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Effects of exchange distortions in the magnetic Kagome lattice
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This study examines the effect of distorted triangular magnetic interactions in the Kagome lattice.
Using a Holstein-Primakoff expansion, we determine the analytical solutions for classical energies
and the spin-wave modes for various magnetic configurations. By understanding the magnetic phase
diagram, we characterize the changes in the spin waves and examine the spin distortions of the ferro-
magnetic (FM), Antiferrimagnetic (AfM), and 120◦ phases that are produced by variable exchange
interactions and lead to various non-collinear phases, which provides a deeper understanding of the
magnetic fingerprints of these configurations for experimental characterization and identification.

I. INTRODUCTION

Complex magnetic lattice configurations have gained
attention both theoretically and experimentally during
the last decade as part of the search for topological and
non-collinear magnetic orders, flat-band and Kitaev in-
teractions, and the elusive quantum spin liquid state[1–
12]. These magnetic systems are so interesting because
of their potential in technology for sustainable, energy-
efficient memory devices and computational power[13].

One such lattice that has increased in popularity is the
Kagome lattice, which is described as a two-dimensional
triangular three-sublattice structure and the founda-
tional structure for the three-dimensional pyrochlore
lattice[14–17]. This extra sublattice helps distinguish the
Kagome from the two-sublattice honeycomb lattice[18].
As shown in Fig. 1(a), the Kagome lattice consists
of a lattice of coupled trimers, which introduces mul-
tiple inversion points. Theoretical studies on materials
with Kagome lattices have qualified their relevance to
these technologies and have further probed for numerous
magnetic and electronic properties[19–31]. Experimental
studies have offered a different perspective on many of
the same properties[32–39].

Previously, Boyko et al. examined the spin-wave dy-
namics of the Kagome lattice for three different mag-
netic configurations [out-of-plane ferromagnetic (FM),
out-of-plane antiferrimagnetic (AfM), and 120◦ phase]
and various isotropic nearest, next-nearest, and next-
next-nearest neighbor interactions[40]. In this work, it
was shown that, to first order, the FM phase produced
three modes, wherein two modes were dispersive, long-
range order modes, and one was a non-dispersive, cluster-
like flat band. These types of cluster modes are not un-
heard of as they have been observed in structures like
the pyrochlore lattice[16]. Furthermore, Boyko et al.
also revealed that, to first order, the 120◦ phase mim-
ics the antiferromagnetic (AFM) honeycomb lattice due
to the net in and out spin configurations[40]. However,
unlike the AFM honeycomb lattice, the Kagome lattice
can break this degeneracy with second- and third-order
interactions.

FIG. 1. The atoms in a Kagome lattice are colored by spin
orientation. The various spin configurations are the ferromag-
netic (FM - all spin angles in the same direction) (a), antifer-
rimagnetic (AfM - spin angles are anti-aligned) (b), and the
120◦ phase, where each spin is rotated 120 degrees away from
its neighbors’ (c). The 120◦ phase makes up triangular “in”
and “out” atomic spin groups (e), which further illustrate its
AFM nature (d).

When considering the collinear Heisenberg model, ex-
change competition can produce frustration in the system
and require an axial anisotropy to stabilize due to un-
derlying non-collinear states[6, 12, 40]. Frustrated states
can also come from the interactions between orbitals that
typically result in FM or AFM orders but may become
complicated by the competition between interactions as
well as any induced crystal-field anisotropies. The frus-
tration in the triangular interactions can lead to the need
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FIG. 2. (a) The triangular subgeometry on which our calcu-
lations are focused. The exchange interactions (Jij), which
may not all be equal between all atom pairs. (b) A top-down
view of the FM spin waves in a Kagome lattice with symmetry
points M, K and Γ overlaid.

for more complex interactions to describe the excitations
of the system, which is a fairly standard approach as any
deviation of a known model indicates the need for new
and exciting physics. In the Kagome lattice, this com-
plexity tends to lead researchers into the realm of more
exotic interactions like Kitaev model and spin liquids[1–
3].

Another avenue that can alleviate these frustrations is
the presence of some underlying, possibly non-collinear,
magnetic ground state that is not considered[5]. Given
the large number of magnetic configurations for this
structure, many groups are forced to examine numeri-
cal methods to interpret and understand neutron scatter-
ing experiments. While these numerical methods provide
critical information for the characterization and identifi-
cation of magnetic systems, there is little understand-
ing of how the system’s interactions compete to produce
the given state, which can hinder further development of
magnetic materials. By examining analytical solutions
and the evolution of complexity for simple models, one
can gain insight into the effects of exchange interactions
on various configurations of spins in the Kagome lattice.
These insights can aid experimentalists and theorists (or
modelers) in the identification of different magnetic or-

