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SMALL KNUDSEN RATE OF CONVERGENCE TO RAREFACTION

WAVE FOR THE LANDAU EQUATION

RENJUN DUAN, DONGCHENG YANG, AND HONGJUN YU

Abstract. In this paper, we are concerned with the hydrodynamic limit to rarefaction
waves of the compressible Euler system for the Landau equation with Coulomb potentials
as the Knudsen number ǫ > 0 is vanishing. Precisely, whenever ǫ > 0 is small, for the
Cauchy problem on the Landau equation with suitable initial data involving a scaling
parameter a ∈ [ 2

3
, 1], we construct the unique global-in-time uniform-in-ǫ solution around

a local Maxwellian whose fluid quantities are the rarefaction wave of the corresponding
Euler system. In the meantime, we establish the convergence of solutions to the Rie-
mann rarefaction wave uniformly away from t = 0 at a rate ǫ

3

5
−

2

5
a| ln ǫ| as ǫ → 0. The

proof is based on the refined energy approach combining [19] and [32] under the scaling
transformation (t, x) → (ǫ−at, ǫ−ax).
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1. Introduction

The Landau equation is one of the most fundamental equations in plasma physics. A lot
of great contributions in the mathematical study of the spatially inhomogeneous Landau
equation have been made by many people, for instance, Lions [29], Villani [42], Alexander-
Villani [2], Degond-Lemou [9] and Guo [19]. In particular, Guo [19] gave the first proof
for constructing the global classical solutions close to a constant equilibrium state in a
periodic box, and later Strain and Guo [37, 38] established the large time asymptotic
behavior of those global solutions. Since then, the spatially inhomogeneous perturbation
theory of the Landau equation around global Maxwellians was further developed in different
settings, for instance, see Yu [48], Carrapatoso-Tristani-Wu [7], Carrapatoso-Mischler [6],
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Guo-Hwang-Jang-Ouyang [20], and Duan-Liu-Sakamoto-Strain [10]. In the case of the
whole space, the global classical solution near vacuum was also constructed by Luk [34].
Recently, lots of research has been done into investigating the regularity of solutions to the
spatially inhomogeneous Landau equation for general initial data under certain conditions,
see Golse-Imbert-Mouhot-Vasseur [15] and Henderson-Snelson [21], for instance. In this
paper, we would rather consider another interesting topic on the hydrodynamic limit of the
Landau equation for which quite few results are known although it has been extensively
studied in the Boltzmann theory, cf. Grad [17], Golse [14] and Saint-Raymond [36].

1.1. Problem. We consider the following one-dimensional Landau equation

∂tF + v1∂xF =
1

ǫ
Q(F, F ), (1.1)

where the unknown F = F (t, x, v) ≥ 0 stands for the density distribution function for the
gas particles with space position x ∈ R and velocity v = (v1, v2, v3) ∈ R

3 at time t > 0.
On the right hand side of (1.1), the parameter ǫ > 0 is the Knudsen number which is
proportional to the mean free path, and the Landau collision operator Q(·, ·) is a bilinear
integro-differential operator acting only on velocity variables, taking the form of

Q(F1, F2)(v) = ∇v ·
∫

R3

φ(v − v∗) {F1(v∗)∇vF2(v)−∇v∗F1(v∗)F2(v)} dv∗. (1.2)

The non-negative matrix φ in the integral above is given by

φ(v) =
(
I − v ⊗ v

|v|2
)
|v|γ+2, γ ≥ −3, (1.3)

where I is the 3 × 3 identity matrix and v ⊗ v is the tensor product. Note that (1.2) in
the case γ = −3 corresponds to the original (Fokker-Planck)-Landau collision operator for
Coulomb potentials, see [2, 9, 19]. Through the paper, we are focused on the very soft
potentials case −3 ≤ γ < −2, since it is similar to treat the other cases γ ≥ −2 in an
easier way for which the linearized Landau operator has the spectral gap.

Formally, when the Knudsen number ǫ tends to zero, the limit of the Landau equation
(1.1) gives rise to the one-dimensional compressible Euler system





ρt + (ρu1)x = 0,

(ρu1)t + (ρu21)x + px = 0,

(ρui)t + (ρu1ui)x = 0, i = 2, 3,{
ρ(e + |u|2

2
)
}
t
+
{
ρu1(e+

|u|2
2
) + pu1

}
x
= 0,

(1.4)

where 



ρ(t, x) =
∫
R3 ψ0(v)F dv,

ρui(t, x) =
∫
R3 ψi(v)F dv, for i = 1, 2, 3,

ρ(e + 1
2
|u|2)(t, x) =

∫
R3 ψ4(v)F dv.

(1.5)

Here ρ = ρ(t, x) > 0 is the mass density, u = u(t, x) = (u1, u2, u3) is the fluid velocity,
e = e(t, x) is the internal energy, and p = Rρθ is the pressure, where R is the gas constant
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that we will set to be 2
3
throughout the paper for convenience and θ = θ(t, x) > 0 is the

temperature related to the internal energy e by e = 3
2
Rθ = θ. Moreover, the five collision

invariants ψi(v) (i = 0, 1, 2, 3, 4) are given by

ψ0(v) = 1, ψi(v) = vi (i = 1, 2, 3), ψ4(v) =
1

2
|v|2,

satisfying
∫

R3

ψi(v)Q(F, F ) dv = 0, for i = 0, 1, 2, 3, 4. (1.6)

The rigorous mathematical justification of establishing the hydrodynamic limit to the
Euler system (1.4) for the Landau equation (1.1) in a general setting is an outstanding
open problem in kinetic theory, which is similar to the case of the Boltzmann equation
with or without angular cutoff, cf. [14, 17, 36]. Regarding the topic on solutions with
basic wave patterns (cf. [26, 40]), there have been extensive studies of global existence and
large time asymptotic behavior of solutions (cf. [5, 23, 31, 33, 47]) and small Knudsen rate
of convergence (cf. [24, 25, 28, 45, 46]) in the context of the cutoff Boltzmann equation;
some relevant literature will be reviewed in detail later on. However, to the best of our
knowledge, few results on this topic are known for either the non-cutoff Boltzmann or
Landau equation, essentially due to the effect of grazing singularity of both collision oper-
ators on non-trivial profiles with even small space variations connecting two distinct global
Maxwellians, that makes it necessary to develop new perturbation approaches beyond the
situation where solutions are close to a constant equilibrium (cf. [1, 16, 19]). Recently,
the first and third authors of this paper studied in [11] the nonlinear stability as well as
the large time asymptics of rarefaction waves for the Landau equation (1.1) with Coulomb
potentials. In the present work, we expect to further study the hydrodynamic limit with
rarefaction waves of the one-dimensional Landau equation (1.1) as Knudsen number ǫ > 0
is sufficiently small.

1.2. Macro-micro decomposition. For our purpose above, as in [31, 32], we define the
local Maxwellian M associated with the solution F to the equation (1.1) in terms of the
fluid quantities of F as in (1.5) by

M =M[ρ,u,θ](t,x)(v) =
ρ(t, x)

(2πRθ(t, x))3/2
exp

(
−|v − u(t, x)|2

2Rθ(t, x)

)
. (1.7)

We denote an L2
v(R

3) inner product as 〈h, g〉 =
∫
R3 h(v)g(v) dv. Then, considering the

linearized Landau operator around the local Maxwellian M of the form

LMh = Q(h,M) +Q(M,h), (1.8)
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the macroscopic kernel space is spanned by the following five pairwise-orthogonal base




χ0(v) =
1√
ρ
M,

χi(v) =
vi−ui√
Rρθ

M, for i = 1, 2, 3,

χ4(v) =
1√
6ρ

(
|v−u|2
Rθ

− 3
)
M,

〈χi,
χj

M
〉 = δij , i, j = 0, 1, 2, 3, 4.

(1.9)

In terms of these five orthonormal functions, we define the macroscopic projection P0 and
the microscopic projection P1 as follows

P0h =

4∑

i=0

〈h, χi

M
〉χi, P1h = h− P0h. (1.10)

A function h(v) is called microscopic or non-fluid if
∫

R3

h(v)ψi(v) dv = 0, for i = 0, 1, 2, 3, 4. (1.11)

Initiated by Liu-Yu [31] and developed by Liu-Yang-Yu [32], for a non-trivial solution profile
connecting two different global Maxwellians at x = ±∞, we decompose the equation (1.1)
and its solution with respect to the local Maxwellian (1.7) as

F =M +G, P0F =M, P1F = G, (1.12)

where the local Maxwellian M as (1.7) and G = G(t, x, v) represent the macroscopic and
microscopic component in the solution respectively. Then the equation (1.1) becomes

∂t(M +G) + v1∂x(M +G) =
1

ǫ
Q(G,M) +

1

ǫ
Q(M,G) +

1

ǫ
Q(G,G) (1.13)

due to Q(M,M) = 0. Multiplying (1.13) by the collision invariants ψi(v) (i = 0, 1, 2, 3, 4)
and integrating the resulting equations with respect to v over R

3, one gets the following
macroscopic system





ρt + (ρu1)x = 0,

(ρu1)t + (ρu21)x + px = −
∫
R3 v

2
1Gx dv,

(ρui)t + (ρu1ui)x = −
∫
R3 v1viGx dv, i = 2, 3,{

ρ(θ + |u|2
2
)
}
t
+
{
ρu1(θ +

|u|2
2
) + pu1

}
x
= −

∫
R3

1
2
v1|v|2Gx dv.

(1.14)

Here we have used (1.5), (1.6) and the fact that Gt is microscopic by (1.11).
Applying the projection operator P1 to (1.13) and using (1.12), we obtain the following

microscopic system

∂tG+ P1(v1∂xG) + P1(v1∂xM) =
1

ǫ
LMG+

1

ǫ
Q(G,G). (1.15)

Here the linearized operator LM is defined in (1.8). Recall that the null space N of LM is
spanned by χi (i = 0, 1, 2, 3, 4). It follows by (1.15) that

G = ǫL−1
M [P1(v1∂xM)] + L−1

M Θ, Θ := ǫ∂tG+ ǫP1(v1∂xG)−Q(G,G). (1.16)
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Substituting (1.16) into (1.14), we obtain the following fluid-type system




ρt + (ρu1)x = 0,

(ρu1)t + (ρu21)x + px = 4
3
ǫ(µ(θ)u1x)x − (

∫
R3 v

2
1L

−1
M Θ dv)x,

(ρui)t + (ρu1ui)x = ǫ(µ(θ)uix)x − (
∫
R3 v1viL

−1
M Θ dv)x, i = 2, 3,{

ρ(θ + |u|2
2
)
}
t
+
{
ρu1(θ +

|u|2
2
) + pu1

}
x
= ǫ(κ(θ)θx)x +

4
3
ǫ(µ(θ)u1u1x)x

+ǫ(µ(θ)u2u2x)x + ǫ(µ(θ)u3u3x)x − 1
2
(
∫
R3 v1|v|2L−1

M Θ dv)x.

(1.17)

Here the viscosity coefficient µ(θ) > 0 and the heat conductivity coefficient κ(θ) > 0, both
are smooth functions depending only on θ. The explicit formulas of µ(θ) and κ(θ) are
defined by (5.3).

1.3. Rarefaction wave and its smooth approximation. Now we turn to define the
rarefaction wave profile to the system (1.1) as in [30, 33, 35]. Consider the Euler system
(1.4) with the state equation p = 2

3
ρθ = k0ρ

5/3 exp(S), where k0 = 1
2πe

and S is the
macroscopic entropy, supplemented with the following Riemann initial data

(ρ, u, θ)(t, x)|t=0 = (ρR0 , u
R
0 , θ

R
0 )(x) =

{
(ρ+, u+, θ+), x > 0,

(ρ−, u−, θ−), x < 0.
(1.18)

Here ρ± > 0, u± = (u1±, 0, 0) and θ± > 0 are assumed to be constant. It is well known
that the Euler system (1.4) for (ρ, u1, S) has three distinct eigenvalues

λi(ρ, u1, S) = u1 + (−1)
i+1

2

√
pρ(ρ, S), i = 1, 3, λ2(ρ, u1, S) = u1,

where pρ(ρ, S) = 5
3
k0ρ

2

3 eS > 0. In terms of the two Riemann invariants of the third
eigenvalue λ3(ρ, u1, S), we define the 3-rarefaction wave curve for the given left constant
state (ρ−, u1−, θ−) with ρ− > 0 and θ− > 0 as below (cf. [26, 40])

R3(ρ−, u1−, θ−) = {(ρ, u1, θ) ∈ R+ × R× R+ | S = S∗,

u1 −
√
15k0e

S
2 ρ

1

3 = u1− −
√

15k0e
S∗

2 ρ
1

3

−, ρ > ρ−, u1 > u1−}. (1.19)

Here and to the end, S∗ := S− = −2
3
ln ρ− + ln(4

3
πθ−) + 1 is a constant.

Without loss of generality, we consider only the simple 3-rarefaction wave in this paper,
and the case for 1-rarefaction wave can be treated similarly. The 3-rarefaction wave to the
Euler system (1.4) with (1.18) can be expressed explicitly by the Riemann solution to the
inviscid Burgers equation





ωt + ωωx = 0,

ω(0, x) =

{
ω−, x < 0,

ω+, x > 0.

(1.20)
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If two constants ω− < ω+ are chosen, then (1.20) admits a centered rarefaction wave
solution ωR(x, t) = ωR(x

t
) connecting ω− and ω+ (cf. [35]) in the form of

ωR(
x

t
) =





ω−,
x
t
≤ ω−,

x
t
, ω− <

x
t
≤ ω+,

ω+,
x
t
> ω+.

For (ρ+, u1+, θ+) ∈ R3(ρ−, u1−, θ−), the 3-rarefaction wave (ρR, uR, θR)(x
t
) with uR(x

t
) =

(uR1 , u
R
2 , u

R
3 )(

x
t
) to the Riemann problem (1.4) with (1.18) can be defined explicitly by





λ3(ρ
R(x

t
), uR1 (

x
t
), S∗) =





λ3(ρ−, u1−, S∗),
x
t
≤ λ3(ρ−, u1−, S∗),

x
t
, λ3(ρ−, u1−, S∗) <

x
t
≤ λ3(ρ+, u1+, S∗),

λ3(ρ+, u1+, S∗),
x
t
> λ3(ρ+, u1+, S∗),

uR1 (
x
t
)−

√
15k0e

S∗

2 (ρR)
1

3 (x
t
) = u1− −

√
15k0e

S∗

2 ρ
1

3

−, uR2 = uR3 = 0,

θR(x
t
) = 3

2
k0e

S∗(ρR)
2

3 (x
t
).

(1.21)

Since the above 3-rarefaction wave is only Lipschitz continuous, we shall construct an
approximate smooth rarefaction wave to the 3-rarefaction wave defined in (1.21). Moti-
vated by [35, 43], the approximate smooth rarefaction wave can be constructed by the
Burgers equation

{
ωt + ω ωx = 0,

ω(0, x) = ωδ(x) = ω(x
δ
) = ω++ω−

2
+ ω+−ω−

2
tanh(x

δ
),

(1.22)

where δ > 0 is a small constant depending on the Knudsen number ǫ. In fact, as given in
(3.3) later on, we will choose δ = 1

k
ǫ
3

5
− 2

5
a for a suitably small constant k > 0 independent

of ǫ. By the method of characteristic curves, the solution ωδ(t, x) to the problem (1.22)
can be given by

ωδ(t, x) = ωδ(x0(t, x)), x = x0(t, x) + ωδ(x0(t, x))t.

The properties of ωδ(t, x) are given by Lemma 5.1 in Section 5.
Correspondingly, the approximate smooth 3-rarefaction wave (ρ̄δ, ūδ, θ̄δ)(t, x) to (1.21)

for the Euler system (1.4) and (1.18) can be defined by




ωδ(t, x) = λ3(ρ̄δ(t, x), ū1δ(t, x), S∗), ω± = λ3(ρ±, u1±, S∗),

ū1δ(t, x)−
√
15k0e

S∗

2 ρ̄
1

3

δ (t, x) = u1− −√
15k0e

S∗

2 ρ
1

3

−, ū2δ = ū3δ = 0,

θ̄δ(t, x) =
3
2
k0e

S∗ ρ̄
2

3

δ (t, x),

lim
x→±∞

(ρ̄δ, ū1δ, θ̄δ)(t, x) = (ρ±, u1±, θ±), (ρ+, u1+, θ+) ∈ R3(ρ−, u1−, θ−),

(1.23)

where ωδ(t, x) is the solution of Burger equation (1.22). From now on, we shall omit the
explicit dependence of (ρ̄δ, ūδ, θ̄δ)(t, x) on δ and denote it by (ρ̄, ū, θ̄)(t, x) for simplicity.
Then the approximate smooth 3-rarefaction wave (ρ̄, ū, θ̄)(t, x) satisfies the following Euler
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system 



ρ̄t + (ρ̄ū1)x = 0,

(ρ̄ū1)t + (ρ̄ū21)x + p̄x = 0,

(ρ̄ūi)t + (ρ̄ū1ūi)x = 0, i = 2, 3,

(ρ̄θ̄)t + (ρ̄ū1θ̄)x + p̄ū1x = 0,

(1.24)

where p̄ = Rρ̄θ̄. Properties of (ρ̄, ū, θ̄)(t, x) are given in Lemma 5.2 in Section 5. In terms
of the approximate rarefaction wave (ρ̄, ū, θ̄)(t, x), we denote

M =M[ρ̄,ū,θ̄](t,x)(v) =
ρ̄(t, x)

(2πRθ̄(t, x))3/2
exp

(
− |v − ū(t, x)|2

2Rθ̄(t, x)

)
.

