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We present a complete topological characterization of a bilayer composite of two Chern insula-
tors (specifically, Haldane models) and explicitly establish the bulk-boundary correspondences. We
show that an appropriately defined Chern number accurately maps out all the possible phases of
the system and remains well-defined even in the presence of degeneracies in the occupied bands.
Importantly, our result paves the way for realizing adiabatic preparation of monolayer Chern in-
sulators. This has been a major challenge till date, given the impossibility of unitarily connecting
inequivalent topological phases. We show that this difficulty can be circumvented by adiabatically
varying the interlayer coupling in such a way that the system remains gapped at all times. In par-
ticular, a complete knowledge of the phase diagram of the bilayer composite immediately allows one
to identify all such adiabatic passages which may connect the different Chern inequivalent phases
of the individual monolayers.

I. INTRODUCTION

The Haldane model is a paradigmatic model of two-
dimensional non-interacting Chern insulators and has
been subjected to extensive theoretical as well as ex-
perimental studies1–8. In its commonly studied form,
the model is realized on a monolayer graphene honey-
comb lattice with broken sublattice and time-reversal
symmetries (see Appendix A) for a short discussion on
Haldane model). The topological phases of the model
are characterized by an integer quantized Chern invari-
ant; furthermore, a topological bulk-boundary correspon-
dence (BBC) in the form of chiral edge states emerges
in the non-trivial Chern phases. In recent years, sev-
eral works have explored composite systems of coupled
Haldane layers, in particular, bilayer systems9–16. De-
spite several intriguing attempts,9–12 it has remained un-
clear whether the topological structure of the monolayer
Haldane system is carried over to a bilayer composite.
In this regard, it has recently been shown that a ‘topo-
logical proximity effect’ results from the gap induced in
the graphene monolayer, in a coupled Haldane-graphene
system9,10. Similarly, bilayer composites of Haldane sys-
tems are known to host topological ‘corner states’, al-
though the edge states are gapped out13–16.

In parallel, the unitary preparation or tuning of Chern
insulating phases17–24 of the (monolayer) Haldane model
has remained a major challenge till date. While there
has been a fair amount of success with respect to the ex-
perimental preparation of materials hosting Chern non-
trivial phases5–8, dynamical tuning or switching across
the different Chern phases in a given Chern insulator is
altogether a different challenge. To elaborate, the diffi-
culty is two-fold. First, one needs to engineer the effective
Hamiltonian generating the time evolution of the system
in such a way that the ground state of the engineered
Hamiltonian is in the desired topological phase. This,
for example, can be achieved simply through a sudden

quench or a periodic modulation of the Hamiltonian. In
this regard, it has been demonstrated that the effective
Floquet Hamiltonian driving the stroboscopic dynamics
of a periodically modulated system can host topologi-
cally non-trivial phases, despite the ground state of the
undriven Hamiltonian being in a trivial/non-topological
phase. This idea has also been exemplified through the
application of circularly polarized radiation on graphene
(see Refs. 25,26).

Secondly, in generic out-of-equilibrium systems, the
time-evolved many-body state is not an eigenstate of the
effective Hamiltonian generating the dynamics. Thus,
the time-evolved state may not exhibit a topological
BBC, as expected from the non-trivial effective Hamilto-
nian. An immediate and apparent solution to the prob-
lem is to maintain adiabaticity throughout the dynam-
ics, at least in incommensurate finite-size systems, i.e.,
systems in which the gapless point is excluded from the
Brillouin zone (see Ref. 27). This ensures that the out-of-
equilibrium state closely follows the ground state of the
effective Hamiltonian. It has indeed been shown that by
maintaining adiabaticity in finite-size systems, the lat-
tice Chern number or the Bott topological index17 can
capture a dynamical topological phase transition in the
non-equilibrium state of the system. This is, neverthe-
less, a difficult task to achieve experimentally as the dy-
namics needs to be extremely slow for sufficiently large
systems and therefore requires a long coherence time of
the system.

It is also important to realize that a topological
bulk-boundary correspondence (BBC) only holds in the
thermodynamic limit, i.e., when the conducting edge
states decaying exponentially28 into the bulk, do not
hybridize. One therefore must address the dynamical
preparation or tuning of non-trivial Chern states not just
in finite systems but also in the thermodynamic limit.
However, maintaining adiabaticity in dynamics to tune
the system across different Chern phases is impractical
for thermodynamically large systems, as the minimum
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FIG. 1: (a) The bilayer Haldane model realized by two verti-
cally stacked and perfectly aligned honeycomb lattices. The
red and blue spheres correspond to the two sublattices and
the black dashed lines indicate that each lattice point is cou-
pled only with the one directly above or below it. (b) (Top
view) – In a semi-infinite system with armchair edges, the
lower (upper) layer can be divided into M ‘strips’ of chains,
each indexed by the letter ml(u) = 1, 2, 3, . . . ,M .

energy gap vanishes for such systems at the critical
points separating inequivalent topological sectors. In
fact, it has already been established27 that, neither the
Chern number nor the Bott invariant can be changed
under unitary dynamics in thermodynamically large or
commensurate (i.e., systems in which the gapless point
is included within the Brillouin zone) translationally
invariant monolayer Chern insulators (see Ref. 29 for a
deeper discussion on the problem).

