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SMALL KNUDSEN RATE OF CONVERGENCE TO RAREFACTION
WAVE FOR THE LANDAU EQUATION

RENJUN DUAN, DONGCHENG YANG, AND HONGJUN YU

ABSTRACT. In this paper, we are concerned with the hydrodynamic limit to rarefaction
waves of the compressible Euler system for the Landau equation with Coulomb potentials
as the Knudsen number ¢ > 0 is vanishing. Precisely, whenever ¢ > 0 is small, for the
Cauchy problem on the Landau equation with suitable initial data involving a scaling
parameter a € [2, 1], we construct the unique global-in-time uniform-in-¢ solution around
a local Maxwellian whose fluid quantities are the rarefaction wave of the corresponding
Euler system. In the meantime, we establish the convergence of solutions to the Rie-
mann rarefaction wave uniformly away from ¢ = 0 at a rate ¢ 3% Ine| as e — 0. The
proof is based on the refined energy approach combining [I9] and [32] under the scaling
transformation (¢, z) — (e~ %, e %x).
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1. INTRODUCTION

The Landau equation is one of the most fundamental equations in plasma physics. A lot
of great contributions in the mathematical study of the spatially inhomogeneous Landau
equation have been made by many people, for instance, Lions [29], Villani [42], Alexander-
Villani [2], Degond-Lemou [9] and Guo [19]. In particular, Guo [19] gave the first proof
for constructing the global classical solutions close to a constant equilibrium state in a
periodic box, and later Strain and Guo [37, B8] established the large time asymptotic
behavior of those global solutions. Since then, the spatially inhomogeneous perturbation
theory of the Landau equation around global Maxwellians was further developed in different
settings, for instance, see Yu [48], Carrapatoso-Tristani-Wu [7], Carrapatoso-Mischler [6],
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Guo-Hwang-Jang-Ouyang [20], and Duan-Liu-Sakamoto-Strain [10]. In the case of the
whole space, the global classical solution near vacuum was also constructed by Luk [34].
Recently, lots of research has been done into investigating the regularity of solutions to the
spatially inhomogeneous Landau equation for general initial data under certain conditions,
see Golse-Imbert-Mouhot-Vasseur [15] and Henderson-Snelson [21], for instance. In this
paper, we would rather consider another interesting topic on the hydrodynamic limit of the
Landau equation for which quite few results are known although it has been extensively

studied in the Boltzmann theory, cf. Grad [17], Golse [14] and Saint-Raymond [36].

1.1. Problem. We consider the following one-dimensional Landau equation
1
OF +v10,F = -Q(F, F), (1.1)
€

where the unknown F' = F(t,z,v) > 0 stands for the density distribution function for the
gas particles with space position x € R and velocity v = (v, v, v3) € R? at time ¢ > 0.
On the right hand side of (ILI]), the parameter ¢ > 0 is the Knudsen number which is
proportional to the mean free path, and the Landau collision operator Q(-,-) is a bilinear
integro-differential operator acting only on velocity variables, taking the form of

Q(F, Fy)(v) =V, - g O(v —v,) {F1(v:)V, Fy(v) — Vo, Fi(vi) Fo(v) } do,. (1.2)

The non-negative matrix ¢ in the integral above is given by

(v) = (1 _ “f";’) W2, 4> -3, (1.3)

where I is the 3 x 3 identity matrix and v ® v is the tensor product. Note that ([2]) in
the case 7 = —3 corresponds to the original (Fokker-Planck)-Landau collision operator for
Coulomb potentials, see [2] @, [19]. Through the paper, we are focused on the very soft
potentials case —3 < v < —2, since it is similar to treat the other cases v > —2 in an
easier way for which the linearized Landau operator has the spectral gap.

Formally, when the Knudsen number € tends to zero, the limit of the Landau equation
(L)) gives rise to the one-dimensional compressible Euler system

pe + (pur)e =0,
(pul)t + (pu%)x + P = O>

(pu) + (puqgu), =0, i =2,3, (14)
{ple+10)}, + {purle +14) + pur}, =
where
fRS o(v)F do,
pu( t ) fRS % VFdv, fori=1,2,3, (1.5)
ple + 3ul?)( ng Ys(v)F dv.

Here p = p(t,x) > 0 is the mass den81ty, u = u(t,x) = (uy,us,us) is the fluid velocity,
e = e(t, x) is the internal energy, and p = Rpf is the pressure, where R is the gas constant
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that we will set to be % throughout the paper for convenience and 6 = 0(t,xz) > 0 is the
temperature related to the internal energy e by e = %RQ = 6. Moreover, the five collision
invariants ¥;(v) (1 = 0,1,2,3,4) are given by

. 1
wO(U) - ]-7 ’QDZ('U) =0 (Z - 1a 273)a ¢4('U) = §|U|27
satisfying
i(V)Q(F, F)dv=0, fori=0,1,2,3,4. (1.6)
R3

The rigorous mathematical justification of establishing the hydrodynamic limit to the
Euler system (L4 for the Landau equation (1)) in a general setting is an outstanding
open problem in kinetic theory, which is similar to the case of the Boltzmann equation
with or without angular cutoff, cf. [I4] [I7, [36]. Regarding the topic on solutions with
basic wave patterns (cf. [26, [40]), there have been extensive studies of global existence and
large time asymptotic behavior of solutions (cf. [5l, 23] 3] [33] [47]) and small Knudsen rate
of convergence (cf. [24] 25 28| [45] 46]) in the context of the cutoff Boltzmann equation;
some relevant literature will be reviewed in detail later on. However, to the best of our
knowledge, few results on this topic are known for either the non-cutoff Boltzmann or
Landau equation, essentially due to the effect of grazing singularity of both collision oper-
ators on non-trivial profiles with even small space variations connecting two distinct global
Maxwellians, that makes it necessary to develop new perturbation approaches beyond the
situation where solutions are close to a constant equilibrium (cf. [1 [16, [19]). Recently,
the first and third authors of this paper studied in [II] the nonlinear stability as well as
the large time asymptics of rarefaction waves for the Landau equation (L.I]) with Coulomb
potentials. In the present work, we expect to further study the hydrodynamic limit with
rarefaction waves of the one-dimensional Landau equation (LI]) as Knudsen number ¢ > 0
is sufficiently small.

1.2. Macro-micro decomposition. For our purpose above, as in [31] [32], we define the
local Maxwellian M associated with the solution F' to the equation (1) in terms of the
fluid quantities of F as in (LI) by

_ B p(t, x) lv —u(t,z)|?
M = Miyup)(t)(v) = (2rRO(t, )3/ exp (_ﬂie—(t,x)) . (1.7)

We denote an L2(R*) inner product as (h,g) = [z h(v)g(v)dv. Then, considering the
linearized Landau operator around the local Maxwellian M of the form

Lyh = Q(h, M) + Q(M, h), (1.8)
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the macroscopic kernel space is spanned by the following five pairwise-orthogonal base

XO('U) = \/LpM>
xi(v) = ”i_“"M fori=1,2,3,

Vl a2 (1.9)
X4(v) = 75 (W —3> M,

(Xir 33) = 045, 4,7 =0,1,2,3,4.

In terms of these five orthonormal functions, we define the macroscopic projection Py and
the microscopic projection P; as follows

Pyh = Z Sp)xi Pih=h—Rph. (1.10)

A function h(v) is called microscopic or non-fluid if

/ h(v);(v)dv =0, fori=0,1,2,3,4. (1.11)
R3

Initiated by Liu-Yu [31] and developed by Liu-Yang-Yu [32], for a non-trivial solution profile
connecting two different global Maxwellians at © = 00, we decompose the equation (ITI)
and its solution with respect to the local Maxwellian (1) as

F=M+G, PF=M PF=aG, (1.12)

where the local Maxwellian M as (L7) and G = G(t, x,v) represent the macroscopic and
microscopic component in the solution respectively. Then the equation (II) becomes

O(M +G) + 0105(M + G) = %Q(G, M) + %Q(M, Q)+ %Q(G, G (113)

due to Q(M, M) = 0. Multiplying (LI3]) by the collision invariants ¢;(v) (i = 0,1,2,3,4)
and integrating the resulting equations with respect to v over R3, one gets the following
macroscopic system

pr+ (pur)s =

(pur); + (pui +p:c = — Jps V1 G dv,

(pui)e + (puluZ 2= — Jps 010Gy dv, i =23,

{p(6+ %)}t + {pu1(9 + %) +pur} = — [pa 501|0|*G du.
Here we have used ([L3]), (L) and the fact that G, is microscopic by (LIII).

Applying the projection operator P; to (LI3]) and using (I.12)), we obtain the following
microscopic system

(1.14)

1 1

Here the linearized operator Ly, is defined in (8. Recall that the null space N of Ly, is
spanned by x; (i = 0,1,2,3,4). It follows by (LIH) that

G = L P (010, M)] + L7100, 0 1= ed,G + eP,(1:0,G) — Q(G, G). (1.16)
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Substituting (LI0]) into (T.I4]), we obtain the following fluid-type system

(o + (pur)a
(pul)t (p ) +p:c = % ( ul:c x fRs 2Ly, 1@ d'U
(pui)e + (purw;)e = €(pu(0)tin) s — (fgs v10:L 1@ dv),, i = 2,3, (1.17)

(p
{p )}, + {6+ 1) )+ pun}, = c(5(0)8:): + Ge(uOhmu).
+e(p(0)usung) s + e(pu(0)uzuss)s — 2(fgs viv[*Ly; O dv),.

Here the viscosity coefficient ;(#) > 0 and the heat conductivity coefficient x(#) > 0, both
are smooth functions depending only on . The explicit formulas of p(0) and k() are

defined by (B.3)).

1.3. Rarefaction wave and its smooth approximation. Now we turn to define the
rarefaction wave profile to the system (1)) as in [30], B33, B5]. Consider the Euler system
(L) with the state equation p = 2pf = kop”/ exp(S), where kg = 7= and S is the
macroscopic entropy, supplemented with the following Riemann initial data

(0s0,0)(, ) o = (1%, ull, 0 () = {(‘”’“*’9*) =>0, (1.18)

(p—au—>9—)> z <0.

Here pi > 0, ux = (u34,0,0) and 61 > 0 are assumed to be constant. It is well known
that the Euler system (L)) for (p,uy,S) has three distinct eigenvalues

i41

Xi(p,ur, S) =up + (—1)2

pp(p7S)7 7;:1737 >\2(/77U175):U17

where p,(p,S) = gkopges > 0. In terms of the two Riemann invariants of the third
eigenvalue A3(p, uq,S), we define the 3-rarefaction wave curve for the given left constant
state (p—,ui1—,0_) with p_ > 0 and 6_ > 0 as below (cf. |26, [40])

R(p u17 )_{(p7u17)€R+XRXR+|S:S*7
1
w — /15koe? p3 = ui_ — \/15koe T p2, p> p_, wr > ui_}. (1.19)
Here and to the end, S, := S_ = —2Inp_ +In(570_) + 1 is a constant.
Without loss of generality, we consider only the simple 3-rarefaction wave in this paper,
and the case for 1-rarefaction wave can be treated similarly. The 3-rarefaction wave to the

Euler system (L4) with (II8) can be expressed explicitly by the Riemann solution to the
inviscid Burgers equation

wy + ww, = 0,

w_, x <0, (1.20)
w(0, ) = {w x>0
+ .
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If two constants w_ < w, are chosen, then (L20) admits a centered rarefaction wave
solution w(z,t) = w(%) connecting w_ and wy (cf. [37]) in the form of

T
- w—, ?Swa
R _ T T
w(z)_ R (A)_<?§w
T
W, ?>W+.

For (pi,uis,01) € Rs(p—,ui—,0-), the 3-rarefaction wave (p%,u”, 0%)(%) with v"(%) =
(uft, uff, uf)(£) to the Riemann problem (L4) with (II8) can be defined explicitly by

;

As(p—sur—, Si), < As(p,ui—, Si),
AP (5) uf(£),S) = 5, As(po,was, Si) < § < Na(py, wrg, Sh),
As(pgurg, S4), T > As(pa, uig, i), (1.21)
ufi(3) = VI5koe T (93 () = - — VIS ® pi ult = ul =0,
(07(2) = ke (p7)5(2).