For the technical reason as in [45], we choose the far-field data (ρ+, u+, θ+) and (ρ−, u−, θ−)
in (1.18) to be close enough to the constant state (1, 0, 3

2
) such that the approximate smooth

rarefaction wave further satisfies that



η0 := sup
t≥0,x∈R

{|ρ̄(t, x)− 1|+ |ū(t, x)|+ |θ̄(t, x)− 3

2
|} is small,

1

2
sup

t≥0,x∈R
θ̄(t, x) <

3

2
< inf

t≥0,x∈R
θ̄(t, x).

(1.25)

As in [33], associated with the constant state (1, 0, 3
2
), we will use throughout the paper a

global Maxwellian

µ =M[1,0, 3
2
](v) = (2π)−

3

2 exp{−|v|2/2}.

1.4. Main result. With all the above preparations, the main result of the paper can be
stated as follows.

Theorem 1.1. Let −3 ≤ γ < −2 in (1.3). Assume that the far-field data (ρ±, u±, θ±)
satisfy u2± = u3± = 0 and (ρ+, u1+, θ+) ∈ R3(ρ−, u1−, θ−) in (1.19), and δr := |ρ+ − ρ−|+
|u+−u−|+|θ+−θ−| is the wave strength. Let (ρR, uR, θR)(xt ) be the Riemann solution (1.21)

of the Euler system (1.4) and (1.18), and (ρ̄, ū, θ̄)(t, x) be the corresponding approximate
smooth profile satisfying (1.23), (1.24) and (1.25) induced by the Burgers equation (1.22)

with δ = 1
k
ǫ
3

5
− 2

5
a for 2

3
≤ a ≤ 1 and k > 0. Then, there are small constants ǫ0 > 0, η0 > 0

and k > 0 such that for any ǫ ∈ (0, ǫ0) and any δr > 0 and any η0 > 0 with δr + η0 < η0,
there exists a global-in-time solution F (t, x, v) ≥ 0 to the Landau equation (1.1) with initial
data

F (0, x, v) =M[ρ̄,ū,θ̄](0, x
ǫa

)(v) (1.26)

such that the following things hold true:

(a) Under the scaling transformation (τ, y) = (ǫ−at, ǫ−ax) as in (2.1), there are an
energy functional E2(τ) and a corresponding energy dissipation functional D2(τ),
given by (2.15) and (2.16) in terms of (τ, y) coordinates, respectively, such that

sup
τ≥0

E2(τ) +
∫ +∞

0

D2(τ) dτ ≤ Ck
1

6 ǫ
6

5
− 4

5
a. (1.27)
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(b) For any l > 0, there is a constant Cl,k > 0, independent of ǫ, such that

sup
t≥l

‖F (t, x, v)−M[ρR,uR,θR](x/t)(v)√
µ

‖L∞
x L2

v
≤ Cl,kǫ

3

5
− 2

5
a| ln ǫ|. (1.28)

Remark 1.2. To the best of our knowledge, Theorem 1.1 seems to provide the first result
regarding the hydrodynamic limit with rarefaction waves for the Landau equation. It re-
mains open to obtain similar results in case of other kinds of basic wave patterns such as
shock wave and contact discontinuity. Moreover, we expect that the current work may shed
a little light on the study of the same topic on the non-cutoff Boltzmann equation for which
the grazing collision effect plays a role similar to the Landau equation.

Remark 1.3. Estimate (1.28) shows that under the condition (1.26) on initial data, the
uniform convergence rate in small Knudsen number ǫ > 0 can be variable with respect to the
scaling parameter a ∈ [2

3
, 1]. In particular, choosing a = 2

3
can give the fastest convergence

rate ǫ
1

3 | ln ǫ|.

Remark 1.4. It should be pointed out that the scaling argument was first used in Xin
[43] to study under the transformation (τ, y) = (ǫ−

3

4 t, ǫ−
3

4x) the vanishing viscosity limit
to rarefaction waves for the one-dimensional compressible Navier-Stokes system, where
the convergence rate is ǫ

1

4 | ln ǫ|. Later, Xin-Zeng [45] justified the hydrodynamic limit with
rarefaction waves of the Boltzmann equation for the hard sphere model with the convergence
rate ǫ

1

5 | ln ǫ| through the scaling transformation (τ, y) = (ǫ−1t, ǫ−1x); this convergence rate

was later improved by Li [28] to be ǫ
1

3 | ln ǫ|2 under the scaling (τ, y) = (ǫ−
2

3 t, ǫ−
2

3x).

1.5. Relevant literature. Let’s review some works related to the study in this paper.
Mathematically it is an important and challenging problem to rigorously justify the hy-
drodynamic limit of kinetic equations in a general setting. Great contributions have been
made into different topics of the Boltzmann equation with cutoff. We only refer readers to
[14, 17, 36] mentioned before, as well as two recent progresses [12, 13] and reference therein,
and also refer to [41] for numerical investigations. Thus, we mainly focus on those known
results on the limit of the Boltzmann equation to the compressible Euler system admitting
solutions of basic wave patterns, such as rarefaction waves, contact discontinuities and
shock waves. Particularly, Yu [46] first established the validity of hydrodynamic limit of
the Boltzmann equation for the hard-sphere model when the solution of the Euler system
contains only the non-interacting shocks. Precisely, he showed that the Boltzmann solu-
tion converges to a local Maxwellian defined by the solution of the Euler system uniformly
away from the shock in any fixed time interval. Later, Huang-Wang-Yang [24] proved
the hydrodynamic limit to a single contact discontinuity wave, and Xin-Zeng [45] showed
the hydrodynamic limit to the Euler system with non-interacting rarefaction waves. As
mentioned before, the convergence rate in [45] was improved by Li [28] through a different
scaling transformation. Furthermore, Huang-Wang-Wang-Yang [25] obtained the hydro-
dynamic limit in the general setting of Riemann solutions that contains the superposition
of shock, rarefaction wave and contact discontinuity.
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Although the hydrodynamic limit from the Boltzmann equation for the hard-sphere
model to the Euler system with basic wave patterns has been greatly studied as mentioned
above, to the best of our knowledge there are few results on the same topic for the Landau
equation or the non-cutoff Boltzmann equation when grazing collisions of particles are
dominated. Notice that the cutoff Boltzmann operator is an integral one without angular
singularity while the Landau operator or the non-cutoff Boltzmann operator features the
velocity diffusion, so it is formally much harder to treat the latter case for the hydrodynamic
limit to the non-trivial profiles with space variations.

In this paper, we prove the existence of global-in-time solutions to the one-dimensional
Landau equation with suitable initial data as Knudsen number ǫ > 0 is sufficiently small.
And the solution of the Landau equation converges to the local Maxwellian defined by
the rarefaction wave of the Euler system uniformly away from t = 0 as ǫ → 0. Moreover,
we obtain the uniform convergence rate ǫ

3

5
− 2

5
a| ln ǫ| with a ∈ [2

3
, 1] by using the scaling

transformation y = ǫ−ax and τ = ǫ−at. It should be pointed out that the energy estimates
in the current work are performed in the Eulerian coordinates instead of the Lagrangian
coordinates as used in [24, 25, 28, 45].

1.6. Main strategy of the proof. In what follows we present a few key points on the
proof of the main result. In fact, the main strategy is based on a scaling transformation of
the independent variables and the decomposition of the solution for the Landau equation
with respect to the local Maxwellian that was initiated by Liu-Yu [31] and developed by
Liu-Yang-Yu [32] in the Boltzmann theory. We thus can make use of the macro-micro
decomposition to rewrite the Landau equation as the form of the compressible Navier-
Stokes-type system so that the analysis in the context of the viscous conservation laws can
be applied to capture the dissipation of the fluid part around wave patterns. Since we are
concerned with the convergence of the solution of Landau equation to the local Maxwellian
defined by rarefaction waves of the Euler system, it gives rise to more analytic difficulties
than the study of convergence to a global Maxwellian as ǫ → 0. Similar for showing the
large time asympotics in [11], the term ‖(ūx, θ̄x)‖2 is not integrable with respect to time t.
Hence we need to consider the subtraction of G(t, x, v) by G(t, x, v) as (2.3) to cancel the
slow time decay terms. However, unlike the Boltzmann equation with cutoff potentials,
the inverse of the linearized operator L−1

M defined as (1.16) is unbounded in L2(R3), which
leads to considerable difficulties in the analysis. In order to handle the terms involving
L−1
M , we will apply the Burnett functions and the fast decay properties about the velocity

of the Burnett functions. As in [19] for the dynamical stability of global Maxwellians, we
need use the weight function w = 〈v〉γ+2 as (2.12) to overcome the dissipation deficiency
in case of Coulomb potentials and handle velocity derivatives of the free transport term
v1∂xf . Furthermore, we use the decompositions F = M + G +

√
µf as in [11] to improve

the decompositions in [28, 45] such that we can simplify the related energy estimates, and
some basic estimates developed by Guo [19] around global Maxwellians can be applied to
treat the derivatives estimates conveniently.

The new scaling transformation of the independent variables takes the form of y = ǫ−ax,
τ = ǫ−at involving with a free parameter a ∈ [2

3
, 1]. The result in Theorem 1.1 shows
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that the solution converges to the local Maxwellian defined by the rarefaction wave of the
Euler system at a rate ǫ

3

5
− 2

5
a| ln ǫ|. In particular, we can obtain the fastest convergence rate

ǫ
1

3 | ln ǫ| if one takes a = 2
3
. As mentioned before, the scaling argument through the change

of variables y = ǫ−
3

4x and τ = ǫ−
3

4 t was first used in [43] to study the zero dissipation
limit to the rarefaction wave for the one-dimensional compressible Navier-Stokes system,
where the obtained convergence rate is ǫ

1

4 | ln ǫ|. Note that if one takes a = 3
4
in terms of

Theorem 1.1, then we obtain the convergence rate ǫ
3

10 | ln ǫ| which is still a little sharper
than the one in [43]. This is basically due to the detailed energy analysis such that both
the lower and higher order estimates possess the same convergence rate of the Knudsen
number ǫ. We also notice that under the scaling transformations y = ǫ−1x, τ = ǫ−1t in [45]

and y = ǫ−
2

3x, τ = ǫ−
2

3 t in [28] for the Boltzmann equation with hard sphere model, the

convergence rates ǫ
1

5 | ln ǫ| and ǫ 1

3 | ln ǫ|2 are obtained respectively. Therefore, Theorem 1.1
also implies that the results of [43, 45, 28] can be improved to give rise to the faster rate

ǫ
1

3 | ln ǫ| by choosing a = 2
3
. At this moment, we would remark that we expect that such

scaling argument also could be applied to study convergence to basic wave patterns (i.e.,
rarefaction waves, contact waves, and shock waves) for the Boltzmann equation, Navier-
Stokes system, radiative hydrodynamic equations and many other related models. Once
we use the scaling transformation (2.1) for an arbitrary parameter a ∈ [2

3
, 1], we have to

deal with some difficulties caused by the higher order derivatives estimates such as (3.69).
For this purpose, we design the energy functional E2(τ) and the corresponding dissipation
functional D2(τ) involving the Knudsen number ǫ, see (2.15) and (2.16). The desired goal is
to obtain the uniform a priori estimate (1.27) and then derive the convergence rate (1.28).

1.7. Organization of the paper. The rest of this paper is arranged as follows. In Section
2, we will reformulate the system (1.1) and introduce a scaling for the new independent
variable and the perturbation. In Section 3, we will establish the a priori estimates in-
cluding low order energy estimates, high order energy estimates and the weighted energy
estimates. In Section 4, we will establish the existence of global-in-time solutions as well
as the convergence to the local Maxwellian defined by the rarefaction wave of the Euler
system uniformly away from t = 0 as ǫ→ 0. In the appendix Section 5, we will give some
basic estimates frequently used in the previous sections.

2. Reformulation of the problem

2.1. Scaling and reformultion. In this section, we will reformulate the system and in-
troduce a scaling for the independent variable and the perturbation. Firstly, we define the
scaled independent variables

y =
x

ǫa
, τ =

t

ǫa
, for a ∈ [

2

3
, 1]. (2.1)

Here the range of the constant a is determined by (3.74) and (4.2).
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Correspondingly, we set the scaled perturbation (ρ̃, ũ, θ̃) = (ρ̃, ũ, θ̃)(τ, y) and G̃ =

G̃(τ, y, v) as 



ρ̃ = ρ(t, x)− ρ̄(t, x),

ũ = u(t, x)− ū(t, x),

θ̃ = θ(t, x)− θ̄(t, x),

G̃ = G(t, x, v)−G(t, x, v), G̃ =
√
µf(τ, y, v).

(2.2)

Here the term G = G(t, x, v) is defined as

G = ǫ1−aL−1
M P1v1M

{ |v − u|2θ̄y
2Rθ2

+
(v − u) · ūy

Rθ

}
. (2.3)

We remark that in (2.2), G is subtracted from G because the time decay of ‖(ūy, θ̄y)‖2 is
ǫa(δ + ǫaτ)−1 by Lemma 5.3, which is not integrable about the time τ .

Subtracting (1.24) from system (1.14) and using the scaling (2.1), we can obtain





ρ̃τ + ρ̄ũ1y + ρ̄yũ1 = −J1,
ũ1τ + ū1ũ1y +

2
3
θ̃y +

2θ̄
3ρ̄
ρ̃y = −J2 − 1

ρ

∫
R3 v

2
1Gydv,

ũiτ + ũ1ũiy + ū1ũiy = −1
ρ

∫
R3 v1viGydv, i = 2, 3,

θ̃τ +
2
3
θ̄ũ1y + ū1θ̃y = −J3 − 1

ρ

∫
R3

1
2
v1v · (v − 2u)Gydv,

(2.4)

where 



J1 = (ρ̃ũ1)y + ū1ρ̃y + ū1yρ̃,

J2 = ũ1ū1y + ũ1ũ1y +
2
3
ρy

ρ̄θ̃−ρ̃θ̄
ρρ̄

,

J3 =
2
3
(θ̃ū1y + θ̃ũ1y) + (θ̃yũ1 + θ̄yũ1).

(2.5)

Moreover, we also get from (1.17), (1.24) and (2.1) that




ρ̃τ + ρ̄ũ1y + ρ̄yũ1 = −J1,
ũ1τ + ū1ũ1y +

2
3
θ̃y +

2θ̄
3ρ̄
ρ̃y = −J2 + ǫ1−a 4

3ρ
(µ(θ)u1y)y − 1

ρ
(
∫
R3 v

2
1L

−1
M Θdv)y,

ũiτ + ũ1ũiy + ū1ũiy = ǫ1−a 1
ρ
(µ(θ)uiy)y − 1

ρ
(
∫
R3 v1viL

−1
M Θdv)y, i = 2, 3,

θ̃τ +
2
3
θ̄ũ1y + ū1θ̃y = −J3 + ǫ1−a 1

ρ
(κ(θ)θy)y + ǫ1−a 4

3ρ
µ(θ)u21y

+ǫ1−a 1
ρ
µ(θ)(u22y + u23y)− 1

ρ
(
∫
R3 v1

|v|2
2
L−1
M Θdv)y +

1
ρ
u(
∫
R3 v1vL

−1
M Θdv)y.

(2.6)

Here J1, J2 and J3 are defined in (2.5) and Θ can be rewritten as

Θ = ǫ1−a∂τG+ ǫ1−aP1(v1∂yG)−Q(G,G).

On the other hand, we need to derive the equation of the microscopic component f as in
(2.2). For this, we first denote

Γ(h, g) =
1√
µ
Q(

√
µh,

√
µg), Lh = Γ(h,

√
µ) + Γ(

√
µ, h). (2.7)
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This together with the definition of LM in (1.15) imply that

1√
µ
LM(

√
µf) =

1√
µ
{Q(M,

√
µf) +Q(

√
µf,M)} = Lf + Γ(f,

M − µ√
µ

) + Γ(
M − µ√

µ
, f).