FIG. 3. The spin angles for the three-atom structure are
represented as deviations from a default state both in and out
of the xy-plane. (a) The azimuthal spin angles θ, illustrated
by the red arrows on each atom, are represented as deviations
from the angles θFM (gray arrows) that reflect the FM state.
As the significance of these angles is their relation to one
another rather than absolute orientation, the angle θA was
set arbitrarily to 0. Deviation angles q and r are taken as
the difference between angle θ and θFM . (b) The in-plane
spin angles φ, illustrated by the red arrows on each atom, are
represented as deviations from the angles φ120 (gray arrows)
which make up the 120◦ phase. The angle φA is set as π/2.
Deviation angles g and h are taken as the difference between
angle φ and φ120

ders by simple comparison, which can, in turn, allow for
the tunability of structures.

In this study, we look to understand many of the
Kagome lattice’s magnetic configurations by first produc-
ing analytical solutions for the spin waves of in-plane and
out-of-plane ferromagnetic (FM) and antiferrimagnetic
(AfM) arrangements along with the in-plane 120◦ phase,
then numerically characterizing various spin states with
a distorting nearest neighbor interaction. The term anti-
ferrimagnetic denotes a mixed composition of AFM and
FM aligned spins, which result in a structure that still
produces a net magnetic moment (shown in Fig. 1(b)).
Using a Heisenberg spin-spin exchange Hamiltonian with
on-site anisotropy, we determine the energy phase dia-
grams for this distorted system as well as the spin-wave
dynamics. Furthermore, we look beyond the 120◦ phase
and push the analytical limit by generalizing the in-plane
magnetism to a 120◦ + dθ phase, where dθ goes from -
120◦ (FM phase) to 60◦ (AfM phase).

These calculations allow for a detailed understanding
of the changes in the spin-wave dynamics expected for
various configurations of the magnetic Kagome lattice,
which is useful for experimental identification and inter-
pretation. Furthermore, deviation from these spin-wave
dynamics provides evidence for non-standard interactions
like those determined by the Kitaev model or other non-
Heisenberg models.
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FIG. 4. (a) Phase diagram for spin waves out of the plane for
all values of J and D. (b) and (c) are the in-plane diagrams
for all values of D, where (b) is for positive J values and (c)
for negative values. The phase borders were determined by
setting the simplified classical energies for each pair of phases
equal to each other. The configuration for each region was
determined by testing which phase offered the lowest energy
for the α and β values encompassed by that region. There
may be other spin configurations to consider in thoroughly
characterizing these phases. However, these would require a
considerable amount of extra parameterization. To remain
within two dimensions and make as few assumptions as pos-
sible, we consider only the most basic configurations for this
portion of the analysis.

II. SPIN-EXCHANGE HAMILTONIAN

To gain a complete understanding of how local inter-
action changes can affect the spin state of the Kagome
lattice, a Heisenberg spin-spin Hamiltonian is used to
model first-order interactions with variable exchange val-
ues (shown in Fig. 2(a)). From this Hamiltonian, the
energy eigenstates and spin-wave dynamics are examined
within the analytical limit and expanded numerically to
explore the spin evolution of the magnetic properties,
where the spin-spin exchange Hamiltonian with z-axis
anisotropy is given as

H = −1

2

∑

i6=j

JijS̄i · S̄j −D
∑

i

S̄2
iz . (1)

Here, Ji,j is the exchange interaction between the spin
sites and D is the anisotropy energy[6, 12]. Since the
Kagome lattice can produce numerous collinear and non-
collinear phases, we must be able to consider the az-
imuthal and polar angles of the site spins. Therefore,
the Hamiltonian must be shifted to study non-collinear
spin configurations. As described in Ref. [6], the spin
rotation is performed using an Euler rotation matrix U
upon the Hamiltonian, which is dependent on spherical
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FIG. 5. α as a function of q and g such that classical energy
is minimized for the out-of-plane and in-plane spin configura-
tions, respectively, where J is positive. Negative J values are
characterized by a reflection of this graph about the α axis.

coordinates θ (azimuthal) and φ (polar) between the two
spins [5, 6]. Applying this rotation to the Hamiltonian
gives

H = −1

2

∑

i6=j

Jij S̄i · U iU
−1

j S̄j −D
∑

i

U−1

i S̄2
iz . (2)

Through a (1/S) Holstein-Primakoff expansion of this
Hamiltonian, the system breaks into various orders

H = E0 +H1 +H2 + · · ·. (3)