Since the above 3-rarefaction wave is only Lipschitz continuous, we shall construct an
approximate smooth rarefaction wave to the 3-rarefaction wave defined in (L2I)). Moti-
vated by [35, 43], the approximate smooth rarefaction wave can be constructed by the
Burgers equation

U+ ww, =0,
1.22
{w(o,x) = wy(x) = B(L) = L= | e () (1.22)

where § > 0 is a small constant depending on the Knudsen number €. In fact, as given in
B3) later on, we will choose § = %e%_ga for a suitably small constant £ > 0 independent
of e. By the method of characteristic curves, the solution wWs(t,z) to the problem (L22)
can be given by

ws(t,x) = ws(wo(t,x)), = =xo(t,z)+ ws(xe(t,x))t.

The properties of ws(t, z) are given by Lemma [5.]in Section Bl )
Correspondingly, the approximate smooth 3-rarefaction wave (ps, us,05)(t, z) to (L2
for the Euler system (IL4]) and (I8 can be defined by
ws(t, @) = A3(ps(t, @), is(t, ), Si),  wi = As(px, uas, ),
1 .1
ﬂm(t, LL’) — 1\ 15]{306%ﬁ§’ (t, LL’) = U1— — 15]€06%pi, Ugs = ﬂ35 = 0,
_ 2
05(t, x) = 2koe® p3 (¢, ),
ml_%riloo(ﬁ& Uis, 95)(t> ZL’) = (p:b Uyt 9i)> (p+> Ut+, 9+) € R3(p—a Uy—, 9—)7

(1.23)

where @s(t, z) is the solution of Burger equation (L2Z). From now on, we shall omit the
explicit dependence of (ps, Us, 05)(t, ) on 0 and denote it by (p,u,0)(t, z) for simplicity.
Then the approximate smooth 3-rarefaction wave (p, u, 0)(t, z) satisfies the following Euler
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system

(1.24)

116z
where p = Rpfl. Properties of (p, u 9)( r) are given in Lemma [5.2in Section Bl In terms
of the approximate rarefaction wave (p, u, 0)(t, z), we denote

Vi ﬁ(t,l’) < ‘U—ﬂ(t,I)P)
M = M, —_— V) = ex - — .
1) (0) QrRO(t, )32 2R0(t, x)
For the technical reason as in [45], we choose the far-field data (p,,uy,0y) and (p_,u_,0_)
in (IR to be close enough to the constant state (1,0, 2) such that the approximate smooth
rarefaction wave further satisfies that

no = sup {|p(t,x) — 1|+ |u(t, z)| + |0(t,x) — —|} is small,

' t>0,2€eR ; (125)
- 7 ° f

tzsol,l:cpeRe(t’x) <5< t>%]I}B€R9(t x).

As in [33], associated with the constant state (1,0, %), we will use throughout the paper a
global Maxwellian

_3
=My g3 (v) = (2m)"2 exp{—|v[*/2}.

1.4. Main result. With all the above preparations, the main result of the paper can be
stated as follows.

Theorem 1.1. Let —3 < v < =2 in ([L3). Assume that the far-field data (p+,us,0y)
satisfy uz = uze =0 and (py,u14,04) € Ry(p—,ur—,0-) in (LI, and 6, :== |p; — p-| +
luy—u_|+|04—0_] is the wave strength. Let (p,u”,0%)(%) be the Riemann solution (L2))
of the Euler system (L4) and (LIX), and (p,u,0)(t,x) be the corresponding approzimate
smooth proﬁle satisfymg ([C23), (C24) and ([L28) induced by the Burgers equation (L22)
with 6 = —65 3@ Jor 2 <a<1andk>0. Then, there are small constants €, > 0, 7, > 0
and k > 0 such that for any € € (0,¢) and any 6, > 0 and any ny > 0 with 6, + ny < 7,
there exists a global-in-time solution F'(t,xz,v) > 0 to the Landau equation (LII) with initial
data

F(0,2,v) = Mg ag0,2)(v) (1.26)
such that the following things hold true:
(a) Under the scaling transformation (1,y) = (e %,e %x) as in (1)), there are an

energy functional E(7) and a corresponding energy dissipation functional Do(T),
giwen by (2ZI0) and ZIQ) in terms of (7,y) coordinates, respectively, such that

+oo
6_4

sup E(1) + Dy (1) dr < Ckites 5. (1.27)

7>0 0
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(b) For any > 0, there is a constant Cj > 0, independent of €, such that

aup [ ZE20) = Migramomiero (¥)
> Vi

Remark 1.2. To the best of our knowledge, Theorem[1.1l seems to provide the first result
regarding the hydrodynamic limit with rarefaction waves for the Landau equation. It re-
mains open to obtain similar results in case of other kinds of basic wave patterns such as
shock wave and contact discontinuity. Moreover, we expect that the current work may shed
a little light on the study of the same topic on the non-cutoff Boltzmann equation for which
the grazing collision effect plays a role similar to the Landau equation.

|eor2 < Criges 3% Ine. (1.28)

Remark 1.3. Estimate ([L28]) shows that under the condition (L28) on initial data, the
uniform convergence rate in small Knudsen number e > 0 can be variable with respect to the
scaling parameter a € [%, 1]. In particular, choosing a = % can give the fastest convergence

rate €3|Ine|.

Remark 1.4. It should be pointed out that the scaling argument was first used in Xin
[43] to study under the transformation (7,y) = (e~ 1t,e 1z) the vanishing viscosity limit
to rarefaction waves for the one-dimensional compressible Navier-Stokes system, where
the convergence rate is e%\ Ine|. Later, Xin-Zeng [45] justified the hydrodynamic limit with
rarefaction waves of the Boltzmann equation for the hard sphere model with the convergence
rate €5|Ine| through the scaling transformation (,y) = (¢7't,e\x); this convergence rate

was later improved by Li [28] to be €3|Ine|? under the scaling (1,y) = (€ 3¢, ¢ 3z).

1.5. Relevant literature. Let’s review some works related to the study in this paper.
Mathematically it is an important and challenging problem to rigorously justify the hy-
drodynamic limit of kinetic equations in a general setting. Great contributions have been
made into different topics of the Boltzmann equation with cutoff. We only refer readers to
[14], (17, 36] mentioned before, as well as two recent progresses [12], [13] and reference therein,
and also refer to [4I] for numerical investigations. Thus, we mainly focus on those known
results on the limit of the Boltzmann equation to the compressible Euler system admitting
solutions of basic wave patterns, such as rarefaction waves, contact discontinuities and
shock waves. Particularly, Yu [46] first established the validity of hydrodynamic limit of
the Boltzmann equation for the hard-sphere model when the solution of the Euler system
contains only the non-interacting shocks. Precisely, he showed that the Boltzmann solu-
tion converges to a local Maxwellian defined by the solution of the Euler system uniformly
away from the shock in any fixed time interval. Later, Huang-Wang-Yang [24] proved
the hydrodynamic limit to a single contact discontinuity wave, and Xin-Zeng [45] showed
the hydrodynamic limit to the Euler system with non-interacting rarefaction waves. As
mentioned before, the convergence rate in [45] was improved by Li [28] through a different
scaling transformation. Furthermore, Huang-Wang-Wang-Yang [25] obtained the hydro-
dynamic limit in the general setting of Riemann solutions that contains the superposition
of shock, rarefaction wave and contact discontinuity.
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Although the hydrodynamic limit from the Boltzmann equation for the hard-sphere
model to the Euler system with basic wave patterns has been greatly studied as mentioned
above, to the best of our knowledge there are few results on the same topic for the Landau
equation or the non-cutoff Boltzmann equation when grazing collisions of particles are
dominated. Notice that the cutoff Boltzmann operator is an integral one without angular
singularity while the Landau operator or the non-cutoff Boltzmann operator features the
velocity diffusion, so it is formally much harder to treat the latter case for the hydrodynamic
limit to the non-trivial profiles with space variations.

In this paper, we prove the existence of global-in-time solutions to the one-dimensional
Landau equation with suitable initial data as Knudsen number € > 0 is sufficiently small.
And the solution of the Landau equation converges to the local Maxwellian defined by
the rarefaction wave of the Euler system uniformly away from ¢ = 0 as ¢ — 0. Moreover,
we obtain the uniform convergence rate e%_%“| Ine| with a € [%, 1] by using the scaling
transformation y = e “x and 7 = ¢ “t. It should be pointed out that the energy estimates
in the current work are performed in the Eulerian coordinates instead of the Lagrangian
coordinates as used in [24], 25| 28 45].

1.6. Main strategy of the proof. In what follows we present a few key points on the
proof of the main result. In fact, the main strategy is based on a scaling transformation of
the independent variables and the decomposition of the solution for the Landau equation
with respect to the local Maxwellian that was initiated by Liu-Yu [31] and developed by
Liu-Yang-Yu [32] in the Boltzmann theory. We thus can make use of the macro-micro
decomposition to rewrite the Landau equation as the form of the compressible Navier-
Stokes-type system so that the analysis in the context of the viscous conservation laws can
be applied to capture the dissipation of the fluid part around wave patterns. Since we are
concerned with the convergence of the solution of Landau equation to the local Maxwellian
defined by rarefaction waves of the Euler system, it gives rise to more analytic difficulties
than the study of convergence to a global Maxwellian as ¢ — 0. Similar for showing the
large time asympotics in [I1], the term ||(iy, 6,)||> is not integrable with respect to time t.
Hence we need to consider the subtraction of G(t,z,v) by G(t,x,v) as [Z3) to cancel the
slow time decay terms. However, unlike the Boltzmann equation with cutoff potentials,
the inverse of the linearized operator L,; defined as (ILI6) is unbounded in L?(R?), which
leads to considerable difficulties in the analysis. In order to handle the terms involving
L]T/[l, we will apply the Burnett functions and the fast decay properties about the velocity
of the Burnett functions. As in [19] for the dynamical stability of global Maxwellians, we
need use the weight function w = (v)?*% as ([2.I2) to overcome the dissipation deficiency
in case of Coulomb potentials and handle velocity derivatives of the free transport term
110, f. Furthermore, we use the decompositions F' = M + G + Viuf as in [II] to improve
the decompositions in [28, [45] such that we can simplify the related energy estimates, and
some basic estimates developed by Guo [19] around global Maxwellians can be applied to
treat the derivatives estimates conveniently.

The new scaling transformation of the independent variables takes the form of y = e %z,

T = €t involving with a free parameter a € [2,1]. The result in Theorem [II] shows

a
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that the solution converges to the local Maxwellian defined by the rarefaction wave of the
3_2 . .

Euler system at a rate €5-5% In¢|. In particular, we can obtain the fastest convergence rate

e§| Ine| if one takes a = % As mentioned before, the scaling argument through the change

of variables y = e 1z and T = e 1t was first used in [43] to study the zero dissipation
limit to the rarefaction wave for the one-dimensional compressible Navier-Stokes system,

where the obtained convergence rate is e%\ Ine|. Note that if one takes a = % in terms of

Theorem [I.1] then we obtain the convergence rate eT30| In €| which is still a little sharper
than the one in [43]. This is basically due to the detailed energy analysis such that both
the lower and higher order estimates possess the same convergence rate of the Knudsen
number e. We also notice that under the scaling transformations y = ¢ 'z, 7 = ¢t in [45]
and y = e_%:z, T =¢5tin [28] for the Boltzmann equation with hard sphere model, the
convergence rates €5|Ine| and €3|Ine|? are obtained respectively. Therefore, Theorem ]
also implies that the results of [43] 45 28] can be improved to give rise to the faster rate
e§| Ine| by choosing a = % At this moment, we would remark that we expect that such
scaling argument also could be applied to study convergence to basic wave patterns (i.e.,
rarefaction waves, contact waves, and shock waves) for the Boltzmann equation, Navier-
Stokes system, radiative hydrodynamic equations and many other related models. Once
we use the scaling transformation (2.I) for an arbitrary parameter a € [Z,1], we have to
deal with some difficulties caused by the higher order derivatives estimates such as (B.69)).
For this purpose, we design the energy functional £(7) and the corresponding dissipation
functional Dy(7) involving the Knudsen number ¢, see (2.15]) and (2.16]). The desired goal is
to obtain the uniform a priori estimate ([L.27)) and then derive the convergence rate (L28).