(2.8)
From (1.15) and (2.1), one can easily see that

∂τG+ P1(v1∂yG) + P1(v1∂yM) = ǫa−1LMG+ ǫa−1Q(G,G). (2.9)

By using (2.8), P1 = I− P0 and G = G+
√
µf , we can rewrite equation (2.9) as

∂τf + v1∂yf − ǫa−1Lf = ǫa−1Γ(f,
M − µ√

µ
) + ǫa−1Γ(

M − µ√
µ

, f) + ǫa−1Γ(
G√
µ
,
G√
µ
)

+
P0(v1

√
µ∂yf)√
µ

− 1√
µ
P1v1M

{ |v − u|2θ̃y
2Rθ2

+
(v − u) · ũy

Rθ

}

− P1(v1∂yG)√
µ

− ∂τG√
µ
. (2.10)

Here we have used the fact that

P1(v1∂yM) = P1v1M
{ |v − u|2θ̃y

2Rθ2
+

(v − u) · ũy
Rθ

}
+ ǫa−1LMG.

Finally, we obtain by (1.1) and the scaling (2.1) that

∂τF + v1∂yF = ǫa−1Q(F, F ). (2.11)

2.2. Notations and norms. The following notations are needed in the energy analysis
for convenience of presentation. We shall use 〈·, ·〉 to denote the standard L2 inner product
in R

3
v with its corresponding L2 norm | · |2. We also use (·, ·) to denote L2 inner product

in Ry or Ry × R
3
v with its corresponding L2 norm ‖ · ‖. Let α and β be multi indices

α = [α1, α2] and β = [β1, β2, β3], respectively. Denote a high order derivative

∂αβ = ∂α1

τ ∂α2

y ∂β1

v1
∂β2

v2
∂β3

v3
.

If each component of β is not greater than the corresponding one of β, we use the standard

notation β ≤ β. And β < β means that β ≤ β and |β| < |β|. C β̄
β is the usual binomial

coefficient. Throughout the paper, generic positive constants are denoted by C (generally
large) and c (generally small) which are independent of time τ and ǫ unless otherwise stated.
The notation A ≈ B is used to denote that there exists c0 > 1 such that c−1

0 B ≤ A ≤ c0B.
Motivated by [19], we introduce the following velocity weight function

w = w(v) ≡ 〈v〉γ+2, 〈v〉 =
√

1 + |v|2. (2.12)

Denote weighted L2 norms as

|g|22,ℓ ≡
∫

R3

w2ℓ|g|2 dv, ‖g‖22,ℓ ≡
∫

R

|g|22,ℓ dy.
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The Landau collision frequency is

σij(v) = φij ∗ µ =

∫

R3

φij(v − v∗)µ(v∗) dv∗, 1 ≤ i, j ≤ 3, (2.13)

where φij is given in (1.3). We remark that [σij(v)]1≤i,j≤3 is a positive-definite self-adjoint
matrix. With (2.13), we define the weighted dissipation norms as

|g|2σ,ℓ ≡
3∑

i,j=1

∫

R3

w2ℓ{σij∂ig∂jg + σij vi
2

vj
2
|g|2} dv, ‖g‖2σ,ℓ ≡

∫

R

|g|2σ,ℓ dy.

And let |g|σ = |g|σ,0 and ‖g‖σ = ‖g‖σ,0. From [38, Lemma 5, p.315], one has

|g|σ ≈
∣∣∣〈v〉 γ+2

2 g
∣∣∣
2
+
∣∣∣〈v〉 γ

2∇vg ·
v

|v|
∣∣∣
2
+
∣∣∣〈v〉 γ+2

2 ∇vg ×
v

|v|
∣∣∣
2
. (2.14)

Now, we define the instant energy functional E2(τ) by
E2(τ) =

∑

|α|≤1

‖∂α(ρ̃, ũ, θ̃)(τ)‖2 + ǫ2−2a
∑

|α|=2

{‖∂α(ρ̃, ũ, θ̃)(τ)‖2 + ‖∂αf(τ)‖2}

+
∑

|α|≤1

‖∂αf(τ)‖2 +
∑

|α|+|β|≤2,|β|≥1

‖∂αβ f(τ)‖22,|β|. (2.15)

As usual, the instant energy functional E2(τ) is assumed to be small enough a priori. And
this will be closed by the energy estimates in the end. The corresponding dissipation rate
D2(τ) is given by

D2(τ) = ǫ1−a
∑

1≤|α|≤2

‖∂α(ρ̃, ũ, θ̃)(τ)‖2 + ǫ1−a
∑

|α|=2

‖∂αf(τ)‖2σ

+ ǫa−1
∑

|α|≤1

‖∂αf(τ)‖2σ + ǫa−1
∑

|α|+|β|≤2,|β|≥1

‖∂αβ f(τ)‖2σ,|β|. (2.16)

3. A priori estimates

This section is devoted to deducing the a priori estimates for the equation (2.11) around
the smooth rarefaction wave. To this end, we first choose the initial value of the equation
(2.11) as

F (0, y, v) ≡ F0(y, v) =M[ρ̄,ū,θ̄](0, y, v), (3.1)

such that (ρ̃, ũ, θ̃)(0, y) and f(0, y, v) satisfying

E2(0) ≤ ǫ. (3.2)

Here E2(τ) is defined by (2.15) and (ρ̄, ū, θ̄) with ū = (ū1, 0, 0) is the smooth approximation
rarefaction wave given by (1.23). Due to the smoothness of (ρ̄, ū, θ̄), the local existence of
the unique solution to the Cauchy problem (2.11) and (3.1) can be obtained by a straight-
forward modification of the arguments in [19] . To obtain the global-in-time existence of
solution, it suffices to get uniform a priori estimates on solutions.
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Throughout this section, we need to find out small positive constants k, δ0 and ǫ0 with
0 < ǫ0 ≪ k ≪ 1 and 0 < δ0 ≪ 1, independent of ǫ, δ and τ , then we choose

δ =
1

k
ǫ
3

5
− 2

5
a (3.3)

for a parameter a ∈ [2
3
, 1], where δ is given in (1.22), and we further let ǫ be arbitrarily

chosen such that 0 < ǫ < ǫ0 and 0 < δ < δ0. We now make the a priori assumption:

sup
0≤τ≤τ1

E2(τ) ≤ k
1

6 ǫ
6

5
− 4

5
a (3.4)

for τ1 ∈ (0,+∞), where E2(τ) is defined by (2.15). In what follows we formally explain
why one has to choose such δ as (3.3) and the a priori assumption as (3.4). Indeed, if one
assumes that

sup
0≤τ≤τ1

E2(τ) ≤ O(1)ǫq

with a constant q > 0, then it follows from this assumption and Lemma 5.2 that

‖(ρ, u, θ)(t, x)− (ρR, uR, θR)(
x

t
)‖L∞

≤ ‖(ρ̃, ũ, θ̃)(τ, y)‖L∞ + ‖(ρ̄, ū, θ̄)(t, x)− (ρR, uR, θR)(
x

t
)‖L∞

≤ Cǫ
q
2 + Ct−1δ(ln(1 + t) + | ln δ|),

for any t > 0. Hence the above estimate in vanishing Knudsen number ǫ > 0 is optimal by
taking δ = O(1)ǫ

q
2 . On the other hand, we have to deal with the slow time decay of the

term in (3.13) in the way that

ǫ1−a

∫ ∞

0

‖θ̃‖ 2

3‖θ̄yy‖
4

3

L1 dτ ≤ Cǫ1−a

∫ ∞

0

ǫ
q
3 ǫ

4

3
a(δ + ǫaτ)−

4

3 dτ

≤ Cǫ1−a+ 1

3
q+ 1

3
aδ−

1

3 = O(1)ǫ1−
2

3
a+ 1

6
q,

where we have replaced δ = O(1)ǫ
q
2 in the last identity. To close the a priori assumption,

we need to require that

ǫ1−
2

3
a+ 1

6
q ≤ ǫq, that is q ≤ 6

5
− 4

5
a.

Notice that the convergence rate is the fastest by choosing q = 6
5
− 4

5
a. Hence, we can

obtain the sharp convergence rate under the condition of (3.3) and (3.4).

Remark 3.1. By the a priori assumption (3.4) and in view of (1.25), we have




sup
t≥0,x∈R

{|ρ(t, x)− 1|+ |u(t, x)|+ |θ(t, x)− 3

2
|} < 2η0,

1

2
sup

t≥0,x∈R
θ(t, x) <

3

2
< inf

t≥0,x∈R
θ(t, x).

(3.5)

due to the smallness of ǫ and k, where η0 is the small constant given in (1.25). We point
out that (3.5) will be frequently used in the later energy estimates.
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From now on, we will focus on the reformulated system (2.4), (2.6), (2.10) and (2.11) with
initial data (3.1). We will first derive the lower order energy estimates for the macroscopic

component (ρ̃, ũ, θ̃) and the microscopic component f in Subsection 3.1. Then, Subsection

3.2 is devoted to obtaining the high order energy estimates of (ρ̃, ũ, θ̃) and f . The weighted
energy estimates of f will be given in Subsection 3.3.

3.1. Lower order energy estimates. Now we will derive the lower order estimates for

(ρ̃, ũ, θ̃) by the entropy and entropy flux. As in [32, 33], the following macroscopic entropy
S will be estimated for the lower order energy estimates. Set

−3

2
ρS =

∫

R3

M lnMdv.

Multiplying (2.11) by lnM , integrating over v and making a direct calculation, it holds
that

(−3

2
ρS)τ + (−3

2
ρu1S)y + (

∫

R3

v1G lnMdv)y −
∫

R3

v1G(lnM)ydv = 0,

where

S = −2

3
ln ρ+ ln(

4π

3
θ) + 1, p =

2

3
ρθ =

1

2πe
ρ

5

3 exp(S). (3.6)

In terms of the scaling transformation (2.1), we can rewrite the conservation laws (1.17)
as Xτ + Yy =




0

4
3
ǫ1−a(µ(θ)u1y)y − (

∫
v21L

−1
M Θdv)y

ǫ1−a(µ(θ)u2y)y − (
∫
v1v2L

−1
M Θdv)y

ǫ1−a(µ(θ)u3y)y − (
∫
v1v3L

−1
M Θdv)y

ǫ1−a
{
(κ(θ)θy)y +

4
3
(µ(θ)u1u1y)y +

3∑
i=2

(µ(θ)uiuiy)y
}
− 1

2
(
∫
v1|v|2L−1

M Θdv)y




.

Here

X =(X0, X1, X2, X3, X4)
t = (ρ, ρu1, ρu2, ρu3, ρ(θ +

|u|2
2

))t,

Y =(Y0, Y1, Y2, Y3, Y4)
t = (ρu1, ρu

2
1 + p, ρu1u2, ρu1u3, ρu1(θ +

|u|2
2

) + pu1)
t,

where (·, ·, ·)t is the transpose of the vector (·, ·, ·). We define an entropy-entropy flux pair
(η, q) around a Maxwellian M =M[ρ̄,ū,S̄] (ū2 = ū3 = 0) as

{
η(τ, y) = θ̄{−3

2
ρS + 3

2
ρ̄S̄ + 3

2
∇X(ρS)|X=X̄ · (X − X̄)},

q(τ, y) = θ̄{−3
2
ρu1S + 3

2
ρ̄ū1S̄ + 3

2
∇X(ρS)|X=X̄ · (Y − Ȳ )}. (3.7)
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Hence, by using (3.7) and (3.6), we can obtain

(ρS)X0
= S +

|u|2
2θ

− 5

3
, (ρS)Xi

= −ui
θ
, i = 1, 2, 3, (ρS)X4

=
1

θ
,

and 



η(τ, y) = 3
2
{ρθ − θ̄ρS + ρ[(S̄ − 5

3
)θ̄ + |u−ū|2

2
] + 2

3
ρ̄θ̄}

= ρθ̄Φ( ρ̄
ρ
) + 3

2
ρθ̄Φ( θ

θ̄
) + 3

4
ρ|u− ū|2,

q(τ, y) = u1η(τ, y) + (u1 − ū1)(ρθ − ρ̄θ̄),

(3.8)

where the convex function Φ(s) is defined as Φ(s) = s− ln s− 1. From (3.8), there exists
a constant c1 > 1 such that

c−1
1 ‖(ρ̃, ũ, θ̃)‖2 ≤ η(τ, y) ≤ c1‖(ρ̃, ũ, θ̃)‖2. (3.9)

In view of the definition of (3.7), we have by a direct computation that

η(τ, y)τ + q(τ, y)y −∇[ρ̄,ū,S̄]η(τ, y) · (ρ̄, ū, S̄)τ −∇[ρ̄,ū,S̄]q(τ, y) · (ρ̄, ū, S̄)y
= θ̄{(−3

2
ρS)τ + (−3

2
ρu1S)y}+

3

2
θ̄{∇X(ρS)|X=X̄(Xτ + Yy)}.

A direct but tedious computation shows that

η(τ, y)τ + q(τ, y)y + ǫ1−a2θ̄

θ
µ(θ)ũ21y + ǫ1−a3θ̄

2θ

3∑

i=2

µ(θ)ũ2iy + ǫ1−a 3θ̄

2θ2
κ(θ)θ̃2y

− {∇[ρ̄,ū,S̄]η(τ, y) · (ρ̄, ū, S̄)τ +∇[ρ̄,ū,S̄]q(τ, y) · (ρ̄, ū, S̄)y} − (· · · )y =
4∑

i=1

Hi, (3.10)

where we have denoted

4∑

i=1

Hi = ǫ1−a
{3κ(θ)

2θ2
(θ̄y + θ̃y)θ̄y θ̃ −

3θ̄

2θ2
κ(θ)θ̃y θ̄y

}

+ ǫ1−a
{2µ(θ)

θ
(ū1y + ũ1y)ū1yθ̃ −

2θ̄

θ
µ(θ)ũ1yū1y

}

+
{3

2
(
θ̃

θ
)y

∫

R3

(
1

2
v1|v|2 −

3∑

i=1

uiv1vi)L
−1
M Θdv

}

+
{
(
3

2

3∑

i=1

ũiy −
3

2

θ̃

θ

3∑

i=1

uiy)

∫

R3

v1viL
−1
M Θdv

}
.

Here the notation (· · · )y represents the term in the conservative form so that it vanishes
after integration. In the following energy analysis, we shall assume a priori estimates that
E2(τ) is small enough due to (3.4), and we have from this and (3.5) that (ρ, u, θ) and
(ρ̄, ū, θ̄) are close enough to the state (1, 0, 3

2
).
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By the similar arguments as [27], there exists c2 > 0 such that

− {∇[ρ̄,ū,S̄]η(τ, y) · (ρ̄, ū, S̄)τ +∇[ρ̄,ū,S̄]q(τ, y) · (ρ̄, ū, S̄)y}

=
3

2
ρū1y(u1 − ū1)

2 +
2

3
ρθ̄ū1yΦ(

ρ̄

ρ
) + ρθ̄ū1yΦ(

θ

θ̄
) +

3

2
ρθ̄y(u1 − ū1)(

2

3
ln
ρ̄

ρ
+ ln

θ

θ̄
)

≥ c2ū1y(ρ̃
2 + ũ21 + θ̃2). (3.11)

Since both µ(θ) and κ(θ) are smooth functions of θ, there exists a constant c3 > 1 such
that µ(θ), κ(θ) ∈ [c−1

3 , c3]. Plugging (3.11) into (3.10) and integrating the resulting equation
with respect to y, we can obtain

d

dτ

∫

R

η(τ, y)dy + cǫ1−a‖(ũy, θ̃y)‖2 + c2‖
√
ū1y(ρ̃, ũ1, θ̃)‖2 ≤

4∑

i=1

∫

R

Hi dy. (3.12)

We will estimate the terms of (3.12) involving Hi. By the integration by parts, the a priori
assumption (3.4), Lemma 5.3 and the Cauchy-Schwarz inequality, one gets that

∫

R

H1dy = ǫ1−a

∫

R

{3κ(θ)

2θ2
(θ̄y + θ̃y)θ̄y θ̃ −

3θ̄

2θ2
κ(θ)θ̃y θ̄y

}
dy

≤ Cǫ1−a

∫

R

|3κ(θ)
2θ2

(θ̃y + θ̄y)θ̄y θ̃ + (
3θ̄κ(θ)

2θ2
)yθ̃θ̄y +

3θ̄κ(θ)

2θ2
θ̃θ̄yy|dy

≤ Cǫ1−a

∫

R

|θ̃|{|θ̄y||θ̃y|+ |θ̄y|2 + |θ̄y||θy|+ |θ̄yy|}dy

≤ Cǫ1−a‖θ̃‖L∞{‖θ̄yy‖L1 + ‖θ̄y‖2 + ‖θ̃y‖2},

which further implies that
∫

R

H1dy ≤ ǫ1−a
{
η‖θ̃y‖2 + Cη‖θ̃‖

2

3‖θ̄yy‖
4

3

L1 + Cη‖θ̃‖
2

3‖θ̄y‖
8

3 + C‖θ̃‖ 1

2‖θ̃y‖
1

2‖θ̃y‖2
}

≤ ηǫ1−a‖θ̃y‖2 + Cηǫ
1−aǫ

1

3
( 6
5
− 4

5
a)ǫ

4

3
a(δ + ǫaτ)−

4

3 + C
√
E2(τ)D2(τ)

≤ ηǫ1−a‖θ̃y‖2 + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.13)

Here we have used the following one-dimensional Sobolev imbedding theorem

‖g(y)‖L∞ ≤
√
2‖g(y)‖ 1

2‖∂yg(y)‖
1

2 , for g(y) ∈ H1(R) ⊂ L∞(R).

