1

−iω + εb,k + ∆b − Σb(iω, k)
.

(33)

These equations are complemented by the expressions for
the self-energies (diagrams in Fig. 1)

Σc(iω, k) = g2T
∑
iν

∫
d3q

(2π)3
Gf ((iω + iν), k + q)

×Gb(−iν, q),

Σf (iω, k) = g2T
∑
iν

∫
d3q

(2π)3
Gc(−(iω + iν), k + q)

×Gb(−iν, q), (34)

Σb(iω, k) = −2g2T
∑
iν

∫
d3q

(2π)3
Gc(iω + iν, k + q)

×Gf (iν, q).

Here again, the factor of 2 in the equation for Σb arises
from the su(2) spin degeneracy of c and f . Although the

self-energies here can have momentum dependence due
to the translational invariance of Model II, let us assume
to begin with that the fermionic ones are independent
of momentum for k near the FS, that is Σc,f (iω, k) =
Σc,f (iω). We will see below that this is a self-consistent
assumption.

With the assumption of momentum independent
fermionic self-energies, we can average the contributions
to the bosonic self-energy coming from small patches of
the FS [46]. The contribution from a given patch is

Σpb(iω, k) =

− 2g2T
∑
iν

∫
dq⊥
2π

d2q‖

(2π)2

(
iν − vf,F q⊥ − q2

‖/(2mf )

− Σf (iω)

)−1

×
(
iν + iω − vc,F (q⊥ + k⊥) (35)

− (q‖ + k‖)
2/(2mc)− Σc(iω + iν)

)−1

,

where ⊥, ‖ define the directions relative to the patch of
the matched FS, vc,f,F are the Fermi velocities, and mc,f

are the fermion masses. After integrating over q and
averaging over patches (see Appendix G), we obtain

Σb(iω, k) ≈ −2g2mcmf
|ω|
k
≡ −γ2

|ω|
k
. (36)

Here γ2 = 2g2mcmf is the natural dimensionless cou-
pling for the boson damping, akin to γ in Model I. The
FS matching allows a small momentum boson (k → 0)
to decay into c-f particle-hole pairs, resulting in a low
k singularity of the boson self-energy. This self-energy
is identical to the “Landau damping” form [46] of low
momentum bosons coupled to low energy particle-hole
excitations about the FS of an ordinary metal. The Lan-
dau damping we obtain implies a dynamical exponent
z = 3 for the critical bosonic fluctuations which has been
shown to lead to MFL phenomenology in d = 3 [47, 48],
as we will also explain in the following paragraphs.

Having calculated the boson self-energy, we may now
determine the boson gap ∆b(T ) using the occupancy con-
straint as done above for Model I. Similarly to Model I,
we get a QCP separating the FL? phase for κ < κc, where
the boson is soft gapped at zero temperature and the
heavy FL phase for κ > κc, where the boson is condensed
〈b1〉 ∼ r0

√
N . At the critical point we find ∆b(T ) ∼ T 5/4

at low temperatures (and B = 0). The phase diagram of
Model II is therefore qualitatively similar to Fig. 2: the
critical fan is flanked by a FL? phase with a T 2 resistiv-
ity on the left, and a heavy FL phase with a large carrier
density on the right.

With the boson Green’s function determined we can
compute the c self-energy (the calculation for f is almost
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identical):

Σc(iω, k) =

g2T
∑
iν

∫
dq⊥
2π

d2q‖

(2π)2

1

iν + γ2
|ν|
q + q2

2mb
+ ∆b

×
(
iν + iω − vf,F (q⊥ + k⊥)

− (q‖ + k‖)
2/(2mf )− Σf (iω + iν)

)−1

.

(37)

Since the fermion propagator (which depends on q⊥ ∼ q2
‖)

is much more sensitive to q⊥ at small frequencies and
momenta than the boson propagator (which depends on
q2
⊥ + q2

‖ ∼ q4
‖ + q2

‖), we can set q⊥ = 0 in the boson

propagator. As a result of this the self-energy takes a
form similar to Model I, coupling momentum-averaged
Green’s functions (q⊥ averaged for fermions and q‖ for the
bosons). Moreover, the self-energy we obtain resembles
the behavior in Model I in that the momentum-averaged
fermions couple to an effectively 2D boson;

Σc(iω, k) ≈ g2T
∑
iν

(∫
dq⊥
2π

Gf (i(ν + ω, q + k)

)
×
(∫

d2q‖

(2π)2
Gb(−iν, q‖)

)
(38)

= − ig2

2vf,F
T
∑
iν

∫
d2q‖

(2π)2

sgn(ν + ω)

iν + γ2
|ν|
q‖

+
q2‖

2mb
+ ∆b

.

This self-energy is indeed independent of momentum
k, as promised earlier. We continue by noting that we
can ignore the iν term compared to the boson self-energy
γ2|ν|/q‖, which is much larger at low frequencies. Hence
we obtain the self-energy in the low frequency limit and
T = 0:

Σc,f (iω, T = 0) = − γ2mb

12π2mc,fkF

× iω ln

(
e
√

2mbΛ3

γ2|ω|

)
(QCP),

Σc,f (iω, T = 0) = −γ2mb ln(Λ/∆b(T = 0))

8π2mc,fkF
iω (39)

+ i
γ2

2

√
mb/2

32πmc,fkF∆
3/2
b (T = 0)

ω2 (FL?),

where Λ is the boson bandwidth and kF is the Fermi mo-
mentum of the matched FS’s. Due to the strong Landau
damping we obtain a non-skewed MFL for all values of
the damping parameter γ2. This should be contrasted
with Model I, which leads to a skewed MFL for small
damping parameter γ. However the renormalization of
the effective fermion masses upon approaching the QCP
from the FL? phase are the same as in Model I.

At low but non-zero temperatures above the critical
point, the Matsubara frequency sum in (39) may be com-
puted analytically upon ignoring the iν term as before.
Then, we can compute the q‖ integral numerically with

a UV cutoff ∼ √2mbΛ to obtain

Σc,f (iω, T ) = − iγ2mb

mc,fkF
T sgn(ω)ϕ

( |ω|
T
,

Λ

T
,

Λ

∆b(T )

)
.

(40)
The dependencies on Λ/T and Λ/∆b(T ) are logarith-
mic, as in Model I. As we have seen in the cal-
culations for Model I, this form of the self-energy
leads to a universal Planckian scattering rate τ−1 =
(mc/m

?
c(T ))Im[Σc,R(ω = 0, T )], up to slowly-varying log-

arithmic factors. Note that we obtain this Planckian
scattering rate independent of the damping parameter γ2

unlike in Model I, which resulted in Planckian scattering
only in the strong damping regime γ � 1.

C. Transport

An exact calculation of the transport properties in
Model II is more complicated than in Model I, because
the vertex correction diagrams in Fig. 3 do not vanish.
Due to momentum conservation, the momentum inte-
grals in the left and right loops of these diagrams do
not decouple as they do in Model I. Similarly, the cross-
species current correlations do not vanish in Model II
as they do in Model I and complicate the Ioffe-Larkin
rule. Nonetheless, we will argue below that the effects
of all of these corrections may be neglected, leading to
transport properties that are dominated, as in Model I,
by the self-energies obtained from the bubble diagram in
the previous section (40) [49]. We show that this results
in strange metal phenomenology (nearly T -linear resistiv-
ity) in the critical fan for sufficiently low temperatures.
In the subsequent paragraphs, we will explain explicitly
how this comes about.

First, we note that the conductivity in the quantum
critical and FL? regimes is dominated by the conduction
electrons c. The much heavier damped bosons, added in
parallel, form an insulator in the FL? phase, and a poor
conductor at the QCP, and therefore contribute negligi-
bly to the conductivity. In the heavy FL phase, conden-
sation of b leads to effective hybridization of the c and f
bands, and the electrical transport is determined by the
large hybridized Fermi surface.