Here, E0 is the classical energy, which can be used to
determine the system’s overall ground state for a given
spin configuration. The H1 term is the vacuum contri-
bution to the spin dynamics, which vanishes in a sta-
ble system. H2 produces the first-order contributions
to the spin-wave dynamics within the quadratic limit.
Higher order terms can also be determined. However,
these terms produce quantum fluctuations which can be
ignored for large S[6].
The Kagome system can produce many spin configu-

rations. The most well-known are collinear FM and AfM
systems. The spins in two configurations can be either
in-plane or out-of-plane and make distinct changes in the
spin dynamics. Outside of the collinear systems is the
non-collinear 120◦ phase [shown in Figs. 1(c)-(e)], which
is typically an in-plane rotation of spin produced through
AFM frustration.
First, we examine the classical energy for this system

and then move on to the spin-dynamics. Within these
sections, we will investigate the out-of-plane and in-plane
structures for the FM and AfM phases. With those es-
tablished, we will then enable a magnetic distortion of the
exchange interactions and simulate the evolution of the
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FIG. 6. The spin-wave dynamics for the simplest spin configurations, where J = J ′ = J ′′ (α = β = J ) and no magnetic field
is present. (a), (d), (g), and (j) draw out the spin waves through the path in k-space which passes through symmetry points Γ,
M, K, then back to Γ for the out-of-plane FM, out-of-plane AfM, in-plane FM, and 120◦ configurations, respectively. (b) and
(c) are the out-of-plane FM (J = 1) spin waves with anisotropies D = 0 and D = 1, respectively. (e) and (f) show a similar
evolution in the AfM configuration (J = −1). However, since the equilateral spin waves are not stable without anisotropy, the
anisotropies here are D = 1 (e) and D = 2 (f). (h) and (i) are the in-plane FM (J = 1) spin waves with anisotropies D = 0
and D = -1, respectively. (k) and (l) are spin waves for the 120◦ (J = −1) configuration. Although stable with none (k), (l)
reflects a large anisotropy value of -3 to illustrate the full transformation that this configuration’s spin waves undergo as this
parameter is amplified. Color scales applied to the spin waves are grouped by configuration/column. All 3D figures include a
projection of the central energy level of the FM configuration spin waves onto the k-plane to visualize the symmetry points.
The heat map projection’s colors are scaled relative to that of that single energy level’s minima and maxima, as in figure 2(b)

spin dynamics of both collinear and non-collinear phases
with various parameters.

III. CLASSICAL ENERGY

Before determining the spin-wave dynamics for specific
configurations, the classical energy of the system is used
to determine the ground-state spin configuration within
the 3 sublattice (3-SL) Kagome system.

The classical energy of each magnetic configuration is
given by

E0 = −1

2

∑

i,j

JijS
2

(

sin(θi) sin(θj) cos(φj − φi)

+ cos(θi) cos(θj)
)

−DS2
∑

i

cos2(θi),
(4)

where the various spin angles are illustrated in Fig. 3[6].
Within the different spin configurations, we will special-
ize angles for the purpose of achieving analytical and un-
derstandable solutions.

A. Out-of-plane spin configurations

The out-of-plane spin configurations have collinear
spins with θ = 0 or π. Here, the classical energy can
be written as

E0

|J |S2
= − 2

3

(

α cos(θA) cos(θB) + β cos(θA) cos(θC)

+J cos(θB) cos(θC)
)

−D,

(5)
where J ≡ J/|J | = ±1 and determines the general ex-
change interaction of the system. Additionally, D ≡
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FIG. 7. Variously distorted isosceles spin waves for the out-of-plane configurations where, in all cases, J = 1. The first row
shows the spin-wave energy values through the path in k-space that passes through symmetry points Γ,M,K, and back to Γ.
These 2-D representations exclude half of the α values shown in the 3D graphs due to a large amount of overlap rendering the
paths unreadable. The α value for each row of graphs is given by its central-column triangle diagram. The coloring of atoms
indicates the AfM configuration. While the FM state would be more accurately by one uniform color, the dichromatic coloring
of the AfM phase was chosen to represent either state here. Unstable spin waves were included to illustrate the results of the
exchange interaction manipulations that oppose the intuited signs. For both configurations, the evolution of these graphs with
anisotropy was included in its second column. All 3D FM graphs (first two columns) are color-grouped together and all 3D
AfM graphs are similarly grouped.
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FIG. 8. Variously distorted isosceles spin waves for the in-plane FM and AfM configurations, each of which has J = 1. The
first row shows the spin-wave energy values through the path in k-space that passes through symmetry points Γ, M, K, then
back to Γ. These each exclude half of the α values shown in the 3D graphs, as a large amount of overlap with the other values
made them too difficult to read. The α value for each row of graphs is given by the diagram in the central column. For both
configurations, the evolution of the spin waves with anisotropy was included in the second column for each. FM graphs are
color-grouped together and all AfM graphs are similarly grouped.
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FIG. 9. The FM spin waves configuration with scalene exchange interaction proportions. The α and β values for each are
separated by a comma as α, β in the corresponding triangle diagrams. All graphs are grouped together in a single color group.