1.7. Organization of the paper. The rest of this paper is arranged as follows. In Section
2 we will reformulate the system () and introduce a scaling for the new independent
variable and the perturbation. In Section B we will establish the a priori estimates in-
cluding low order energy estimates, high order energy estimates and the weighted energy
estimates. In Section [ we will establish the existence of global-in-time solutions as well
as the convergence to the local Maxwellian defined by the rarefaction wave of the Euler
system uniformly away from ¢ = 0 as ¢ — 0. In the appendix Section [ we will give some
basic estimates frequently used in the previous sections.

2. REFORMULATION OF THE PROBLEM

2.1. Scaling and reformultion. In this section, we will reformulate the system and in-
troduce a scaling for the independent variable and the perturbation. Firstly, we define the
scaled independent variables

y=—, 7=—, for ae[%,l]. (2.1)

Here the range of the constant a is determined by ([B.74) and (Z2)).
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Correspondingly, we set the scaled perturbation (p,u, 5) = (p,u, 5)(7', y) and G =
G(t,y,v) as

ﬁ: p(t,l’) - ﬁ(t,.ﬁlﬁ),
u=u(t,x) —u(t,x), (2.2)
0 = 9(t>$) - é(t,l’)’ '
G:Gt,z,v)—@(t,x,v), G:\/ﬁf(T Y, )

Here the term G = G(t,x,v) is defined as
— " lv —ul?0, (v u
G = 1 Ly 1P1U1M{ 2R92 Y RO y}' (23)

We remark that in (Z2), G is subtracted from G because the time decay of || (i, 0,)||? is
€*(0 + ¢*7)~! by Lemma [£:3] which is not integrable about the time 7.
Subtracting (L24) from system ([I4) and using the scaling (2.I]), we can obtain

pr + Py + ﬁyﬂl J1,

Uy + Uty + 9 + 3ppy 1 fRS vIG,dv, (2.4)
Wir + Uiy + ululy fR3 vleG dv i=2,3, '
9 + 9u1y + u19 = J ; fRS 5010 - (v — 2u) G dv,
where
J1 = (pur)y + Urpy + tryp,
Jg = ululy + ululy + 3py p0ppp07 (25)
J (Huly + Huly) (9 U + 9 ul).
Moreover, we also get from ([LI7), (L24]) and (2] that
( ~ o~ o~
Pr + PUiy + pyul Jla
Uiy + yliyy + 20, + 25, = —Jp + €704k (u Jury)y = +(fos 01 Lag Odv),
Uir + Uiy + Uty = 61 “;}(,u(ﬁ)uly fRS v Ly, @dv)yu = 2,3, (2.6)

0, + 200y, + 7115 = —Jy+e'” a;(“(e)e ) +e” a34 “(e)uly
[+ SO, + ) = L v 5Ly Odv), + Jul s vivLig Odv),.

Here Jy, Jo and J; are defined in (Z3]) and © can be rewritten as
O =¢70,G+ P (1,0,G) — Q(G, G).

On the other hand, we need to derive the equation of the microscopic component f as in
([2:2). For this, we first denote

M(h,g) = #Q(ﬁha VEg).  Lh=T(h, Vi) + D(Vii,h). 2.7)
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This together with the definition of Ly, in (LI5) imply that

R _ _ M—p M—p
wfm@ﬂﬂ VmKNMw@ﬁ+Q®@ﬂMﬂ Lf+T(f, ¢ﬁ>+r(¢ﬁ’gé
From (LIH) and (21]), one can easily see that .
0.G + Py(v,0,G) + Py(v10,M) = " 'Ly, G + ' Q(G, G). (2.9)

By using 28), P, =1— P and G = G + /iuf, we can rewrite equation ([29) as
_ _ M —p e, M — G G
a'rf_l_'Ula.f_Ea 1£.f:€a 1F(.fa )_l_ea 1F( >.f) ( )
y Vi N N
R, 0, —u) -
n o(viy/idyf) Lplle{ v —ul?0, (v—u) uy}
NG NG 2RH?
. Pl(’(]layé) . 87—5

. 2.10
Vi i (210
Here we have used the fact that
lv—ul6, (v—u)-u I
Pl(UlﬁyM) P1U1M{ 2R92 Y RO y}"—E 1L]\/[G
Finally, we obtain by (1)) and the scaling (2.I]) that
O.F 4+ v,0,F = ¢ 'Q(F, F). (2.11)

2.2. Notations and norms. The following notations are needed in the energy analysis
for convenience of presentation. We shall use (-, -) to denote the standard L? inner product
in R3 with its corresponding L? norm | - |,. We also use (,-) to denote L? inner product

in R, or R, x R? with its corresponding L? norm || - ||. Let a and 8 be multi indices
a = [ag, ] and B = By, Pe, B3], respectively. Denote a high order derivative
80” aaz 9P1Hb29Ps

V1 Tv2 TU3

If each component of 3 is not greater than the corresponding one ofﬁ, we use the standard
notation 8 < B. And 8 < 3 means that 3 < 8 and |B| < |f]. Cg is the usual binomial
coefficient. Throughout the paper, generic positive constants are denoted by C' (generally
large) and ¢ (generally small) which are independent of time 7 and € unless otherwise stated.
The notation A ~ B is used to denote that there exists ¢y > 1 such that cng < A<cB.
Motivated by [19], we introduce the following velocity weight function

w=w)= @) (V) =1+ (2.12)

Denote weighted L? norms as

o= [ wlglae, gl = [ lofdy
R3 R
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The Landau collision frequency is
o) =¢"xp= [ ¢(v—vp(v.)dv.,, 1<i,j<3, (2.13)
R3

where ¢ is given in (L3). We remark that [0 (v)]1<; j<3 IS a positive-definite self-adjoint
matrix. With (213), we define the weighted dissipation norms as

o= 32 [ wtto ot + oSl v ol = [ I

1,7=1

And let |gls = |gls0 and ||g]lo = [|g]|s0. From [38, Lemma 5, p.315], one has

y+2 (%
- R =R v 2V, — . 2.14
ol |0 %]+ [(0)390g - 1|+ [0 F Vg x 1, (2.14)
Now, we define the instant energy functional & (1) by
= > 10°Ga0O)@* + e Y {03, @ 0> + [0 (7)1}
lor| <1 |or|=2
+ D 1O+ Y N5 (2.15)
lo|<1 lo|+[8]<2,|8[>1

As usual, the instant energy functional &(7) is assumed to be small enough a priori. And
this will be closed by the energy estimates in the end. The corresponding dissipation rate
Dy(7) is given by

Dy(r) =€ D (10°(5w ) ()]* + € Y o f ()2

1<|al<2 la|=2
N 12 Co T A DR (77 WA Col P (2.16)
lal<1 |al+181<2,181>1

3. A PRIORI ESTIMATES

This section is devoted to deducing the a priori estimates for the equation (2.I1]) around
the smooth rarefaction wave. To this end, we first choose the initial value of the equation

RII) as

F(anav) = FO(y>'U) = M[ﬁ,ﬂﬂ_](oayav)> (31)
such that (p, u, 5)(O,y) and f(0,y,v) satisfying
&(0) <e. (3.2)

Here &(7) is defined by (2I5) and (p, @, §) with @ = (i1, 0, 0) is the smooth approximation
rarefaction wave given by (L23). Due to the smoothness of (p, @, #), the local existence of
the unique solution to the Cauchy problem (Z.I1]) and (B1)) can be obtained by a straight-
forward modification of the arguments in [I9] . To obtain the global-in-time existence of
solution, it suffices to get uniform a priori estimates on solutions.
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Throughout this section, we need to find out small positive constants k, dy and ¢y with
0<e <<k<1land0 <y <1, independent of ¢, 6 and 7, then we choose

= —e55¢ (3.3)

for a parameter a € [%, 1], where § is given in (L22)), and we further let € be arbitrarily
chosen such that 0 < e < ¢g and 0 < § < §g. We now make the a priori assumption:
sup &(7) < Ji6 €550 (3.4)
0<r<m
for 7 € (0,+00), where &(7) is defined by (2I5). In what follows we formally explain
why one has to choose such § as (B3] and the a priori assumption as ([B4]). Indeed, if one

assumes that
sup & (1) < O(1)e!

0<r<71
with a constant ¢ > 0, then it follows from this assumption and Lemma that

T
H (pv u, 9)(t7 .CL’) - (pR7 uRv HR)(;)HLOO
~ ~ = T
< (o w, 0) (7, y) |l + [ (P, @, 0)(t, ) — (pR,uR,HR)(;NILw
< Ce + Ct 'o(In(1 +t) + |Ind]),

for any ¢ > 0. Hence the above estimate in vanishing Knudsen number ¢ > 0 is optimal by
taking 6 = O(1)e?. On the other hand, we have to deal with the slow time decay of the
term in ([B.I3) in the way that

RO S <
A [T dr < e [ e
0 0

1.1 1 2 1
S Cel—a+§q+§a5—§ _ O(l)el—ga—i-gq

ol

“(6 + €))7 5 dr

Y

where we have replaced § = O(l)e% in the last identity. To close the a priori assumption,

we need to require that
2

el-3atsd < €?, thatis ¢< g —

Notice that the convergence rate is the fastest by choosing ¢ = g — %a. Hence, we can

obtain the sharp convergence rate under the condition of (8.3) and (B.4).
Remark 3.1. By the a priori assumption [B4]) and in view of (L2H), we have

3

sup {[p(t,z) — 1| + |u(t, z)| + [0(t, x) — S|} < 210,

t>0,z€R

1 3 (3.5)
itzs(g)eRQ(t,x) <5< tZ%%fGRQ(t,x).

due to the smallness of € and k, where 1y is the small constant given in (L2H). We point

out that [BH) will be frequently used in the later energy estimates.
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From now on, we will focus on the reformulated system (2.4)), ([2.6)), (2-10) and (2I1) with
initial data (3.1]). We will first derive the lower order energy estimates for the macroscopic

component (p,u,#) and the microscopic component f in Subsection Bl Then, Subsection

is devoted to obtaining the high order energy estimates of (p, u, #) and f. The weighted
energy estimates of f will be given in Subsection

3.1. Lower order energy estimates. Now we will derive the lower order estimates for

(p,w, ) by the entropy and entropy flux. As in [32] B33], the following macroscopic entropy
S will be estimated for the lower order energy estimates. Set

—gpS: M In Mdv.

RS

Multiplying (2I1]) by In M, integrating over v and making a direct calculation, it holds
that

3 3
(—§pS)T + (—§pu15)y + (/ v1G'In Mdv), — / v G(In M),dv =0,
R3 R3
where
2 4 2 1 5
(e 41, p=Iph= —p . .
§=—ghp+in(F0)+1, p=gpf=—psexp(5) (3.6)

In terms of the scaling transformation (2.1), we can rewrite the conservation laws (LI7)
as X, +Y, =
0
%El_a(ﬂ(e)u1y>y — ([ viL}/Odv),
€' (u(O)usy)y — ([ vivaLyy Odv),
e (1(O)uzy)y — ([ vivs Ly Odv),
3
e (k(0)0y)y + 5(1(O)urwy), + ;(M(H)uiuiy)y} — (S oLy, ©dv),

Here
2
u
X I(X07X1,X2,X3,X4)t = (Pa pulvpu27pu37p(9 + %))tv
2

u
Y :(}/E]u }/17 }/27 }/37 n)t - (puh pu% _'_pv puUiU2, PUIUS, pul(e + %) +pu1)t7

where (-, -, )" is the transpose of the vector (-, -,-). We define an entropy-entropy flux pair
(7, q) around a Maxwellian M = M, ; 5 (U2 = u3 = 0) as

{n(ﬂ y) = 0{=3pS+2pS + 2V x(pS)|x=x - (X — X)}, (3.7)

q(1,y) = 0{=3purS + 2pius S + 3V (pS)| x—x - (Y = Y)}.
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Hence, by using ([3.7) and (3.6, we can obtain

2
(pS)x, =5+ % — g, (pS)x;, = —%,i =1,2,3, (pS)x, = %,
and
n(ry) = 3{p0 — 0pS + pl(S — 30 + 5] + 256)
— pI(E) + 2p00(%) + Splu — . (35)
q(r,y) = win(r,y) + (w1 — @1)(pf — ph),
where the convex function ®(s) is defined as ®(s) = s —Ins — 1. From (B.8)), there exists
a constant ¢; > 1 such that

(B @ 02 < nlry) < el 0)|. (3.9)

In view of the definition of (87), we have by a direct computation that

(7 y)r +a(m,9)y — Vigagn(, y) (p,u,S)r — Vipaza(ty) - (p,u,S),
3 3

= 0{(=5p9)r + (=5pm5),} + Q{Vx(ps)l x(Xr +Y))}

A direct but tedious computation shows that

— j a39 —a
n(r )+ (7. )y + € 0, + €' Zu 292%9)92

vlviLXj@dv}.

