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LOW REGULARITY SOLUTIONS OF TWO-DIMENSIONAL

COMPRESSIBLE EULER EQUATIONS WITH DYNAMIC

VORTICITY

HUALI ZHANG

Abstract. By establishing a sharp Strichartz estimate for the velocity and
density, we prove the local well-posedness of solutions for the Cauchy problem
of two-dimensional compressible Euler equations, where the initial velocity,
density, and specific vorticity (v0, ρ0,̟0) ∈ Hs(R2)×Hs(R2)×H2(R2), s > 7

4
.

Our strategy relies on Smith-Tataru’s work [41] for quasi-linear wave equations.

1. Introduction

1.1. Overview. We consider the Cauchy’s problem of the compressible Euler equa-
tions in ∈ R+ × R2, of the form

(1.1)

{
̺t + div (̺v) = 0,

vt + (v · ∇)v + 1
̺
∇p(̺) = 0,

where the state function takes the general form

(1.2) p = p(̺),

and the initial data is

(1.3) (v, ̺)|t=0 = (v0, ̺0).

Above, v = (v1, v2), ̺, and p denote the fluid velocity, density, and pressure re-
spectively, and A is a constant. In the theory of partial differential equations, local
well-posedness is the first question to ask. For compressible Euler equations, no
matter how smooth and small the initial data is, the solution of (1.1) will blow up
in finite time [10, 32, 39, 43]. So we can only study the well-posedness of (1.1)-
(1.3) in a local sense. In many problems of this type, one is interested not only
in local well-posedness in some Sobolev space Hs(R2), but also in lowering the
exponent s as much as possible. Naturally, we ask the question: for which sc,
the Cauchy problem (1.1)-(1.3) is well-posed if (v0, ̺0) ∈ Hs(R2)(s > sc) and ill-
posed if (v0, ̺0) ∈ Hs(R2)(s ≤ sc). This question has been well studied [6, 41, 31]
for incompressible Euler equations and irrotational Euler equations. However, for
(1.1)-(1.3) with non-zero vorticity, the corresponding problem remains open. Our
goal is to study the local well-posedness of low regularity solutions to (1.1)-(1.3)
and explore the sharp Sobolev exponent.
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1.2. Background. The compressible Euler equations is a classical system in physics
to describe the motion of an idea fluid. The phenomena displayed in the interior of
a fluid fall into two broad classes, the phenomena of acoustics waves and the phe-
nomena of vortex motion. The sound phenomena depend on the compressibility of
a fluid, while the vortex phenomena occur even in a regime where the fluid may be
considered to be incompressible.

For the Cauchy problem of n-D incompressible Euler equations:

(1.4)





vt + (v · ∇)v +∇p = 0, (t, x) ∈ R+ × Rn,

divv = 0,

v|t=0 = v0,

Kato and Ponce [23] proved the local well-posedness of (1.4) if v0 ∈ Hs(Rn), s >
1 + n

2 . Chae [8] proved the local existence of solutions by setting v0 in the critical
Triebel-Lizorkin space. On the opposite direction, the ill-posedness of solutions of
(1.1) was answered by Bourgain and Li [6, 7], who proved that the solution will blow
up instantaneously for some v0 ∈ H1+n

2 (Rn), n = 2, 3. Very recently, Guo-Li in
[16] studied the continuous dependence of initial data in the critical Triebel-Lizorkin
space.

In the irrotational case, the compressible Euler equations can be reduced to a
special quasilinear wave equation. For general quasilinear wave equations, it can
be stated as

(1.5)

{
�h(φ)φ = q(dφ, dφ), (t, x) ∈ R+ × Rn,

φ|t=0 = φ0, ∂tφ|t=0 = φ1,

where φ is a scalar function, d = (∂t, ∂1, ∂2, · · · , ∂n), and h(φ) a Lorentzian metric
depending on φ, and q a quadratic term of dφ. Set the initial data (φ0, φ1) ∈
Hs(Rn) ×Hs−1(Rn). By using classical energy methods and Sobolev imbeddings,
Hughes-Kato-Marsden [18] proved the local well-posedness of the problem (1.5)
for s > n