D/|J |, α ≡ J′

|J| and β ≡ J′′

|J| . By pulling out an over-

all J and looking at the ratio of exchange interactions,
we reduce the number of variables and produce an overall
scaling factor that helps determine the energy scale of a
material system.

For ease of calculation, angles θA, θB, and θC are re-
placed with the values 0, 0 + q, and 0 + r, respectively,
where q and r are deviation angles from the FM state, as
illustrated in Fig. 3(a). The energy becomes

E0

|J |S2
= −2

3

(

α cos(q) + β cos(r) + J cos(q) cos(r)
)

−D.

(6)
Assuming no magnetic field nor anisotropy, the energy
function was inspected for minima and maxima. The
values for α and β that minimize E0 out the plane be-
long to the sinusoids α = −J cos(r) and β = −J cos(q).

It is important to remember that this relationship is only
accurate for θ values that are multiples of π, as the con-
sideration of any other value reinstates the necessity for
the first term of Eq. 4, leading these relationships to os-
cillate discretely between −1 and 1 as (−1)n+1J where
n is q/π for α and r/π for β.

The case where β and α are equal to each other, but
not necessarily to J , is termed the “isosceles” case. While
r and q are not mathematically required to be equivalent
when α and β are equal, it is likely that the angles will
be equal through symmetry. The minimizing formula is
then α = −J cos(q), which is shown in Fig. 5. In order
to minimize E0, J

′ may never exceed J in magnitude.
Assuming a positive J value, the maximum value J ′ =
J requires the AfM configuration (q = π) to minimize
energy and the minimum value (J ′ = −J) requires the
FM (q = 0) configuration for minimization.
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FIG. 10. The spin waves for the AfM configuration with scalene exchange interaction proportions. The α and β values for each
case are separated by a comma as α, β in the corresponding triangle diagrams. A single color group encompasses all 3D graphs
shown.

The simplest case, where all exchange interactions are
equal (β = α = J ), is termed the “equilateral” case.
In this state, the value for g that minimizes E0/|J |S2 is
π, which represents the AfM configuration. E0/|J |S2 is
maximized by g = 0, indicating the FM configuration.
These configurations are therefore the focus of our out-
of-plane analyses.
The classical energy for the out-of-plane FM configu-

ration (θ = 0) is reduced to

E0,FM

|J |S2
= −2

3
(α+ β + J )−D (7)

and the AfM energy to

E0,AfM

|J |S2
= −2

3
(−α− β + J )−D. (8)

These energies were used to generate the phase dia-
gram in Fig. 4(a).

B. In-plane spin configurations

For in-plane configurations (θ = π/2), the classical en-
ergy becomes

E0

|J |S2
= −2

3

[

α cos(φA − φB) + β cos(φA − φC)

+J cos(φB − φC)
]

.
(9)

To reduce the number of variables, the energy is rear-
ranged in terms of deviation from the 120◦ phase such
that φA, φB , and φC become (1/2)π, (7/6)π + g, and
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(11/6)π–h, respectively, as shown in Fig. 3(b). Assum-
ing all variables are real valued, the energy becomes

E0

|J |S2
=

2

3

[

α sin
(

π
6
+ g

)

+ β sin
(

π
6
+ h

)

+cos
(

π
3
+ g + h

)]

.
(10)

It is important to note that since we are using the
isotropic Heisenberg model, all spins in this configuration
can be rotated in the plane by any phase factor of φ′ as
it is energetically degenerate. We choose this particular
orientation to simplify the expressions. Using this sys-
tem, the relationships between spin angle and exchange
interaction strength which minimize the classical energy
are determined analytically as:

α = J
sin

(

π
3
+ g + h

)

cos
(

π
6
+ g

) and β = J
sin

(

π
3
+ g + h

)

cos
(

π
6
+ h

) .

(11)
Unlike the out-of-plane case, these relationships hold true
for any value of g and h.
In the isosceles case, the minimizing relationship be-

comes

α = J
sin

(

π
3
+ 2g

)

cos
(

π
6
+ g

) . (12)

Equation (12), illustrated in Fig. 5, shows that to min-
imize E0, the absolute value of exchange interaction J ′

may never exceed twice the value of J . It may also be
observed that when J is positive, the maximum value
J ′ = J requires the AfM configuration (g = π

3
) to min-

imize classical energy and the minimum value J ′ = −J
requires the FM configuration (g = − 2π

3
).