R3

Here the notation (- --), represents the term in the conservative form so that it vanishes
after integration. In the following energy analysis, we shall assume a priori estimates that
Es(7) is small enough due to ([B4), and we have from this and (B3] that (p,u,#) and
(p,u,0) are close enough to the state (1,0,3).
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By the similar arguments as [27], there exists ¢ > 0 such that

_{Vﬁﬂ (7' y) (,O,ﬂ S) —I—V (7>y)'(ﬁaﬂ>§)y}
3 p ~ 0 3 = p 0
= ipuly(ul — Ul) + p@ulyq)(;) + pﬁulyq)(g) + §p9y(u1 — Ul)(g ll’l; + In 5—)
> cytin, (P2 + U3 + 6°). (3.11)

Since both u(6) and x(6) are smooth functions of , there exists a constant ¢ > 1 such
that u(0), k(0) € [c3", c3]. Plugging (3.1 into (3-10) and integrating the resulting equation
with respect to y, we can obtain

d L _
= [ atm s+ et @)1 + ol (7.6 <Z [ma e2)
R

We will estimate the terms of ([B.12]) involving H;. By the integration by parts, the a priori
assumption (34, Lemma and the Cauchy-Schwarz inequality, one gets that

_ 36(0) -~  ~ -~ 30
H — 1—a
/R (dy = € /R{ 292 (8, +6,)6,6 — —r(0)6,6, }dy
u . 30k(0), ~  30k(0)~
< e /| o (0,4 0,08+ (o), 4 2y

< Cé‘“/ﬂ@\ﬂﬂ%\\%l+\9y|2+\9y||9y| + 10y [ Hy

< Ce 0] oo {11yl + 16,17 + 16,11},
which further implies that
—a ~ ~2, o 4 ~2 o 8 AT e S
/Rﬂldy < e {nlloyl1* + CyllON 3 10yl 2 + CyllON3 10,115 + Cllo]12 16,2 !|9y!|2}

< me'” “||6’ 12 + Cye'™ 633759 ¢3 0+ €'T) ~3 + C\/E(T)Dy(T
< net=7|6, > + Cn€5+15 (6 + €7)73 + Ckes5Dy(7). (3.13)

Here we have used the following one-dimensional Sobolev imbedding theorem

lg@)lz= < Vg2 10,97, for g(y) € H'(R) C L*(R).

Following the same method used as (BI3)), it holds that

21(0 _ ~ 20
/Hg y_E /{ 'LLH( )(U1y+uly)uly9 ?u(ﬁ)ulyﬂly}dy

< net " (g, 6 )||2+C' ests WS+ €'T)” 54 Chkizes™ %QDQ(T).
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By using the self-adjoint property of L,;, (1) and (5.2)), one can show that

3 3
1
/R3(§Ul\v|2 — Zvluivi)L;}@dv = /R 1{Pl( vl\v| - Zvluivi)M}%dv

i=1 =1

3 - S 3 v—u, ©
— [ LI(ROZA (=Y MY~ dv = RH?/ A v, 3.14
| s o= (ro)t [ A2 (3.14)
and
/ vlviLM@dv:/ LM{Pl(vlviM)}—dv
R3 R3

—u, ©
= | L;}{ROBy M dv—R@/BiU —dv. (3.15
Lt g AT
Both ([B.14) and the expression of Hy in (B.10) imply

3 0 >
/Hgdy—/ 2(9) /( Ul|v\2—2uivlvi)l}ﬁ@dv}dy

:/Ra{g(g) (Re)%/ Al(\/—u)]\idv}dy (3.16)

Notice that for any multi-index § and m > 0, we have by using the fast decay of the
Burnett functions (5.4]) and (3.5) that

(o)™ /10 A1 (J5)1”
/RS e dv < C. (3.17)
We now turn to compute the term with © in (8I6]). Recalling that
O =¢70,G+ P (1,0,G) — Q(G, G). (3.18)

For the first term on the right-hand side of ([BI8). Recalling that G = G + /i f, applying
the similar arguments as (5.23), and using 1/&(7) < k125 73% and %6~ < k12e5-5% due
to (34) and [B3), one has from ([BI7), the Cauchy-Schwarz inequality and Lemma

that
/RS{Z’@ o)t [ a2

.G 2dvdy :

< (|13, + 186,) x /

< CeM([16,] + 1166, ) (H(ulyn yT>H + || (ny, 0y) - (ur, 0,)]])
< C’7761_“||6’~y||2 + Cne%J’%“((S +€'7)” 5+ Cy(e%67 1 + /E(T))Da(r
< Cne =6, |1 + Ces T154(6 + €27) 5 4 Cpk 123~ 5°Dy(7). (3.19)
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Similarly, it holds that

30 3 v—u, €710, f NP ~ I
—(= 3 < (1-a) 3
/Rg{2<e>y<3’9> / () e by < OO, |+ 6,1} 1)) 20|
< Cne =)0, + Ce )10 f1I% + Ces 196 + €7) 75 + Cke559Dy(7). (3.20)

It follows from (3.19) and (B:20) that
36 3 v—u, e7%9,G
—(= 2 A dv pd
LGt [ = Caulay
< Cnet 0,112 + Coe |0, FII2 + Ces 58 + €97) 73 + Cykizes5Dy(r).  (3.21)
For the second term on the right-hand side of (BI8]). Similar arguments as ([3.2]) imply

[0t [ al @ P0a0,),

< Ot 0|0y [* + Coe 010,17 + Coet 150 + € 7)E + Cyizes T2 Dy(7).
For the last term of ([B.I8), by using ([2.7)), (B17) and the similar arguments as (.19), we

get
/RS{% w0yt [ T akay

= [ e [ YT %ﬁ oy

< Cne =6, |1 + CpesT154(6 + €47) 75 + Cpkizes ~5%Dy(7). (3.22)
By the estimates from (B.21)) to (3:22)), we have from (B.I€]) that

/Hgdy < Cne' =0, |12 + Cpet e Z 10°F||2 + C,es T 15%(8 + €*7) 75 + C, k1265~ 39Dy (7).
laf=1

(3.23)

Following the same strategies used in the estimates of ([3.I4]), then similar arguments as

B23) imply
3 1
H4dy = — Uy E Uiy) vlviLM @dv}dy

3
~ 30 v—u, O
Uiy ~ 57 Zuiy)RH/S By( @)Mdv}dy

=/R{<§ >

< Cne |, |I> + Cpe' ™ Z 10°fIIZ + C,, €5 150 (04 € 7‘)_

laf=1

ol
+
AP
??‘

Sl
('f\

SIS

|

SN
<)

O
[S)

/\
\_/
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Here we have used the fact that for any multi-index 5 and m > 0,

m aBiv—u 2
/ "B
R3

M2

Therefore, substituting the estimates of H; — H, into (3.12)) and taking n > 0 small enough
gives

d - I
= [ty ) + ol (0 B)

< TN OFIR + CeSTIE + €'7) 75 + ChTEes 39 Dy(r). (3.24)

laf=1

Since there is no dissipation for density function and the temporal derivatives for (p, u, 0)
in ([324)), to get the estimation of ||p,||? and ||(pr, -, 6;)||?, we first take the inner product
of [Z4)), with p, over R to get

20 _ o~ 2~ 1 _
El_a(?ﬂyapy) =€ (Ui — Wty — 0, — Jo — _/ viGydv, p). (3.25)
p 3 p Jrs
By using (Z4);, the integration by parts, the Cauchy inequality and Lemma [5.3] one has
_El_a(aln Py) = — 61_a(ala Py)r — 61_a(alya pr)
=— e (m, Py)r — el_“(ﬂly, {=ptry — pyur — (pur)y — WPy — Uryp})
< — €7@, py)r + Cnet 7By 1+ el |12
+ Ot + €7) 75 + O\/E(T)Da(7),
where in the last inequality, we have dealt with the typical terms as follows
€~ (Uy, tryp)| < Ce ™[y ||* + Ce' |y [|7 171
< Ce' ™|y, |)? + Ce' (5 + 1) 25750
< Ce iy, || + CesT159(8 + ¢*7) 75
The Cauchy inequality implies
—a = =~ 2~ -~ —al|lx —a ~ "
! | (@t + geya py)l < ne' ||Py||2 + CnEI [ (t1y, 9y)H2-

Notice that the term involving J, can be controlled by

Cats o~ e 2 p—pf
¢ ‘(J%/)y)‘ =¢ |({u1u1y + Uiy + gpy b }apy)|

< e =B, 1P + Cpes T8 + €7) 75 + Cyn/Ea(T) Da(7),
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according to the Cauchy inequality, Lemma B3, (34) and [B3). Recall G = G + \/iuf, we
have from the Holder inequality, Sobolev imbedding theorem, (5.25]) and (214]) that

[ ] < @10+ 12D
< e "B + Coe' 12 + Copes ™56 + €7) 75 + Cyn/Ex(7)Da(7),
Hence, plugging the above related estimates into (3.25) and using \/% < k%e%_%“, we
have by choosing 17 > 0 small enough that
12 < = CE @ By)r + Oy B + Ce =, 2
+ eSS + €7) 75 + CkT2es 59Dy(7). (3.26)

On the other hand, by using the system (2.4 again, we can arrive at

€| (5r, tr, 6-)|

< O™ |y Ty B)IP + 1112} + CeF T30 + e0m)75 + Chizes 3Dy(r). (3.27)
For some suitably large constant Co > 0, a suitable linear combination of ([3.27), (3.26)

and ([3.24) yields

E1—a

d ~ —asT — -~ ~ N —a o T N
L [y +C [ A ipdy) + el it DI+ e Y 107G D
R R la|=1
< Ce N [0 F2 + Ces T8 + )75 + Chizes—39Dy(). (3.28)

lal=1

This completes the proof of lower order energy estimates for the macroscopic component

(P, w,0).
Next, we turn to prove lower order energy estimates for the microscopic component f.
Taking the inner product of (ZI0) with f over R x R? gives

(O-f + 010, f — EILL ) = NI, M\/_ﬁ’u) + F(M\/,E ﬁ’ -
Roloryho,f) 1

—uPf,  (v—u)-u
Vi Vi

"‘( P1U1M{|,U

) - - ==
2R0* RO Vi VI
(3.29)
We will estimate each term for ([B:29). First of all, we have from the integration by parts

and (B.3) that

a— 1d a—
(Orf + 010y f =T LELf) 2 S IP + oG
By using (57) and (G12), we can obtain
M —pu M —pu

e (T(f,

) )+ (I D), DO < Coe £

Vi Vi
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From (5.19), one can see easily that

G G 7,1
N, ), )] < O I + Coe 5 (5 + ')
Vi Vi "

In view of the properties of I in (ILI0) as well as (ZI4)), one can show that

Py(o1y/i0, ) o1 1y s POV,
(R D <l Al =
< )N 20,01 < O IF12 + Coe 14,12

By using (5.1]), a direct computation shows that

4
3

+ Ok 12€37 39Dy (7).

~ 3
v ) U u A v—u
P + -3 yAl g M+ LTl )M
j=1
which implies that
v 0, v—u)-u e “
(P (g ey )] < o 12 + o B

In addition, we use (LI0), (5.23)), (.3), (3.4), (Z14), the Sobolev imbedding theorem and

Lemma to obtain

|(P1(v18yG) .G )| _ ‘(vlﬁy@ B Po(v10,G) N 0T@’f)|
ViR Vi Vi m

< CE (I (iayy, Bl + 151328, - g O+ [y By )+ 1y, - 031 ) 61

2

< One" || fII2 + Cpest15(8 + €°7) 75 + Cyki2e33%Dy(7).