Following the same method used as (3.13), it holds that

∫

R

H2dy = ǫ1−a

∫

R

{2µ(θ)

θ
(ū1y + ũ1y)ū1yθ̃ −

2θ̄

θ
µ(θ)ũ1yū1y

}
dy

≤ ηǫ1−a‖(ũ1y, θ̃y)‖2 + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ).
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By using the self-adjoint property of L−1
M , (5.1) and (5.2), one can show that

∫

R3

(
1

2
v1|v|2 −

3∑

i=1

v1uivi)L
−1
M Θdv =

∫

R3

L−1
M {P1(

1

2
v1|v|2 −

3∑

i=1

v1uivi)M} Θ

M
dv

=

∫

R3

L−1
M {(Rθ) 3

2 Â1(
v − u√
Rθ

)M} Θ

M
dv = (Rθ)

3

2

∫

R3

A1(
v − u√
Rθ

)
Θ

M
dv, (3.14)

and∫

R3

v1viL
−1
M Θdv =

∫

R3

L−1
M {P1(v1viM)} Θ

M
dv

=

∫

R3

L−1
M {RθB̂1i(

v − u√
Rθ

)M} Θ

M
dv = Rθ

∫

R3

B1i(
v − u√
Rθ

)
Θ

M
dv. (3.15)

Both (3.14) and the expression of H3 in (3.10) imply

∫

R

H3dy =

∫

R3

{3

2
(
θ̃

θ
)y

∫

R3

(
1

2
v1|v|2 −

3∑

i=1

uiv1vi)L
−1
M Θdv

}
dy

=

∫

R3

{3

2
(
θ̃

θ
)y(Rθ)

3

2

∫

R3

A1(
v − u√
Rθ

)
Θ

M
dv

}
dy. (3.16)

Notice that for any multi-index β and m ≥ 0, we have by using the fast decay of the
Burnett functions (5.4) and (3.5) that

∫

R3

|〈v〉m√µ∂βA1(
v−u√
Rθ
)|2

M2
dv ≤ C. (3.17)

We now turn to compute the term with Θ in (3.16). Recalling that

Θ = ǫ1−a∂τG+ ǫ1−aP1(v1∂yG)−Q(G,G). (3.18)

For the first term on the right-hand side of (3.18). Recalling that G = G+
√
µf , applying

the similar arguments as (5.23), and using
√
E2(τ) ≤ k

1

12 ǫ
3

5
− 2

5
a and ǫaδ−1 ≤ k

1

12 ǫ
3

5
− 2

5
a due

to (3.4) and (3.3), one has from (3.17), the Cauchy-Schwarz inequality and Lemma 5.3
that

∫

R3

{3

2
(
θ̃

θ
)y(Rθ)

3

2

∫

R3

A1(
v − u√
Rθ

)
ǫ1−a∂τG

M
dv

}
dy

≤ Cǫ1−a(‖θ̃y‖+ ‖θ̃θy‖)×
( ∫

R

∫

R3

|∂τG√
µ
|2dvdy

)1

2

≤ Cǫ2(1−a)(‖θ̃y‖+ ‖θ̃θy‖)× (‖(ū1yτ , θ̄yτ )‖+ ‖(ū1y, θ̄y) · (uτ , θτ )‖)
≤ Cηǫ1−a‖θ̃y‖2 + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cη(ǫ
aδ−1 +

√
E2(τ))D2(τ)

≤ Cηǫ1−a‖θ̃y‖2 + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.19)
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Similarly, it holds that
∫

R3

{3

2
(
θ̃

θ
)y(Rθ)

3

2

∫

R3

A1(
v − u√
Rθ

)
ǫ1−a√µ∂τf

M
dv

}
dy ≤ Cǫ(1−a){‖θ̃y‖+ ‖θ̃θy‖} × ‖〈v〉− 1

2∂τf‖

≤ Cηǫ1−a‖θ̃y‖2 + Cηǫ
1−a‖∂τf‖2σ + Cǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.20)

It follows from (3.19) and (3.20) that
∫

R3

{3

2
(
θ̃

θ
)y(Rθ)

3

2

∫

R3

A1(
v − u√
Rθ

)
ǫ1−a∂τG

M
dv

}
dy

≤ Cηǫ1−a‖θ̃y‖2 + Cηǫ
1−a‖∂τf‖2σ + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.21)

For the second term on the right-hand side of (3.18). Similar arguments as (3.21) imply
∫

R3

{3

2
(
θ̃

θ
)y(Rθ)

3

2

∫

R3

A1(
v − u√
Rθ

)
ǫ1−aP1(v1∂yG)

M
dv

}
dy

≤ Cηǫ1−a‖θ̃y‖2 + Cηǫ
1−a‖∂yf‖2σ + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).

For the last term of (3.18), by using (2.7), (3.17) and the similar arguments as (5.19), we
get

∫

R3

{3

2
(
θ̃

θ
)y(Rθ)

3

2

∫

R3

A1(
v − u√
Rθ

)
Q(G,G)

M
dv

}
dy

=

∫

R3

{3

2
(
θ̃

θ
)y(Rθ)

3

2

∫

R3

√
µA1(

v−u√
Rθ
)

M
Γ(

G√
µ
,
G√
µ
)dv

}
dy

≤ Cηǫ1−a‖θ̃y‖2 + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.22)

By the estimates from (3.21) to (3.22), we have from (3.16) that
∫

R

H3dy ≤ Cηǫ1−a‖θ̃y‖2 + Cηǫ
1−a

∑

|α|=1

‖∂αf‖2σ + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).

(3.23)

Following the same strategies used in the estimates of (3.14), then similar arguments as
(3.23) imply

∫

R

H4dy =

∫

R

{
(
3

2

3∑

i=1

ũiy −
3

2

θ̃

θ

3∑

i=1

uiy)

∫

R3

v1viL
−1
M Θdv

}
dy

=

∫

R

{
(
3

2

3∑

i=1

ũiy −
3

2

θ̃

θ

3∑

i=1

uiy)Rθ

∫

R3

B1i(
v − u√
Rθ

)
Θ

M
dv

}
dy

≤ Cηǫ1−a‖ũy‖2 + Cηǫ
1−a

∑

|α|=1

‖∂αf‖2σ + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).
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Here we have used the fact that for any multi-index β and m ≥ 0,

∫

R3

|〈v〉m√µ∂βB1i(
v−u√
Rθ
)|2

M2
dv ≤ C.

Therefore, substituting the estimates of H1−H4 into (3.12) and taking η > 0 small enough
gives

d

dτ

∫

R

η(τ, y)dy + cǫ1−a‖(ũy, θ̃y)‖2 + c2‖
√
ū1y(ρ̃, ũ1, θ̃)‖2

≤ Cǫ1−a
∑

|α|=1

‖∂αf‖2σ + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.24)

Since there is no dissipation for density function and the temporal derivatives for (ρ̃, ũ, θ̃)

in (3.24), to get the estimation of ‖ρ̃y‖2 and ‖(ρ̃τ , ũτ , θ̃τ )‖2, we first take the inner product
of (2.4)2 with ρ̃y over R to get

ǫ1−a(
2θ̄

3ρ̄
ρ̃y, ρ̃y) = ǫ1−a(−ũ1τ − ū1ũ1y −

2

3
θ̃y − J2 −

1

ρ

∫

R3

v21Gydv, ρ̃y). (3.25)

By using (2.4)1, the integration by parts, the Cauchy inequality and Lemma 5.3, one has

−ǫ1−a(ũ1τ , ρ̃y) =− ǫ1−a(ũ1, ρ̃y)τ − ǫ1−a(ũ1y, ρ̃τ )

=− ǫ1−a(ũ1, ρ̃y)τ − ǫ1−a(ũ1y, {−ρ̄ũ1y − ρ̄yũ1 − (ρ̃ũ1)y − ū1ρ̃y − ū1yρ̃})
≤− ǫ1−a(ũ1, ρ̃y)τ + Cηǫ1−a‖ρ̃y‖2 + Cηǫ

1−a‖ũ1y‖2

+ Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C
√

E2(τ)D2(τ),

where in the last inequality, we have dealt with the typical terms as follows

ǫ1−a|(ũ1y, ū1yρ̃)| ≤ Cǫ1−a‖ũ1y‖2 + Cǫ1−a‖ū1y‖2L∞‖ρ̃‖2

≤ Cǫ1−a‖ũ1y‖2 + Cǫ1−aǫ2a(δ + ǫaτ)−2ǫ
6

5
− 4

5
a

≤ Cǫ1−a‖ũ1y‖2 + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 .

The Cauchy inequality implies

ǫ1−a|(ū1ũ1y +
2

3
θ̃y, ρ̃y)| ≤ ηǫ1−a‖ρ̃y‖2 + Cηǫ

1−a‖(ũ1y, θ̃y)‖2.

Notice that the term involving J2 can be controlled by

ǫ1−a|(J2, ρ̃y)| = ǫ1−a|({ũ1ū1y + ũ1ũ1y +
2

3
ρy
ρ̄θ̃ − ρ̃θ̄

ρρ̄
}, ρ̃y)|

≤ ηǫ1−a‖ρ̃y‖2 + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cη

√
E2(τ)D2(τ),
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according to the Cauchy inequality, Lemma 5.3, (3.4) and (3.3). Recall G = G+
√
µf , we

have from the Hölder inequality, Sobolev imbedding theorem, (5.25) and (2.14) that

ǫ1−a
∣∣∣
∫

R

∫

R3

v21
Gy

ρ
ρ̃ydvdy

∣∣∣ ≤ ǫ1−a‖ρ̃y‖(‖〈v〉−
1

2fy‖+ ‖Gy√
µ
‖)

≤ ηǫ1−a‖ρ̃y‖2 + Cηǫ
1−a‖fy‖2σ + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cη

√
E2(τ)D2(τ).

Hence, plugging the above related estimates into (3.25) and using
√
E2(τ) ≤ k

1

12 ǫ
3

5
− 2

5
a, we

have by choosing η > 0 small enough that

ǫ1−a‖ρ̃y‖2 ≤− Cǫ1−a(ũ1, ρ̃y)τ + Cǫ1−a‖(ũ1y, θ̃y)‖2 + Cǫ1−a‖fy‖2σ
+ Cǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.26)

On the other hand, by using the system (2.4) again, we can arrive at

ǫ1−a‖(ρ̃τ , ũτ , θ̃τ )‖2

≤ Cǫ1−a{‖(ρ̃y, ũy, θ̃y)‖2 + ‖fy‖2σ}+ Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.27)

For some suitably large constant C̃0 > 0, a suitable linear combination of (3.27), (3.26)
and (3.24) yields

d

dτ

(
C̃0

∫

R

η(τ, y)dy + C

∫

R

ǫ1−aũ1ρ̃ydy
)
+ c‖

√
ū1y(ρ̃, ũ1, θ̃)‖2 + cǫ1−a

∑

|α|=1

‖∂α(ρ̃, ũ, θ̃)‖2

≤ Cǫ1−a
∑

|α|=1

‖∂αf‖2σ + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.28)

This completes the proof of lower order energy estimates for the macroscopic component

(ρ̃, ũ, θ̃).
Next, we turn to prove lower order energy estimates for the microscopic component f .

Taking the inner product of (2.10) with f over R× R
3 gives

(∂τf + v1∂yf − ǫa−1Lf, f) = ǫa−1(Γ(f,
M − µ√

µ
) + Γ(

M − µ√
µ

, f) + Γ(
G√
µ
,
G√
µ
), f)

+ (
P0(v1

√
µ∂yf)√
µ

− 1√
µ
P1v1M

{ |v − u|2θ̃y
2Rθ2

+
(v − u) · ũy

Rθ

}
− P1(v1∂yG)√

µ
− ∂τG√

µ
, f).

(3.29)

We will estimate each term for (3.29). First of all, we have from the integration by parts
and (5.5) that

(∂τf + v1∂yf − ǫa−1Lf, f) ≥ 1

2

d

dτ
‖f‖2 + σ1ǫ

a−1‖f‖2σ.

By using (5.7) and (5.12), we can obtain

ǫa−1|(Γ(f, M − µ√
µ

), f) + (Γ(
M − µ√

µ
, f), f)| ≤ Cη0ǫ

a−1‖f‖2σ.
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From (5.19), one can see easily that

ǫa−1|(Γ( G√
µ
,
G√
µ
), f)| ≤ Cηǫa−1‖f‖2σ + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).

In view of the properties of P0 in (1.10) as well as (2.14), one can show that

|(P0(v1
√
µ∂yf)√
µ

, f)| ≤ C‖〈v〉− 1

2f‖‖〈v〉 1

2

P0(v1
√
µ∂yf)√
µ

‖

≤ C‖〈v〉− 1

2f‖‖〈v〉− 1

2∂yf‖ ≤ Cηǫa−1‖f‖2σ + Cηǫ
1−a‖fy‖2σ.

By using (5.1), a direct computation shows that

P1v1M
{ |v − u|2θ̃y

2Rθ2
+

(v − u) · ũy
Rθ

}
=

√
Rθ̃y√
θ
Â1(

v − u√
Rθ

)M +

3∑

j=1

ũjyB̂1j(
v − u√
Rθ

)M,

which implies that

|( 1√
µ
P1v1M

{ |v − u|2θ̃y
2Rθ2

+
(v − u) · ũy

Rθ

}
, f)| ≤ Cηǫa−1‖f‖2σ + Cηǫ

1−a‖(ũy, θ̃y)‖2.

In addition, we use (1.10), (5.25), (3.3), (3.4), (2.14), the Sobolev imbedding theorem and
Lemma 5.3 to obtain

|
(P1(v1∂yG)√

µ
+
∂τG√
µ
, f

)
| = |

(v1∂yG√
µ

− P0(v1∂yG)√
µ

+
∂τG√
µ
, f

)
|

≤ Cǫ1−a{‖(ū1yy, θ̄yy)‖+ ‖(ū1y, θ̄y) · (uy, θy)‖+ ‖(ū1yτ , θ̄yτ )‖+ ‖(ū1y, θ̄y) · (uτ , θτ )‖}‖〈v〉−
1

2f‖
≤ Cηǫa−1‖f‖2σ + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).

Plugging the above related estimates into (3.29), we get

1

2

d

dτ
‖f‖2 + cǫa−1‖f‖2σ ≤ Cǫ1−a{‖(ũy, θ̃y)‖2 + ‖fy‖2σ}

+ Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ), (3.30)

by choosing suitably small η and using the smallness of η0.
In summary, for some suitably large constant C̃1 > 0, adding (3.28)× C̃1 to (3.30) gives

d

dτ

{
C̃1

(
C̃0

∫

R

η(τ, y)dy + C

∫

R

ǫ1−aũ1ρ̃ydy
)
+

1

2
‖f‖2

}

+ c‖
√
ū1y(ρ̃, ũ1, θ̃)‖2 + cǫ1−a

∑

|α|=1

‖∂α(ρ̃, ũ, θ̃)‖2 + cǫa−1‖f‖2σ

≤ Cǫ1−a
∑

|α|=1

‖∂αf‖2σ + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.31)
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Integrating (3.31) with respect to τ , we have

‖(ρ̃, ũ, θ̃)‖2 + ‖f‖2 +
∫ τ

0

‖
√
ū1y(ρ̃, ũ1, θ̃)‖2ds

+ ǫ1−a
∑

|α|=1

∫ τ

0

‖∂α(ρ̃, ũ, θ̃)‖2ds+ ǫa−1

∫ τ

0

‖f‖2σds

≤ Cǫ2(1−a)‖ρ̃y‖2 + Cǫ1−a
∑

|α|=1

∫ τ

0

‖∂αf‖2σds+ Ck
1

3 ǫ
6

5
− 4

5
a + Ck

1

12 ǫ
3

5
− 2

5
a

∫ τ

0

D2(s)ds,

(3.32)

by using (3.2) and (3.3) as well as the fact η(τ, y) ≈ ‖(ρ̃, ũ, θ̃)‖2 due to (3.9). This completes
the proof of the lower order energy estimates.