Examination of the equilateral case showed that the
minima and maxima of E0/|J |S2, regardless of the sign
of J , are produced by the 120◦ and FM configurations,
respectively. The 120◦ phase has the lowest energy of
all equilateral structures in and out of the plane and is
determined as the ground state.
The AfM configuration features as a local minimum

for the classical energy, yet proved too unstable for spin-
wave examination in the equilateral case. It is analyzed,
however, with further distortions.
The FM, AfM, and 120◦ phases will therefore be the

initial subjects for in-plane analyses. In the plane, the
ferromagnetic energy is simplified to

E0,FM

|J |S2
= −2

3
(α + β + J ), (13)

the 120◦ configuration energy to

E0,120

|J |S2
=

1

3
(α + β + J ), (14)

and the AfM energy to

E0,AfM

|J |S2
=

1

3
(−α− β + J ). (15)

Overall, the classical energies allow for the general un-
derstanding of where these few configurations are sta-
ble with respect to each other. It is important to note
that other magnetic structures, especially canted non-
collinear or >3 SL magnetic configurations could also
exist. However, there are too many to meaningfully char-
acterize all possibilities here. Therefore, it is essential to
look at the spin dynamics to gain insight into the spin
configurations’ stability. If a system is a stable ground
state according to the classical considerations but unsta-
ble from the standpoint of the spin dynamics, then this
is an indication of the presence of a canted non-collinear
state. Therefore, the next step is to evaluate these con-
figurations for dynamic stability.

IV. SPIN-WAVE DYNAMICS

Exploring the spin-wave dynamics for the five most in-
teresting spin configurations determined by the classical
energy, we first generate solutions to the simplest case
where all exchange interactions are equal, no magnetic
field is applied, the spin angles are held constant, the
physical distance between each atom remains static, and
the only variation is anisotropy. Beyond this, we produce
spin-wave solutions for the sublattice where exchange in-
teractions are no longer equal, first exploring only one
distortion (the isosceles case), then examining the case
where no two interactions are equal, termed the “sca-
lene” case. Considering purely in-plane spin configura-
tions, the latter two cases are further probed by varying
the spin angles. The varied spin angles considered belong
to the classical energy minimizing relationships discussed
in the previous section.
There are a few formatting rules applied throughout

the figures in this next section. For every 3-D spin-wave
graph, a color scale is applied which spans all colors from
purple to red, where purple reflects the minimum ω/|J |S
value 0 and red indicates the maximum ω/|J |S value
between all graphs in the group of graphs to which that
color scale is applied. For example, in Fig. 6, the 120◦

graphs (k) and (l) are grouped, and the color scale for
both spans from purple at 0 to red at 4.5, where 4.5 is
the highest ω/|J |S value between both graphs. The color
grouping used between graphs is specified in each figure
caption.
To contextualize the spin waves’ form with respect to

the reciprocal lattice, all 3D spin-wave graphs include a
projection of the equilateral FM configuration’s central
energy level (pictured in Fig. 6(a)) onto the k-plane. The
projection is a heat map whose colors are scaled relative
to that single energy level’s minima and maxima, as in
Fig. 2(b).
The 2D spin-wave graphs in the isosceles figures in-

clude only three α values, as opposed to the six consid-
ered in the 3D graphs, because the inclusion of all six α
values created massive overlap in the lines defining the
energies, rendering the graphs unreadable. Any destabi-
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FIG. 11. Isosceles distortions of spin waves for the 120◦ configuration. The first row shows the spin-wave energy values through
the path in k-space that passes through symmetry points Γ, M, K, then back to Γ. The α value for each row of 3D graphs
is given by the diagram in the left-hand column. Note that there are no stable spin waves for this configuration without
anisotropy, aside from the equilateral (α = −1) mode. This being the case, multiple magnitudes of anisotropy were included
to better illustrate the stable possibilities for the 120◦ phase. Because no positive-α state could be stabilized with anisotropy
lesser in magnitude than 3|J |, only negative values were included here. A single color group encompasses all 3D graphs in this
figure.

lizing α values were thus excluded from these represen-
tations to offer greater clarity.

All spin-wave figures after the equilateral figure include
small triangular diagrams. These are included to visual-
ize the proportions of the exchange interaction strengths
between atoms. Red lines indicate negative valued in-

teractions and black positive. The atoms are colored to
reflect the spin configurations as in Fig. 1, save those
in the isosceles graphs: as the FM and AfM configura-
tions share triangle diagrams, the diagrams were colored
to reflect the AfM mode.
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FIG. 12. Isosceles distortions of in-plane spin waves according to the relationship defined in Eq. 12. Aside from the two graphs
whose α value approaches 2, all spin waves pictured have anisotropy D = 1. Only negative α values are depicted because when
both the α and J signs are reversed for any given combination, they produce the same spin waves, with the exception of the
addition of anisotropy. Additionally, the spin rotating angles are provided in Table I, and two groups are defined for clarity in
color scaling, where those without anisotropy are grouped together and those with are grouped separately.