Plugging the above related estimates into (3.:29]), we get

1 d a— —a ~ n
s+ e MG < e {||(uy,9 P+ I1L£ 1153
+ Ces (6 + €7) 75 + Cki2es 39Dy(7), (3.30)

by choosing suitably small 7 and using the smallness of 7.
In summary, for some suitably large constant C; > 0, adding ([28) x C; to ([B30) gives

d (~  ~ _
6@ [arwdy+c [ @ mag) + 5107
Felly /i B2 + e = Y 10 D) + e 72
la=1

CEl_a Z ||aaf||3 + Ce%—l—%a(é + EaT)_% + C]{;leeg_%ap2(7‘). (331)

|a|=1
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Integrating ([B.31]) with respect to 7, we have

1@ B+ 1F12 + / /g (7, 0, B 2ds

wa S [loradas et [k

|laf=1

< CE-D||5,|12 + Cete / 16°f||2ds + Ckies 59 + Ckizes 3 / Dy(s
lo=1

(3.32)

by using ([32) and ([33) as well as the fact (7, y) ~ ||(7, T, 8)||* due to ([BT). This completes
the proof of the lower order energy estimates.

3.2. High order energy estimates. In this subsection, we will derive high order energy
estimates on time-spatial derivatives. We first consider the fluid variables (p, @, 5) Differ-
entiating (Z.6),; with respect to y, we then multiply the resulting equation by 2 3 2py and
integrate with respect to y to obtain

I 20 20
(Pry + Plinyy + 2pytiny + Pyt B—ﬁgpy) = —(J1y, 3—[)201;)- (3.33)
This together with the integration by parts lead to
- 20 _ Py, 20 U 20 _
2 ar H( )1/2 H2 + (Uryy, 3ﬁpy) ( 2y (3—ﬁ2>T) — (2pytny + Pyytia + Jiy, 3—ﬁ2py)- (3.34)

We are going to estimate the terms on the right-hand side of (3.34]). By the Sobolev
imbedding theorem and Lemma (5.3, we get

Py 20 20 - o _ SO
(5 (555) )| +H(2pyuny, 3—52/>y)| < Cl(prs 0:) L= Nl pylI” + Cll oyl oo [y | 1oy

27 3p2
< Ce"5 Y[ pylI* + Ced [y |15
= Ceo™ e e T [py1* + Ceta™ e e =0 [y ||y
< CE15 Dy (1) = Ce ke G39Dy(7) = Ckes* 5Dy(1),  (3.35)

where in the last line, we have used (B3.3) and (2.I6]). It also holds by using the Sobolev
imbedding theorem, Lemma [5.3] (2.10), (3.4)) and (B3] that
20

. ~ ~ o~ T U -
|(Pyytin, 3—p2f>y)| < Clftll 12y 1]l < CllEN = Ny 12 (115 I* + 117 11%)
< Ckiress {63“5 (64 €*7) 2+ € 'Dy(7)}

< Cki2esti5%(§ + €7) 75 + Chizes® 5 Dy(7). (3.36)
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Now, we estimate the term with J;,. Recalling J; = p,u1 + typ + (puy),, performing
calculations similar to (8.35) and (8.30), we can arrive at

_ - _
() + (0,7, 50 < |<<29p“1> 0+ + T T )
< Cest 54§ + ¢*7) 73 + Cke s “ 5 + k12e3%75)Dy(7).
On the other hand, we have from the Sobolev imbedding theorem and ([B.4]) that
20 _ IR 20
3—pzpy)| = [(Pyyts + PUiyy + 2pytny, 3—,52/7y)|
< Ce*~ 1\/?172 <Cl{312€0 %,DQ(T>.
With the help of the above two estimates, we get

20 7.1
|(J1y, B—ﬁZpy)\ < CesTBY0 + 1)~ 3+ C'(ke R e_“__)D2( ). (3.37)

[ ((PU1) gy

Hence, substituting the estimates (B:35)-(B31) into ([3.34]), we can obtain

~ 20 _ 1 \
||< >1/2 W12+ <ulyy,§py>s0e€+wa<a+em 5 4 Ckizest

(Sl

5 d7‘ Dy(7), (3.38)

due to the fact that
12

ke 75 < k1estE (3.39)

by the assumption of % < a <1 as well as the smallness of k.
Similar for deducing (3.33)), by differentiating the equation (2.6)); with respect to y, we
then take the inner product of the resulting equation with u,, to obtain

1d _ _ 2~ 20 _ . _

SL\)

||u1y|| + ((Wtiy)y, wry) + (geyy’ uy) + ((B_ﬁpy)y’ Uty)
= (i) + ([ O u i) — ([ L300 T). (340

By integration by parts and using the Sobolev imbedding theorem, Lemma (3] ([B3]) as
well as (3:39), we get
72

[(@niiny)y, Tng)| = (g, —22)] < it | o[[ny | < Cet6~ ey, |

2
< Cke?“_ng(T) < C’kﬁega_ng(T).

We will compute the right-hand side of (3.40) term by term. Performing the similar
calculations as ([B.37), we thereby obtain

~ - S 2 p9 Pl
‘(J2yvu1y)‘ = |(8y{u1u1y + Uty + 3/)y7}vu1y)|

< Ces 195 4 €*7) 73 4+ Ch12e5% 5 Dy(7).
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For the second term on the right-hand side of ([3.40), we first use an integration by parts
about y to obtain

4 ~ 4 ~ ~ 4

([?p(ﬂ(e)uly)y]y’ Uy) = _(?p(ﬂ(e)uly)y’ Utyy) — (%(N(e)aly)y’ Utyy).-

In view of the Sobolev imbedding theorem, Lemma [5.3], (8:3]) and (3.4]), one can show that

4 4 4
1—-a ~ ~ 1-a o~ ~ 1—-a / ~o
- —(u(0 , = — — (60 , — — ' (0)6 ,
€ (Bp('u( )1y )y, Uyy) € (3pﬂ( Uiy, Utyy) — € (3/)#( )0y i1y, Uiyy)
< —cs€! [y I 4+ Cet =0y || oo [Ty || [Ty |

< —cse' [y | + Chizes 5 Dy(7),
for some constant ¢5 > 0. Similarly, it holds that
!
(= (n
p
Hence, by taking n > 0 small enough, there exists a constant cg > 0 such that

61_“([@

((0)ary)y, Uryy)| < Cne'™ “||u1yy]| +C, estHis Y0+ €T)” i+ C /4:126’“_57)2(7').

((O)ury)yly, Try) < —Coe' ™| Tinyyl|> + Ce5 548 + €27) 75 + Ck=es* 5 Dy(7).
(3.41)

The estimations for the last term of (3.40]) is more complicated. The integration by parts
and ([B.I0) give that

1 271 -1 ~ o v—u, © v a
~ ([ itiedn ), i) = CIR [ Bu(“ )i )
1 w1 1 u. 9,0
= (p/ [RQBH(\/_)M] @d’U Ulyy) + (; /1%3 RQBH( \/ﬁ) M dv Ulyy) (342)

Notice that the first term on the right hand side of ([B:42]) is the higher nonlinear term
compared with ([B.I6) and is easier to estimate. Therefore, we can follow the similar
method as used (BI7)-([B22) to deal with this term, then we can arrive at

1 v—u. 1
G [ 0B (17,0, )
< 0 [ty ||? + Cpes 1598 4 €47) 75 + Cpkizes39Dy(7).

The second term on the right hand side of ([.42) is similar to ([B.16). We thus have from
the similar arguments as ([3.I0]) that

1 v—u, 0,0
G [ ROB () B0, )| < et~ |+ o'~ 3 01
P M |a|=2

+ ChesT59(6 + €77) 75 + Cykizes 5Dy (7).
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It follows from the above three estimates that

1

—([p(/]RB Ly Odv),y, Ury) < Cnet™®|[iny, I° + Coet = Y 107115
|a|=2

+ Ces 1398 4 €7) 75 + Cpki2es 39Dy(7). (3.43)

Substituting the above related estimates into (3.40) and taking > 0 small enough, we get

1d 2~ _ 20 _ . _ i~
S dr ||uly||2 (39yy>u1y)‘I'((g_ppy)wuly)‘l'cel ||u1yy||2
< CE 3012 + Ces P (S + €7) 75 + Clkized 3% 4 k23 3)Dy(7).  (3.44)

|af=2

Similar to ([3.40), by differentiating (2.6])3 with respect to y and taking the inner product
of the resulting equation with @;, (i = 2,3), the similar arguments as ([3.44) imply that

1d

4
3

||uzy||2 + e Ty, < Cete Z [0°FI1 + Ceitis “(0+€'T)”

|af=2

+ C(kT=e3750 4 kT263975) Dy (7). (3.45)

Finally, we still deal with (26])4. Differentiating (Z€l), with respect to y, we then take
the inner product of the resulting equation with %Qy to get

~ 1~ 2. 1~ 1~ 1
(eTy’ 591/) (39u1yy’ ée ) (Seyulw gey) + ((uley)ya gey)
1~ i1 1~ 4 1o 1~
= —(J3y, 5%) +e ([;(“(G)Gy)y]ya 59y) +e ([?pﬂ(e)“%y]y + [; Zu(@)u?y]y, 5‘%)
=2
1 _ 1~ 1 vl|?2 1~
sl [ wtztedny 50) - G w50, (3.46)

P Jgrs 0 p Jrs 2 0

We will estimate (3.46]) term by term. First of all, one has
|( Oy, —9 D < ClOy e[y 116, ] < C2es*=5Dy(7),

according to the Sobolev imbedding theorem, Lemma and ([B3.3]). Similarly, it holds
that

_ 1~ o~ 1~ o~ 1~
(@0,)ys 50| < (1, 59 )+ [y, 59 )

< (i1, By, -9>|+|<< b L5y < ordein, ().

y>2y
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Recalling J; defined by (2.5) and following the similar method used in ([3.37]), we have from
(3:39) that

1~ 2~ ~_ ~ _— 1~
|(Jay, 5—931” = |({_(9uly + Oury) + (Oytn + Oyun) by, 5—931”
< CETHY(0 4 ¢*7) 75 + Chk1e3* 5 Dy(7).
Similar arguments as ([B.41]) imply that

(] iu(e)u%y]y + [% > (o)), %—9y)|

(O8] 500 + "l

1
P
< —ce'” “]|9y]|2+C€o 15 Y0+ €'T)” i 4 Ckizes® ng(T).

On the other hand, we use the integration by parts, ([B.14) and (3I3]) to obtain

1 B 1~ 1 g 1~
(Sl [ oLt} 58) - ([ ol5-15j0du)), 58,

_ Kls 1 11~ 11
= (1 (0 — o)L/ 0dl,, 2 (50)) + (uy [ wlifOdv2(50,),)

(R0} [ ATl SG00) + SR [ Bu( ) 257,

= H5.
Notice that the above terms are similar to (3.42]) and then the similar arguments as (3.43))
imply that
Hs < e |0y lI? + Cpe' = S [[0° 12 + CeF 1548 + €7) 75 + Cykizes—39Dy(r).
|a|=2

Substituting the above related estimates into (3.46) and choosing 1 > 0 small enough, we
can arrive at

1d ~ 2~ s
2dr —II(5 )1/29y’|2+(§u1yy79 ) + ce' 10, I
< CE™ N0 fI2 + Ces T3+ €T) T8 + Ckizes 5% + k1263975 Dy(7).  (3.47)

|af=2

As a consequence, the sum of (3.38), (3.:44), (3.45) and (BA471) give

d 2 ~ N a
UG PR+ 1T + 1) 20, + 6! i ) P

3_

< Cel™ az 10°F||2 + Cesti5%(§ + €7) "5 + C(kizes

|af=2

U‘\l\)

1 3,
5@

@4 k263" 5)Dy(7).  (3.48)

leferentlatmg the equations (Z.6) with respect to T and multiplying the resulting equations
by 2/)7, Uiy, Ui with ¢ = 2,3 and 19 respectively, then adding them together and
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integrating with respect to y over R, we have by the similar arguments as ([3.48)) such that

d .20 .. N - o
—{Il(gf2 )20 1 + N 1P + I )1/29T||2}+c61 [(Try, 0y |12

S~

1 3,

@4 k1" E)Dy(7).  (3.49)

[SU[N]

< CeT N OF| + CeSTTNS + €r) T + C(kTEeR

|af=2

The dissipative terms |[p,,||? and ||p,,[|*> are not included in the dissipation of (3.48)
and ([3.49). For this, we use the system (24]) again. Differentiating the first and second
equation of (2.4)) with respect to y yields

5Ty + (ﬁaly)y + (ﬁyal)y J1y>
o o~ 27 2055 ) (3.50)
Uiry + (U11y)y + geyy + (3ppy fv Gydv), — Joy.