In this work, we address the aforementioned obstacle
in the dynamical preparation and tuning of non-trivial
Chern states in the thermodynamic limit. To this end,
we consider the possibility of adiabatically tuning the
phase of a thermodynamically large Chern insulator
when coupled to a similar, but not necessarily identical,
Chern insulating system. To elaborate, we first analyze
the topological characterization of a bilayer Haldane
system in its ground state and the associated BBCs.
We find that even in the presence of a finite coupling
between the layers, the bilayer system is capable of
hosting topologically non-trivial phases, although the
topology of the individual layers cease to be well-defined.
In particular, we make use of the total Chern number,
calculated from the non-Abelian Berry curvature30–35 to
identify the topological phases of the bilayer system. As
our main result, we show that such bilayer composites
facilitate unitary preparation or tuning of Chern phases
in commensurate and incommensurate monolayer Chern
insulating lattices.

To this end, a complete knowledge of the topological
phases of the bilayer composite is crucial to identify adia-
batic passages, which can be traversed to tune the Chern
phases (defined in the absence of interlayer coupling) of
the individual layers. The adiabaticity ensures that the
bulk-boundary correspondence is restored at the end of
the tuning process. Importantly, the adiabatic passages

persist even in the thermodynamic limit, a finding which
is highly significant in the context of unitarily tuning the
phases of Chern insulators. As we discuss in the conclu-
sion, the dynamical coupling to such an ancillary layer
also allows one to search for optimal adiabatic pathways
aiding the experimental realization of such protocols.

II. MODEL

In our model we make the simplifying assumption
that the two layers have identical sets of values of
the Semenoff mass M as well as the nearest-neighbor
(NN) and the next-nearest-neighbor (NNN) hopping
amplitudes, t1 and t2, respectively. However, they may
differ with respect to the phase of the complex NNN
hoppings. We will denote the corresponding phases
of the ‘lower’ and the ‘upper’ layers as φl and φu,
respectively. In addition, the interlayer interaction is so
chosen, that within the translationally invariant bulk,
modes with different lattice momenta k in the Brillouin
zone (BZ) do not couple. This retains the integrability
of the composite system.

Assuming periodic boundary conditions for the bulk,

the Hamiltonian is decoupled as, H =
⊕

k c
†
kH(k)ck,

where ck =
(
clk,A, c

l
k,B, c

u
k,A, c

u
k,B

)
is a vector of the an-

nihilation operators with {A,B} and {l, u} being the sub-
lattice and layer indices, respectively. The single-particle
Hamiltonian H(k) assumes the form,

H(k) =
⊕
k

(
Hl(k) Γ

Γ† Hu(k)

)
, (1)

where Hl(u) is the Haldane Hamiltonian corresponding
to the lower (upper) layer and Γ denotes the interac-
tion potential between the layers. We recall the Bloch
form of the Haldane Hamiltonians (see Appendix A),

Hl(u)(k) = dl(u)(k) · σ, where dl(u) = {dx, dy, dl(u)z } and
σ is a vector of pseudo-spin operators. Note that only

d
l(u)
z depends on the complex phase and is therefore an-

notated with distinct superscripts for each layer. In what
follows, we consider a staggered interlayer coupling of the
form Γ = γτz, where τz is another pseudo-spin opera-
tor. Physically, such a situation may arise when the two
graphene sheets are perfectly aligned with each other and
satisfying the following two conditions: (i) each lattice
point in the upper layer interacts only with the lattice
point directly below it in the lower layer (see Fig. 1(a)),
and (ii) the interaction is attractive or repulsive depend-
ing on which of the two sublattices a given point belongs
to. We emphasize here that the staggered nature of the
interaction (condition (ii)) only simplifies the analysis of
the topological phases and our results remain qualita-
tively unaltered for more general interactions as discussed
in Sec. III.
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FIG. 2: (a) The four dispersion bands of the bilayer Haldane model corresponding to the Hamiltonian in Eq. (1). Topological
phases of the bilayer Haldane model in the φl − φu plane with (b) γ = 0 and (c) γ = 0.8. The black solid lines represent the
critical boundaries between the different phases at which the bulk gap vanishes. The colors indicate the values of the total
Chern number which acquire only integer quantized values, ranging from −2 to 2. Note that the points A and B are no longer
separated by critical lines when γ 6= 0. The other parameter values chosen for the plots are t1 = 1, t2 = 1/3 and M = 0.5.