Let us now turn to the question of vertex corrections.
In conventional quantum critical systems, a single scat-
tering of an electron off a low momentum critical bo-
son (q → 0), included in the electron self-energy, leads
to vanishing current relaxation. The transport time is
therefore not set by the quasiparticle relaxation time,
and is instead obtained from the Kubo formula only by
summing over multiple scatterings, which are included in
the current vertex corrections. In Model II, the situation
is different because the decay process included in the elec-
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tron self-energy ck → fk−q + bq leads to significant cur-
rent relaxation even at small momentum transfers q→ 0.
The final state current carried by the boson ∼ eq/mb, is
much smaller than the initial state current ∼ evF carried
by the conduction electron. Note that the f fermion does
not contribute any additional current to the final state:
due to the local occupancy constraint enforced by the
Ioffe-Larkin rules, the boson and f fermion must carry
the same current, which is also equal to the total current
carried by them, as the f fermion is uncharged.

Although single scattering events lead to current re-
laxation over short timescales, whose rate is set by the
electron self-energy, as argued above (see also [32]), we
also need momentum relaxation in order to obtain a fi-
nite DC conductivity. The nonzero overlap of the to-
tal current and the conserved total momentum oper-
ators will prevent the current from fully relaxing over
the long timescales relevant to DC transport, leading to
an infinite DC conductivity [50]. However, this prob-
lem is resolved in practice by the existence of an ade-
quate amount of impurities that can scatter the heavy f
fermions and thus dissipate the momentum received from
the c fermions faster than the equilibration rate between
the three species. This eliminates the above “momentum
drag” phenomenon, and allows the self-energy to also set
the current relaxation rate of the conduction electrons c
over long time scales.

Our identification of the current relaxation rate with
the rate set by the c electron self-energy (40), just like in
Model I, therefore allows for an identification of Planck-
ian strange metal phenomenology in the critical regime
of Model II at sufficiently low T . As in Model I, we
can obtain the resistivity from Eq. (26), which results in
ρxx ∼ T ln(Λ/T ).

Important differences from Model I, however, arise
from the boson damping Σb(iω, k) ∼ |ω|/k, which is para-
metrically much larger at small k than Σb(iω, k) ∼ γ|ω|
in Model I regardless of the value of γ. Because the
momentum of occupied bosons is effectively cut off at
k ∼ √mbT . We can identify an effective damping con-
stant γ(T ) = γ2/

√
mbT , which is always large at suffi-

ciently low temperatures (see Appendix G). Hence there
is never any significant enhancement of RH in the critical
regime at low T in Model II, as there is no weak b damp-
ing regime like the small γ regime for Model I, that was
required there to obtain an enhanced RH . Furthermore,
the strong damping ensures that Model II is always in the
Planckian regime at low enough T , as opposed to Model
I, which was Planckian only when γ � 1.

In Appendix G, we consider a higher temperature
regime, occuring for T � γ2

2/mb, in which the boson
damping is weaker and an enhancement of RH is conse-
quently obtained. However, the resistivity in this regime
is no longer T -linear and instead scales as ∼

√
T .

V. DISCUSSION

The new large N approach formulated in this paper
captures a strongly coupled QCP, showing linear in T
resistivity at a Kondo breakdown transition involving a
change of the Fermi surface volume. Such MFL phe-
nomenology, seen ubiquitously in experiments with heavy
fermion materials, could not be obtained in a controlled
way within previous large N theories [3, 4, 9, 27]. The
essential new element in our formulation is that the num-
ber of fermions and critical boson species are both scaled
with N .

The MFL with linear in T resistivity is obtained within
two distinct models of the Kondo lattice. It is worth em-
phasizing the differences in the physical situations they
describe, and in the predicted phenomena. Model I is
disordered, and leads to a MFL only if the QCP and ad-
jacent FL? phase are deconfined in layers, that is decon-
fined inside 2D planes, yet confined between planes. This
model can be tuned between two regimes by a coupling
constant γ. In the strong damping limit γ � 1 the sys-
tem exhibits Planckian dissipation, with a universal elec-
tron relaxation time τtr ≈ ~/(kBT ). The strong damping
also prevents any significant enhancement of the Hall co-
efficient RH in the critical regime. In the weak damping
regime, γ � 1, the transport relaxation time is much
larger than the Planckian time (by a factor 1/γ) and the
Hall coefficient RH is enhanced in the critical regime.
Furthermore, the electron self-energy in this regime is
“skewed”, with an asymmetry in the damping of particle
vs. hole excitations (21).

Model II, on the other hand, is translationally invari-
ant, and describes a transition from a fully 3D FL? with
a small Fermi surface to a heavy Fermi liquid with a
large Fermi surface. The critical boson is always strongly
damped at low temperatures due to Landau damping,
leading to Planckian dissipation with a universal electron
transport lifetime τtr ∼ ~/(kBT ). The strong damping
prevents enhancement of RH in the critical regime.

A testable prediction, which follows from the analy-
sis of the two models, is that Planckian dissipation at
the QCP cannot be accompanied by enhancement of the
Hall coefficient RH . Enhancement of RH at the QCP, as
has been observed in recent experiments with CeCoIn5

[8], can occur only in the weakly damped regime of Model
I, where a set of additional features are predicted: first,
the QCP and the nearby FL? phase are deconfined only
within 2D planes, which would have observable implica-
tions on transport. For example, the thermal conduc-
tivity is expected to be strongly anisotropic, because in
this phase spinons contribute to the in-plane, but not to
the out-of-plane thermal transport. The charge conduc-
tivity, on the other hand, is dominated by the conduc-
tion electrons, which can hop between planes, and would
therefore be much more isotropic. Consequently, only the
in-plane Lorenz ratio is expected to be significantly en-
hanced. Another unique property of the weakly damped
(γ � 1) MFL, is a skewed fermion spectral function,
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which is expected to generate a low temperature Seebeck
coefficient in the critical regime [31, 33]. Sizeable T → 0
Seebeck coefficients have recently been reported exper-
imentally in 2D strange metals [37, 51], and it would
be interesting to investigate whether these arise due to
skewed electron self-energies.

The new largeN approach we have introduced to study
the Kondo breakdown transition in HFM can also be use-
ful in formulating a controlled theory of other quantum
critical states. The high Tc cuprate superconductors, for
example, exhibit similar signatures of FS reconstruction
near optimal doping [52], accompanied by T -linear re-
sistivity [53]. While there are no local moments to be
subsumed in the Fermi sea, a parton model describing
a change in FS volume has recently been proposed [54].
Investigating this QCP using the new large N scheme is
an interesting problem for future work. Our approach
can also be used to address the interplay of these criti-
cal fluctuations with superconductivity and magnetism,
which appear to be crucial to cuprate phenomenology.

Another interesting extension of this work would be to
formulate a controlled treatment of gapless gauge field
fluctuations coupled to matter fields. This is impor-
tant, for example, for describing gapless U(1) spin liquids
or the Halperin-Lee-Read state in a half-filled Landau-
Level [55, 56]. The standard large N theory captures the
gauge field fluctuations within a 1/N expansion, which
is known to be uncontrolled [57]. In the large N models
we introduced here, gauge field fluctuations are still sup-
pressed by 1/N , but the 1/N expansion could possibly
be better controlled. Furthermore, it is interesting to ex-
plore generalizations of the scheme to include N flavors
of U(1) gauge fields with flavor-random gauge couplings,
and thereby capture the feedback of the gauge field fluc-
tuations self-consistently at the saddle point level itself.
Acknowledgements – We thank James Analytis for help-
ful discussions. T.C. was supported by the NSF Grad-
uate Research Fellowship Program, NSF DGE No.
1752814. A.A.P. was supported by the Miller Institute
for Basic Research in Science. E. A. acknowledges sup-
port from a Department of Energy grant DE-SC0019380.