Taking the inner product of ([3.50); with p,, and performing the similar calculations as

([3:25)) yield that
El_aHﬁysz < —Ce'” *(Ury, Pyy)r + Ce'™ | (ay
+ Ceg+ﬁ“(5 +e 7')_% 1 Ckize

vy yy)“2 + Cel_anyychr
5739Dy (7). (3.51)
Similarly, the following estimate holds

U7y 12 < CE| (B Uy )2 + CesTT5 + €27) 73 + Cke3 739Dy (7). (3.52)

It remains to estimate the dissipative term ||(7rr, %rr, 0,,)||. Differentiating the equations
[24) with respect to 7 and multiplying the resulting equations by p,,, Uirr, Ui, With

1 =2,3 and 5” respectively, then adding them together and integrating with respect to y
over R, one can arrive at

N (Brrs s, )| < CE 2| (Bry, Tiry, Ory) |+ CE D [[0°F112
|or|=2
+ C'e%ﬂ_ls“(é + 6“7')_% + C’(l{:l_lze%_%“ + kl_lze%“_%)D2(T). (3.53)
In summary, for some suitably large constants C'; > C; > 0, we have from a suitable
linear combination of (B.48)), (8.49), (3.51)), (B.52) and B.53)) that
LS LAy 20 + 107 + 1) 20T + Cre = (g )
N30 P il 1 1ys Pyy

dr
ce' =y |0 (p. 1, o)

laf=
|af=2

< CET N OF| + CeETTS + )T + C(kTEeS T 4 ke TH)Dy(r).  (3.54)

|af=2
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Integrating ([3.54]) with respect to 7 and using ([3.2) with ([3.3]), we can obtain

S 0GP + / 10° (5,7, B)|2ds

la|=1 |oe|=2
< CEI|5, |+ e 3 / |07 Fl2ds + Chielta
|oe|=2
+ CO(kmes 50 4 k3o 3) [ Dy(s)ds. (3.55)

0

Next, we will derive the derivative estimates for the microscopic component f. Taking
the derivative 0% of (2.I0) with |«| = 1 and taking the inner product with 0%f, we can
obtain

(0,07 f +1010,0° f — € L £, f) — ¢ (0°T (. Mﬁ”) + aanMJﬁ“, 1. f)
o1 ga G G 0% Po(vi /10y f) ., P (1,0,G) .,
— (T o oo py — (LG
Y (\f \f) f):r( i f)—( Vi f)
N v —ul?0, (v Uy 0.0°G

We will compute each term for (B56]). First of all, we have from the integration by parts

and (B.3) that
(0,0°f +v10,0°f — " LOf,0°f) = ——||(9af||2 + o |05

From (5I0) and (GI9), one can see that

_ M —pu M —p
@ H(9°T , + 0°T , f), 0%
[(0°T(f ) ( i f),0%f)]
< O™ Y[0% F|12 + Cyy (o + k123759 Dy(7),
and
G G 7 1 4 1 3 2
(0T (—=, —=), 0% /)| < Cne® |0 f1|% + Cpes™15%(8 + €7) 75 4+ Cpk 237 59Dy(7),

\/7 \/_
By (LI0), (T3), B3), (ZI4), the Sobolev imbedding theorem, Lemma (3] (33)) and (34,

one has

0 Po(vn/idyf) ., vt o Xiy () -2 e
0 f)\§||i§_;<v>u O ((viy/id, f. 2 ) () 20 1|

< e O I 4+ Coe 070,112 + Cre TS + 1) o CysehEeDy(r),

(
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and
o4 |'U | 0, (U_u)'ay fe
‘(—\/78 P 1M{ 5RO Y+ R0 }78 f)
o o uPl, o) Ty
< 2 2 2
< Ol b2 Prog {1 B 4 L ey e |

< e YO F|12 4 e~ (0%T0y, 07, ||? + Cpes T15%(8 + €*7) 75 + Cpkizes 39Dy(7).

Here we have used the fact that [(v)™u~2M|2 < C for any m > 0 by B3). The terms
involving G are dominated by

0Py (0:0,C 0,0°G ..
(ZP6,C) )]

")l +I(
a—1 let 2 I+l a,_\—4 L 3 2,4
< Cne |0 flg + CpesT15%(0 4 €7) 75 + Cyk1zes™39Dy(7),

N/ VH
according to (520, (LI0), the Sobolev imbedding theorem, Lemma B3, (B3) and (B4).
Hence, by taking n > 0 small enough, we deduce from ([B356) and the above related esti-

mates that
) Lda 0% FI1> + ¢ Y e Mo )12
2dr 7

|laf=1 laf=1

<= S {10, @ 0,1 + 1107 112}

|a|=1
+ C€%+1_15a(5 +€*7)” 5 4 C(no + ks s )D2( )- (3.57)

Integrating (B.57) with respect to 7 and using ([B.2)) with (33)), then by a suitable linear
combination of the resulting equation and (B.53]), we get

S (102w ) + o 1) + 1(1}2(/‘naazza’e||ds+e“]~§jt/‘na%ﬂ|ds

jaf=1 =2 o=t
< -5 |2+ cee 3 /rwvn@
lae|=2
F ot O+ et g ped) [T Dy (3.58)
0

Finally, we derive the higher order derivative estimates of the microscopic component f.

In terms of ([27), (Z8) and (ZII), one has

F F N _ M—p 1M =

aT - ay Y _ ,a 1£ _ .a 1F ’ a 1F ’ i

(\/H)Jrvl (\/ﬁ) €T Lf=e (f*\/ﬁ ) +e (7\/ﬁ T
1 v —ul?0, (v—u)-a,

F M g T
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Taking the derivative 0% of ([3.59) with |a| = 2 and then taking the inner product of the

resulting equation with 2 \/f , we obtain
1d 0°F , 1 0*F M—pu M —p o0°F
— " (Lo o0°T + 0T f),
a7l e f\m) T T T )
_ G G 80‘ v —ul?0, (v—u)-i,, O°F
a—1 a leY Y Y

Recall F = M + G + \/puf, we first have from (5.H) that

“HLOMf,00f) = ave [0
Due to Lf =T'(\/it, f) + T'(f, /1), we get from ([&.7) that
0°G 0°G

Calaoc
)|< 1%l II\//_LII

< ne“‘lllé‘“fllf‘; + Cp{10% (@1, 0) 1P + - - - + [[(1y, 0,)0% (u, ) ||}
< e MO |2 + Cpestis(8 + €47) 75 + Cypkizes 39Dy(T),

(Lo,

according to (5.27]), the Sobolev imbedding theorem, Lemma [5.3 and ([B.3)). For a > 2, we
can see that

3 _

adM:M<8ap_305‘9+(v—u20a9 Z 0%u >+
0

p 20 2R6?

0% 397 ENALY, o B
— (1) (T2 2004 © 2}.?92 +3

= J+ J5 + J3. (3.61)

Here the terms J; and Jy are the high order derivatives of (p,u,d) with p and M — i and
J3 is the low order derlvatlves with M. Since = € ker £, it follows that (L, ) = 0. For

NG
the terms \J/Qﬁ and \/_, we use (0.7), Lemma (5.3 and (B3) to get
Jg Jg
a—1 a 2 a—1|| Qo 2
Lo f, =) < Cer 0% fllol—= o
N Vi

< O™ (%112 + 105, D)|12) + Cevteb (5 4 evr) 3,

and

Jg Jg
€4 1 a a—1|| oo 3
(£0° f, =) < Ce M| fllo || =l
Vi Vi
IO F2 + Cpe eSS + €7) T8 + Cpe T k126 5Dy (1),
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where we have used |(v)™u~2 M|2 < C for any m > 0 by B3). Owing to these, we thereby
obtain

(67

- (0% 8 M a— (0% a— (0%
(Lo ], i )| < Cln+mo)e M0 F113 + Cmoe 0% (5, @, 0) |

+ Che® e T8 + €7) 75 + Cpe® kizes ~5Dy(7).
As a consequence, the second term on the left-hand side of ([B.60) is controlled by
aa

Lo f, 7 ) < — o O 112 + Cln+mo)e” |07 F2 + Coe” 0% (5, @, )|
F Cpe LSS + €7) 75 + Cpe kT en T39Dy(7).

For a = 2, recalling F = M + G + \/if, we get from (G.25), (3.61)), the Sobolev imbedding
theorem, Lemma [5.3, (33)) and (34) that

0*F o\ /uf 0°G 0*M
2 < 1 e E e

Vi N Y/ TR /T
< C(|0%FI2 + 10%(5, G, 0)|?) + Ces T35 + €7) "% + Chizes 5%Dy(7). (3.62)

For the first term on the right-hand side of ([3.60), we directly apply (5.7) to get

a—1 « M_:U“ oF al 041
T E D < S /|a

For |a;| = 0 in (363), we use (£12) and (B.62) to obtain
0°F

M —p 1
80‘1 g% ™ Ay < Cnpe®™ |0
/\ vl f\|f| < Ome o o

< Cnoe"” (||59°‘f!|2 + [0%(, %, 0)*)
+ Coe™ L€ T8 4 €*7) 75 4 Cpe® k1263 59Dy (7). (3.64)

o077 ody. (3.63
f|\f\ y. (3.63)

lar|<|e

For 1 < |a;| < |af in (B63), it holds that
_ o M —p T 0*F
/ 0 (S o 11 oy
Vi NG
o0“F

e 10" (pu, )| + > 10 (p,u, 6 ||‘°“‘}sup\a“ “ o= 7 o
la/|=1

<m0 12 + 107G D)) + Cpe 05 + ) E 4 Gy sty (1),
(3.65)
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The term >~ 1(9°T'(f, %), 9°E) can be treated in the similar way as in (3.63). We thus

N
get from (B.64) and (B.63]) that
B M —p M —pu aaF
a—1 o°T 9°T

< Cln+mo)e (10°f115 + ||8a(ﬁ, a.0)|)
+ Cpem eI (6 + €7) T8 + Cpet T ke 5 Dy(7).

Due to G:§+\/ﬁf, one has

G G G G G
F(ﬁ’ﬁ) (f \F) (f f)+ (f,ﬁHF(f,f)-

For the second term on the right-hand side of (3.60), we apply ([B:62) and perform the
similar method as (5.26) and (5.27)) to obtain

80&

Ea—l 804
|(0°T( i

=)

am

G ~
i < Ea—l o> 2 o> ~’ ?7,9 2
Nk = ne (107 fIl + 110%(p, w, 0)[)

+ Ce e TS + €47) 75 + Cpe® kizes 5Dy(7). (3.66)
Following the similar method used as (0.28)), we have by using (3.62) that

G G . 0F
6a—l aoe 6al 8o¢
( (\F’f) \F)H [(0°I(/, f),f)l

< One (|0 112+ 10°(5, T, 0)|2) + Coe™ €57 15%(5 + €7) 75 + Cye e

~59D, (7).

With (5.7) and the Sobolev imbedding theorem in hand, we get from (B.3)), (8:4) and (3.62)
as well as the Cauchy-Schwarz inequality that

e (0°T(f, f), 8%ﬁ)l < Cne (|07 f1I7 + 1107 (7. @, 0) )

+ Cnea_le%Jrl_lf)“(cS + 6“7‘)_% + 0776&_1]{3%6%_%&2)2(7). (3.67)
From (B.66) to (8.67), we can conclude that

ga)aa
VE VB R

(0T ) < Cne ([0 f 112 + 107 (7.3, 0) 1)

% |

+ Cpem eI (§ 4 €7) T8 4+ et hizes 5 Dy(7).
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For the last term on the right-hand side of (3.60), one has from (2.I4]) and ([B.62)) that
—ul*0, (v uy} 0“F
2R6? RO VT
—ul?0, (v u 1 O°F
< Oyt or progar{ L =00 ? R
< Ol P { e K )
< Cne (107 Fll; + 107 (3., O)|P) + Cpet T80 + €7) 75 4 Cpe ™ kT30 Dy ().
Hence it holds by those above estimates and for any n > 0 and ny > 0 small enough that
2 a—1 le' 2
e |22 121+ > ol

<C(77_|_n0 a—1 Z Haa u 9)H2+C€a 16@ 10 (5_|_€ 7—) 3-0—06“ 1]{51263_3 Dz( )

laf=2

1
|(ﬁ80‘Plle{ |U
1

(3.68)
Integrating (3.68) with respect to 7 and then multiplying the resulting equation by €'~

with a € [2,1], we can obtain

DN (1075w O) ) + [0 f[17) + € / lo* fll5ds

|or|=2 |or|=2

< C(y+mo)e QZ/ 10°(5, 7, B)|2ds + Cykb i3 4 O etoed =3 / Dy(r)ds. (3.69)

laf=2

Here we used F' = M + G + /nf, B2), BEL), B3), B4) and the Sobolev imbedding

theorem to get

0“F(0 1
62(1—a) Z || ( ,y,'U)||2 < Ckgeg_%a
|a|=2 \/ﬁ

and

a) F Y, a) fe% « 1 6_4,
00 3 TR 5 o0 () + o ) = Ok

|af=2

By a suitable linear combination of ([B.58) and (3.69]), we have by choosing 7 and 7y small
enough that

Y (7, O)* + 10 F17) + 0= Y (1077, @, )| + 110 £11°)

lor|=1 |or|=2

e “Z/ (10°5, @ )P + 0 F|2)ds + e 12/ e f12ds

|or|=2 lo|=1

< Ck3es™5% 4+ C(ny + k€37 3% + kT2€5977) / Dy(s)ds. (3.70)
0



CONVERGENCE TO RAREFACTION WAVE FOR LANDAU EQUATION 35

This completes the proof of the high order energy estimates.