Analyzing the spectrum of the Hamiltonian in Eq. (1), the energy bands assume the form,

E±1 (k) = ±

√
d2x(k) + d2y(k) +

1

4

(
dlz(k) + duz (k) +

√
(dlz(k)− duz (k))2 + 4γ2

)2

, (2a)

E±2 (k) = ±

√
d2x(k) + d2y(k) +

1

4

(
dlz(k) + duz (k)−

√
(dlz(k)− duz (k))2 + 4γ2

)2

, (2b)

where E−1 (k) ≤ E−2 (k) ≤ 0 ≤ E+
2 (k) ≤ E+

1 (k) (see
Fig. 2(a)). In the ground state, only E−1 and E−2 are
completely occupied while the rest are completely empty.
Clearly, a finite gap between the occupied and empty
band ensures that the bulk of the system remains insu-
lating. Note that the efficacy of choosing a staggered
interaction, as manifested in Eqs. (2), is that the bulk
gap can vanish only at the Dirac points K, K ′, where
dx(K,K ′) = dy(K,K ′) = 0. Hence it suffices to an-
alyze the spectrum in the vicinity of the Dirac points
only. In particular, the critical points are found by set-
ting E±2 (K) = 0 and E±2 (K ′) = 0, leading to the condi-
tions,

dlz(K)duz (K) = γ2, dlz(K
′)duz (K ′) = γ2. (3)

In the limiting case γ = 0, the conditions in Eq. (3)

are satisfied when d
l(u)
z (K) = 0 and/or d

l(u)
z (K ′) = 0,

implying that at least one of the independent Haldane
layers undergoes a topological phase transition. This
is trivially expected since the topological properties
of the composite system can be deduced from that of
the individual layers, in terms of the Chern numbers
Cl(u) = 0,±1 of the lower (upper) layers.

The situation is however not trivial for γ 6= 0 since the
finite interaction between the layers no longer guarantees
particle number conservation of the individual layers. In
Fig. 2(c), the critical boundaries (black solid lines) ob-
tained from Eq. (3) are plotted in the φl − φu plane for
fixed values of M , t1 and t2. The critical lines separate
the φl − φu plane into distinct regions which, as we will
demonstrate below, are characterized by integer quan-
tized topological invariants.

III. PHASE DIAGRAM AND BBC

For systems with multiple occupied bands, the Chern
invariant characterizing the topological phases is calcu-
lated from the U(2) Berry curvature which is non-Abelian
(see Appendix B for a detailed discussion). The Chern
number thus defined turns out to be equivalent to the to-
tal Chern number calculated by summing up the Abelian
curvatures of the individual bands. It is given by,

Ctot =
i

2π

∫
BZ

d2k Tr

(
P

[
∂P

∂ki
,
∂P

∂kj

])
, (4)
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Here, P =
∑2
n=1 |n(k)〉 〈n(k)| is the projection operator

on the ground state manifold of occupied states, with
|n(k)〉 being the occupied energy eigenstates of H(k).
It is important to note that the total Chern number,
as defined in Eq. (4), remains integer quantized and
well-defined as long as the gap between the occupied and
the empty bands remains finite. This includes situations
in which the occupied bands may become degenerate at
some points on the BZ.

Fig. 2(c) illustrates that the regions separated by the
critical lines acquire distinct values of the Chern number,
Ctot = 0,±1,±2, suggesting that the bilayer Haldane
system is endowed with a rich topological structure even
in the presence of a finite interaction between the layers.
The natural question which then arises is whether there
exists any BBC corresponding to the integer quantized
values of Ctot. To this end, we consider the case of a semi-
infinite bilayer composite, where the system is infinite
along the cartesian x-axis and has a finite width along the
y-axis. Exploiting the conservation of kx, we depict the
resulting spectrum for different values of Chern number
in Fig. 3. It is evident that when Ctot = 0, the energy
spectrum is gapped and no conducting edge states exist.
On the contrary, when Ctot 6= 0, conducting edge modes
appear in the bulk gap, connecting the filled valence band
with the empty conduction band.