2 + 1. Ifrim-Tataru [20] studied this reslut for quasilinear hyperbolic
equations by using the frequency envelope approach, where the frequency envelope
is introduced by Tao [48]. On the other side, Lindblad [31] constructed some
counterexamples for (1.5) when s = 7

4 , n = 2 or s = 2, n = 3. There is a gap
between the result [18] and [31]. To lower the regularity of the initial data, one
may seek a type of space-time estimates of dφ, namely, Strichartz estimates. Of
course there are several steps to obtain the sharp Strichartz estimates for (1.5).
The first natural idea is to consider the the wave equation with variable coefficients

(1.6) �h(t,x)φ = 0,

and then exploit it to obtain the low regularity solutions of (1.5). Kapitanskij [24]
and Mockenhaupt-Seeger-Sogge [38] discussed the Strichartz estimates for (1.6)
with smooth coefficients h. With rough coefficients h ∈ C2, the study of Strichartz
estimates for (1.6) in two or three dimensions was begin with Smith’s result [43]. At
the same time, counterexamples was constructed by Smith-Sogge [44], who showed
that for α < 2 there exist h ∈ Cα for which the Strichartz estimates fail. Later, the
Strichartz estimates were established in all dimensions for h ∈ C2 in Tataru [50].
The next important work was independently achieved by Bahouri-Chemin [4] and
Tataru [49], who established the local well-posedness of (1.5) with s > n

2 +
7
8 , n = 2

or s > n
2 + 3

4 , n ≥ 3. Shortly afterward, Tataru [51] relaxed the Sobolev indices



TWO-DIMENSIONAL COMPRESSIBLE EULER EQUATIONS 3

s > n+1
2 + 1

6 , n ≥ 3. At the same time, Smith-Tataru [42] showed that the 1
6 loss

is sharp for general variable coefficients h. Thus, to improve the above results, one
needs to exploit a new way or structure of Equation (1.5). Through introducing a
vector-field approach and a decomposition of the Ricci curvature, the 3D result of
[4, 49, 50, 51] was later improved by Klainerman-Rodnianski [26], who proved the

local well-posedness of (1.5) by introducing vector-field methods for s > 2 + 2−
√
3

2 .
Based on the vector-field methods, Geba [21] studied the local well-posedness of

(1.5) in two dimensions for s > 7
4 +

5−
√
22

4 . By using wave packets of a localization
to represent solutions to the linear equation, a sharp result was proved by Smith-
Tataru [41], who established the local well-posedness of (1.5) if s > 7

4 , n = 2

or s > 2, n = 3 or s > n+1
2 , 4 ≤ n ≤ 6. An alternative proof of the 3D case

was also obtained through vector-field approach by Wang [57]. Besides, we should
also mention substantial significant progress which has been made on low regularity
solutions of Einstein vacuum equations, membrane equations, due to Andersson and
Moncreif [3], Tataru [52], Ettinger and Lindblad [6], Klainerman and Rodnianski
[26], Klainerman-Rodnianski-Szefel [27], Wang [54], Allen-Andersson-Restuccia [2],
Speck [45] and so on.

In the general case, concerning to n-D compressible Euler equations, there are
several aspects on studying the Cauchy problem (1.1)-(1.3), i.e. shock formation
and local well-posedness. The first work on the formation of shocks was done by
Riemann in [39]. Riemann considered the case of isentropic flow with plane sym-
metry and introduced for such systems the so-called Riemann invariants, and then
proved that solutions will blow up in finite time even under smooth initial condi-
tions. Sideris [43] considered the three dimensional compressible Euler equations
and obtained the first general result on the formation of singularity. By extending
the basic idea of [39], Christodoulou-Miao [10] started from geometric aspects to
study the shock formation of irrotational and isentropic flow in 3D, and gave a
complete description of the maximal classical development. Yin in [59] constructed
a class of spherical data to discuss the formation of shock wave in three dimensions.
For multi-dimensional solutions with spherical symmetry, the blow-up phenomena
was obtained by Li-Wang [29]. Recently, Luk-Speck [32, 33, 46] first introduced a
wave-transport structure of the flow with dynamic vorticity and entropy, and de-
scribed the singularity formation in two or three dimensions. Abbrescia-Speck in [1]
studied some localized integral identities for 3D compressible Euler equations. We
should also mention substantial significant progress which has been made on self
similar solutions due to Merle-Raphael-Rodnianski-Szeftel [36], and free boundary
problems due to Coutand-Lindblad-Shkoller [11], Coutand-Shkoller [11, 13], Lei-
Du-Zhang [28], Li-Wang [30], Jang-Masmoudi [17], Ifrim-Tataru [19] and so on.