3.3. Weighted energy estimates. In this subsection, we will derive the weighted mixed
derivative estimates of the function f in order to close a priori estimates. To this end, by
taking the derivative 5 to (2.10) with [a|+ |3 < 2 and [3| > 1, for e, = (1,0,0), one has

0,05f + md,05f + CL 0,05, f — ¢ O5Lf

_Ea—l fo M_IU“ 6(1—1 fe M_:u €4 1 o G G (Ulfa f)
_ agr(f,—\/ﬁ ) + 8BF(7\/E f)+eos (\F f>+3{ NG !
v — ul|?6, v—u)-u PlvlaG 0.G
-og{nmar(M e ¢ By g (AOAE gn®Dy

We take the inner product of B7I) with w195 f over R, X Rf; and estimate each term.
First of all, by integration by parts, we obtain

. N N 1d .,
(0-051 + 010,051 w95 1) = 51§ 1115 51
From the Hélder inequality and Cauchy inequality, it follows that
1 — Yo% 1 (0%
(0,08, £, w05 )] < CllwdtP=V0,08 Fl[|w! 205 f|
1 —e1 o 1 o
= Cllw2w”=19,05_,, flllw=w 05 f|
< nea‘1!|3§f|li,w| + Cnel_aHﬁyag—elfn?f,\ﬁ—ell'

Here we have used the fact that | —e;| = || — 1 and Hw%ww‘&g‘fﬂ < Cll0g fllop for
w = (v)7"2 by (ZI4). Due to (50]), we can see that

“HOLf wNOg £) = N5 F12 s — me ™ Y 105, FII 5 — Coe [0 FI2-
181/<18]

With (59) and (518) in hand, one can show that

M —pn M —p

e H(5T( ), w85 )]+ (95T (S, ), w?og )|

< Cne" |05 1125 + Colio + k125754 Dy (7),

and

€4 1 o G G w2\6| o
It (\/ﬁ \/;7) ol

< One IG5 £y + Coe #1576+ €r)”

4
3

+ Cyk12€37 39Dy (7).
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By using (LI0), B.5), 214, the Sobolev imbedding theorem, Lemma (.3 (8.3) and (3.4,

we can obtain

8&
oy e o

< ne" 105 f 11516 + Cue'™ “Hﬁ‘l@yf!li + Cyes P15 (5 + €7) 75 + Cyk 12354 Dy(7),

4
Do)y oivigr gy = Z () 035 (01 /130, £, A2) L), () Hulfl5 £)|
=0

and

0,
‘(aa( Poo, M { |U 2R9|2 y uy} 2|5\80¢ ‘

\/,L_L
1 Lo 1 v—u2§ v—u)-u
§C||<U>2w|gaﬁ{ﬁP1U1M(‘ 2R‘9|2 Yy ( ) y }HH

1

< e |05 F11251 + Coe' = 10% @y, B> + Cy 6; 598+ €'7) 75 + Cykizes 3Dy (1),

“ullog g

where we have used the fact that |<v)mu_%05]\/[|2 < C for any m > 0 and 5 > 0 by (3.3).
Notice that the last two terms of ([B.71]) can be dominated by

o Pl(vlay@) o - w28l o
‘(3/3(7\/ﬁ ) 86(\/ﬁ>’ 95 f)]
Pl(vlﬁyé)

C(|I(wy2wog( g Il )2l ( ﬁ)ﬂ)nw%wﬁ'agfn

< e 0§ FI12) + Coet G + €07) R + Cyhre—ieD,(7),

according to (LI0), (525), (Z14), Lemma .3 and the elementary inequalities. Hence, for
la] + |5 < 2 and |B] > 1, we have by the above related estimates and n > 0 small enough
that

1 d a—1{qa
05 FlIz51 + < 195 f 158

<C€“ 1o £115 + Ot {1100, f1I7 + 110 @y, 0,) 1}

+ CE 0,05, 2 15+ Ce™ Y 1105, F112 5
|51|<\B|

+Ce%+1l5a(5—|—€a7') 3 +C(770+k12€° 5 )Dz( ). (3.72)

Notice that the coefficients on the third line of ([B72) is large and |51| < |8]. We will
use the induction in || to control this term. By the suitable linear combinations, we can
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obtain
2—af

Z%ZOZ 05 f13)0 Fee™ D0 19571

|or|=0 Jj=1 |B|=3 laf+|81<2,]8]>1

<Ot s+ o DT {11 + 107 (5, 0)1)

\a|<1 1<]al<2
+ Cest 98 4 €°7) 75 + C o + k€559 Dy(7). (3.73)
Here we have required that
P> thatis a < 1. (3.74)
Integrating (B3] with respect to 7 and using ([3.2) with B3] gives

> s e [ 10512 s}

laf+8]<2,[8]>1

< Ce 12/ |07 f|2ds + Ceie 3 / {107 FI2 + 107 ., 8) 12 ds

la|<1 1< <2

o) / Dy(s)ds. (3.75)

This completes the proof of the weighted derivative estimates of the function f.

ml"'

3_
€5

(SN

+ Ckies 3% 4 Clny + k7

4. STABILITY AND CONVERGENCE RATE

Based on the energy estimates derived in Section [3] in this section we are now in a
position to complete the

Proof of Theorem [I1: By a suitable linear combination of (332), (870) and (B.75), we

can obtain
+/ || ﬂly(ﬁ, ﬂ1,§)||2d8+/ DQ(S)dS
0

4,

< ORI 3 4 Oy + ki3 4 kebos / Dy(s (4.1)

Here &(7) and Dy(7) are defined by (2.I5) and (2.16]), respectively. At the moment, one
has to require that the second term on the right hand side of (4.1]) should be absorbed by
the left hand side. Thus, this leads us to impose

3 2 3.2 2
__ga,zo and 3&—3207 that is §< S

l\DIOJ

(4.2)

Due to (B74) and ([£2), we need to require that 2 < a < 1 for the choice of the parameter
a in the scaling transformation (ZII) which we start with. Hence, by using the smallness
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of k>0, 19 >0 and € > 0, we have from (4]]) that

6

T - = 1/ 1
E(T) +/0 II\/Tiny (7, 1y, 0) || *ds + 5/0 Dy(s)ds < Ckies 3 < §k%e%—%a. (4.3)
Then (E3) implies that for a € [2,1] and 71 € (0, +00), one has
1

sup &(1) < =k
0<r<n 2

o=

€559, (4.4)

which is strictly stronger than ([B4]). Thus the a priori assumption ([B4]) can be closed.
Therefore, by the uniform a priori estimates and the local existence of the solution, the
standard continuity argument gives the existence and uniqueness of global solutions to the
Landau equation (1) with initial data (B.I]). Moreover, the desired estimate (L.27]) holds
true.

We are going to justify the convergence rate as in (L.28)). By (4.4)), (Z.15) and the Sobolev
imbedding theorem, we get

-~ 182,
s (TN + 1o} < CRBd R @
On the other hand, we have by using (5.23]), Lemma 53 and § = %e%_%“ with % <a<l1
that
@(Ty 'U) ~ 1 3_2
su D e < Ceél™ su Uigllroe + 10, ]l 700) < CkT2e575%, 4.6
o 1Ty <08 sy (il + 1817) < (46)
It follows from ([AH]) and (6] that
F—M,.; M~ M,.; G
[p,u,0] [p,u,0]
suimngu{—oo+oo+—oo}
o Ny <0 s {1 s 4 Ul + 1 e

< Ckies 30, (4.7)

where we have used the facts that F = M + G + /uf and B35). By Lemma and
0= %e%_%“ with £ independent of € satisfying ¢ < k, we have for t > 0 that

- 1
(5, @, 0)(t, x) — (pR,uR,QR)(%)HLgo < CEt_le%_%“{ln(l +1) 4 |Inel}.  (4.8)
With (A7) and (48] in hand, for any given constant [ > 0 and all ¢t € [[, +00), there exists
a constant Cj; > 0, independent of €, such that

F(t,2,v) — M,n yr gr) (g (V) lpope < | F— M 5.4 T Mz a0 — MRz or
\/,[_L x v \/IL_L x v
< Cl,keg_%a

| geore

3

Ine|.

This gives (I.28) and then completes the proof of Theorem [[L11 O
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5. APPENDIX

In this section, we will give some basic estimates, which have been used in the previous
energy estimates. We first list some properties for the rarefaction wave defined by (L.22])
and (L23)). Then, we give some properties of the Burnett functions and the fast velocity
decay of G to overcome the slow time decay of the term ||(i,, ,)||* in the term P; (v, M,)
in (2.9). Lastly, we recall some basic properties of the collision operators and prove some
linear and nonlinear estimates in the previous energy analysis.

We now give the properties of the solution ws(¢,z) to Burgers equation (.22]) and the
smooth approximate 3-rarefaction wave (p, i, 0)(t, z) constructed by (L23)). Their proofs
can be found in [22] B30], 43].

Lemma 5.1. The Burgers equation (L22) has a unique smooth global solution ws(t,x)
such that

(1) wo <ws(t,r) < wy, Ows(t,z) >0, YVrxeR, t>0.

(2) The following estimates hold for anyt >0, 6 > 0 and p € [1, 4+00]

10,05 (t, @) o,y < Clws —w-)? (8 +1)" 7,

1@s(t, )| oy < CO (5 +1)7", j>2.
(3) There ezists a constant 6y € (0,1) such that for 6 € (0,0¢) and t > 0

x _
\|ws(t, x) — wR(?)HLoo(Rz) < Cot HIn(1+¢) + |Iné|}.

Lemma 5.2. The smooth approvimate 3-rarefaction wave (p,u,0)(t,x) defined in (LZ3)
satisfying
(Z) Uy = U3z :O, Uty > O, and 9_96 = \/gééﬂlx, Ve ]R, t Z 0.
(ii) The following estimates hold for anyt >0, 6 >0 and p € [1, 4+00]

10:(p. @1, 8)(t, )| o) < Cleos = wo) (85 +1) 75,
1095, 1. 0) (t, ) | o,y < C5 T2 (5+0)7 =2
(iii) There ezists a constant &y € (0,1) such that for 6 € (0,99) and t >0
_ xT _
15.5.0)(t,2) — (0%, uP 0%) (D) ey < €O {In1 1) + | 3]},

Since the scaling transformation y = e %z and 7 = €™t is considered through the proof,
the following lemma is equivalent to Lemma (ii), which will be used frequently in the
previous energy estimates.

Lemma 5.3. The smooth approvimate 3-rarefaction wave (p,u,0)(t,z) defined in (L23)
satisfying

10,(p, w1, 0)(e°T, €*y) || Lor,) < C€a(1_%)((5 + e“T)_lJr%,
185 (7, @1, 0) (€T, €*y) || Lo(r,) < CelUp) 45 (5 4 o)L, > 2,

for any T >0, >0 and p € [1,+o0].
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We remark that the temporal derivatives of (p, 4y, 0)(¢,z) in Lemma (ii) and
obviously hold in terms of Euler system (L24]) and the elementary inequalities.
Recall the Burnett functions, cf. [3] 4, 8, [18, [44], defined as
~ |7J|2 -5 ~ 1 2 ..
Aj(v) = 5 Ui and  B;;(v) = vv; — géijM for i,7=1,2,3. (5.1)
Noting that fle and BUM are orthogonal to the null space N, we can define functions
A;(v) and B;;(v) such that PRyA; =0, PyB;; = 0 and

Aj(ﬁ) = LX)MJ(@)M] and Bz’j(ﬁ) = LX}[BZ-]-(W)M]. (5.2)

The following lemma is borrowed from [I1, Lemma 6.2]. Readers also refer to [3] 4] [18] [44].