To further establish the BBC, we inspect the proba-
bility distribution of the ground state of the Hamilto-
nian corresponding to a particular lattice momentum kx,
along the finite y-axis of each of the layers. As shown in
Fig. 1(b), we can divide each of the layers into M ‘strips’
along y for armchair boundary edges. For a given energy
eigenstate |ψ(kx = k)〉, we then calculate the quantity
given by

Pk(ml(u)) =

2∑
s=1

∣∣∣〈ms
l(u)|ψ(k)〉

∣∣∣2 , (5)

where ms
l(u) is a lattice point on the mth strip of the

lower (upper) layer, and s labels the sublattice to which
the lattice point belongs.

In Figs. 3(b) and 3(c) , we plot the quantity defined in
Eq. (5) as a function of ml(u) for two of the highest energy
occupied eigenstates at a lattice momentum kx > 0. For
Ctot = 1 (see Fig. 3(b)), we see that only one of the
eigenstates is localized at the edges and it spans the edges
of both the layers. On the other hand, for Ctot = 2 (see
Fig. 3(c)), it is evident that both eigenstates are edge-
localized with each of them spanning the edge of only one
of the two layers. Thus, we see a direct correspondence
between the value of Ctot and the number of localized
edge states. This correspondence is also corroborated by
calculating the inverse participation ratios (IPR) of the
energy eigenvalues as shown in Appendix C. Further, we
have verified that the edge states localize at the opposite
edge of the layers for kx < 0, thus establishing their chiral
nature. Interestingly, we note that the Chern number

turns out to be identical to the Chern number of the
lowest energy band of two-particles energy eigenstates
see Appendix D for details.

IV. UNITARILY CONNECTING
INEQUIVALENT PHASES OF MONOLAYER

CHERN INSULATORS

As already mentioned, the presence of critical bound-
aries separating the topological phases of a monolayer
Haldane system makes it impossible to tune the system
across different phases. However, we have already seen
that the presence of finite inter-coupling alters the phase
space structure (see Figs. 2(b) and 2(c)), which can open
up adiabatic passages connecting distinct topological
phases (defined for γ = 0), of the monolayers. To exem-
plify this, we will demonstrate a simple case in which an
initially decoupled bilayer system with Cil = −Ciu = 1
is adiabatically transformed to another decoupled

configuration, Cfl = −Cfu = −1. Thus the protocol
exchanges the Chern numbers of the layers at the end
of the process. The underlying idea is to dynamically
break the U(1) × U(1) sub-group of the complete U(2)
gauge symmetry so as to facilitate the adiabatic tuning
of the monolayer Chern phases, followed by complete
restoration of the same symmetry. The transformation
is achieved through an appropriate manipulation of the
parameters γ, φl and φu, such that adiabatic conditions
are maintained throughout the process.

We now outline the protocol which is a three-step pro-
cess. We assume that the two layers are initialized in
the ground state with γ = 0 so that each of them has
well-defined Chern numbers. The other Hamiltonian pa-
rameters are so chosen such that the Chern numbers for
the lower and the upper layers are Cil = 1 and Ciu = −1,
respectively. In the first step of the protocol, the inter-
layer coupling γ is slowly ramped to a finite value, so as
to open up adiabatic passages between the desired initial
and final configurations. This is exemplified in Figs. 2(b)
and 2(c), where the points A and B are no longer sepa-
rated by critical lines in the presence of a finite γ. In the
next step, the complex phases φl and φu are slowly tuned
to their target values, keeping γ constant. Note that in
the absence of the inter-layer coupling, this would have
required crossing the critical lines which cannot be per-
formed adiabatically in the thermodynamic limit. In the
final step, the interlayer coupling is slowly turned off so
that the two layers once again acquire well-defined Chern
numbers at the end of the protocol. Since adiabaticity
is maintained throughout, the two layers are expected
to remain in their respective ground states. The three-
step protocol is encoded in the time-dependence of the
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FIG. 3: (a) Spectrum of the semi-infinite bilayer Haldane model with armchair edges and Ctot = 2. The values of the complex
phases are chosen to be φl = 1.55, φu = 1.59. The other parameters are the same as in Fig. 2(c). The probability distribution
Pk(ml(u)) (see Eq. (5)) for two of the highest energy modes in the valence band as a function of ml(u) in the cases of (b)
Ctot = 1 and (c) Ctot = 2. In the former case, only one localized edge mode, shown in red, exists which spans the edge of both
the lower and the upper (inset of (b)) layers, while the other mode, shown in blue, diffuses into the bulk. On the other hand,
for Ctot = 2, two edge modes exist with one of them (red) localized at the edge of the lower layer and the other (blue) at the
edge of the upper layer (inset of (c)).