To the local well-posedness problem of (1.1)-(1.3), it’s well-posed if (v0, ̺0) ∈
Hs, s > 1 + n

2 and the density is far away from vacuum, please refer Majda’s
book [35]. Very rencently, based on the wave-transport system proposed by Luk
and Speck [32, 33, 46], some researchers considered the well-posedness of rough
solutions for (1.1)-(1.3) by studying Strichartz estimates, which arises from dis-
persive equations. We refer the reader to Strichartz’s work [47]). The first work
about rough solutions of three-dimensional compressible Euler equations was ob-
tained by Disconzi-Luo-Mazzone-Speck [14] and Wang [58]. In [14], Disconzi-Luo-
Mazzone-Speck proved the well-posedness of solutions with dynamic vorticity and
entropy, where they assumed the initial entropy e, velocity v, logarithmic density
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ρ and specific vorticity w(it will be defined in Definition 1.2) in H3+× (H2+)3 and
curlw ∈ C0,δ(0 < δ < 1). Independently, Wang [58] proved the local well-posedness

by taking the initial data of (v, ρ,w) ∈ Hs(R3) ×Hs(R3) ×Hs′(R3), 2 < s′ < s.
The works [14] and [58] are based on vector-field approach. Later, Zhang-Andersson
[61] gave an alternative proof of [58] by using Smith-Tataru’s method [41]. However,
there is a few result with regard to low regularity solutions of the Cauchy prob-
lem of two-dimensional compressible Euler equations. Inspired by these historical
results, we wish to study the low regularity solutions of (1.1)-(1.3) by establishing
sharp Strichartz estimates of the velocity and density in two dimensions.

1.3. Motivation. In view of the aforementioned results we see that most stud-
ies are focusing on the behavior of solutions of 3D compressible Euler equations.
These historical results [14, 58] related to rough solutions in three dimensions suc-
cessfully exploited the vector-field method in the case of non-zero vorticity, where
the regularity of velocity and density are optimal. One may ask that what’s the
sharp Sobolev regularity of the initial data for 2D compressible Euler equations
if controlling it’s local well-posedness, and whether the vector-field method could
solve the 2D problem. In fact, the vector-field methods may not work very well
for 2D problem, for the conformal energy in 2D is not ideal. We persuade the
readers to Geba’s work [21]. But, we noticed that the sharp regularity problem of
2D quasilinear wave equations is included in Smith-Tataru [41]. Our starting point
is the result of Smith-Tataru [41], which, for generic nonlinear wave equations in

two dimensions, yields the sharp local well-posedness in H
7
4
+. However, this result

can not be directly applied in the case of compressible Euler equations unless the
fluid is assumed to be irrotational. Instead, in the general case, the compressible
Euler flow can be seen as a coupling of a wave equation and a transport equation
for the vorticity, which causes many difficulties. Let us explain the difficulty of the
problem and the difference between quasilinear wave equations and compressible
Euler equations.

To lower the Sobolev exponent of Cauchy problem (1.1)-(1.3), the key is to prove
a type of Strichartz estimates. If the vorticity is zero, one could observe that there is
a type of Strichartz estimates ‖dv, dρ‖L4

tL
∞

x
from Smith-Tataru’s result [41], where

the regularity s should be greater than 7
4 . With non-zero vorticity, what’s the

situation of Strichartz estimate. In particular, there are no Strichartz estimates for
the vorticity. Let us see the coupled system. Precisely, ∂̟ is a source term in the
wave equation,

�gv = ∂̟ + l.o.t.

and ̟ satisfies

∂t̟ + v · ∇̟ = 0.