3.2. High order energy estimates. In this subsection, we will derive high order energy

estimates on time-spatial derivatives. We first consider the fluid variables (ρ̃, ũ, θ̃). Differ-

entiating (2.6)1 with respect to y, we then multiply the resulting equation by 2θ̄
3ρ̄2
ρ̃y and

integrate with respect to y to obtain

(ρ̃τy + ρ̄ũ1yy + 2ρ̄yũ1y + ρ̄yyũ1,
2θ̄

3ρ̄2
ρ̃y) = −(J1y,

2θ̄

3ρ̄2
ρ̃y). (3.33)

This together with the integration by parts lead to

1

2

d

dτ
‖( 2θ̄
3ρ̄2

)1/2ρ̃y‖2 + (ũ1yy,
2θ̄

3ρ̄
ρ̃y) = (

ρ̃2y
2
, (

2θ̄

3ρ̄2
)τ )− (2ρ̄yũ1y + ρ̄yyũ1 + J1y,

2θ̄

3ρ̄2
ρ̃y). (3.34)

We are going to estimate the terms on the right-hand side of (3.34). By the Sobolev
imbedding theorem and Lemma 5.3, we get

|( ρ̃
2
y

2
, (

2θ̄

3ρ̄2
)τ )|+|(2ρ̄yũ1y,

2θ̄

3ρ̄2
ρ̃y)| ≤ C‖(ρ̄τ , θ̄τ )‖L∞‖ρ̃y‖2 + C‖ρ̄y‖L∞‖ũ1y‖‖ρ̃y‖

≤ Cǫaδ−1‖ρ̃y‖2 + Cǫaδ−1‖ũ1y‖‖ρ̃y‖
= Cǫaδ−1ǫa−1ǫ1−a‖ρ̃y‖2 + Cǫaδ−1ǫa−1ǫ1−a‖ũ1y‖‖ρ̃y‖
≤ Cǫ2a−1δ−1D2(τ) = Cǫ2a−1kǫ−( 3

5
− 2

5
a)D2(τ) = Ckǫ

12

5
a− 8

5D2(τ), (3.35)

where in the last line, we have used (3.3) and (2.16). It also holds by using the Sobolev
imbedding theorem, Lemma 5.3, (2.16), (3.4) and (3.3) that

|(ρ̄yyũ1,
2θ̄

3ρ̄2
ρ̃y)| ≤ C‖ũ1‖L∞‖ρ̄yy‖‖ρ̃y‖ ≤ C‖ũ1‖

1

2‖ũ1y‖
1

2 (‖ρ̄yy‖2 + ‖ρ̃y‖2)

≤ Ck
1

12 ǫ
3

5
− 2

5
a
{
ǫ3aδ−1(δ + ǫaτ)−2 + ǫa−1D2(τ)

}

≤ Ck
1

12 ǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
a− 2

5D2(τ). (3.36)
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Now, we estimate the term with J1y. Recalling J1 = ρ̃yū1 + ū1yρ̃ + (ρ̃ ũ1)y, performing
calculations similar to (3.35) and (3.36), we can arrive at

|((ρ̃yū1)y + (ū1yρ̃)y,
2θ̄

3ρ̄2
ρ̃y)| ≤ |((2θ̄ū1

3ρ̄2
)y,

ρ̃2y
2
)|+ |(ū1yρ̃y + ū1yyρ̃+ ū1yρ̃y,

2θ̄

3ρ̄2
ρ̃y)|

≤ Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(kǫ
12

5
a− 8

5 + k
1

12 ǫ
3

5
a− 2

5 )D2(τ).

On the other hand, we have from the Sobolev imbedding theorem and (3.4) that

|((ρ̃ũ1)yy,
2θ̄

3ρ̄2
ρ̃y)| = |(ρ̃yyũ1 + ρ̃ũ1yy + 2ρ̃yũ1y,

2θ̄

3ρ̄2
ρ̃y)|

≤ Cǫa−1
√

E2(τ)D2(τ) ≤ Ck
1

12 ǫ
3

5
a− 2

5D2(τ).

With the help of the above two estimates, we get

|(J1y,
2θ̄

3ρ̄2
ρ̃y)| ≤ Cǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(kǫ
12

5
a− 8

5 + k
1

12 ǫ
3

5
a− 2

5 )D2(τ). (3.37)

Hence, substituting the estimates (3.35)-(3.37) into (3.34), we can obtain

1

2

d

dτ
‖( 2θ̄
3ρ̄2

)1/2ρ̃y‖2 + (ũ1yy,
2θ̄

3ρ̄
ρ̃y) ≤ Cǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
a− 2

5D2(τ), (3.38)

due to the fact that

kǫ
12

5
a− 8

5 ≤ k
1

12 ǫ
3

5
a− 2

5 , (3.39)

by the assumption of 2
3
≤ a ≤ 1 as well as the smallness of k.

Similar for deducing (3.33), by differentiating the equation (2.6)2 with respect to y, we
then take the inner product of the resulting equation with ũ1y to obtain

1

2

d

dτ
‖ũ1y‖2 + ((ū1ũ1y)y, ũ1y) + (

2

3
θ̃yy, ũ1y) + ((

2θ̄

3ρ̄
ρ̃y)y, ũ1y)

= −(J2y, ũ1y) + (ǫ1−a[
4

3ρ
(µ(θ)u1y)y]y, ũ1y)− ([

1

ρ
(

∫

R3

v21L
−1
M Θdv)y]y, ũ1y). (3.40)

By integration by parts and using the Sobolev imbedding theorem, Lemma 5.3, (3.3) as
well as (3.39), we get

|((ū1ũ1y)y, ũ1y)| = |(ū1y,
ũ21y
2

)| ≤ C‖ū1y‖L∞‖ũ1y‖2 ≤ Cǫaδ−1ǫa−1ǫ1−a‖ũ1y‖2

≤ Ckǫ
12

5
a− 8

5D2(τ) ≤ Ck
1

12 ǫ
3

5
a− 2

5D2(τ).

We will compute the right-hand side of (3.40) term by term. Performing the similar
calculations as (3.37), we thereby obtain

|(J2y, ũ1y)| = |(∂y{ũ1ū1y + ũ1ũ1y +
2

3
ρy
ρ̄θ̃ − ρ̃θ̄

ρρ̄
}, ũ1y)|

≤ Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
a− 2

5D2(τ).
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For the second term on the right-hand side of (3.40), we first use an integration by parts
about y to obtain

([
4

3ρ
(µ(θ)u1y)y]y, ũ1y) = −(

4

3ρ
(µ(θ)ũ1y)y, ũ1yy)− (

4

3ρ
(µ(θ)ū1y)y, ũ1yy).

In view of the Sobolev imbedding theorem, Lemma 5.3, (3.3) and (3.4), one can show that

−ǫ1−a(
4

3ρ
(µ(θ)ũ1y)y, ũ1yy) = −ǫ1−a(

4

3ρ
µ(θ)ũ1yy, ũ1yy)− ǫ1−a(

4

3ρ
µ′(θ)θyũ1y, ũ1yy)

≤ −c5ǫ1−a‖ũ1yy‖2 + Cǫ1−a‖θy‖L∞‖ũ1y‖‖ũ1yy‖
≤ −c5ǫ1−a‖ũ1yy‖2 + Ck

1

12 ǫ
3

5
a− 2

5D2(τ),

for some constant c5 > 0. Similarly, it holds that

ǫ1−a|( 4
3ρ

(µ(θ)ū1y)y, ũ1yy)| ≤ Cηǫ1−a‖ũ1yy‖2 + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
a− 2

5D2(τ).

Hence, by taking η > 0 small enough, there exists a constant c6 > 0 such that

ǫ1−a([
4

3ρ
(µ(θ)u1y)y]y, ũ1y) ≤ −c6ǫ1−a‖ũ1yy‖2 + Cǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
a− 2

5D2(τ).

(3.41)

The estimations for the last term of (3.40) is more complicated. The integration by parts
and (3.15) give that

− ([
1

ρ
(

∫

R3

v21L
−1
M Θdv)y]y, ũ1y) = (

1

ρ
[Rθ

∫

R3

B11(
v − u√
Rθ

)
Θ

M
dv]y, ũ1yy)

= (
1

ρ

∫

R3

[RθB11(
v − u√
Rθ

)
1

M
]yΘdv, ũ1yy) + (

1

ρ

∫

R3

RθB11(
v − u√
Rθ

)
∂yΘ

M
dv, ũ1yy). (3.42)

Notice that the first term on the right hand side of (3.42) is the higher nonlinear term
compared with (3.16) and is easier to estimate. Therefore, we can follow the similar
method as used (3.17)-(3.22) to deal with this term, then we can arrive at

|(1
ρ

∫

R3

[RθB11(
v − u√
Rθ

)
1

M
]yΘdv, ũ1yy)|

≤ ηǫ1−a‖ũ1yy‖2 + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).

The second term on the right hand side of (3.42) is similar to (3.16). We thus have from
the similar arguments as (3.16) that

|(1
ρ

∫

R3

RθB11(
v − u√
Rθ

)
∂yΘ

M
dv, ũ1yy)| ≤ ηǫ1−a‖ũ1yy‖2 + Cηǫ

1−a
∑

|α|=2

‖∂αf‖2σ

+ Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).
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It follows from the above three estimates that

−([
1

ρ
(

∫

R3

v21L
−1
M Θdv)y]y, ũ1y) ≤ Cηǫ1−a‖ũ1yy‖2 + Cηǫ

1−a
∑

|α|=2

‖∂αf‖2σ

+ Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.43)

Substituting the above related estimates into (3.40) and taking η > 0 small enough, we get

1

2

d

dτ
‖ũ1y‖2 + (

2

3
θ̃yy, ũ1y) + ((

2θ̄

3ρ̄
ρ̃y)y, ũ1y) + cǫ1−a‖ũ1yy‖2

≤ Cǫ1−a
∑

|α|=2

‖∂αf‖2σ + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(k
1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )D2(τ). (3.44)

Similar to (3.40), by differentiating (2.6)3 with respect to y and taking the inner product
of the resulting equation with ũiy (i = 2, 3), the similar arguments as (3.44) imply that

1

2

d

dτ
‖ũiy‖2 + cǫ1−a‖ũiyy‖2 ≤ Cǫ1−a

∑

|α|=2

‖∂αf‖2σ + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3

+ C(k
1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )D2(τ). (3.45)

Finally, we still deal with (2.6)4. Differentiating (2.6)4 with respect to y, we then take

the inner product of the resulting equation with 1
θ̄
θ̃y to get

(θ̃τy,
1

θ̄
θ̃y) + (

2

3
θ̄ũ1yy,

1

θ̄
θ̃y) + (

2

3
θ̄yũ1y,

1

θ̄
θ̃y) + ((ū1θ̃y)y,

1

θ̄
θ̃y)

= −(J3y,
1

θ̄
θ̃y) + ǫ1−a([

1

ρ
(κ(θ)θy)y]y,

1

θ̄
θ̃y) + ǫ1−a([

4

3ρ
µ(θ)u21y]y + [

1

ρ

3∑

i=2

µ(θ)u2iy]y,
1

θ̄
θ̃y)

+ ([
1

ρ
u(

∫

R3

v1vL
−1
M Θdv)y]y,

1

θ̄
θ̃y)− ([

1

ρ
(

∫

R3

v1
|v|2
2
L−1
M Θdv)y]y,

1

θ̄
θ̃y). (3.46)

We will estimate (3.46) term by term. First of all, one has

|(2
3
θ̄yũ1y,

1

θ̄
θ̃y)| ≤ C‖θ̄y‖L∞‖ũ1y‖‖θ̃y‖ ≤ Ck

1

12 ǫ
3

5
a− 2

5D2(τ),

according to the Sobolev imbedding theorem, Lemma 5.3 and (3.3). Similarly, it holds
that

|((ū1θ̃y)y,
1

θ̄
θ̃y)| ≤ |(ū1yθ̃y,

1

θ̄
θ̃y)|+ |(ū1θ̃yy,

1

θ̄
θ̃y)|

≤ |(ū1yθ̃y,
1

θ̄
θ̃y)|+ |(( ū1

θ̄
)y,

1

2
θ̃2y)| ≤ Ck

1

12 ǫ
3

5
a− 2

5D2(τ).
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Recalling J3 defined by (2.5) and following the similar method used in (3.37), we have from
(3.39) that

|(J3y,
1

θ̄
θ̃y)| = |({2

3
(θ̃ū1y + θ̃ũ1y) + (θ̃yũ1 + θ̄yũ1)}y,

1

θ̄
θ̃y)|

≤ Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
a− 2

5D2(τ).

Similar arguments as (3.41) imply that

ǫ1−a([
1

ρ
(κ(θ)θy)y]y,

1

θ̄
∂y θ̃) + ǫ1−a|([ 4

3ρ
µ(θ)u21y]y + [

1

ρ

3∑

i=2

µ(θ)u2iy]y,
1

θ̄
θ̃y)|

≤ −cǫ1−a‖θ̃yy‖2 + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
a− 2

5D2(τ).

On the other hand, we use the integration by parts, (3.14) and (3.15) to obtain

([
1

ρ
u(

∫

R3

v1vL
−1
M Θdv)y]y,

1

θ̄
θ̃y)− ([

1

ρ
(

∫

R3

v1
|v|2
2
L−1
M Θdv)y]y,

1

θ̄
θ̃y)

= ([

∫

R3

(v1
|v|2
2

− v1uv)L
−1
M Θdv]y,

1

ρ
(
1

θ̄
θ̃y)y) + (uy

∫

R3

v1vL
−1
M Θdv,

1

ρ
(
1

θ̄
θ̃y)y)

= ([(Rθ)
3

2

∫

R3

A1(
v − u√
Rθ

)
Θ

M
dv]y,

1

ρ
(
1

θ̄
θ̃y)y) +

3∑

i=1

(uiyRθ

∫

R3

B1i(
v − u√
Rθ

)
Θ

M
dv,

1

ρ
(
1

θ̄
θ̃y)y)

:= H5.

Notice that the above terms are similar to (3.42) and then the similar arguments as (3.43)
imply that

H5 ≤ ηǫ1−a‖θ̃yy‖2 + Cηǫ
1−a

∑

|α|=2

‖∂αf‖2σ + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).

Substituting the above related estimates into (3.46) and choosing η > 0 small enough, we
can arrive at

1

2

d

dτ
‖(1
θ̄
)1/2θ̃y‖2 + (

2

3
ũ1yy, θ̃y) + cǫ1−a‖θ̃yy‖2

≤ Cǫ1−a
∑

|α|=2

‖∂αf‖2σ + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(k
1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )D2(τ). (3.47)

As a consequence, the sum of (3.38), (3.44), (3.45) and (3.47) give

d

dτ

{
‖( 2θ̄
3ρ̄2

)1/2ρ̃y‖2 + ‖ũy‖2 + ‖(1
θ̄
)1/2θ̃y‖2

}
+ cǫ1−a‖(ũyy, θ̃yy)‖2

≤ Cǫ1−a
∑

|α|=2

‖∂αf‖2σ + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(k
1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )D2(τ). (3.48)

Differentiating the equations (2.6) with respect to τ and multiplying the resulting equations

by 2θ̄
3ρ̄2
ρ̃τ , ũ1τ , ũiτ with i = 2, 3 and 1

θ̄
θ̃τ respectively, then adding them together and
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integrating with respect to y over R, we have by the similar arguments as (3.48) such that

d

dτ

{
‖( 2θ̄
3ρ̄2

)1/2ρ̃τ‖2 + ‖ũτ‖2 + ‖(1
θ̄
)1/2θ̃τ‖2

}
+ cǫ1−a‖(ũτy, θ̃τy)‖2

≤ Cǫ1−a
∑

|α|=2

‖∂αf‖2σ + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(k
1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )D2(τ). (3.49)

The dissipative terms ‖ρ̃yy‖2 and ‖ρ̃τy‖2 are not included in the dissipation of (3.48)
and (3.49). For this, we use the system (2.4) again. Differentiating the first and second
equation of (2.4) with respect to y yields

{
ρ̃τy + (ρ̄ũ1y)y + (ρ̄yũ1)y = −J1y ,
ũ1τy + (ū1ũ1y)y +

2
3
θ̃yy + ( 2θ̄

3ρ̄
ρ̃y)y = −(1

ρ

∫
v21Gydv)y − J2y.