Hamiltonian parameters as,

γ(t) =


γc

t
τ ′ for 0 ≤ t ≤ τ ′

γc for τ ′ ≤ t ≤ τ ′′

γc

(
1− t−τ ′′

τ−τ ′′

)
for τ ′′ ≤ t ≤ τ

(6a)

φl(u)(t) =


φil(u) for t ≤ τ ′

φil(u) + (φfl(u) − φ
i
l(u))

t−τ ′

τ ′′−τ ′ for τ ′ ≤ t ≤ τ ′′

φfl(u) for t ≥ τ ′′

(6b)
At intermediate times, the presence of a finite cou-

pling implies that the layers are entangled and hence
they do not have well-defined Chern numbers. Nev-
ertheless, it is possible to define a Chern number (see
for example Ref. 36) in terms of the reduced state of
the individual layers, ρl(u)(k) = Tru(l) (|ψ(k)〉 〈ψ(k)|),
where |ψ(k)〉 represents the time-evolved state of the
bilayer system for the momentum k (the momentum
modes always remain decoupled). Defining the opera-
tors, Λl(u) = Ξρl(u)/N , where the operator Ξ projects
the density matrix into the single-particle subspace and

N =

√
2Tr

[
ρ2l(u)

]
− Tr

[
ρl(u)

]2
is a normalization con-

stant, a time-dependent Chern number of each layer can
then be defined as,

C̃l(u)(t) =
i

2π

∫
BZ

d2k Tr

(
Λl(u)(t)

[
∂Λl(u)(t)

∂ki
,
∂Λl(u)(t)

∂kj

])
.

(7)
It is straightforward to check that the time-dependent
Chern number defined above reduces to the exact Chern
number of the individual layers defined in Eq. (4)
when ρl(u) = |gl(u)(k)〉 〈gl(u)(k)|, where |gl(u)(k)〉 is the

C
˜
l

C
˜
u

Θl

0 20 40 60 80 100 120 140

-1.0

-0.5

0.0

0.5

1.0

t

FIG. 4: Dynamical exchange of the Chern numbers between
the two layers attained using the protocol in Eq. (6). The
Chern numbers (red and blue curves) are determined using
Eq. (7) and do not have any BBC in the intermediate stage,
0 < t < τ . At the end of the protocol, the purity of the states
representing the layers, shown only for the lower layer above
(black curve), are restored to unity with C̃l(u)(τ) = Cl(u).
Note that the total Chern number remains invariant through-
out the process Ctot = 0. The parameter values chosen are
t1 = 1, t2 = 1/3,M = 0.5, φi

l = −φf
l = 0.5, φi

u = −0.9, φf
u =

0.6, γc = 1, τ ′ = 20, τ ′′ = 120 and τ = 140.

ground state of the lower (upper) layer corresponding
the momentum mode k. We assume this to be true at
t = 0, such that C̃l(u)(0) = Cil(u).

For our demonstration, we assume the following
parameter values: t1 = 1, t2 = 1/3,M = 0.5, φil =

−φfl = 0.5, φiu = −0.9, φfu = 0.6, γc = 1. One can verify
that this choice of parameters leads to Cil = −Ciu = 1

and Cfl = −Cfu = −1. The desired exchange of the
Chern numbers between the layers is achieved when the
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FIG. 5: Phase diagram in the φl − φu plane for (a) Γ = γI and (b) Γ = γτx. In all cases, one can identify distinct topological
phases with Ctot = 0,±1,±2.

.

following two conditions are satisfied: (i) the layers are
rendered to pure states at the end of the process, i.e.,

Θl(u)(τ) = Tr
[
ρl(u)(τ)2

]
= 1, and (ii) C̃l(u)(τ) = Cfl(u).

As can be seen from Fig. 4, which shows the temporal
evolution of C̃l(u) and Θl(u), the above conditions are
indeed satisfied; the Chern numbers of the layers are
therefore exchanged within a finite time τ .

Finally, we would like to emphasize here that the
protocol presented above does not require the two layers
to be conjugate pairs of each other, unlike the protocol
presented in Ref. 37. In the example above, conjugacy
would have been maintained if φl(t) = −φu(t) for all t,
which is clearly not the case. In fact, any desired trans-
formation from a given configuration of Chern numbers
to a targeted one can be achieved as long as the total
Chern number remains the same throughout the process.
Thus, a complete knowledge of the topological phases
of the bilayer system allows one to identify viable adia-
batic paths to tune the Chern number of the monolayers.