A. Out-of-plane Configurations

1. Ferromagnetic Phase

Since all spins in the FM phase point in the same di-
rection, it is expected this phase is stable when each of
the exchange interactions between these aligned sites (J ,
α, and β) are positive. We examine the effects of inter-
action competition on the FM phase to understand when

it becomes unstable from a spin-wave standpoint.
Figure 6(b) and (c) show how the equilateral (α =

β = J = +1) out-of-plane FM spin waves evolve with
anisotropy. The anisotropy present in Fig. 6(c) is equal
to the exchange interaction (D = +1). It is observed
that, without anisotropy, the spin waves are identical to
the FM configuration pointing in the plane Fig. 6(h).
As expected, easy-axis anisotropy present in the out-of-
plane configuration simply adds uniformly across the k-
plane to all energy states. The spin-wave energies ωi are
represented analytically as

ω0/|J |S = 2D + 6J
ω±/|J |S = 2D + 3J ±

√

8J 2 cos(kx)2 cos(
kx

2
−

√
3ky

2
)2 + 8J 2 cos(kx

2
±

√
3ky

2
) cos(kx) sin(kx) sin(

kx

2
−

√
3ky

2
) + J 2.

(16)

Moving to the first distortion of exchange interactions,
the spin-wave dynamics of various isosceles states (α = β)
are explored for the FM configuration in Fig. 7, which
illustrates the transformation of the spin waves as the
value α changes. With an α value of 2, the interaction
between atoms B and C has half the magnitude of the

other two. This distortion is reflected in the dispersion
shown in the ky direction when inspecting the spin-wave
diagram. A similar, perpendicular phenomenon can be
seen in the α = 1

2
case. The inclusion of anisotropy

energy, predictably, has a similar additive effect to that
observed in the equilateral spin waves. As the spins are
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uni-directional in a ferromagnet, it is expected that the
exchange interactions are all positive. This instability is
confirmed visually by inspecting the negative α-valued
graphs, except for the α = -2 spin waves, which seem to
become stable due to a symmetry effect in the interac-
tions. Larger negative α values produce equally stable-
looking waves. It becomes apparent, however, that this
state is not truly stable when considering its behavior
with anisotropy. Notice that the graph in the second col-
umn, which reflects D = +1, has lower overall energy
than its no-anisotropy counterpart, which is indicative
of an unstable system. This is in agreement with the
classical energy, which indicates that this state is only
metastable. A similar effect in the AfM configuration is
realized in the next analysis. While calculable, the an-
alytical representation of the isosceles spin waves is too
large to be presented here and cannot be used to provide
insight.

Figure 9 shows the scalene spin waves with all per-
mutations of a 1-2-3 proportionality between α, β, and
J , given a static FM spin configuration. It is observed
that, as in the isosceles case, both the in-plane and
out-of-plane FM configurations produce identical spin
waves throughout the variation of exchange interaction,
so long as anisotropy is not considered. However, their
changes with respect to anisotropy differ. For simplic-
ity, anisotropy was excluded from the scalene discussion.
These visualizations illustrate the dispersion that occurs
along the direction of the most robust exchange interac-
tion.

2. Antiferrimagnetic Phase

In this configuration, sites B and C in Fig. 2(a) are
aligned and site A points in the opposite direction. It is
thus expected that this configuration will be stabilized
by a positive exchange interaction J and negative inter-
actions J ′ and J ′′. However, with frustration in this sys-
tem, the boundaries of stability are of interest, as with
the FM phase.

The out-of-plane, equilateral AfM energies are unsta-
ble without anisotropy. The anisotropies D present in
Fig. 6 (e) and (f) are valued at +1 and +2, respectively.
As discussed prior, it is expected that the AfM configura-
tion contains one positive exchange interaction (between
the two same-spin atoms) and two negative interactions.
However, as all exchange interactions are strictly equal
in the equilateral case, all exchange interactions were as-
signed a negative value to reflect the net negativity of
the three interactions together. Therefore, this state has
J = α = β = −1. The analytical representation of these
energies is too large for inclusion.