(3.50)

Taking the inner product of (3.50)2 with ρ̃yy and performing the similar calculations as
(3.25) yield that

ǫ1−a‖ρ̃yy‖2 ≤− Cǫ1−a(ũ1y, ρ̃yy)τ + Cǫ1−a‖(ũyy, θ̃yy)‖2 + Cǫ1−a‖fyy‖2σ
+ Cǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.51)

Similarly, the following estimate holds

ǫ1−a‖ρ̃τy‖2 ≤ Cǫ1−a‖(ρ̃yy, ũyy)‖2 + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.52)

It remains to estimate the dissipative term ‖(ρ̃ττ , ũττ , θ̃ττ )‖2. Differentiating the equations
(2.4) with respect to τ and multiplying the resulting equations by ρ̃ττ , ũ1ττ , ũiττ with

i = 2, 3 and θ̃ττ respectively, then adding them together and integrating with respect to y
over R, one can arrive at

ǫ1−a‖(ρ̃ττ , ũττ , θ̃ττ )‖2 ≤ Cǫ1−a‖(ρ̃τy, ũτy, θ̃τy)‖2 + Cǫ1−a
∑

|α|=2

‖∂αf‖2σ

+ Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(k
1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )D2(τ). (3.53)

In summary, for some suitably large constants C1 ≫ C1 > 0, we have from a suitable
linear combination of (3.48), (3.49), (3.51), (3.52) and (3.53) that

d

dτ

∑

|α|=1

{
C1(‖(

2θ̄

3ρ̄2
)1/2∂αρ̃‖2 + ‖∂αũ‖2 + ‖(1

θ̄
)1/2∂αθ̃‖2) + C1ǫ

1−a(ũ1y, ρ̃yy)
}

+ cǫ1−a
∑

|α|=2

‖∂α(ρ̃, ũ, θ̃)‖2

≤ Cǫ1−a
∑

|α|=2

‖∂αf‖2σ + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(k
1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )D2(τ). (3.54)
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Integrating (3.54) with respect to τ and using (3.2) with (3.3), we can obtain

∑

|α|=1

‖∂α(ρ̃, ũ, θ̃)‖2 + ǫ1−a
∑

|α|=2

∫ τ

0

‖∂α(ρ̃, ũ, θ̃)‖2ds

≤ Cǫ2(1−a)‖ρ̃yy‖2 + Cǫ1−a
∑

|α|=2

∫ τ

0

‖∂αf‖2σds+ Ck
1

3 ǫ
6

5
− 4

5
a

+ C(k
1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )

∫ τ

0

D2(s)ds. (3.55)

Next, we will derive the derivative estimates for the microscopic component f . Taking
the derivative ∂α of (2.10) with |α| = 1 and taking the inner product with ∂αf , we can
obtain

(∂τ∂
αf + v1∂y∂

αf − ǫa−1L∂αf, ∂αf)− ǫa−1(∂αΓ(f,
M − µ√

µ
) + ∂αΓ(

M − µ√
µ

, f), ∂αf)

= ǫa−1(∂αΓ(
G√
µ
,
G√
µ
), ∂αf) + (

∂αP0(v1
√
µ∂yf)√

µ
, ∂αf)− (

∂αP1(v1∂yG)√
µ

, ∂αf)

− (
1√
µ
∂αP1v1M

{ |v − u|2θ̃y
2Rθ2

+
(v − u) · ũy

Rθ

}
, ∂αf)− (

∂τ∂
αG√
µ

, ∂αf). (3.56)

We will compute each term for (3.56). First of all, we have from the integration by parts
and (5.5) that

(∂τ∂
αf + v1∂y∂

αf − ǫa−1L∂αf, ∂αf) ≥ 1

2

d

dτ
‖∂αf‖2 + σ1ǫ

a−1‖∂αf‖2σ.

From (5.10) and (5.19), one can see that

ǫa−1|(∂αΓ(f, M − µ√
µ

) + ∂αΓ(
M − µ√

µ
, f), ∂αf)|

≤ Cηǫa−1‖∂αf‖2σ + Cη(η0 + k
1

12 ǫ
3

5
− 2

5
a)D2(τ),

and

ǫa−1|(∂αΓ( G√
µ
,
G√
µ
), ∂αf)| ≤ Cηǫa−1‖∂αf‖2σ + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).

By (1.10), (1.9), (3.5), (2.14), the Sobolev imbedding theorem, Lemma 5.3, (3.3) and (3.4),
one has

|(∂
αP0(v1

√
µ∂yf)√

µ
, ∂αf)| ≤ ‖

4∑

i=0

〈v〉 1

2µ− 1

2∂α(〈v1
√
µ∂yf,

χi

M
〉χi)‖‖〈v〉−

1

2∂αf‖

≤ ηǫa−1‖∂αf‖2σ + Cηǫ
1−a‖∂α∂yf‖2σ + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ),
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and

|( 1√
µ
∂αP1v1M

{ |v − u|2θ̃y
2Rθ2

+
(v − u) · ũy

Rθ

}
, ∂αf)|

≤ C‖〈v〉 1

2µ− 1

2∂αP1v1M
{ |v − u|2θ̃y

2Rθ2
+

(v − u) · ũy
Rθ

}
‖‖〈v〉− 1

2∂αf‖

≤ ηǫa−1‖∂αf‖2σ + Cηǫ
1−a‖(∂αũy, ∂αθ̃y)‖2 + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).

Here we have used the fact that |〈v〉mµ− 1

2M |2σ ≤ C for any m ≥ 0 by (3.5). The terms
involving G are dominated by

|(∂
αP1(v1∂yG)√

µ
, ∂αf)|+ |(∂τ∂

αG√
µ

, ∂αf)|

≤ Cηǫa−1‖∂αf‖2σ + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ),

according to (5.25), (1.10), the Sobolev imbedding theorem, Lemma 5.3, (3.3) and (3.4).
Hence, by taking η > 0 small enough, we deduce from (3.56) and the above related esti-
mates that

∑

|α|=1

1

2

d

dτ
‖∂αf‖2 + c

∑

|α|=1

ǫa−1‖∂αf‖2σ

≤ Cǫ1−a
∑

|α|=1

{
‖∂α(ρ̃y, ũy, θ̃y)‖2 + ‖∂αfy‖2σ

}

+ Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(η0 + k
1

12 ǫ
3

5
− 2

5
a)D2(τ). (3.57)

Integrating (3.57) with respect to τ and using (3.2) with (3.3), then by a suitable linear
combination of the resulting equation and (3.55), we get

∑

|α|=1

(‖∂α(ρ̃, ũ, θ̃)‖2 + ‖∂αf‖2) + ǫ1−a
∑

|α|=2

∫ τ

0

‖∂α(ρ̃, ũ, θ̃)‖2ds+ ǫa−1
∑

|α|=1

∫ τ

0

‖∂αf‖2σds

≤ Cǫ2(1−a)‖ρ̃yy‖2 + Cǫ1−a
∑

|α|=2

∫ τ

0

‖∂αf‖2σds

+ Ck
1

3 ǫ
6

5
− 4

5
a + C(η0 + k

1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )

∫ τ

0

D2(s)ds. (3.58)

Finally, we derive the higher order derivative estimates of the microscopic component f .
In terms of (2.7), (2.8) and (2.11), one has

∂τ (
F√
µ
) + v1∂y(

F√
µ
)− ǫa−1Lf = ǫa−1Γ(f,

M − µ√
µ

) + ǫa−1Γ(
M − µ√

µ
, f) + ǫa−1Γ(

G√
µ
,
G√
µ
)

+
1√
µ
P1v1M

{ |v − u|2θy
2Rθ2

+
(v − u) · ūy

Rθ

}
. (3.59)
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Taking the derivative ∂α of (3.59) with |α| = 2 and then taking the inner product of the
resulting equation with ∂αF√

µ
, we obtain

1

2

d

dτ
‖∂

αF√
µ
‖2 − ǫa−1(L∂αf, ∂

αF√
µ
) = ǫa−1(∂αΓ(f,

M − µ√
µ

) + ∂αΓ(
M − µ√

µ
, f),

∂αF√
µ
)

+ ǫa−1(∂αΓ(
G√
µ
,
G√
µ
),
∂αF√
µ
) + (

1√
µ
∂αP1v1M

{ |v − u|2θy
2Rθ2

+
(v − u) · ūy

Rθ

}
,
∂αF√
µ
). (3.60)

Recall F =M +G+
√
µf , we first have from (5.5) that

−ǫa−1(L∂αf, ∂αf) ≥ σ1ǫ
a−1‖∂αf‖2σ.

Due to Lf = Γ(
√
µ, f) + Γ(f,

√
µ), we get from (5.7) that

ǫa−1|(L∂αf, ∂
αG√
µ
)| ≤ Cǫa−1‖∂αf‖σ‖

∂αG√
µ
‖σ

≤ ηǫa−1‖∂αf‖2σ + Cη

{
‖∂α(ū1y, θ̄y)‖2 + · · ·+ ‖(ū1y, θ̄y)∂α(u, θ)‖2

}

≤ ηǫa−1‖∂αf‖2σ + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ),

according to (5.25), the Sobolev imbedding theorem, Lemma 5.3 and (3.3). For ᾱ ≥ 2, we
can see that

∂ᾱM =M
(∂ᾱρ
ρ

− 3∂ᾱθ

2θ
+

(v − u)2∂ᾱθ

2Rθ2
+

3∑

i=1

∂ᾱui(vi − ui)

Rθ

)
+ · · ·

=
(
µ+ (M − µ)

)(∂ᾱρ
ρ

− 3∂ᾱθ

2θ
+

(v − u)2∂ᾱθ

2Rθ2
+

3∑

i=1

∂ᾱui(vi − ui)

Rθ

)
+ · · ·

= J ᾱ
1 + J ᾱ

2 + J ᾱ
3 . (3.61)

Here the terms J1 and J2 are the high order derivatives of (ρ, u, θ) with µ and M − µ and

J3 is the low order derivatives with M . Since
Jα
1√
µ
∈ kerL, it follows that (Lf, Jα

1√
µ
) = 0. For

the terms
Jα
2√
µ
and

Jα
3√
µ
, we use (5.7), Lemma 5.3 and (3.3) to get

ǫa−1|(L∂αf, J
α
2√
µ
)| ≤ Cǫa−1‖∂αf‖σ‖

Jα
2√
µ
‖σ

≤ Cη0ǫ
a−1(‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2) + Cǫa−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 ,

and

ǫa−1|(L∂αf, J
α
3√
µ
)| ≤ Cǫa−1‖∂αf‖σ‖

Jα
3√
µ
‖σ

≤ ηǫa−1‖∂αf‖2σ + Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ),
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where we have used |〈v〉mµ− 1

2M |2σ ≤ C for any m ≥ 0 by (3.5). Owing to these, we thereby
obtain

ǫa−1|(L∂αf, ∂
αM√
µ

)| ≤ C(η + η0)ǫ
a−1‖∂αf‖2σ + Cη0ǫ

a−1‖∂α(ρ̃, ũ, θ̃)‖2

+ Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ).

As a consequence, the second term on the left-hand side of (3.60) is controlled by

ǫa−1(L∂αf, ∂
αF√
µ
) ≤− σ1ǫ

a−1‖∂αf‖2σ + C(η + η0)ǫ
a−1‖∂αf‖2σ + Cη0ǫ

a−1‖∂α(ρ̃, ũ, θ̃)‖2

+ Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ).

For ᾱ = 2, recalling F =M +G+
√
µf , we get from (5.25), (3.61), the Sobolev imbedding

theorem, Lemma 5.3, (3.3) and (3.4) that

‖∂
ᾱF√
µ
‖2σ ≤ ‖∂

ᾱ√µf
√
µ

‖2σ + ‖∂
ᾱG√
µ
‖2σ + ‖∂

ᾱM√
µ

‖2σ

≤ C(‖∂ᾱf‖2σ + ‖∂ᾱ(ρ̃, ũ, θ̃)‖2) + Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Ck
1

12 ǫ
3

5
− 2

5
aD2(τ). (3.62)

For the first term on the right-hand side of (3.60), we directly apply (5.7) to get

ǫa−1|(∂αΓ(M − µ√
µ

, f),
∂αF√
µ
)| ≤ Cǫa−1

∑

|α1|≤|α|

∫

R

|∂α1(
M − µ√

µ
)|2|∂α−α1f |σ|

∂αF√
µ
|σdy. (3.63)

For |α1| = 0 in (3.63), we use (5.12) and (3.62) to obtain

ǫa−1

∫

R

|∂α1(
M − µ√

µ
)|2|∂α−α1f |σ|

∂αF√
µ
|σdy ≤ Cη0ǫ

a−1‖∂αf‖σ‖
∂αF√
µ
‖σ

≤ Cη0ǫ
a−1(‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2)

+ Cη0ǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cη0ǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ). (3.64)

For 1 ≤ |α1| ≤ |α| in (3.63), it holds that

ǫa−1

∫

R

|∂α1(
M − µ√

µ
)|2|∂α−α1f |σ|

∂αF√
µ
|σdy

≤ Cǫa−1
{
‖∂α1(ρ, u, θ)‖+

∑

|α′|=1

‖∂α′

(ρ, u, θ)‖|α1|} sup
y∈R

|∂α−α1f |σ‖
∂αF√
µ
‖σ

≤ ηǫa−1(‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2) + Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ).

(3.65)
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The term ǫa−1(∂αΓ(f, M−µ√
µ
), ∂

αF√
µ
) can be treated in the similar way as in (3.63). We thus

get from (3.64) and (3.65) that

ǫa−1|(∂αΓ(f, M − µ√
µ

) + ∂αΓ(
M − µ√

µ
, f),

∂αF√
µ
)|

≤ C(η + η0)ǫ
a−1(‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2)

+ Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ).

Due to G = G+
√
µf , one has

Γ(
G√
µ
,
G√
µ
) = Γ(

G√
µ
,
G√
µ
) + Γ(

G√
µ
, f) + Γ(f,

G√
µ
) + Γ(f, f).

For the second term on the right-hand side of (3.60), we apply (3.62) and perform the
similar method as (5.26) and (5.27) to obtain

ǫa−1|(∂αΓ( G√
µ
,
G√
µ
),
∂αF√
µ
)| ≤ ηǫa−1(‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2)

+ Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ). (3.66)

Following the similar method used as (5.28), we have by using (3.62) that

ǫa−1|(∂αΓ( G√
µ
, f),

∂αF√
µ
)|+ ǫa−1|(∂αΓ(f, G√

µ
),
∂αF√
µ
)|

≤ Cηǫa−1(‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2) + Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ).

With (5.7) and the Sobolev imbedding theorem in hand, we get from (3.3), (3.4) and (3.62)
as well as the Cauchy-Schwarz inequality that

ǫa−1|(∂αΓ(f, f), ∂
αF√
µ
)| ≤ Cηǫa−1(‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2)

+ Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ). (3.67)

From (3.66) to (3.67), we can conclude that

ǫa−1(∂αΓ(
G√
µ
,
G√
µ
),
∂αF√
µ
) ≤ Cηǫa−1(‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2)

+ Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ).
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For the last term on the right-hand side of (3.60), one has from (2.14) and (3.62) that

|( 1√
µ
∂αP1v1M

{ |v − u|2θy
2Rθ2

+
(v − u) · ūy

Rθ

}
,
∂αF√
µ
)|

≤ C‖〈v〉 1

2

1√
µ
∂αP1v1M

{ |v − u|2θy
2Rθ2

+
(v − u) · ūy

Rθ

}
‖‖〈v〉− 1

2

∂αF√
µ
‖

≤ Cηǫa−1(‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2) + Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ).

Hence, it holds by those above estimates and for any η > 0 and η0 > 0 small enough that

1

2

d

dτ

∑

|α|=2

‖∂
αF√
µ
‖2 + cǫa−1

∑

|α|=2

‖∂αf‖2σ

≤ C(η + η0)ǫ
a−1

∑

|α|=2

‖∂α(ρ̃, ũ, θ̃)‖2 + Cηǫ
a−1ǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηǫ
a−1k

1

12 ǫ
3

5
− 2

5
aD2(τ).

(3.68)

Integrating (3.68) with respect to τ and then multiplying the resulting equation by ǫ2(1−a)

with a ∈ [2
3
, 1], we can obtain

ǫ2(1−a)
∑

|α|=2

(‖∂α(ρ̃, ũ, θ̃)‖2 + ‖∂αf‖2) + ǫ1−a
∑

|α|=2

∫ t

0

‖∂αf‖2σds

≤ C(η + η0)ǫ
1−a

∑

|α|=2

∫ τ

0

‖∂α(ρ̃, ũ, θ̃)‖2ds+ Cηk
1

3 ǫ
6

5
− 4

5
a + Cηk

1

12 ǫ
3

5
− 2

5
a

∫ τ

0

D2(τ)ds. (3.69)

Here we used F = M + G +
√
µf , (3.2), (3.61), (3.3), (3.4) and the Sobolev imbedding

theorem to get

ǫ2(1−a)
∑

|α|=2

‖∂
αF (0, y, v)√

µ
‖2 ≤ Ck

1

3 ǫ
6

5
− 4

5
a

and

ǫ2(1−a)
∑

|α|=2

‖∂
αF (τ, y, v)√

µ
‖2 ≥ cǫ2(1−a)(‖∂α(ρ̃, ũ, θ̃)‖2 + ‖∂αf‖2)− Ck

1

3 ǫ
6

5
− 4

5
a.