V. PHASE DIAGRAM FOR NON-STAGGERED
INTERACTION

As discussed in Sec. II, the advantage of choosing a
staggered interaction between the layers is that the band
gap can vanish only at the Dirac points, which permits
a simpler analysis. However, as shown in Fig. 5, the
topological structure of the bilayer Haldane system can
appear for other forms of interactions as well. Fig. 5(a)
shows the phase diagram for an interaction of the form
Γ = γI, where I is the 2 × 2 identity matrix. One
can identify qualitatively similar topological phases with
Ctot = 0,±1,±2, as those found in the case of a stag-
gered interaction (compare with Fig. 2(c)). The same

also holds true for an interaction of the form Γ = γτx, as
shown in Fig. 5(b). Thus, the topological structure of the
bilayer Haldane model is a general feature, irrespective
of the exact form of the interaction between the layers.
For reference, we have also presented the phase diagram
in the case of decoupled layers with γ = 0 in Fig. 2(b).

VI. SUMMARY AND OUTLOOK

Summarizing, we have shown that a bilayer compos-
ite of two coupled Haldane systems possess a robust
topological structure exhibiting bulk-boundary corre-
spondences. The topologically protected edge states
can either be confined to individual layers or diffused
across the edges of the layers, depending on the exact
value of the bulk Chern number. Further, we have also
explicitly demonstrated that by dynamically breaking
and eventually restoring the U(1) × U(1) subgroup of
the complete U(2) gauge symmetry in a bilayer Chern
system, it becomes experimentally viable to realize
adiabatic tuning of the Chern phases of the individual
layers even in the thermodynamic limit; the required
protocol for the same is easily identified through a
careful inspection of the topological landscape of the
bilayer system. Interestingly, the opening up of a gap in
the spectrum due to the coupling between the two layers
can be thought to be equivalent to a counter-diabatic
process38 suppressing diabatic excitations in the ther-
modynamic limit. In this regard, optimizing the possible
adiabatic pathways to facilitate quicker preparation of
non-trivial Chern states can be an interesting problem
for future investigations. Moreover, the results presented
in this work are not strictly restricted to a bilayer
Haldane system and can be easily generalized to any 2D
Chern insulating system.
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We note in passing that the unitary protocol presented
in our work can be analogously compared to the adia-
batic tuning of symmetry-protected-topological phases
in one-dimensional systems. There, it has been shown39

that adiabaticity can be maintained throughout, if any
of the protecting discrete symmetry (time reversal,
charge conjugation or chiral) is broken during the tuning
process.

A future direction of study might be to look into the
possible topological classifications of twisted bilayer sys-
tems and the robustness of the adiabatic protocol dis-
cussed in this work in such systems. Further, it may be
worthwhile to investigate the topological transitions in
more than two connected layers of Haldane-like systems.
For example, an immediate generalization of our results
can be made for a system with N such layers with finite
interlayer couplings, in which case the total Chern num-
ber Ctot ∈ [−N,N ] of all the layers in the ground state
becomes invariant under arbitrary unitary dynamics. It
then follows that for a fixed N , there exist 2N+1 distinct
topological sectors of the complete system characterized
by the total Chern number, which cannot be adiabati-
cally connected to each other. However, each such sector
comprises of several topologically distinct configurations
of the individual layers in the decoupled limit. Hence,
similar to the bilayer system, it may then be possible to

dynamically induce adiabatic transitions (by introducing
a finite coupling between the layers) between these mul-
tiple topological configurations of the individual layers
adding up to the same Ctot, even in thermodynamically
large systems.
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Appendix A: Haldane Model

The Haldane model4 is an integrable two-dimensional
model of spinless electrons. It is based on the graphene
honeycomb lattice (Fig. 1(b) of main text) with broken
sublattice symmetry (SLS) and time-reversal symmetry
(TRS). The Hamiltonian is given by,

H = t1
∑

i,j=NN

c†iAcjB + t2
∑

i,j=NNN

eiφij

(
c†iAcjA + c†iBcjB

)
+M

∑
i

(
c†iAciA − c

†
iBciB

)
+H.c., (A1)

where A and B identify the two sublattices of the hon-
eycomb lattice, and t1 and t2 are the amplitudes of the
nearest-neighbor (NN) and next-nearest-neighbor (NNN)
hoppings, respectively (see Fig. 6). The (TRS) is broken
by the complex NNN hoppings, the arguments of which,
φij = ±φ, is chosen to be positive (negative) for hop-
pings in the clockwise (anticlockwise) sense. The SLS,
on the other hand, is broken both by the complex hop-
pings and the Semenoff mass M . Within the bulk, we
can assume periodic boundary conditions. The Hamil-
tonian then decouples for each lattice momentum mode

within the Brillouin zone (BZ), H =
⊕

k c
†
kH(k)ck,

where ck = (ck,A, ck,B). The single-particle Hamiltonian
H(k) assumes the Bloch form,