∗ E.E.A. and T.C. contributed equally to this work.
[1] Q. Si and F. Steglich, Heavy fermions and quantum phase

transitions, Science 329, 1161 (2010).
[2] S. Doniach, The Kondo lattice and weak antiferromag-

netism, Physica B+C 91, 231 (1977).
[3] N. Read and D. Newns, On the solution of the Coqblin-

Schreiffer Hamiltonian by the large-N expansion tech-
nique, Journal of Physics C: Solid State Physics 16, 3273
(1983).

[4] P. Coleman, New approach to the mixed-valence prob-
lem, Physical Review B 29, 3035 (1984).

[5] H. Shishido, R. Settai, H. Harima, and Y. Ōnuki, A dras-
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Appendix A: Kubo formula in Landau Level basis
for Model I

In this Appendix, we obtain expressions for the con-
ductivities of the different species in Model I via the Kubo
formula, which are given by their respective bubble di-
agrams of Fig. 3, as described in the main text. We

compute these generally at nonzero values of the out-of-
plane magnetic field B by working in the Landau Level
basis in the x− y plane with wavefunctions

ψn,k(x, y) =
1√
Lx`

eikxφn,k(y/`); (A1)

φn,k(z) =
π−1/4

√
2nn!

Hn(z + k`) exp

(
− (z + k`)2

2

)
,

where ` = 1/
√
eB and Hn(x) are the (physicist’s)

Hermite polynomials satisfying the recursion relation
Hn+1(x) = 2xHn(x)−H ′n(x). The energy of the states is
ωcλ(n + 1/2) where ωcλ = |e|B/mλ, where λ ∈ {c, f, b}.
The use of the Landau level basis is possible because the
self-energies of all three species are independent of mo-
mentum and therefore proportional to the identity matrix
in real space, which implies that they are also propor-
tional to the identity matrix in the Landau level basis,
greatly simplifying the computation. Results such as (26)
and (28) in the weak magnetic field limit can be obtained
by taking the B → 0 limit of our expressions here.

It is important to recall the following identities:∫
dzφn,k(z)∂zφm,k(z) =

√
m

2
δn,m−1 −

√
m+ 1

2
δn,m+1,∫

dzφn,k(z)∂z(z + k`)φm,k(z) =

√
m

2
δn,m−1 +

√
m+ 1

2
δn,m+1.

(A2)

Now, our starting point is the Kubo formula in momentum space, which we will transform to the Landau Level
basis. Recall that [59] σλ,αβ(ω, q) = −ImΠR

λ,αβ(ω, q)/ω where

Πλ,αβ = − 1

V

∫
dxdx′dydy′eiqx(x−x′)eiqy(y−y′)

∫ 1/T

0

dτeiωτ 〈TτJ†λ,α(r, τ)Jλ,β(r′, 0)〉, (A3)

where τ is imaginary time. With the above identities, a straightforward calculation will yield the spatially-integrated
current as

2mλi

e

∫
dxdyJλ(r, τ) ≡

∫
dxdy

(
λ†r(τ)(∇− ieA)λr(τ)− (∇+ ieA)λ†r(τ)λr(τ)

)
=

2

`

∑
k,n

((
i
1

)√
n+ 1

2
λ†nk(τ)λn+1,k(τ) +

(
i
−1

)√
n

2
λ†nk(τ)λn−1,k(τ)

)
.

(A4)

We now evaluate Πλ,xx and Πλ,xy at q = 0 using this expression. Using Gλnk(τ) = 〈λnk(τ)λ†nk(0)〉, we get(
Πλ,xx

Πλ,xy

)
= −η e2

V `2m2
λ

∫ 1/T

0

dτeiωτ
∑
nk

(
n+1

2 Gλnk(τ)Gλ,n+1,k(−τ) + n
2Gλnk(τ)Gλ,n−1,k(−τ)

−in+1
2 Gλnk(τ)Gλ,n+1,k(−τ) + in2Gλnk(τ)Gλ,n−1,k(−τ)

)
(A5)

= −η e
2ω2

cλ

2π
T
∑
iνn

(∑
n

n+ 1

2

(
1
−i

)
Gλn(iνn)Gλ,n+1(iνn − iω) +

n

2

(
1
i

)
Gλn(iνn)Gλ,n−1(iνn − iω)

)
.

where η = ± for bosons and fermions, respectively, because of time-ordering. In the second step, we switched to
Matsubara frequencies, used the fact that Gnk(τ) ≡ Gn(τ) is independent of k, and there are LxLy/`

2/(2π) terms in
the k sum.

https://doi.org/10.1103/PhysRevB.90.165146
https://doi.org/10.1103/PhysRevB.90.165146
https://doi.org/10.1103/PhysRevLett.121.187001
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We have neglected the vertex corrections to the conductivity in Fig. 3 here, which can be shown to vanish even at
B 6= 0. Since the disordered interactions grijk are uncorrelated between different sites in Model I, such corrections can
be written as

δΠλ =

〈∫
dxdyJλ(r, τ)

∫
dx1,2dy1,2dτ1,2,3,4λ

†
r1(τ1)λr1(τ2)K(τ1, τ2, τ3, τ4)λ†r2(τ3)λr2(τ4)

∫
dx′dy′Jλ(r′, τ ′)

〉
. (A6)

Since λr(τ) =
∑
n,k ψn,k(r)λnk(τ), and Gλnk(τ) are independent of k, the identity∫

dkHn(z + kl)Hn±1(z + kl)exp
(
−(z + kl)2

)
= 0, (A7)

ensures that these corrections vanish.
Proceeding similarly as to [59], we next switch to the Lehmann representation, analytically continue, take the

imaginary part, and expand for small ω. We find

σλ,xx = −sλ lim
ω→0

Im[Πλ,xx(ω)]

ω
= −sλe

2ω2
cλ

4π

∑
n

(n+ 1)

∫
dε

(2π)
Aλn(ε)Aλ,n+1(ε)

(
∂nη(ε)

∂ε

)

= −sλe
2

4π

∫
dε

2π

4Σ′′λ(ε)
∂nη(ε)
∂ε

4[Σ′′λ(ε)]2 + ω2
cλ

(
2Σ′′λ(ε) + 2(ε+ µ̃λ)Im

[
ψ0

(
1

2
+
−ε+ iΣ′′λ(ε)− µ̃λ

ωcλ

)])
,

(A8)

where sλ is the spin degeneracy of the species λ. We performed the Landau level sum in terms of the digamma
function, ψ0, and we used ψ0(z) = ψ0(1 + z)− 1/z and

Aλn(ε) =
2ηΣ′′λ(ε)

(ε+ µ̃λ − (n+ 1/2)ωcλ)2 + [Σ′′λ(ε)]2
, (A9)

so that Σ′′λ(ε) = Im[Σλ,R(ε)] and µ̃λ = µλ − Re[Σλ,R(ε)].
For σλ,xy, we convert to relative and center of mass coordinates εc = (ε+ ε′)/2 and εr = ε− ε′. We then symmetrize

with respect to εr in order to get an integral from 0 to ∞. We find

Πλ,xy(ω → 0) = −ie
2ω2

cλ

4π

∑
n

(n+ 1)

∫
dεdε′

(2π)2
Aλn(ε)Aλ,n+1(ε′)(nη(ε)− nη(ε′))

[
2(ω + iδ)

(ε− ε′)2

]
,

σλ,xy = −sλe
2ω2

cλ

2π

∑
n

(n+ 1)

∫ ∞
0

dεr
2π

∫ ∞
−∞

dεc
2π

sinh
(
εr
2T

)
cosh

(
εc
T

)
− η cosh

(
εr
2T

) 1

ε2r

×
[
Aλn

(
εc +

εr
2

)
Aλ,n+1

(
εc −

εr
2

)
−Aλn

(
εc −

εr
2

)
Aλ,n+1

(
εc +

εr
2

)]
= − sλe

2

(2π)3

∫ ∞
0

dεr

∫ ∞
−∞

dεc (Fλ(εc, εr)− Fλ(εc,−εr))
sinh

(
εr
2T

)
cosh

(
εc
T

)
− η cosh

(
εr
2T

) 1

ε2r
,

(A10)