Figure 7 includes the isosceles (α = β) out-of-plane
AfM spin waves. The expected stabilizing state is α =
-1, while J is positive, as the exchange interactions α and
β are equal and belong to the opposite-spin atom pairs.
The spin waves at this α value reflect this expectation

Isosceles spins

J α β φA(
◦) φB(◦) φC(

◦)

-1 -2 -2 90 270.0 270.0

-1 -3/2 -3/2 90 228.6 311.4

-1 -1 -1 90 210.0 330.0

-1 -3/4 -3/4 90 202.0 338.0

-1 -1/2 -1/2 90 194.5 345.5

1 -2 -2 90 90.00 90.00

1 -3/2 -3/2 90 131.4 48.60

1 -1 -1 90 150.0 30.00

1 -3/4 -3/4 90 158.0 22.00

1 -1/2 -1/2 90 165.5 14.50

TABLE I. The spin angles calculated for α values by the re-
lationship in Eq. 12

in their visually apparent stability. Interestingly, it is
shown that various α values that stabilize this otherwise
unstable configuration. Similar to the FM phase, the
AfM system has an unexpected metastable state where
all three exchange interactions are positive with an α
value of +2. Again, we see an overall lowering of energy
when anisotropy is included, revealing the volatile nature
of this arrangement.
The scalene spin waves with all permutations of a 1-2-

3 proportionality between α, β, and J , for an AfM spin
configuration, are shown in Fig. 10. As in the isosceles
case, the in-plane and out-of-plane configurations, with
no anisotropy, produce identical spin waves throughout
the exchange interaction variation. For the sake of sim-
plicity, anisotropy-inclusive spin waves are excluded from
the narrative. As with the isosceles case, dispersion in the
spin waves occurs along the direction of the strongest ex-
change interaction.

B. In-plane Configurations

1. Ferromagnetic Phase

Figure 6 (h) and (i) show the evolution of the equi-
lateral in-plane FM spin waves with the presence of
anisotropy. Easy-plane anisotropy added to the in-plane
configuration stretches the spin waves as interactions
strain the easy orientation. For this configuration, the
spin-wave energies can be represented analytically and
shown to be
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Various isosceles FM spin waves are illustrated in Fig.
8. It is shown that, as in the equilateral case, the
spin waves are identical to the out-of-plane configuration
where anisotropy is not considered. Otherwise, the inclu-
sion of anisotropy energy has the same stretching effect
as that in the equilateral spin waves. Like the out-of-
plane FM configuration, the analytical representation of
the energies that describe an isosceles in-plane FM state
were too large to include here.
As no anisotropy was considered for the scalene cases,

Fig. 9 represents both in- and out-of-plane configurations
and is not discussed redundantly.

2. Antiferrimagnetic Phase

Even with the presence of anisotropy five times the
magnitude of the exchange interaction, the equilateral
spin waves for the in-plane AfM configuration were un-
stable and therefore excluded from figure 6.
Figure 8 illustrates isosceles in-plane AfM spin waves.

As in the out-of-plane case, there are various α val-
ues which stabilize this unstable configuration. With-

out anisotropy, these spin waves are identical to the out-
of-plane spin waves. Yet, when present, a stretching of
energy is observed as a result of anisotropy.
Scalene spinwaves for the in-plane AfM configuration

with D = 0 are shown in figure 10 and are identical to
those of their out-of-pane counterparts.

3. 120◦ Phase

The ground state of the Kagome lattice behaves pecu-
liarly in contrast to the behaviors of the FM and AfM
configurations. The no-anisotropy spin waves in Fig. 6
(k) show a degeneracy of energy levels for the 120◦ phase.
This degeneracy is lost, however, as anisotropy increases.
As anisotropy energy increases to outweigh the exchange
interactions, Dirac nodes form in the system. While lower
values of anisotropy maintained stable spin waves, the
relatively large amount of D = -3 is included for the pur-
pose of illustrating this phenomenon. Lesser anisotropies
are included in the 2-D spin waves graph (j) to convey
its interesting path to this point. Here, the analytical
spin-wave energies can be shown as

ω0/|J |S =
√
6JD

ω±/|J |S =
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The distortion of exchange energies did not provide
any additional stability to the 120◦ configuration. In
fact, any distortion destabilized the system and required
anisotropy on the order of the exchange interaction for
stability. Even anisotropy, however, could not stabilize
any state whose α value had a sign opposite to that of J .
This instability is predicted by the state being a partic-
ular case of energy minimization related to the α and β
values.

Because isosceles distorting exchange interactions for
the 120◦ phase offered no stability, scalene spin wave
analyses for this configuration were omitted entirely.

C. Spin Angle Distortions

The 120◦ phase showed to be quite a unique configu-
ration. While it is the ground state when all exchange
interactions are equal, any distortion of the exchange pa-
rameters destabilize the phase, unlike the other configu-
rations which could maintain stability through some dis-
tortion. In light of this, we looked for stability in new
states whose spin angles and exchange interactions to-
gether minimize the classical energy.

Before considering all distorting parameters, we inves-
tigate the isosceles (α = β) states under the assumption
of the simplest case, where rotation angles g and h are
also equivalent, as described in Eq. 12. It can be inferred
from this minimizing relationship, illustrated in Fig. 5,
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FIG. 13. Scalene distortions of in-plane spin waves according to the relationships in Eq. 11. All spin waves shown have
anisotropy D = 1. The α and β values for each graph are presented within the triangle diagrams, respectively. Additionally,
the spin rotating angles are provided in Table II. A single color group encompasses all graphs.