Lemma 5.4. The Burnett functions have the following properties:
° —(Ai, A;) 1is positive and independent of i;
° <Ai,Aj> =0 for any i # j; (Ai,Bjk) =0 for any 1, j, k;
° <Eij,Bkj) = <f3kl,B,~j> = Aji,Bkj), which is independent of i, j, for fixed k, I;
. —(Bij, Bij) is positive and independent of i, j when i # j;
° <Bm, B;;) is positive and independent of i, j when i # j;
o —(By;, By) is positive and independent of i;
e (By;, Bu) = 0 unless either (i,7) = (k,1) or (I,k), or i=j and k=I;
e (B, Bii) — (B, Bj;) = 2(By;, Bi;) holds for any i # j.
In terms of the properties of Burnett functions, the viscosity coefficient p(#) and heat
conductivity coefficient x(6) can be represented by

AU — U v—u
M() RS J(\/m) j(@) #.]
K@Z—R%/Xiv_quv_u
( ) R3 ]( \/ﬁ) ]( \/@
Notice that these coefficients are positive smooth functions depending only on 6.
The following lemma is borrowed from [I1, Lemma 6.1], which is about the fast velocity
decay of the Burnett functions.

)dv > 0. (5.3)

Lemma 5.5. Suppose that U(v) is any polynomial of i’/;_%ﬁé such that U(v)M € (ker L)t

for any Mazwellian M = M 55(v) where Ly is as ([LIH). For any ¢ € (0,1) and any
multi-index 3, there exists constant Cg > 0 such that
05 L (U () M)| < Cy(p, 0, 0) M.
In particular, if the assumptions of [B.5l) hold, there ezists constant Cg > 0 such that
v—u v—u

)| + 1095 Bi;(

0gA;
|6]( 9 \/ﬁ

)| < CyME. (5.4)

5
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Now, we shall turn to summarize some refined estimates for the collision operators £ and
I defined as (2.7]). We first recall the properties of the linearized operators £. Note that
the null space N of £ is spanned by the functions {/f, v\/L, [v|*\/fz} in [9, 19]. Moreover,
for any g € N, there exists o > 0 such that

—(Lg,g) > a1|g|?- (5.5)

In addition, the weighted coercivity estimates on the linearized operators £ can be stated
as follows.

Lemma 5.6. Let |5| > 0 and w defined in (ZI2)). Then for anyn > 0, there exists C;) > 0
such that
— (0Lg, w1 Ds9) > (0ag12 15— 1 Y 108,912 — CulglZ. (5.6)
1B11<I8
Proof. The proof of (5.6]) can be found in [19] and we omit the proof here for brevity. [

In what follows we recall the weighted estimates on the nonlinear collision operators I'.

Lemma 5.7. Let w defined in (212) and ¢ > 0, for arbitrarily large constant b > 0, one
has

(0T (91,92), 0%ga)| < C Y [(0)°0™ 9112107 92]10° g3, (5.7)
a1 |<|ef
and
(5T (g1, 92), w*Dggs)| < C > Y \<U>_b8§/191\2|3§:§f92\o,5|3§93\o,5- (5.8)
loa|<laf |B|<|B1]<]B
Proof. The proof of (5.7) and (E.8)) can be found in [39, Proposition 1]. O

Finally, we prove some linear and nonlinear estimates, which are used in section [3 The

first estimates involving the linear terms F(%, f) and T'(f, %)

Lemma 5.8. Let |of + |5] < 2 with |B] > 1 and w defined in (212). Suppose that
Ey(7) < ktves5% and 6 = %e%_g" for a € [3,1] as well as the assumption ) holds. If
we choose g in BA) and k in B3) small enough, for any small n > 0, we get

a— te] M — H « a— o M — 1% o
€ 1‘(85F( 7f)7w2|maﬁh)‘ te 1|(86F(f7 )7w2|ﬁ‘aﬁh>|
< Cne™ |93 hII2 15 + Cylno + k23 739)Dy(7). (5.9)
Moreover, for |a| <1, one has
M —p

6“‘1|(5’”F(M\/_ﬁ“,f),8“h)| e @T(,

< Cne |92 h][2 + Cy (o + kT35 759) Dy (7).

), 0h)|

T3

(5.10)
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Proof. We only consider the first term on the left-hand side of (5.9) and the second term
of (59) can be handled in the same way. Since |a|+ || < 2 with |3] > 1, one has |a| < 1.
First of all, we have from (5.8]) that

e“-1|<agr<M i) s

< e Z > 1oy s el tnds, (510

lax|[<[el |8[<]B1]<]8]

due to the fact that w28l < w?#=A1l for |3 — ;| < |B|. For any 5 > 0 and m > 0, there
exists a small constant £; > 0 such that

[{v)™ 95

2 m M_ 2 —e1 2
R ORI / 9 (Y R

|BI<I8'|<IBl+1

N

For 1y > 0 in (B.3)), there exists a suitably large constant R > 0 such that

. M —
/ 1|9
[v|>R

D) 2dv < o2,

and

- M —pi 3142 2
Wt 0g dv <C(lp—=1|+|u—=0|+10 — =])* < Cn;.
[ oo P £ €= a0+ 0= 51 < O

Thus for any 5 > 0 and m > 0, we deduce from the above related estimates that

M —p
NG

M —p
NG

Notice that |aq| < |a| < 1in (@I). If |ag| = 0, we use (B12)), (2I6) and the smallness of
1 to get

[{v)™ 95 )z + [{v)™ 05 )2 < Cg. (5.12)

M—p _
a—1 —bAaay a—a e}
=t [ 10108 (5 ool

< Cnoe" |05, flloys—s11105 Al
< ne* |05 h1Z 5 + CymoDa(7). (5.13)
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If |oy] = |a] = 1, by the one-dimensional Sobolev imbedding theorem and (B.0]), we can
deduce from Lemma and the Cauchy inequality that

M —pn _
-1 v —baa/1 804 [e%1 ola— aaha d
JACRT VAT et |l

< Cet / 10 (0, 14, 0) 1055 F o510 Ml g1y

1 1
< Ce |0 (py 1w, O) 1055, £ 11355y 1040551 F 13 5y 105 Rl
< e 0GR 5 + Cue® e (6 + € 1) + Ea(T) HI05-5, f o551 104055, fll -5

< e O5R|2 5 + Cye™ + k1257 59) Dy (7). (5.14)
Here we have used the fact that &(7) < kses 59 < k1zes 5% by ([B4). Due to (33), one
has

€107 = kete 5T < fizes 3%, (5.15)
It follows from (5.13)), (513)), (5:14) and (511 that
M — 1
e (@D (—=E, ), w05 h)| < Cne M |OGhII2 15 + Colmo + k23739 Dy(7). (5.16)

On the other hand, similar arguments as (B.10]) imply

ulw

SNDy(r).  (5.17)

- a M — fe) a— a X
€’ 1|(0BF(f, \/ﬁﬂ),wmaﬁhﬂ < Cne 1||05h||(2,,‘6| + Cp(no + k12e

This ends the proof of (B.9) in terms of (B.I6) and (GI7). By (B1) and the similar
arguments as (B.10) and (B.I7), we can prove that (5.10) holds and we omit the details for
brevity. This completes the proof of Lemma [5.8 O

The second estimates are concerned with the nonlinear term I'(-% N \/_)

Lemma 5.9. Under the assumptions of Lemma [2.8 and let |o| + |5] < 2 with |f] > 1.
Then for any n > 0, one has

G G

€4~ 1 0T (—  — w2\6|ao¢h
(95 (\/ﬁ \/ﬁ) 3l
< One Y|9ghIJ2 5 + Coes T8 + €17) 75 + Oy k12373 Dy (7). (5.18)
Moreover, for |a| <1, it holds that
a—lua&m%, %), )| < Cpe ORI + Cpeh59(5 + )4 4+ Chtred=2Dy(r).
(5.19)
Proof. Recall G = G + VILf, a simple computation shows that
G G G G G G
I— —)=0(—,—=) + (—. /) + I(f/,—=) + I'(/, /) (5.20)
VAR VR VR Vi
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From (5.§), one can see that

G G

(05 CT(T 7) w195 h)|
a — Q] @ (0%
ccet > [ wnaﬁ R ot O hlagandy. (5:21)
|la1|<|af ["|<|B1]<|B]

In view of ([23)), (1)) and (5.2), we can write
a 1 a\/_e

\/* A(\/—) _aalyBll(\/ﬁ)?
which implies that for ; = (1,0,0),
05,G = ”{@Gywm J_“xfwulyam&l(%_gw%}, (5.22)
and
—~ 1a VRO, v—u VRO, v—u
0,G =€ { \/EAI(@) 2\/714(\/—)
\/Eﬁy —u Uy \/7«99y U, v—u
Vi Cm) vm i m) Ve
U Uyylly v—1u _Hlyﬁy(v—u _ v—1u
+ Bl ) = g VB ) - S umm VP g )%5 )

By using (54) and the similar expansion as (£.22)) and (5.23), for any |@| > 1 and |3| > 0,
we can obtain

G G .
(v >’”05(f)|2|5|+|< v)™0 (\/ﬁ)lam\ < Ce' (T, 0,), (5.24)
and
|(v)™ 05 (@>|2 + [{v)™0 (@)| < Ce 0%y, Oy)| + - + [(Ty, 0,)]107 (u, )|}
\/’ \B| \/,[_L 0|5\ vy Y vy ) )

(5.25)
due to the fact that |(v)™w!?l=2 M|, < C for any m > 0 and & > 0 small enough .
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With the help of (5.24)) and (5.25), we get from the Sobolev imbedding theorem that

G G
eH/ 0% (—=) | 10578 (—=) o s |05 e 1
195 (\/ﬁ)\zwl 3 51(\/ﬁ)| 18611195 hlo a1y

< cert [ {eme om0+ (. 8,107 (0]}

x €~ {]07 iy, O,)| + | (g, 0,)[107 (u, 9)I}I0§hla,|m}dy

< Cne“_1||0§h||§,w| + Cne%J“Tlf)“((S + 6“7‘)_% + an:%e%_%“l)g(f), (5.26)
according to (B.3)), (84) and |ay| < |a] < 1. This together with (5.21]) give that
G G
(09T (—=, —=), wPlagh
B \/,[_L \/ﬁ B )‘
< One Y|9g Rl 5 + Coes T8 + €17) 75 + Oy k12373 Dy (7). (5.27)

For the second term of (5.20), by using (5.8)), (.25]) and the Sobolev imbedding theorem,
one can deduce from (B3] and (3.4) that

G
(AT (—, f), w?Posh
(95 (\/ﬁ f) 5h)]

<cet 3 S [ {io .0,

lat [<|a [B1]<]B]
+ | (t1y, 0,)]]0° (u, 9)I}|8§:§‘:f |o.15—11105 1l 0,151 Ay
< e Y| 95R2, 5 + CykTzes 59Dy (7). (5.28)

Since the third term of (5.20) shares the same estimates as (0.28). Thus, we still deal with
the last term of (5.20). In view of (5.8]), the imbedding theorem and (B3.4]), one has

(5T [f, £1, wPlogh),
< Ce ! Z Z /R|8§3f|2,5/\8§I§‘ff\a,g_gl||8§h|@wdy

loa|<l|e| |B"]<|B1[<[B]
< ne" 195 hllg 15 + Cy v/ Ex(T) Da(7)
< e OGh|12 g + CykTEes 59Dy (7). (5.29)
Collecting the estimates of (.27), (5.28) and (5.29), we can obtain
G G
(00T (—, —), wPloah
(95 (\/ﬁ \/ﬁ) 3h)

< Cne M OFh|12 5 + Coes T8 + €77) 73 + 1€ 57 Dy(7).
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This completes the proof of (5.I8]). One can deduce (5.I9) by employing (B.7) and the
similar arguments as the above related estimates. This ends the proof of Lemma 0J
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