The sum can be done to give an explicit expression for Fλ(εc, εr) as

Fλ

(
ε+ε′

2 , ε− ε′
)

2Σ′′λ(ε)Σ′′λ(ε′)
= Im

 ψ0

(
2ε−2iΣ′′

λ(ε)−2µ̃λ(ε)
2ωcλ

− 1
2

)
(2ε− ωcλ − 2iΣ′′λ(ε)− 2µ̃λ(ε))

Σ′′λ(ε)(Σ′′λ(ε′)2 + (ε′ − ε+ ωcλ + iΣ′′λ(ε)− µ̃λ(ε′) + µ̃λ(ε))2)

 (A11)

+ Im

 ψ0

(
2ε′+2iΣ′′

λ(ε′)−2µ̃λ(ε′)
2ωcλ

+ 1
2

)
(2ε′ + ωcλ + 2iΣ′′λ(ε′)− 2µ̃λ(ε′))

Σ′′λ(ε′)(Σ′′λ(ε′)2 − Σ′′λ(ε)2 + 2iΣ′′λ(ε′)(ε− ε′ − ωcλ + µ̃λ(ε′)− µ̃λ(ε))− (ε− ε′ − ωcλ + µλ(ε′)− µλ(ε))2)

 .
For the fermions, for small magnetic fields, these expressions give the same result as the expressions derived from

the Boltzmann equations in [33] with the identification v2
F ν/(4π) → n/m where vF is the Fermi velocity, n is the

density, and m is the mass. However, for large magnetic fields, our expressions will have quantum oscillations that
are absent in the Boltzmann treatment.

Appendix B: Boson spectral function and ∆b in
Model I

In this appendix, we derive the boson spectral function
and the soft gap ∆b generally for a nonzero out-of-plane

magnetic field. As in the derivation of the Kubo formula,
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FIG. 6. We plot ∆b vs. T for various ∆κ = κ− κc with the color indicating ∆κ. All curves become T -linear upon entering the
critical region, but are either exponentially suppressed or approach a constant as T → 0 if ∆κ > 0 or ∆κ < 0 respectively. All
other parameters are the same as in Fig. 2 in the main text.

we use the Landau level basis, which is made possible by
the spatial locality and site-invariance of the occupancy
constraint in the last line of (5). The values of ∆b at small
magnetic fields can be obtained by taking theB → 0 limit
in our expressions.

Because µc, µf � ωc,c/f , we still have the original re-
sult for the fermion Green’s function that Gc,f (iω) =
−i(νc,f/2)sgn(ω). That is, the fermions are less affected
by the Landau level quantization than the bosons, and,
consequently, the boson self-energy calculation in the
main text is unaffected.

However, the boson spectral function must be calcu-
lated by summing over the spectral functions in each
Landau level instead of integrating over momentum. The
result is

Ab(ω) =
1

`22π

∑
m

2γω

(ω − (m+ 1/2)ωcb −∆b)2 + γ2ω2

= −mb

π
Im

[
ψ0

(
1

2
− −∆b + ω + iγω

ωbc

)]
(B1)

B→0−−−→ mb

π

[
πΘ(ω −∆b) + tan−1

(
γω

∆b − ω

)]
,

where Θ(x) is the Heaviside step function, ψ0(z) is the
digamma function, ` = 1/

√
ebB, and ωcb = ebB/mb with

eb,mb the charge and mass of the boson respectively.
Now, recall from the main text that the scaling of the

fermion self-energy expressions above depends crucially

on ∆b(T ). It can be easily checked that the change in
the number of f fermions in response to a shifting chem-
ical potential is suppressed by ∆µf/Λf where Λf , the f
fermion bandwidth, is assumed to be large. Therefore,
the constraint can be written as

κ− κc = (Gb(τ = 0−,∆b(T ))−Gb(τ = 0−,∆b,c(0)),
(B2)

and ∆b depends on both temperature and κ, but we
suppress the κ dependence generally. When κ = κc,
∆b = ∆b,c and ∆b,c(T = 0) = 0. This is reminiscent
of the O(N) rotor model [34] and the calculation of the
thermal mass in [60].

Although we can do this calculation carefully in mul-

tiple ways, we will recall that Gb(τ = 0−) =
∑
i〈b
†
i (τ =

0−)bi(τ = 0−)〉 ≡ nb, which is the number density of
bosons. For this number to converge, we choose to regu-
late it in the usual way (see [59])

nb =
1

V

∑
nk

∫ ∞
−∞

dω

2π
nB(ω)Abn(ω,∆b), (B3)

where Abn is the summand seen in (B1).

Fig. 6 summarizes the behavior of ∆b(T ) in the three
phases at zero and finite applied field. The important
feature is the T -linear (up to logarithmic corrections)
growth in the critical region. Low T transport is dic-
tated by the limit of z = ∆b/T which shifts from ∞ to
zero across the transition.

Note that∫ ∞
−∞

dωnB(ω)Abn(ω,∆b) =

∫ ∞
0

dωnB(ω)(Abn(ω,∆b)−Abn(−ω,∆b))−
∫ ∞

0

dωAbn(−ω,∆b), (B4)
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FIG. 7. We plot RH,cnc, the Hall coefficient for the c electrons when κ = κc, which approximates the total RH at low
temperatures. In this regime, it depends on only two parameters: γ and Λ/T . We find in this supplement that the peak at low
γ is exactly at 4/3.

and that the first integral on the right-hand side is 0 when T = 0. Recalling the form of the boson’s spectral function
from (B1), we will find

2π(κ− κc) =
ωcbmb

2π

[∫ ∞
0

nB(ω)
(Ab(ω,∆b)−Ab(−ω,∆b))

1/(`22π)
+

2γ

γ2 + 1
ln

(
Γ(N + 3/2)Γ(1/2 + ∆b/ωcb)

Γ(N + 3/2 + ∆b/ωcb)Γ(1/2)

)]
, (B5)

where we have cut off the Landau level sum at N = Λ/ωbc and Γ(n) is the Gamma function.
Taking the B → 0 limit of (B5), we can scale out ∆b = zT and x = ω/T to find

2π2(κ− κc)
1

Tmb
=

∫ ∞
0

dx

ex − 1

[
tan−1

(
γx

z − x

)
+ tan−1

(
γx

z + x

)]
− π ln

(
1− e−z

)
− γ

γ2 + 1
z ln

(
Λe

zT

)
. (B6)

As z → 0, the first two terms of the left-hand side dominate and as z → ∞, the rightmost term dominates, so we
see that there is a solution with z, whose value will change logarithmically, as T →∞. As expected, there is always
a solution, so the bosons are not truly condensed as long as their dispersion is strictly 2D. Instead, for κ > κc the

gap becomes exponentially small in (κ − κc)/T , i.e. ∆b ∼ T exp
[
− 2π(κ−κc)

Tmb

]
. In reality, however, there is a stable

condensate solution at low temperature, facilitated by the 3D boson dispersion self-consistently generated by the
presence of the condensate. For this reason, we have treated this low-temperature regime of the large Fermi surface
phase (κ > κc) separately (see Appendix F).

Appendix C: Limiting self-energy calculations in
Model I

At low temperatures over the critical region, ∆b/T
is order one, so σbxx and σbxy are suppressed relative to
the fermions, which are gapless. Therefore, by the Ioffe-
Larkin composition rules (see Appendix D), σbfxx ≈ σbxx
and RH ≈ RH,c at low temperatures, which we confirm
numerically. RH,c, in turn, is determined by (28), and de-
pends on the dimensionless parameters (κ− κc)/(Tmb),
Λ/T , and γ. In Fig. 7 we plot the dependence of RH,cnc
at criticality (κ = κc) on the latter two parameters.