By a suitable linear combination of (3.58) and (3.69), we have by choosing η and η0 small
enough that

∑

|α|=1

(‖∂α(ρ̃, ũ, θ̃)‖2 + ‖∂αf‖2) + ǫ2(1−a)
∑

|α|=2

(‖∂α(ρ̃, ũ, θ̃)‖2 + ‖∂αf‖2)

+ ǫ1−a
∑

|α|=2

∫ τ

0

(‖∂α(ρ̃, ũ, θ̃)‖2 + ‖∂αf‖2σ)ds+ ǫa−1
∑

|α|=1

∫ τ

0

‖∂αf‖2σds

≤ Ck
1

3 ǫ
6

5
− 4

5
a + C(η0 + k

1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )

∫ τ

0

D2(s)ds. (3.70)
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This completes the proof of the high order energy estimates.

3.3. Weighted energy estimates. In this subsection, we will derive the weighted mixed
derivative estimates of the function f in order to close a priori estimates. To this end, by
taking the derivative ∂αβ to (2.10) with |α|+ |β| ≤ 2 and |β| ≥ 1, for e1 = (1, 0, 0), one has

∂τ∂
α
β f + v1∂y∂

α
β f + Cβ−e1

β ∂y∂
α
β−e1

f − ǫa−1∂αβLf

= ǫa−1∂αβΓ(f,
M − µ√

µ
) + ǫa−1∂αβΓ(

M − µ√
µ

, f) + ǫa−1∂αβΓ(
G√
µ
,
G√
µ
) + ∂αβ

{P0(v1
√
µ∂yf)√
µ

}

− ∂αβ
{ 1√

µ
P1v1M(

|v − u|2θ̃y
2Rθ2

+
(v − u) · ũy

Rθ
)
}
− ∂αβ

{P1(v1∂yG)√
µ

}
− ∂αβ

{∂τG√
µ

}
. (3.71)

We take the inner product of (3.71) with w2|β|∂αβ f over Ry × R
3
v and estimate each term.

First of all, by integration by parts, we obtain

(∂τ∂
α
β f + v1∂y∂

α
β f, w

2|β|∂αβ f) =
1

2

d

dτ
‖∂αβ f‖22,|β|.

From the Hölder inequality and Cauchy inequality, it follows that

|(∂y∂αβ−e1f, w
2|β|∂αβ f)| ≤ C‖w 1

2
+(|β|−1)∂y∂

α
β−e1f‖‖w|β|+ 1

2∂αβ f‖
= C‖w 1

2w|β−e1|∂y∂
α
β−e1

f‖‖w 1

2w|β|∂αβ f‖
≤ ηǫa−1‖∂αβ f‖2σ,|β| + Cηǫ

1−a‖∂y∂αβ−e1f‖2σ,|β−e1|.

Here we have used the fact that |β − e1| = |β| − 1 and ‖w 1

2w|β|∂αβ f‖ ≤ C‖∂αβ f‖σ,|β| for
w = 〈v〉γ+2 by (2.14). Due to (5.6), we can see that

−ǫa−1(∂αβLf, w2|β|∂αβ f) ≥ ǫa−1‖∂αβ f‖2σ,|β| − ηǫa−1
∑

|β1|≤|β|
‖∂αβ1

f‖2σ,|β1| − Cηǫ
a−1‖∂αf‖2σ.

With (5.9) and (5.18) in hand, one can show that

ǫa−1|(∂αβΓ(
M − µ√

µ
, f), w2|β|∂αβ f)|+ ǫa−1|(∂αβΓ(f,

M − µ√
µ

), w2|β|∂αβ f)|

≤ Cηǫa−1‖∂αβ f‖2σ,|β| + Cη(η0 + k
1

12 ǫ
3

5
− 2

5
a)D2(τ),

and

ǫa−1|(∂αβΓ(
G√
µ
,
G√
µ
), w2|β|∂αβ f)|

≤ Cηǫa−1‖∂αβ f‖2σ,|β| + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).
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By using (1.10), (3.5), (2.14), the Sobolev imbedding theorem, Lemma 5.3, (3.3) and (3.4),
we can obtain

∣∣(∂αβ (
P0(v1

√
µ∂yf)√
µ

), w2|β|∂αβ f)
∣∣ =

∣∣
4∑

j=0

(〈v〉 1

2w|β|∂αβ (〈v1
√
µ∂yf,

χj

M
〉 χj√

µ
), 〈v〉− 1

2w|β|∂αβ f)
∣∣

≤ ηǫa−1‖∂αβ f‖2σ,|β| + Cηǫ
1−a‖∂α∂yf‖2σ + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ),

and

∣∣(∂αβ (
1√
µ
P1v1M

{ |v − u|2θ̃y
2Rθ2

+
(v − u) · ũy

Rθ

}
), w2|β|∂αβ f)

∣∣

≤ C‖〈v〉 1

2w|β|∂αβ
{ 1√

µ
P1v1M(

|v − u|2θ̃y
2Rθ2

+
(v − u) · ũy

Rθ
)
}
‖‖〈v〉− 1

2w|β|∂αβ f‖

≤ ηǫa−1‖∂αβ f‖2σ,|β| + Cηǫ
1−a‖∂α(ũy, θ̃y)‖2 + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ),

where we have used the fact that |〈v〉mµ− 1

2∂βM |2 ≤ C for any m ≥ 0 and β ≥ 0 by (3.5).
Notice that the last two terms of (3.71) can be dominated by

∣∣(∂αβ (
P1(v1∂yG)√

µ
)− ∂αβ (

∂τG√
µ
), w2|β|∂αβ f

)∣∣

≤ C
(
‖〈v〉 1

2w|β|∂αβ (
P1(v1∂yG)√

µ
)‖+ ‖〈v〉 1

2w|β|∂αβ (
∂τG√
µ
)‖
)
‖〈v〉− 1

2w|β|∂αβ f‖

≤ ηǫa−1‖∂αβ f‖2σ,|β| + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ),

according to (1.10), (5.25), (2.14), Lemma 5.3 and the elementary inequalities. Hence, for
|α|+ |β| ≤ 2 and |β| ≥ 1, we have by the above related estimates and η > 0 small enough
that

1

2

d

dτ
‖∂αβ f‖22,|β| + cǫa−1‖∂αβ f‖2σ,|β|

≤ Cǫa−1‖∂αf‖2σ + Cǫ1−a
{
‖∂α∂yf‖2σ + ‖∂α(ũy, θ̃y)‖2

}

+ Cǫ1−a‖∂y∂αβ−e1f‖2σ,|β−e1| + Cǫa−1
∑

|β1|<|β|
‖∂αβ1

f‖2σ,|β1|

+ Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(η0 + k
1

12 ǫ
3

5
− 2

5
a)D2(τ). (3.72)

Notice that the coefficients on the third line of (3.72) is large and |β1| < |β|. We will
use the induction in |β| to control this term. By the suitable linear combinations, we can
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obtain

1∑

|α|=0

C|α|

2−|α|∑

j=1

Cj

∑

|β|=j

d

dτ
‖∂αβ f‖22,|β| + cǫa−1

∑

|α|+|β|≤2,|β|≥1

‖∂αβ f‖2σ,|β|

≤ Cǫa−1
∑

|α|≤1

‖∂αf‖2σ + Cǫ1−a
∑

1≤|α|≤2

{
‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2

}

+ Cǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + C(η0 + k
1

12 ǫ
3

5
− 2

5
a)D2(τ). (3.73)

Here we have required that

ǫa−1 ≥ ǫ1−a, that is a ≤ 1. (3.74)

Integrating (3.73) with respect to τ and using (3.2) with (3.3) gives

∑

|α|+|β|≤2,|β|≥1

{
‖∂αβ f‖22,|β| + ǫa−1

∫ τ

0

‖∂αβ f‖2σ,|β|ds
}

≤ Cǫa−1
∑

|α|≤1

∫ τ

0

‖∂αf‖2σds+ Cǫ1−a
∑

1≤|α|≤2

∫ τ

0

{
‖∂αf‖2σ + ‖∂α(ρ̃, ũ, θ̃)‖2

}
ds

+ Ck
1

3 ǫ
6

5
− 4

5
a + C(η0 + k

1

12 ǫ
3

5
− 2

5
a)

∫ τ

0

D2(s)ds. (3.75)

This completes the proof of the weighted derivative estimates of the function f .

4. Stability and convergence rate

Based on the energy estimates derived in Section 3, in this section we are now in a
position to complete the

Proof of Theorem 1.1: By a suitable linear combination of (3.32), (3.70) and (3.75), we
can obtain

E2(τ) +
∫ τ

0

‖
√
ū1y(ρ̃, ũ1, θ̃)‖2ds+

∫ τ

0

D2(s)ds

≤ Ck
1

3 ǫ
6

5
− 4

5
a + C(η0 + k

1

12 ǫ
3

5
− 2

5
a + k

1

12 ǫ
3

5
a− 2

5 )

∫ τ

0

D2(s)ds. (4.1)

Here E2(τ) and D2(τ) are defined by (2.15) and (2.16), respectively. At the moment, one
has to require that the second term on the right hand side of (4.1) should be absorbed by
the left hand side. Thus, this leads us to impose

3

5
− 2

5
a ≥ 0 and

3

5
a− 2

5
≥ 0, that is

2

3
≤ a ≤ 3

2
. (4.2)

Due to (3.74) and (4.2), we need to require that 2
3
≤ a ≤ 1 for the choice of the parameter

a in the scaling transformation (2.1) which we start with. Hence, by using the smallness
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of k > 0, η0 > 0 and ǫ > 0, we have from (4.1) that

E2(τ) +
∫ τ

0

‖
√
ū1y(ρ̃, ũ1, θ̃)‖2ds+

1

2

∫ τ

0

D2(s)ds ≤ Ck
1

3 ǫ
6

5
− 4

5
a <

1

2
k

1

6 ǫ
6

5
− 4

5
a. (4.3)

Then (4.3) implies that for a ∈ [2
3
, 1] and τ1 ∈ (0,+∞), one has

sup
0≤τ≤τ1

E2(τ) <
1

2
k

1

6 ǫ
6

5
− 4

5
a, (4.4)

which is strictly stronger than (3.4). Thus the a priori assumption (3.4) can be closed.
Therefore, by the uniform a priori estimates and the local existence of the solution, the
standard continuity argument gives the existence and uniqueness of global solutions to the
Landau equation (1.1) with initial data (3.1). Moreover, the desired estimate (1.27) holds
true.

We are going to justify the convergence rate as in (1.28). By (4.4), (2.15) and the Sobolev
imbedding theorem, we get

sup
0≤τ≤+∞

{‖(ρ̃, ũ, θ̃)(τ, y)‖L∞

y
+ ‖f(τ, y, v)‖L∞

y L2
v
} ≤ Ck

1

12 ǫ
3

5
− 2

5
a. (4.5)

On the other hand, we have by using (5.23), Lemma 5.3 and δ = 1
k
ǫ
3

5
− 2

5
a with 2

3
≤ a ≤ 1

that

sup
0≤τ≤+∞

‖G(τ, y, v)√
µ

‖L∞
y L2

v
≤ Cǫ1−a sup

0≤τ≤+∞
(‖ū1y‖L∞

y
+ ‖θ̄y‖L∞

y
) ≤ Ck

1

12 ǫ
3

5
− 2

5
a. (4.6)

It follows from (4.5) and (4.6) that

sup
0≤τ≤+∞

‖F −M[ρ̄,ū,θ̄]√
µ

‖L∞
x L2

v
≤ C sup

0≤τ≤+∞

{
‖M −M[ρ̄,ū,θ̄]√

µ
‖L∞

y L2
v
+ ‖f‖L∞

y L2
v
+ ‖ G√

µ
‖L∞

y L2
v

}

≤ Ck
1

12 ǫ
3

5
− 2

5
a, (4.7)

where we have used the facts that F = M + G +
√
µf and (3.5). By Lemma 5.2 and

δ = 1
k
ǫ
3

5
− 2

5
a with k independent of ǫ satisfying ǫ≪ k, we have for t > 0 that

‖(ρ̄, ū, θ̄)(t, x)− (ρR, uR, θR)(
x

t
)‖L∞

x
≤ C

1

k
t−1ǫ

3

5
− 2

5
a{ln(1 + t) + | ln ǫ|}. (4.8)

With (4.7) and (4.8) in hand, for any given constant l > 0 and all t ∈ [l,+∞), there exists
a constant Cl,k > 0, independent of ǫ, such that

‖F (t, x, v)−M[ρR,uR,θR](x/t)(v)√
µ

‖L∞

x L2
v
≤ ‖F −M[ρ̄,ū,θ̄]√

µ
‖L∞

x L2
v
+ ‖M[ρ̄,ū,θ̄] −M[ρR,uR,θR]√

µ
‖L∞

x L2
v

≤ Cl,kǫ
3

5
− 2

5
a| ln ǫ|.

This gives (1.28) and then completes the proof of Theorem 1.1. �
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5. Appendix

In this section, we will give some basic estimates, which have been used in the previous
energy estimates. We first list some properties for the rarefaction wave defined by (1.22)
and (1.23). Then, we give some properties of the Burnett functions and the fast velocity
decay of G to overcome the slow time decay of the term ‖(ūy, θ̄y)‖2 in the term P1(v1My)
in (2.9). Lastly, we recall some basic properties of the collision operators and prove some
linear and nonlinear estimates in the previous energy analysis.

We now give the properties of the solution ωδ(t, x) to Burgers equation (1.22) and the
smooth approximate 3-rarefaction wave (ρ̄, ū, θ̄)(t, x) constructed by (1.23). Their proofs
can be found in [22, 30, 43].

Lemma 5.1. The Burgers equation (1.22) has a unique smooth global solution ωδ(t, x)
such that
(1) ω− < ωδ(t, x) < ω+, ∂xωδ(t, x) > 0, ∀ x ∈ R, t ≥ 0.
(2) The following estimates hold for any t > 0, δ > 0 and p ∈ [1,+∞]

‖∂xωδ(t, x)‖Lp(Rx) ≤ C(ω+ − ω−)
1

p (δ + t)−1+ 1

p ,

‖∂jxωδ(t, x)‖Lp(Rx) ≤ Cδ−j+1+ 1

p (δ + t)−1, j ≥ 2.

(3) There exists a constant δ0 ∈ (0, 1) such that for δ ∈ (0, δ0) and t > 0

‖ωδ(t, x)− ωR(
x

t
)‖L∞(Rx) ≤ Cδt−1{ln(1 + t) + | ln δ|}.

Lemma 5.2. The smooth approximate 3-rarefaction wave (ρ̄, ū, θ̄)(t, x) defined in (1.23)
satisfying

(i) ū2 = ū3 = 0, ū1x > 0, and θ̄x =
√

2
5
θ̄

1

2 ū1x, ∀ x ∈ R, t ≥ 0.

(ii) The following estimates hold for any t > 0, δ > 0 and p ∈ [1,+∞]

‖∂x(ρ̄, ū1, θ̄)(t, x)‖Lp(Rx) ≤ C(ω+ − ω−)
1

p (δ + t)−1+ 1

p ,

‖∂jx(ρ̄, ū1, θ̄)(t, x)‖Lp(Rx) ≤ Cδ−j+1+ 1

p (δ + t)−1, j ≥ 2.

(iii) There exists a constant δ0 ∈ (0, 1) such that for δ ∈ (0, δ0) and t > 0

‖(ρ̄, ū, θ̄)(t, x)− (ρR, uR, θR)(
x

t
)‖L∞(Rx) ≤ Cδt−1{ln(1 + t) + | ln δ|}.

Since the scaling transformation y = ǫ−ax and τ = ǫ−at is considered through the proof,
the following lemma is equivalent to Lemma 5.2 (ii), which will be used frequently in the
previous energy estimates.

Lemma 5.3. The smooth approximate 3-rarefaction wave (ρ̄, ū, θ̄)(t, x) defined in (1.23)
satisfying

‖∂y(ρ̄, ū1, θ̄)(ǫaτ, ǫay)‖Lp(Ry) ≤ Cǫa(1−
1

p
)(δ + ǫaτ)−1+ 1

p ,

‖∂jy(ρ̄, ū1, θ̄)(ǫaτ, ǫay)‖Lp(Ry) ≤ Cǫa(j−
1

p
)δ−j+1+ 1

p (δ + ǫaτ)−1, j ≥ 2,

for any τ > 0, δ > 0 and p ∈ [1,+∞].
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We remark that the temporal derivatives of (ρ̄, ū1, θ̄)(t, x) in Lemma 5.2 (ii) and 5.3
obviously hold in terms of Euler system (1.24) and the elementary inequalities.

Recall the Burnett functions, cf. [3, 4, 8, 18, 44], defined as

Âj(v) =
|v|2 − 5

2
vj and B̂ij(v) = vivj −

1

3
δij |v|2 for i, j = 1, 2, 3. (5.1)

Noting that ÂjM and B̂ijM are orthogonal to the null space N , we can define functions
Aj(v) and Bij(v) such that P0Aj = 0, P0Bij = 0 and

Aj(
v − u√
Rθ

) = L−1
M [Âj(

v − u√
Rθ

)M ] and Bij(
v − u√
Rθ

) = L−1
M [B̂ij(

v − u√
Rθ

)M ]. (5.2)

The following lemma is borrowed from [11, Lemma 6.2]. Readers also refer to [3, 4, 18, 44].