H(k) = d(k) · σ + d0(k)I, (A2)

where σ ≡ (σx, σy, σz) are the Pauli matrices, I is the
2× 2 identity matrix, and

dx(k) = t1 (cos (k · e1) + cos (k · e2) + cos (k · e3)) ,
(A3a)

dy(k) = t1 (sin (k · e1) + sin (k · e2) + sin (k · e3)) ,
(A3b)

dz(k) = M−2t2 sinφ
(

sin (k · v1)+sin (k · v2)+sin (k · v3)
)
,

(A3c)

d0(k) = −2t2 cosφ
(

cos (k · v1)+cos (k · v2)+cos (k · v3)
)
.

(A3d)
Here, for a given lattice site, the vectors {ei} and {vi}
(i = 1, 2, 3) are the locations of the NN and NNN sites
respectively. The component d0(k) has been ignored in
the bilayer Haldane model discussed in the main text as
it only renormalizes the energy levels of each lattice mo-
mentum mode and does not affect the topological prop-
erties of the system. The energy spectrum is thus given
by

E = ±
√
dx(k)2 + dy(k)2 + dz(k)2. (A4)

The topological phases of the Haldane model are char-
acterized by a topological order parameter, namely the
Chern number C, which takes on only integer quantized
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A

B

FIG. 6: (Figure taken from Ref. [40]) Schematic representa-
tion of the nearest-neighbor and next-nearest-neighbor cou-
plings in the monolayer Haldane model

values. When C = 0, the system exists in a trivial phase
and behaves as a normal insulator, while for C = ±1,
chiral edge states arise which are topologically protected
and hence robust, while the bulk of the system remains
insulating. The phases are separated from one another
by the critical lines, at which the band gap vanishes.
Note that when M = t2 = 0, t = 1, the Hamiltonian re-
duces to that of the gapless graphene Hamiltonian with
no topological properties.

Appendix B: Chern number of multiple occupied
band systems

In general, for an N -band system with completely filled
N/2 bands (half-filling), the Berry connection is given by
a N/2×N/2 matrix of the form,

Anm = i 〈n(k)| ∇k |m(k)〉 , (B1)

where n,m = 1, 2, . . . , N/2, label the energy eigenstates
corresponding to the filled energy bands. The tensor form
arises due to the fact that multiple filled bands become
indistinguishable at degenerate points and the individual
Chern numbers fail to remain quantized. Unlike a single
filled band, the generic gauge invariance of the quantum
state is no longer U(1). In the case of the bilayer Haldane
system, where N = 4, a generic gauge transformation in
the larger filled subspace (of two bands) takes the form

Ψ′k = ΨkUk, (B2)

where Ψk =
(
|φ1k〉 |φ2k〉

)
is a spinor comprising of the

two occupied states |φ1k〉 and |φ2k〉, and Uk is an arbitrary
U(2) matrix. Importantly, the gauge group U(2) is not

Abelian, and hence, one needs to define a non-Abelian
connection for parallel transport of the spinors in this
space.

The non-Abelian curvature form Fna is given by,

F ijna(k) =
∂

∂ki
Aj − ∂

∂kj
Ai − i

[
Ai, Aj

]
, (B3)

where i, j denote the components of the vectors along the
unit vectors of the reciprocal lattice. The Chern number
characterizing the topological phase of the system is then
calculated as follows31,

C =
1

2π

∫
BZ

d2k Tr (Fna(k)) . (B4)

A convenient form of the Chern number can be derived
from the above equation in terms of the projection op-
erator P on the ground state manifold of the completely
filled bands32,

C =
i

2π

∫
BZ

d2k Tr

(
P

[
∂P

∂ki
,
∂P

∂kj

])
, (B5)

where P =
∑N/2
n=1 |n(k)〉 〈n(k)|. For N = 2, we re-

cover the commonly used definition of the Chern number,
which characterizes the topological phases of two-band
Chern insulators. Further, if all the occupied bands are
gapped among themselves, the C is equivalent to the sum
of the Chern numbers of the occupied bands. On the con-
trary, if any degeneracy arises among the occupied bands,
the Chern numbers of the individual bands no longer re-
main well-defined. The total Chern number, as defined
in Eq. (B5) however, remains integer quantized as long
as the gap between the occupied and the empty bands
remains finite.