Scalene spins

J α β φA(
◦) φB(

◦) φC(
◦)

-1 -5/4 -3/2 90 217.1 311.6

-1 -3/4 -5/4 90 175.1 306.7

-1 -1/2 -3/4 90 152.7 306.3

-1 -3/4 -1/2 90 233.7 27.27

-1 -5/4 -3/4 90 233.3 4.940

-1 -3/2 -5/4 90 228.4 322.9

TABLE II. The spin angles calculated for various combina-
tions of α and β determined by the relationships in Eq. 11

that there are two angle g solutions for any given α. How-
ever, these two values produce equivalent spin waves as

the two g values produce the same two values for spin an-
gles for atoms B and C, but the angles assigned to each
site are reversed. Spinwaves for some interesting α values
are illustrated in Fig. 12. As nearly every result was un-
stable, an anisotropy of D = −1 was applied to all states
except those two which have an α value approaching 2.
These do not include anisotropy.

Examining further distortion, figure 13 shows scalene
spin waves with various values of α and β, given a neg-
ative J , and with spin angles defined by the classical
energy minimizing relationships in Eq. 11. As the sca-
lene spin waves were also unstable without anisotropy,
the solutions pictured reflect a value D = −1. These
visualizations illustrate the dispersion that occurs along
the direction of the strongest exchange interaction. The
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fact that these polar spin angle solutions which minimize
the classical energy rely on anisotropy for stability may
indicate that the ground state configurations for these
distorted exchange interaction states are canted out of
the lattice plane to some degree.
Overall, these results indicate that purely in-plane

magnetic configurations which deviate from the FM,
AfM, and 120◦ states require anisotropy to stabilize
within the Kagome lattice. We expect that there will
be a reduction in the required anisotropy as the spin
angles are allowed to cant in any out-of-plane direction
(not necessarily along the z-axis) and form distinct non-
collinear phases. Further study into the realm of these
out-of-plane canted phases needs to be done. However,
the results here are important for understanding the evo-
lution of the magnetic Kagome lattice’s spin waves with
variable exchange interactions.

V. DISCUSSION AND CONCLUSION

The quest for an understanding of quantum spin states,
especially the quantum spin liquid, has led to a wealth of
experimental realizations and studies on the structural,
magnetic, and thermodynamics of Kagome systems[41–
46] as well as distorted Kagome systems[47–50]. While
many studies focus on the interpretation of either one
material or even one magnetic configuration, the abil-
ity to discern the various magnetic interactions with and
without distortions has been a challenge that leads most
to using numerical approaches in modeling experimental
data. However, examining these systems within an ana-
lytical limit for the symmetric systems and evolving out
into the distorted systems allows for one to gain a deeper
understanding of the effects of the interactions and how
they distort the magnetic systems.
In this paper, we examine the effects of variable first-

order magnetic distortions on the spin-wave dynamics
of the Kagome lattice. Using an isotropic spin-spin ex-
change Hamiltonian with z-axis anisotropy, we determine
the phase diagrams for various out-of-plane and in-plane
spin configurations and then examine how the spin waves
are affected by exchange interaction distortions.

By analyzing the spin waves with static spin angles and
varying exchange interactions, we gain novel insights on
the effect this distortion alone has on the magnetic iden-
tity of this sublattice. A dispersive effect on the spin
waves in accordance with exchange interaction propor-
tionality is illustrated in the isosceles and scalene cases
for all five of the most straightforward configurations, and
some unexpectedly metastable states fell out of unlikely
exchange interaction states for the FM and AfM cases.

Although it is the ground state classically, the special-
case nature of the 120◦ phase is underlined by its inability
to retain stability as its exchange interactions are dis-
torted. This led to our employing the energy-minimizing
relationships for spin angles in seeking stable spin waves
for these changing α values, which pointed to even further
spin distortions for stability. The next natural step in
this vein would be to numerically minimize the classical
energy with full freedom of spin angles, allowing for con-
tinuity in both the polar and azimuthal angles. Limiting
to purely in-plane or out-of-plane angles offered analyti-
cal insights that are invaluable in characterizing magnetic
relationships. However, to more deeply describe the most
natural behaviors of atoms in this lattice, the allowance
of canted configurations is a necessary consideration.

Overall, this paper aims to provide insight into the
spin dynamics of the Kagome lattice to help in the char-
acterization of its non-collinear phases. Therefore, we
show how the distortion of the exchange parameters and
spin angles affect the dynamics, which provides useful
information for the characterization of material systems,
especially when investigating these phases using inelastic
neutron scattering.
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