By utilizing the method of proving Strichartz estimates for wave equations, we
know that the character is crucial. Although there is independent of ̟ for energy
estimates of v and ρ, but ∂̟ plays essential role for character. Hence, we need some
energy estimates of ̟. By classical commutator estimates, the condition ∂̟ ∈ L∞

x

is essential for us to get the estimate of ‖̟‖Ha , a ∈ (1, 2]. In Zhang’s first paper
[61], Zhang proved that the local solution is well-posed if the initial velocity, density
and specific vorticity (v0, ρ0, ̟0) ∈ Hs(s > 7

4 ) and ∂̟ ∈ L∞
x . Inspired by [58], we

also hope to find some good structure of the vorticity and lower the regularity of
vorticity, i.e. remove the initial assumption on ‖∂̟‖L∞

x
. To be precise, by setting
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(v0, ρ0, ̟0) ∈ Hs×Hs×H2(s > 7
4 ), we discuss the local existence, uniqueness and

continuous dependence of solutions of the Cauchy problem (1.1)-(1.3), where v0,
ρ0, and ̟0 describe the initial velocity, density, and specific vorticity respectively.

1.4. Statement of the result. Before stating our result, let us introduce some
following quantities and introduce a equivalent system of (1.1).

1.4.1. Some definitions. Let us first recall the classical Hadamard standard for
well-posedness.

Definition 1.1. [20] The problem (1.1)-(1.3) is locally well-posed in a Sobolev space
X if the following properties are satisfied:

(i) For each (v0, ̺0) there exists some time T > 0 and a solution (v, ρ) ∈
C([0, T ];X).

(ii) The above solution is unique.
(iii) The data to solution map is continuous from X into C([0, T ];X).

In the following, let us introduce the logarithmic density, specific vorticity, the
speed of sound, and the acoustic metric.

Definition 1.2. [32] Let ρ̄ be a constant background density and ρ̄ > 0. We denote
the logarithmic density ρ

(1.7) ρ := ln
(
ρ̄−1̺

)
,

and the specific vorticity ̟

(1.8) ̟ := ρ̄−1e−ρcurlv.

Definition 1.3. [32] We denote the speed of sound

(1.9) cs :=
√
dp/d̺.

In view of (1.7), we have

(1.10) cs = cs(̺)

and

(1.11) c′s = c′s(ρ) :=
dcs
dρ

.

Definition 1.4. [32] We define the acoustical metric g and the inverse acoustical
metric g−1 relative to the Cartesian coordinates as follows:

g := −dt⊗ dt+ c−2
s

2∑

a=1

(dxa − vadt)⊗ (dxa − vadt) ,(1.12)

g−1 := −(∂t + va∂a)⊗ (∂t + vb∂b) + c2s

2∑

i=1

∂i ⊗ ∂i.(1.13)

Based on these definitions, let us introduce the system under new variables.

Lemma 1.1. [32] For 2D compressible Euler equations (1.1), it can be reduced to
the following equations:

(1.14)

{
Tvi = c2sδ

ia∂aρ,

Tρ = −divv,

where T = ∂t + v · ∇.
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To be simple, we give the notations d = (∂t, ∂x1
, ∂x2

)T, ∂x0
= ∂t and ∂ =

(∂x1
, ∂x2

)T. Set

(1.15) δ ∈ (0, s−
7

4
),

and
〈ξ〉 = (1 + |ξ|2)

1
2 , ξ ∈ R2.

Denote by 〈∂〉 the corresponding Bessel potential multiplier. We are now ready to
state the result in this paper.

1.4.2. Statement of Results.

Theorem 1.2. Let s > 7
4 . Consider the following Cauchy problem of two-dimensional

compressible Euler equations

(1.16)





Tvi = c2sδ
ia∂aρ,

Tρ = −divv,

(v, ρ)|t=0 = (v0, ρ0).