To understand this behavior, we now derive simple lim-
iting forms for the low-temperature ∆b and fermion self-
energy at criticality at low B. We’ll consider three limits

γ → 0 with T small but finite, γ → ∞ with T small
but finite, and T → 0 with γ fixed. These expressions
are used to obtain an estimate of the enhancement of the
Hall coefficient given in the main text.

We first wish to solve (B6) when κ = κc and γ → 0
at fixed T . The integral on the right-hand side (RHS) is
smaller than the other two terms, in this limit. We make
the guess that e−z � 1, so we arrive at

z =
∆b

T
= ln

[
π

γz ln
(

Λe
zT

)] = ln

(
π

γ

)
− ln

[
z ln

(
Λe

zT

)]
≈ ln

(
π

γ

)
− ln

[
ln

(
π

γ

)
ln

(
Λe

ln(π/γ)T

)]
; γ → 0,

(C1)
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which justifies our assumption. In the last step, we used
the fact that the second term is smaller than the first as
γ → 0, so we obtained an approximate expression for z
by simply substituting z = ln(π/γ) on the RHS. Better
approximations are obtained by iteration, by substituting
the improved expression for z.

By inserting (B1) into (18), we can evaluate the self-
energy at leading order in γ at criticality:

Γω,T ≡ Im[Σc,R(ω, T )]

= lim
γ→0
− γmb

2πνc
T

[
ln

(
1 + e(ω−∆b)/T

1− e−∆b/T

)

+ γ

(
−ω
T

+
∆b

T
ln

(
∆b

|∆b − ω|

))]
.

(C2)

The O(1) term arises from approximating the spectral
function as a step function. In the limit that T is fixed
and γ → 0, ∆b/T ∼ ln(1/γ). Corrections to the spec-
tral function, therefore, need only be integrated against
nF (ε′ − ω) − Θ(−ε′), which we evaluate with the Som-
merfeld approximation. The first term in (C2) goes as
Te−∆b/T ∼ γ∆b, but, in this limit, the second term goes
as γω2/∆b and is therefore higher order. Computing
RH,cnc using (28), and using just the first term in (C2),
gives exactly 4/3 when γ � 1.

Turning to the γ → ∞ limit, we see that the integral
in (B6) is well approximated by taking the integrand as
π from zπ/(2γ) to z, and as 0 everywhere else. The error
from this approximation is roughly a constant close to
π/2 as γ →∞, so we end up needing to solve

− π ln

(
1− e−zπ/(2γ)

√
e

)
=
z

γ
ln

(
Λe

zT

)
. (C3)

If T is small enough, z/γ will be small, which allows us
to approximate the left-hand side as −π ln[(zπ)/(2

√
eγ)].

Finally, since z/γ is small, we neglect the term
(z/γ) ln(z/γ) that appears on the right-hand side. These
approximations altogether yield

z ≈ πγ

ln
(

Λ
Tγe

)W0

(
2
√
e

π2
ln

(
Λ

Tγe

))
; γ →∞,

(C4)
where W0(z) is the Lambert W function.

The self-energy in the large γ limit is well approxi-
mated by the following:

Γω,T = − γmb

2πνc
T
[ z
γ

ln

(
Λe

zT

)
+ π ln(1 + eω/T ) (C5)

− tan−1(γ) ln

(
1 + eω/T

1 + e−ω/T

)]
; γ →∞, z/γ < 1,

where the integrals over the fermion occupation func-
tions are done by setting ∆b → 0 in the spectral func-
tion, which is accurate so long as ∆b/(Tγ) � 1. When
z → 0 limit of that expression is plugged into (28), one

finds RH,c ≈ −1.07/nc in good agreement with the nu-
merics. Numerical studies confirm RH,cnc increases near
γ = 0,∞ with a single minimum near γ = 1, the maxi-
mum being 4/3.

To understand the temperature dependence of the re-
sistivity at criticality and small γ we use the formula [33].

ρc,xx =

(
nc

8mcT

∫ ∞
−∞

dε
sech2(ε/2T )

Γε,T

)−1

= T

(
nc

8mc

∫ ∞
−∞

dx
sech2(x/2)

(ΓxT,T )/T

)−1

.

(C6)

Plugging the value of ∆b (C1) into (C2) or the exact
result we get that ΓxT,T /T depends on T only through
logarithmic corrections.

To calculate the self-energy in the low-temperature
limit at fixed field–as we do in our numerical
calculations–we must use the finite field expression (B1).
For temperatures sufficiently lower than B the self-energy
takes the form Γc ≈ (T 2/B)g(ω/T ) and will be domi-
nated by the cyclotron frequency. This will invalidate
the small field approximation. In this case we must in-
clude the quadratic terms in B for the Hall coefficient
[33]. The Hall coefficient then goes to one as Γ/B → 0.

Appendix D: Derivation of the Ioffe-Larkin
condition for Model I

The Kubo formula allows us to evaluate the conductiv-
ity tensors for the three species. To find the total conduc-
tivity, however, we must combine the contribution from
the three species. Although the c fermions are a sepa-
rate species and will be added in parallel to the b and f
contribution, the latter two species add together in series
instead of in parallel due to the Ioffe-Larkin composition
rule. In this section, we will derive the Ioffe-Larkin com-
position rule closely following Lee and Nagaosa [30]. Our
derivation is exact in the large N limit.

Due to the emergent gauge field, the charge of the
b bosons and f fermions is renormalized. The physi-
cal condition is that eb + ef = −1 as the bfc† term in
the Lagrangian must conserve charge. How the charge is
distributed is a gauge choice, with the emergent gauge
field ensuring the physical results are independent of this
choice.

We see in Fig. 8 that there are three diagrams that
contribute to the renormalization of the charge. In the
diagrams, the polarization bubbles, ΠΠΠ, [61] and propa-
gators are fully renormalized (with the fermionic spin
degeneracy included). Any other diagram is either zero
because of the locality of the SYK-type interaction or
suppressed by 1/N . We note that the propagator for the
emergent U(1) gauge field is [30]

DDD(τ − τ ′) = −〈a(τ)a(τ ′)〉 = −(ΠΠΠf + ΠΠΠb)
−1, (D1)

and the boldface is indicating tensors, which follows if
the inverse bare propagator is taken to be infinitesimal.
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Aµ = Aµ +

b

b

aµ
Aµ +

f

f

aµ
Aµ

FIG. 8. The diagrams that contribute to the renormalized charge. The propagators and polarization bubbles are all fully
dressed. Aµ is the external gauge field, aµ is the emergent gauge field, and the lines to the right of the diagrams are either b
or f propagators depending on whether the renormalized b charge or renormalized f charge is being computed.

Summing these diagrams for, e.g. the f fermions gives

eeerf = ef − efΠΠΠf (ΠΠΠf + ΠΠΠb)
−1 + ebΠΠΠb(ΠΠΠf + ΠΠΠb)

−1 (D2)

= (ef + eb)ΠΠΠb(ΠΠΠf + ΠΠΠb)
−1 = −ΠΠΠb(ΠΠΠf + ΠΠΠb)

−1,

where the extra minus sign for ΠΠΠb comes because f
and b are oppositely charged under the emergent gauge
field, and all polarization bubbles are evaluated at (ω, q).
Switching f ↔ b will give the boson result. Therefore,
the charge renormalizes to become a tensor. It is worth
noting that ΠΠΠb, ΠΠΠf , and ΠΠΠb+ΠΠΠf are 2×2 antisymmetric
matrices and therefore commute with each other. When
we compute the total current-current correlator due to
the f and b sub-systems after renormalizing the currents
using the respective charge renormalizations. We find,
since there are no current cross-correlations, as discussed

in the main text,

ΠΠΠtot = ΠΠΠbΠΠΠ
2
f [(ΠΠΠb + ΠΠΠf )−1]2 + ΠΠΠfΠΠΠ

2
b [(ΠΠΠb + ΠΠΠf )−1]2

= (ΠΠΠ−1
b + ΠΠΠ−1

f )−1, (D3)

which implies that the f and b resistivity are added in
series.