Lemma 5.4. The Burnett functions have the following properties:

• −〈Âi, Ai〉 is positive and independent of i;

• 〈Âi, Aj〉 = 0 for any i 6= j; 〈Âi, Bjk〉 = 0 for any i, j, k;

• 〈B̂ij, Bkj〉 = 〈B̂kl, Bij〉 = 〈B̂ji, Bkj〉, which is independent of i, j, for fixed k, l;

• −〈B̂ij, Bij〉 is positive and independent of i, j when i 6= j;

• 〈B̂ii, Bjj〉 is positive and independent of i, j when i 6= j;

• −〈B̂ii, Bii〉 is positive and independent of i;

• 〈B̂ij, Bkl〉 = 0 unless either (i, j) = (k, l) or (l, k), or i=j and k=l;

• 〈B̂ii, Bii〉 − 〈B̂ii, Bjj〉 = 2〈B̂ij, Bij〉 holds for any i 6= j.

In terms of the properties of Burnett functions, the viscosity coefficient µ(θ) and heat
conductivity coefficient κ(θ) can be represented by

µ(θ) =−Rθ

∫

R3

B̂ij(
v − u√
Rθ

)Bij(
v − u√
Rθ

)dv > 0, i 6= j,

κ(θ) =−R2θ

∫

R3

Âj(
v − u√
Rθ

)Aj(
v − u√
Rθ

)dv > 0. (5.3)

Notice that these coefficients are positive smooth functions depending only on θ.
The following lemma is borrowed from [11, Lemma 6.1], which is about the fast velocity

decay of the Burnett functions.

Lemma 5.5. Suppose that U(v) is any polynomial of v−û√
Rθ̂

such that U(v)M̂ ∈ (kerLM̂)⊥

for any Maxwellian M̂ = M[ρ̂,û,θ̂](v) where LM̂ is as (1.15). For any ε ∈ (0, 1) and any

multi-index β, there exists constant Cβ > 0 such that

|∂βL−1

M̂
(U(v)M̂)| ≤ Cβ(ρ̂, û, θ̂)M̂

1−ε.

In particular, if the assumptions of (3.5) hold, there exists constant Cβ > 0 such that

|∂βAj(
v − u√
Rθ

)|+ |∂βBij(
v − u√
Rθ

)| ≤ CβM
1−ε. (5.4)
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Now, we shall turn to summarize some refined estimates for the collision operators L and
Γ defined as (2.7). We first recall the properties of the linearized operators L. Note that
the null space N1 of L is spanned by the functions {√µ, v√µ, |v|2√µ} in [9, 19]. Moreover,
for any g ∈ N⊥

1 , there exists σ1 > 0 such that

− 〈Lg, g〉 ≥ σ1|g|2σ. (5.5)

In addition, the weighted coercivity estimates on the linearized operators L can be stated
as follows.

Lemma 5.6. Let |β| > 0 and w defined in (2.12). Then for any η > 0 , there exists Cη > 0
such that

− 〈∂βLg, w2|β|∂βg〉 ≥ |∂βg|2σ,|β| − η
∑

|β1|≤|β|
|∂β1

g|2σ,|β1| − Cη|g|2σ. (5.6)

Proof. The proof of (5.6) can be found in [19] and we omit the proof here for brevity. �

In what follows we recall the weighted estimates on the nonlinear collision operators Γ.

Lemma 5.7. Let w defined in (2.12) and ℓ ≥ 0, for arbitrarily large constant b > 0, one
has

|〈∂αΓ(g1, g2), ∂αg3〉| ≤ C
∑

|α1|≤|α|
|〈v〉−b∂α1g1|2|∂α−α1g2|σ|∂αg3|σ, (5.7)

and

|〈∂αβΓ(g1, g2), w2ℓ∂αβ g3〉| ≤ C
∑

|α1|≤|α|

∑

|β′|≤|β1|≤|β|
|〈v〉−b∂α1

β′ g1|2|∂α−α1

β−β1
g2|σ,ℓ|∂αβ g3|σ,ℓ. (5.8)

Proof. The proof of (5.7) and (5.8) can be found in [39, Proposition 1]. �

Finally, we prove some linear and nonlinear estimates, which are used in section 3. The
first estimates involving the linear terms Γ(M−µ√

µ
, f) and Γ(f, M−µ√

µ
).

Lemma 5.8. Let |α| + |β| ≤ 2 with |β| ≥ 1 and w defined in (2.12). Suppose that

E2(τ) ≤ k
1

6 ǫ
6

5
− 4

5
a and δ = 1

k
ǫ
3

5
− 2

5
a for a ∈ [2

3
, 1] as well as the assumption (3.5) holds. If

we choose η0 in (3.5) and k in (3.3) small enough, for any small η > 0, we get

ǫa−1|(∂αβΓ(
M − µ√

µ
, f), w2|β|∂αβh)|+ ǫa−1|(∂αβΓ(f,

M − µ√
µ

), w2|β|∂αβh)|

≤ Cηǫa−1‖∂αβh‖2σ,|β| + Cη(η0 + k
1

12 ǫ
3

5
− 2

5
a)D2(τ). (5.9)

Moreover, for |α| ≤ 1, one has

ǫa−1|(∂αΓ(M − µ√
µ

, f), ∂αh)|+ ǫa−1|(∂αΓ(f, M − µ√
µ

), ∂αh)|

≤ Cηǫa−1‖∂αh‖2σ + Cη(η0 + k
1

12 ǫ
3

5
− 2

5
a)D2(τ). (5.10)
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Proof. We only consider the first term on the left-hand side of (5.9) and the second term
of (5.9) can be handled in the same way. Since |α|+ |β| ≤ 2 with |β| ≥ 1, one has |α| ≤ 1.
First of all, we have from (5.8) that

ǫa−1|(∂αβΓ(
M − µ√

µ
, f), w2|β|∂αβh)|

≤ Cǫa−1
∑

|α1|≤|α|

∑

|β′|≤|β1|≤|β|

∫

R

|〈v〉−b∂α1

β′ (
M − µ√

µ
)|2|∂α−α1

β−β1
f |σ,|β−β1||∂αβh|σ,|β|dy, (5.11)

due to the fact that w2|β| ≤ w2|β−β1| for |β − β1| ≤ |β|. For any β̄ ≥ 0 and m > 0, there
exists a small constant ε1 > 0 such that

|〈v〉m∂β̄(
M − µ√

µ
)|2σ + |〈v〉m∂β̄(

M − µ√
µ

)|22 ≤ Cm

∑

|β̄|≤|β′|≤|β̄|+1

∫

R3

µ−ε1|∂β′(
M − µ√

µ
)|2dv.

For η0 > 0 in (3.5), there exists a suitably large constant R > 0 such that

∫

|v|≥R

µ−ε1|∂β′(
M − µ√

µ
)|2dv ≤ Cη20,

and

∫

|v|≤R

µ−ε1|∂β′(
M − µ√

µ
)|2dv ≤ C(|ρ− 1|+ |u− 0|+ |θ − 3

2
|)2 ≤ Cη20.

Thus for any β̄ ≥ 0 and m > 0, we deduce from the above related estimates that

|〈v〉m∂β̄(
M − µ√

µ
)|2σ + |〈v〉m∂β̄(

M − µ√
µ

)|22 ≤ Cη20. (5.12)

Notice that |α1| ≤ |α| ≤ 1 in (5.11). If |α1| = 0, we use (5.12), (2.16) and the smallness of
η0 to get

ǫa−1

∫

R

|〈v〉−b∂α1

β′ (
M − µ√

µ
)|2|∂α−α1

β−β1
f |σ,|β−β1||∂αβh|σ,|β|dy

≤ Cη0ǫ
a−1‖∂αβ−β1

f‖σ,|β−β1|‖∂αβh‖σ,|β|
≤ ηǫa−1‖∂αβh‖2σ,|β| + Cηη0D2(τ). (5.13)
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If |α1| = |α| = 1, by the one-dimensional Sobolev imbedding theorem and (3.5), we can
deduce from Lemma 5.3 and the Cauchy inequality that

ǫa−1

∫

R

|〈v〉−b∂α1

β′ (
M − µ√

µ
)|2|∂α−α1

β−β1
f |σ,|β−β1||∂αβh|σ,|β|dy

≤ Cǫa−1

∫

R

|∂α1(ρ, u, θ)||∂β−β1
f |σ,|β−β1||∂αβh|σ,|β|dy

≤ Cǫa−1‖∂α1(ρ, u, θ)‖‖∂β−β1
f‖

1

2

σ,|β−β1|‖∂y∂β−β1
f‖

1

2

σ,|β−β1|‖∂
α
βh‖σ,|β|

≤ ηǫa−1‖∂αβh‖2σ,|β| + Cηǫ
a−1{ǫa(δ + ǫaτ)−1 + E2(τ)}‖∂β−β1

f‖σ,|β−β1|‖∂y∂β−β1
f‖σ,|β−β1|

≤ ηǫa−1‖∂αβh‖2σ,|β| + Cη(ǫ
aδ−1 + k

1

12 ǫ
3

5
− 2

5
a)D2(τ). (5.14)

Here we have used the fact that E2(τ) ≤ k
1

6 ǫ
6

5
− 4

5
a ≤ k

1

12 ǫ
3

5
− 2

5
a by (3.4). Due to (3.3), one

has
ǫaδ−1 = kǫaǫ−

3

5
+ 2

5
a ≤ k

1

12 ǫ
3

5
− 2

5
a. (5.15)

It follows from (5.15), (5.13), (5.14) and (5.11) that

ǫa−1|(∂αβΓ(
M − µ√

µ
, f), w2|β|∂αβh)| ≤ Cηǫa−1‖∂αβh‖2σ,|β| + Cη(η0 + k

1

12 ǫ
3

5
− 2

5
a)D2(τ). (5.16)

On the other hand, similar arguments as (5.16) imply

ǫa−1|(∂αβΓ(f,
M − µ√

µ
), w2|β|∂αβh)| ≤ Cηǫa−1‖∂αβh‖2σ,|β| + Cη(η0 + k

1

12 ǫ
3

5
− 2

5
a)D2(τ). (5.17)

This ends the proof of (5.9) in terms of (5.16) and (5.17). By (5.7) and the similar
arguments as (5.16) and (5.17), we can prove that (5.10) holds and we omit the details for
brevity. This completes the proof of Lemma 5.8. �

The second estimates are concerned with the nonlinear term Γ( G√
µ
, G√

µ
).

Lemma 5.9. Under the assumptions of Lemma 5.8 and let |α| + |β| ≤ 2 with |β| ≥ 1.
Then for any η > 0, one has

ǫa−1|(∂αβΓ(
G√
µ
,
G√
µ
), w2|β|∂αβh)|

≤ Cηǫa−1‖∂αβh‖2σ,|β| + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ). (5.18)

Moreover, for |α| ≤ 1, it holds that

ǫa−1|(∂αΓ( G√
µ
,
G√
µ
), ∂αh)| ≤ Cηǫa−1‖∂αh‖2σ + Cηǫ

7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).

(5.19)

Proof. Recall G = G+
√
µf , a simple computation shows that

Γ(
G√
µ
,
G√
µ
) = Γ(

G√
µ
,
G√
µ
) + Γ(

G√
µ
, f) + Γ(f,

G√
µ
) + Γ(f, f). (5.20)
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From (5.8), one can see that

ǫa−1|(∂αβΓ(
G√
µ
,
G√
µ
), w2|β|∂αβh)|

≤ Cǫa−1
∑

|α1|≤|α|

∑

|β′|≤|β1|≤|β|

∫

R

|∂α1

β′ (
G√
µ
)|2,|β′||∂α−α1

β−β1
(
G√
µ
)|σ,|β−β1||∂αβh|σ,|β|dy. (5.21)

In view of (2.3), (5.1) and (5.2), we can write

G = ǫ1−a

√
Rθ̄y√
θ
A1(

v − u√
Rθ

) + ǫ1−aū1yB11(
v − u√
Rθ

),

which implies that for β1 = (1, 0, 0),

∂β1
G = ǫ1−a

{√
Rθ̄y√
θ
∂v1A1(

v − u√
Rθ

)(
1√
Rθ

) + ū1y∂v1B11(
v − u√
Rθ

)
1√
Rθ

}
, (5.22)

and

∂yG = ǫ1−a
{√

Rθ̄yy√
θ

A1(
v − u√
Rθ

)−
√
Rθ̄yθy

2
√
θ3

A1(
v − u√
Rθ

)

−
√
Rθ̄y√
θ

∇vA1(
v − u√
Rθ

) · uy√
Rθ

−
√
Rθ̄yθy√
θ

∇vA1(
v − u√
Rθ

) · v − u√
2Rθ3

+ ū1yyB11(
v − u√
Rθ

)− ū1yuy√
Rθ

· ∇vB11(
v − u√
Rθ

)− ū1yθy(v − u)

2
√
Rθ3

· ∇vB11(
v − u√
Rθ

)
}
.

(5.23)

By using (5.4) and the similar expansion as (5.22) and (5.23), for any |ᾱ| ≥ 1 and |β̄| ≥ 0,
we can obtain

|〈v〉m∂β̄(
G√
µ
)|2,|β̄| + |〈v〉m∂β̄(

G√
µ
)|σ,|β̄| ≤ Cǫ1−a|(ū1y, θ̄y)|, (5.24)

and

|〈v〉m∂ᾱβ̄ (
G√
µ
)|2,|β̄| + |〈v〉m∂ᾱβ̄ (

G√
µ
)|σ,|β̄| ≤ Cǫ1−a{|∂ᾱ(ū1y, θ̄y)|+ · · ·+ |(ū1y, θ̄y)||∂ᾱ(u, θ)|},

(5.25)

due to the fact that |〈v〉mw|β̄|µ− 1

2M1−ε|2 ≤ C for any m ≥ 0 and ε > 0 small enough .
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With the help of (5.24) and (5.25), we get from the Sobolev imbedding theorem that

ǫa−1

∫

R

|∂α1

β′ (
G√
µ
)|2,|β′||∂α−α1

β−β1
(
G√
µ
)|σ,|β−β1||∂αβh|σ,|β|dy

≤ Cǫa−1

∫

R

{
ǫ1−a{|∂α1(ū1y, θ̄y)|+ |(ū1y, θ̄y)||∂α1(u, θ)|}

× ǫ1−a{|∂α−α1(ū1y, θ̄y)|+ |(ū1y, θ̄y)||∂α−α1(u, θ)|}|∂αβh|σ,|β|
}
dy

≤ Cηǫa−1‖∂αβh‖2σ,|β| + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ), (5.26)

according to (5.3), (3.4) and |α1| ≤ |α| ≤ 1. This together with (5.21) give that

ǫa−1|(∂αβΓ(
G√
µ
,
G√
µ
), w2|β|∂αβh)|

≤ Cηǫa−1‖∂αβh‖2σ,|β| + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ). (5.27)

For the second term of (5.20), by using (5.8), (5.25) and the Sobolev imbedding theorem,
one can deduce from (3.3) and (3.4) that

ǫa−1|(∂αβΓ(
G√
µ
, f), w2|β|∂αβh)|

≤ Cǫa−1
∑

|α1|≤|α|

∑

|β1|≤|β|

∫

R

ǫ1−a
{
|∂α1(ū1y, θ̄y)|

+ |(ū1y, θ̄y)||∂α1(u, θ)|
}
|∂α−α1

β−β1
f |σ,|β−β1||∂αβh|σ,|β|dy

≤ ηǫa−1‖∂αβh‖2σ,|β| + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ). (5.28)

Since the third term of (5.20) shares the same estimates as (5.28). Thus, we still deal with
the last term of (5.20). In view of (5.8), the imbedding theorem and (3.4), one has

ǫa−1|(∂αβΓ[f, f ], w2|β|∂αβh)|

≤ Cǫa−1
∑

|α1|≤|α|

∑

|β′|≤|β1|≤|β|

∫

R

|∂α1

β′ f |2,|β′||∂α−α1

β−β1
f |σ,|β−β1||∂αβh|σ,|β|dy

≤ ηǫa−1‖∂αβh‖2σ,|β| + Cη

√
E2(τ)D2(τ)

≤ ηǫa−1‖∂αβh‖2σ,|β| + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ). (5.29)

Collecting the estimates of (5.27), (5.28) and (5.29), we can obtain

ǫa−1|(∂αβΓ(
G√
µ
,
G√
µ
), w2|β|∂αβh)|

≤ Cηǫa−1‖∂αβh‖2σ,|β| + Cηǫ
7

5
+ 1

15
a(δ + ǫaτ)−

4

3 + Cηk
1

12 ǫ
3

5
− 2

5
aD2(τ).
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This completes the proof of (5.18). One can deduce (5.19) by employing (5.7) and the
similar arguments as the above related estimates. This ends the proof of Lemma 5.9. �
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