Appendix C: Inverse participation ratios of the
energy eigenstates for semi-open boundary

conditions

We consider the semi-infinite bilayer Haldane system
with armchair edges discussed in the main text. The
inverse participation ratio (IPR) of an energy eigenstate
ψn is defined as,

IPR(ψn) =
∑
ml,s

|〈ms
l |ψn〉|

4
+
∑
mu,s

|〈ms
u|ψn〉|

4
, (C1)

where ml(u) is the ‘strip’ index for the lower (upper)
layer and s is the sublattice index. If a given eigen-state
is extended in real space, then one can roughly assume∣∣∣〈ms

l(u)|ψn〉
∣∣∣2 ≈ 1/2M , where M is the total number of

horizontal strips. The IPR for extended states thus di-
minishes with increasing M and vanish in the thermody-
namic limit. On the other hand, for localized states, the
IPR remains finite with increasing M .
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FIG. 7: Inverse participation ratio values for all energy eigenstates in a semi-finite bilayer Haldane model for (a) Ctot = 1 and
(b) Ctot = 2. The IPR values identify two (one occupied) and four (two occupied) localized edge states in case (a) and (b),
respectively.

In Fig. 7(a), we plot the IPR of all energy eigenstates
when Ctot = 1 with M = 40. It is clearly seen that the
IPR is significantly higher for a pair of eigen-states, con-
firming that there exist a pair of localized edge states,
only one of which is occupied in the ground state of the
system. Similarly, Fig. 7(b) shows the presence of four
localized states when Ctot = 2, two of which are occupied
in the ground state. Hence, there exists a one-to-one cor-
respondence between the number of occupied edge states
and the total Chern number.

Appendix D: Chern number from two-particle
ground state

As the two negative energy bands are completely
filled at half-filling and the total particle number is

conserved, the ground state of the bilayer system re-
sides in the two-particle Hilbert space. Within this
restricted Hilbert space, two out of the four single-
particle states are occupied for each lattice momen-
tum k. The basis states can thus be constructed
as {cl†k,Ac

l†
k,B |0〉, cl†k,Ac

u†
k,A |0〉, cl†k,Ac

u†
k,B |0〉, cl†k,Bc

u†
k,A |0〉,

cl†k,Bc
u†
k,B |0〉, c

u†
k,Ac

u†
k,B |0〉}, where |0〉 represents the zero-

particle vacuum state. The two-particle Hamiltonian in
this basis is given by

H(k) =


0 0 −γ −γ 0 0
0 dlz(k) + duz (k) dx(k)− idy(k) dx(k)− idy(k) 0 0
−γ dx(k) + idy(k) dlz(k)− duz (k) 0 dx(k)− idy(k) γ
−γ dx(k) + idy(k) 0 −dlz(k) + duz (k) dx(k)− idy(k) γ
0 0 dx(k) + idy(k) dx(k) + idy(k) −dlz(k)− duz (k) 0
0 0 γ γ 0 0

 . (D1)

The two-particle energy bands can be obtained by di-
agonalizing the above Hamiltonian. The Chern number
can then be calculated by integrating the (Abelian) Berry
curvature of the lowest energy band over the BZ. The
two-particle Chern number C2p thus calculated is in fact
equivalent to the total Chern number described in the
main text. To see this explicitly, we write the two-particle
ground state as |ψ〉 = ⊗ |ψ(k)〉 = ⊗ |φ1(k)〉 |φ2(k)〉 ,

where |φ1(k)〉 and |φ2(k)〉 are the negative energy single-
particle states. The Berry connection is found to be

A(k) = i 〈ψ(k)| ∇k |ψ(k)〉
= i 〈φ1(k)| ∇k |φ1(k)〉+ i 〈φ2(k)| ∇k |φ2(k)〉
= A11(k) +A22(k), (D2)
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and the Berry curvature is obtained as

F (k) =
∂

∂ki
Aj11 −

∂

∂kj
Ai11 +

∂

∂ki
Aj22 −

∂

∂kj
Ai22. (D3)

The two-particle Chern number is then calculated as

C2p =
1

2π

∫
BZ

d2k F (k). (D4)

On the other hand, the non-Abelian Berry curvature is
given by (see Eq. (6) of the main text),

Fna(k) =
∂

∂ki
Aj − ∂

∂kj
Ai − i

[
Ai, Aj

]
, (D5)

It is straightforward to check that Tr[Ai, Aj ] = 0 and
thus,

Tr (Fna(k)) =
∂

∂ki
Aj11−

∂

∂kj
Ai11+

∂

∂ki
Aj22−

∂

∂kj
Ai22 = F (k),

(D6)
where F (k) is the (Abelian) Berry curvature in Eq. (D3).
Hence, the Chern number is found to be

Ctot =
1

2π

∫
BZ

d2k Tr (Fna(k)) = C2p. (D7)
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