One important point that is glossed over in the above
is that the electric and magnetic field are renormalized
differently, and ΠΠΠb and ΠΠΠf are evaluated for different
effective magnetic fields. In our notation, ΠΠΠ(ω, q) ≈
−iσσσω + χχχq2, so the renormalization changes depending
on whether the vertex is magnetic Aµ(ω = 0, q → 0), or
electric, Aµ(ω → 0, q = 0). We find, for instance for the
f fermions

Efeff = σσσb(σσσf + σσσb)
−1E, Bfeff =

χb
χb + χf

B, (D4)

for a weak magnetic field B. In the magnetic field case,
we additionally average over q, which replaces χχχ with half
its trace χ = (χxx + χyy)/2.

In our derivation, we have neglected contributions to σσσ and χχχ from potential cross-correlations Πfb ∼ 〈JfJb〉. Doing
so is valid, as Model I’s site-uncorrelated grijk render them of the form

Πfb(iω, q) ∼
∫
d2kd2k′dΩdΩ′vf,kvb,kGf,k+q/2(iΩ + iω/2)Gf,k−q/2(iΩ− iω/2)Kfb(iΩ, iΩ

′, ω, q)

×Gb,k′+q/2(iΩ′ + iω/2)Gb,k′−q/2(iΩ′ − iω/2), (D5)

where vx,k = ∇kεx,k. Since Gx,k = Gx,−k, Gx,k+q/2(iΩ + iω/2)Gx,k−q/2(iΩ − iω/2) = Gx,k(iΩ + iω/2)Gx,k(iΩ −
iω/2) + Ξx,k(iΩ, iω)|q|2, with Ξx,k = Ξx,−k, and vx,k = −vx,−k, the O(ω) and O(q2) terms in the expansion of
Πfb(ω, q) vanish and we can thus neglect these cross-correlations.

Appendix E: Diamagnetic susceptibilities in Model I

Because of the renormalization of the magnetic field from the internal gauge field, we must find expressions for
χf and χb. To find them, we evaluate χλq

2 = Πλ(ω = 0, q → 0) − Πλ(ω = 0, q = 0). We average the two possible
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directions. Then, we have the bubble contributions (vertex corrections vanish for the same reason as (D5) does)

Πλ(q → 0) =
Πλ,xx + Πλ,yy

2
= −η 1

V

∑
k

k2

2m2
λ

T
∑
iν

(Gλ(k − q/2, iν)Gλ(k + q/2, iν))

= −2ηT

∫ k̃max

0

dk̃

(2π)2

∫ 2π

0

dθk̃3

(∑
iν

1

(iν/T − k̃2 + k̃q̃ cos(θ)− q̃2/4 + µλ/T − Σλ/T )

1

(q̃ → −q̃)

)

χλ = −η 1

2mλ

∫ kmax

0

k3 dk

2π

(∑
iν

(iνλ/T + µ/T − Σλ/T )

(iν/T − k2 + µλ/T − Σλ/T )4

)
,

(E1)

where in the second line of the above, we re-scaled the momenta by a factor of k̃ = k/
√

2mλT , and we relabeled

k̃ → k in line 3.
We can do the Matsubara sums exactly in the bosonic case since Σb(iω) = −γ|ω|. We carry them out to find

(z = −µ/T = ∆b/T ):

χb = − 1

2mb

∫ √Λ/T

0

dk

2π
k3

 z

(k2 + z)4
+ Re

ψ2

(
k2+z

2πγ−2πi

)
(2πγ − 2πi)3

+
k2

3

ψ3

(
k2+z

2πγ−2πi

)
(2πγ − 2πi)4

 , (E2)

with ψn(z) the polygamma function and Λ is the boson bandwidth. This expression diverges as χb ∼ (1/mb) ln(Λ/∆b)
when ∆b → 0.

For the f fermions, we can transform (E1) to

χf =
1

2mf

∫ Λf

−µf

dε

2π
(ε+ µf )T

∑
iν

(
(iν + µf − Σf (iν))

(iν − ε− Σf (iν))4

)
= T

∑
iν

(Λf + µf )2(Λf − 2µf + 3Σf (iν)− 3iν)

24πmf (Λf + Σf (iν)− iν)3(µf − Σf (iν) + iν)
.

(E3)

We note that T and |Σf (iν)| are always much smaller
than the f bandwidth Λf and Fermi energy µf , for any
value of ν, since |Σf (iν)| is bounded by a scale controlled
by the boson bandwidth Λ � Λf , µf . Therefore we can
expand the summand of (E3) in powers of Σf and take
the T → 0 limit. It may then be seen that the sum of the
absolute values of the contributions from all these terms
in the expansion is bounded by a quantity that vanishes
in the limit of Λf , µf → ∞, leaving χf to take its free
fermion value of 1/(24πmf ), which can be easily verified
by inserting the result for Σf (iν) and then numerically
integrating over ν in this limit.

Appendix F: inter-layer instabilities in Model I

Using the expressions from the previous sections, we
can find ρxx and RH exactly for a 2D version of Model I
without inter-layer couplings, for all values of parameters
at small B. For the same parameters used in the main
text, we plot RH and ρxx in Fig. 9 while ignoring inter-
layer couplings, which should be compared with Fig. 2
in the main text that takes inter-layer couplings into ac-
count. Note the large enhancement of RH seen at low
temperatures when κ > κc, as also seen in Fig. 4 in the
main text.

Despite the exact solvability of Model I in its 2D ver-
sion described here, to make physical predictions we must

analyze possible instabilities that will take us away from
our solution. In the 2D version of Model I, the only pos-
sible instabilities at large N are BCS-like fermion pairing
instabilities, induced by adding weak attractive interac-
tions, which occur at exponentially small energy scales
and which we hence ignore. However, the physical ver-
sion of Model I includes a third spatial dimension, and
we should therefore ask what relevant inter-layer interac-
tions are allowed and what their impact on the physics
will be.

An important feature of the physical version of Model
I is that the b and f partons are deconfined in a stack of
independent 2D layers. We can therefore write down the
following large N , instability inducing [62], local, gauge-
invariant, quartic interactions between adjacent layers l
and l′, where r denotes the 2D coordinate of a site within
a layer:

Hbb = −Jb
N

N∑
i,j=1

∑
r

b†r(l),ibr(l′),ib
†
r(l′),jbr(l),j ,

H ′bb = −J
′
b

N

N∑
i,j=1

∑
r

b†r(l),ib
†
r(l′),ibr(l′),jbr(l),j , (F1)
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FIG. 9. (a) The phase diagram for Model I in 2D with no
inter-layer instabilities. The resistivity is given by ρxx −
ρxx(T = 0) ∼ Tα ln(Λ/T ), and the color indicates the value
of α = d ln(ρxx/ ln(Λ/T ))/d ln(T ). (b) The plot of the weak-
field RH vs. κ − κc. RH has a peak near the crossover from
Fermi-liquid behavior to T -linear resistivity and approaches a
constant to either side signaling the change in carrier density.
The large peak of RH seen at low temperatures is occurring
as the boson is condensing, as discussed in the main text. The
same parameters are used as in Fig. 2 in the main text.

Hff = −Jf
N

N∑
i,j=1

∑
r,σ,σ′,
τ,τ ′

f†r(l),i,σf
†
r(l′),i,σ′fr(l′),j,τfr(l),j,τ ′ ,

Hbf = −Jbf
N

N∑
i,j=1

∑
r,σ

[
b†r(l),ibr(l′),if

†
r(l),j,σfr(l′),j,σ + H.c

]
.

None of these terms contribute directly to the parton
self-energies or transport at large N . Hff induces BCS-
like inter-layer f fermion pairing instabilities, which oc-
cur at exponentially small energy scales, and are there-
fore not of concern to us. The terms in Hbb create inter-
layer boson instabilities driven by susceptibilities that
scale as ∼ mbJ

′
b ln(Λ/∆b). In the gapped phase of the

boson, and in the quantum critical region, these suscep-
tibilities are thus small at the temperature scales of inter-
est, hence we ignore them. However, for κ > κc, ∆b(T )
starts decreasing rapidly below some temperature scale
(Fig. 6), which makes these susceptibilities large, caus-
ing the onset of instabilities that lead to the condensa-
tion of inter-layer boson bilinears in the gray region of
Fig. 2 in the main text. The resulting 3D boson phase
will then further have single-boson condensation as tem-
perature is lowered [34], entering the region below the

gray wedge. Once this happens, both the partons will
have 3D dispersions as these boson interaction terms will

appear like inter-layer hoppings, b†l b
†
l′blbl′ ∼ cbb

†
l bl′ , and

Hbf will similarly generate inter-layer hopping for the f
fermions [63]. This leads to two important changes to the
model; first the partons develop an anisotropic dispersion
with hopping proportional to the single-boson condensate
strength at temperatures well below the gray wedge, sec-
ond the fermions now scatter off both the N − 1 critical
bosons b2,..,N as well as the condensed mode 〈b1〉.

To model these effects, the dispersion of the partons is
changed to be

εb/f,k =
1

2mb/f
(k2
x + k2

y + Yb/fk
2
z), Yb/f = 4π2Jb/bfr

2
0,

(F2)
where r0 is the size of the condensate. For Fig. 2 in the
main text we take Jb = 1. Rewriting the SD equations
within the condensed phase, the only changes are to the
fermion self-energy and the constraint. The constraint
equation becomes

κ− κc = r2
0 + (nb − ncb), (F3)

where, in this equation, nb is the number of bosons not
participating in the condensate with ∆b = 0, and us-
ing the self-consistently determined dispersion. The self-
energy expression is changed to be

Im[Σc,R] = −r2
0g

2 νf
2

(F4)

− g2 νf
4π

∫ ∞
−∞

dεĀb(ε)(nB(ε) + nF (ε− ω)),

with Ãb the spectral function of the uncondensed modes.

To keep the number of f fermions fixed, as the dis-
persion changes, the Fermi energy shifts which in turn
modifies the density of states. In order to connect with
the 2D model, we introduce a maximum momentum in
the z direction, K. The spinless density of states is then
given by

νf =


Kmf
π ε0F >

YfK
2

3mf

mf
π

(
3ε0FKmf

cf

)1/3

ε0F <
YfK

2

3mf

, (F5)

where εF,0 is the Fermi energy with Yf = 0. Note that
we take K = π so the density of states in the small
condensate regime is νf = mf , the same as in the purely
2D case. We will work in the regime where the second
condition of (F5) is never reached, this is achieved by
taking Jbf sufficiently small. If the second condition was
achieved, γ = g2νcνf/(2π) would change.

The spectral function for the uncondensed modes can
be evaluated utilizing the 2D results by replacing ∆b →
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∆b + Ybk
2
z/(2mb) in (B1) to find

2π

mb
Ãb(ω, 0) = Ksgn(ω)− 2K

π
tan−1

(
YbK

2

4γmbω
− 1

γ

)
(F6)

− 4

πYb
Im

[√
2(1 + iγ)ωmb tanh−1

(
YbK√

2mb(1 + iγ)ω

)]
.

Unlike the O(N) rotor model, the dispersion is also mod-
ified as the condensate grows. This changing disper-
sion results in a different temperature dependence when

Tmb � κ−κc and also results in multiple self-consistent
values of the condensate size r0 at fixed κ and T . If we
assume interactions which generate a 3D instability at
T = 0, the physical solution for r0 is the one that ap-
proaches a non-zero constant at low temperatures, which
is the one we use in our numerical calculations.

Deep in the condensed phase at low temperatures, r0

will be roughly constant and large. In this regime, the
frequency dependence of the spectral function for the un-
condensed boson modes then goes as as

√
ω, leading di-

rectly to Im[Σc,R(ω = 0, T )] ∼ T 3/2 + const. behavior.

Appendix G: Self-energies and critical transport in Model II

To evaluate the boson self-energy we start with the individual patch contribution (35). Integration over q⊥ yields
(using vc,f,F = kF /mc,f , where kF is the Fermi momentum)

Σpb(iω, k) = −ig2T
∑
iν

∫
d2q‖

(2π)2
(sgn(ν + ω)− sgn(ν))

×
[
vf,F

(
i(ν + ω)− Σc(iν + iω)− vc,F k⊥ −

k‖q‖ cos(θ)

2mc
−

k2
‖

2mc

)
− vc,F (iν − Σf (iν))

]−1

, (G1)

where θ is the angle between q‖ and k‖. This further reduces upon integration over θ to

Σpb(iω, k) = − ig
2

2π
T
∑
iν

∫ qmax

0

q‖dq‖ (sgn(ν + ω)− sgn(ν))

vf,F (i(ν + ω)− Σc(iν + iω))− vc,F (iν − Σf (iν))− vf,F k‖q‖
2mc

− vc,F vf,F k⊥ −
vf,F k2‖

2mc

× 1√
1 +

vf,F k‖q‖
m

vf,F (i(ν+ω)−Σc(iν+iω))−vc,F (iν−Σf (iν))−
vf,F k‖q‖

2m −vc,F vf,F k⊥−
vF k

2
‖

2m

≈ g2qmaxmc

π2vf,F

|ω|
k‖

=
g2qmaxmcmf

π2kF

|ω|
k‖
. (G2)

Here the cutoff qmax ∼ kF dΩ, where dΩ is the solid angle subtended by the patch, is the cutoff on the patch size. If
we now average over all patches, we obtain

Σb(iω, k) ≈ −
∫ 2π

0

dφ

∫ π

0

sin θdθ
g2mcmf

π2

|ω|
k sin θ

= −2g2mcmf
|ω|
k
≡ −γ2

|ω|
k
. (G3)

We now discuss the fermion self-energies (39) at criticality. There, the c, f self-energies are expected to show MFL
frequency dependence because of the log divergence of the momentum integral over q‖. As mentioned at the end of
Sec. IV C in the main text, in this Appendix, we are interested in the higher temperature regime where the boson
is not that strongly damped, so we do not ignore the iν term in the boson propagator in (39) while computing the
fermion self-energies. The Matsubara frequency sum can then be separated into a UV divergent piece, that is a
constant and which may be absorbed by a chemical potential shift, and a UV finite piece, which may be computed
analytically. Then we can compute the momentum integral numerically with a UV cutoff ∼ √2mbΛ to obtain

Σc,f (iω) ≈ const.− iγ2mb

mc,fkF
T ϕ̃

(
ω

T
,

Λ

T
,

Λ

∆b(T )

)
. (G4)

where the function ϕ̃ is no longer symmetric between ±ω in the higher energy regime Λ� ω, T � γ2
2/mb, where the

iν term in the boson propagator in (39) is dominant.
In this higher temperature (energy) regime, the small wavevectors in the boson propagator are cut off by temperature

as q2
‖ ∼ mbT (by comparison of q2

‖/(2mb) to the iν term), and the boson self-energy γ2|ν|/q‖ (which we now treat

as a perturbation), may therefore be approximated to be ∼ γ2|ν|/
√
mbT in (39). Model II then behaves similarly to
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Model I at small γ, with γ ∼ γ2/
√
mbT , from the point of view of the fermions. Then, by virtue of (26, 28), we have

ρxx(T ) ∼
√
T (up to log corrections), and |RHnc| → 4/3.

In Fig. 10 we show the crossover between the strongly damped low-temperature regime and the weakly damped
higher temperature regime over the QCP, by exact numerical calculation of the conduction electron bubble diagram
contribution to the conductivity tensor. As we also argued for the case of Model I, this bubble diagram is still the
dominant contribution at criticality. Indeed, the contribution of the f fermions and the bosons are still suppressed
even in the higher energy regime of Model II (that is similar to the γ � 1 regime of Model I), due to the relatively
low conductivity of the bosons.

<latexit sha1_base64="AnFJm/RGYYbhIhycIJ1hoCyuCi4=">AAACAnicbZDLSsNAFIYnXmu9RV2Jm8EitJuSiKLLohuXFXqDJoTJdNIOncyEmYlQQnDjq7hxoYhbn8Kdb+O0zUJbfxj4+M85nDl/mDCqtON8Wyura+sbm6Wt8vbO7t6+fXDYUSKVmLSxYEL2QqQIo5y0NdWM9BJJUBwy0g3Ht9N694FIRQVv6UlC/BgNOY0oRtpYgX3sRRLhzJMjUW3V8gICp5YHdsWpOzPBZXALqIBCzcD+8gYCpzHhGjOkVN91Eu1nSGqKGcnLXqpIgvAYDUnfIEcxUX42OyGHZ8YZwEhI87iGM/f3RIZipSZxaDpjpEdqsTY1/6v1Ux1d+xnlSaoJx/NFUcqgFnCaBxxQSbBmEwMIS2r+CvEImUy0Sa1sQnAXT16Gznndvaw79xeVxk0RRwmcgFNQBS64Ag1wB5qgDTB4BM/gFbxZT9aL9W59zFtXrGLmCPyR9fkDSdSWtA==</latexit>

⇢(T )

⇢(T0)

<latexit sha1_base64="EvmryBHXkWI7l3ONzYbUE0LG5nY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU01E0WPRi8cKTVtoQ9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0P/NbT6g0T2TDjFMMYjqQPOKMGiv5jYtGz+2VK27VnYOsEi8nFchR75W/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBhMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzcuqd111H68qtbs8jiKcwCmcgwc3UIMHqIMPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8f5uGOFg==</latexit>

T/T0

<latexit sha1_base64="EvmryBHXkWI7l3ONzYbUE0LG5nY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU01E0WPRi8cKTVtoQ9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0P/NbT6g0T2TDjFMMYjqQPOKMGiv5jYtGz+2VK27VnYOsEi8nFchR75W/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBhMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzcuqd111H68qtbs8jiKcwCmcgwc3UIMHqIMPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8f5uGOFg==</latexit>

T/T0

<latexit sha1_base64="AnFJm/RGYYbhIhycIJ1hoCyuCi4=">AAACAnicbZDLSsNAFIYnXmu9RV2Jm8EitJuSiKLLohuXFXqDJoTJdNIOncyEmYlQQnDjq7hxoYhbn8Kdb+O0zUJbfxj4+M85nDl/mDCqtON8Wyura+sbm6Wt8vbO7t6+fXDYUSKVmLSxYEL2QqQIo5y0NdWM9BJJUBwy0g3Ht9N694FIRQVv6UlC/BgNOY0oRtpYgX3sRRLhzJMjUW3V8gICp5YHdsWpOzPBZXALqIBCzcD+8gYCpzHhGjOkVN91Eu1nSGqKGcnLXqpIgvAYDUnfIEcxUX42OyGHZ8YZwEhI87iGM/f3RIZipSZxaDpjpEdqsTY1/6v1Ux1d+xnlSaoJx/NFUcqgFnCaBxxQSbBmEwMIS2r+CvEImUy0Sa1sQnAXT16Gznndvaw79xeVxk0RRwmcgFNQBS64Ag1wB5qgDTB4BM/gFbxZT9aL9W59zFtXrGLmCPyR9fkDSdSWtA==</latexit>

⇢(T )

⇢(T0)

<latexit sha1_base64="+oUPZhF0XcBun9GHXQfRjSZk9zk=">AAAB83icbVDLSgMxFL1TX7W+qi7dBItQN2VGFF0W3bisYB/QGUomzbShSWZIMkIZ+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cMOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8SaciZp2zDDaS9RFIuQ0244ucv97hNVmsXy0UwTGgg8kixiBBsr+b7AZqxEVsfns0G15jbcOdAq8QpSgwKtQfXLH8YkFVQawrHWfc9NTJBhZRjhdFbxU00TTCZ4RPuWSiyoDrJ55hk6s8oQRbGyTxo0V39vZFhoPRWhncwz6mUvF//z+qmJboKMySQ1VJLFoSjlyMQoLwANmaLE8KklmChmsyIyxgoTY2uq2BK85S+vks5Fw7tquA+XteZtUUcZTuAU6uDBNTThHlrQBgIJPMMrvDmp8+K8Ox+L0ZJT7BzDHzifP8tMkYU=</latexit>

(a)

<latexit sha1_base64="6+52TeDmD9Sqq03HpYWxMzYh/qM=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4Krui6LHopccq9kPaZcmm2TY0yS5JVijb/govHhTx6s/x5r8xbfegrQ8GHu/NMDMvTDjTxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqCG2QmMeqHWJNOZO0YZjhtJ0oikXIaSsc3k791hNVmsXywYwS6gvclyxiBBsrPY7vgxqSARkHpbJbcWdAy8TLSRly1IPSV7cXk1RQaQjHWnc8NzF+hpVhhNNJsZtqmmAyxH3asVRiQbWfzQ6eoFOr9FAUK1vSoJn6eyLDQuuRCG2nwGagF72p+J/XSU107WdMJqmhkswXRSlHJkbT71GPKUoMH1mCiWL2VkQGWGFibEZFG4K3+PIyaZ5XvMuKe3dRrt7kcRTgGE7gDDy4girUoA4NICDgGV7hzVHOi/PufMxbV5x85gj+wPn8AVSMkBk=</latexit>|RHnc|

<latexit sha1_base64="EvmryBHXkWI7l3ONzYbUE0LG5nY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU01E0WPRi8cKTVtoQ9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0P/NbT6g0T2TDjFMMYjqQPOKMGiv5jYtGz+2VK27VnYOsEi8nFchR75W/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhPdBhMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzcuqd111H68qtbs8jiKcwCmcgwc3UIMHqIMPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8f5uGOFg==</latexit>

T/T0

<latexit sha1_base64="RrLWLKo3FdiRFT4dL7jEL4ObOZk=">AAAB83icbVDLSgMxFL1TX7W+qi7dBItQN2VGFF0W3bisYB/QGUomzbShSWZIMkIZ+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cMOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8SaciZp2zDDaS9RFIuQ0244ucv97hNVmsXy0UwTGgg8kixiBBsr+b7AZqxEVg/PZ4NqzW24c6BV4hWkBgVag+qXP4xJKqg0hGOt+56bmCDDyjDC6azip5ommEzwiPYtlVhQHWTzzDN0ZpUhimJlnzRorv7eyLDQeipCO5ln1MteLv7n9VMT3QQZk0lqqCSLQ1HKkYlRXgAaMkWJ4VNLMFHMZkVkjBUmxtZUsSV4y19eJZ2LhnfVcB8ua83boo4ynMAp1MGDa2jCPbSgDQQSeIZXeHNS58V5dz4WoyWn2DmGP3A+fwDM0pGG</latexit>

(b)
0 100 200 300 400 500

1.00

1.05

1.10

1.15

1.20

1.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

5

10

15

20

0 100 200 300 400 500
0

100

200

300

400

500

FIG. 10. (a) Temperature dependence of ρxx over the QCP in Model II. The dashed green lines indicate fits to ρ(T )/ρ(T0) =

a1
√
T/T0 and ρ(T )/ρ(T0) = a2(T/T0) ln(a3T0/T ) in the main and inset plots respectively (b) Temperature dependence of

RH in Model II. We use γ2 = 0.02, mb = 1.0, the crossover scale T0 = γ2
2/mb = 4 × 10−4, and the boson bandwidth

Λ = π2/2 ≈ 1.23× 104 T0. The bandwidths of the conduction electrons and f fermions are assumed to be very large.
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