Assume the acoustical speed

(1.17) cs|t=0 > c0 > 0,

where c0 is a positive constant. Let ̟ be defined in (1.8) and M0 be any positive
constant. If

(1.18) ‖v0‖Hs + ‖ρ0‖Hs + ‖̟0‖H2 ≤M0,

then there exists two positive constants T∗ = T (‖v0‖Hs , ‖ρ0‖Hs , ‖̟0‖H2) and M1

such that the Cauchy problem (1.16) is locally well-posed. Precisely,
(1) there exists a unique solution (v, ρ) ∈ C([0, T∗], Hs

x)∩C
1([0, T∗], Hs−1

x ), ̟ ∈
C([0, T∗], H2

x)∩C
1([0, T∗], H1

x) and (dv, dρ) ∈ L4
[0,T∗]

L∞
x , and it satisfies the energy

estimate

‖v, ρ‖L∞

t H
s
x
+ ‖∂tv, ∂tρ‖L∞

t H
s−1
x

+ ‖̟‖L∞

t H
2
x
+ ‖∂t̟‖L∞

t H
1
x
≤M1,

(2) the solution v and ρ satisfy the Strichartz estimate

‖dv, dρ‖L4
tL

∞

x
≤M1.

(3) for any 1 ≤ r ≤ s+ 1, and for each t0 ∈ [0, T ], the linear equation

(1.19)

{
�gf = 0, (t, x) ∈ [0, T ]× R3,

f(t0, ·) = f0 ∈ Hr(R2), ∂tf(t0, ·) = f1 ∈ Hr−1(R2),

admits a solution f ∈ C([0, T ], Hr)× C1([0, T ], Hr−1) and the following estimates
hold:

(1.20) ‖f‖L∞

t H
r
x
+ ‖∂tf‖L∞

t H
r−1
x

. ‖f0‖Hr + ‖f1‖Hr−1 .

Additionally, the following estimates hold, provided k < r − 3
4 ,

(1.21) ‖ 〈∂〉k f‖L4
tL

∞

x
. ‖f0‖Hr + ‖f1‖Hr−1 .

(4) the map is continued from (v0, ρ0, ̟0) ∈ Hs ×Hs × H2 to (v, ρ,̟)(t, ·) ∈
C([0, T ];Hs

x ×Hs
x ×H2

x).

Remark 1.1. The condition (1.17) is used to satisfy the hyperbolicity condition of
the system (1.16).
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Remark 1.2. For 2D compressible Euler equations, the classical result in [35]
requires s > 2 for the regularity of velocity and density. Our result lower the
regularity of the velocity and density by proving the space-time Strichartz estimates
of the velocity and density. Furthermore, if the vorticity is zero(the specific vorticity
is also zero), the Sobolev regularity in Theorem 1.2 is corresponding to the 2D sharp
result by Smith-Tataru [41].

Remark 1.3. Compared with the prior works for 3D compressible Euler equations,
i.e.[14, 58], the situation in 2D is very different. And it’s very hard to use the
similar approach in [14, 58] to prove Theorem 1.2, even for the irrotational case in
2D. Because the conformal energy in 2D is worse than 3D, which give a sacrifice
on some regularity loss on metrics, please refer Geba’s result [21].

Remark 1.4. The idea of deriving a good structure of T (∆̟ − ∂ρ∂̟) in the paper
is inspired by Wang [58], but our process is not trivial. Referring [58], the good
structure is benefit from curl (eρcurlw), not ∆w. For the structure of div̟ is very
good, but T(divw) gives us some regularity loss. Then, choosing some quantities
related to ∆w may not work in three dimensions. Therefore, it’s not obvious to
choose the quantity ∆̟ − ∂ρ∂̟ in two dimensions.

Remark 1.5. Inspired by Andersson-Moncrief [3] and Ifrim-Tataru [20], we con-
sider the continuous dependence of solutions for (1.16). In [3], Andersson-Moncrief
studied the local well-posedness of a hyperbolic-elliptic system. In [20], Ifrim-Tataru
established the local well-posedness theory for general hyperbolic equations by using
the frequency envelope approach.

1.5. A sketch of the proof. In effect our discussion below is more based on the
idea of Smith-Tataru’s work [41]. We will adopt two classes of equivalent structure
of 2D compressible Euler equations: the hyperbolic system

A0(U)Ut +A1(U)Ux1
+A2(U)Ux2

= 0, U = (v, p(ρ))T,

and the wave-transport system




�gv = ∂̟ + quadratic terms,

�gρ = quadratic terms,

T̟ = 0,

where the hyperbolic system is used to consider some energy estimates, and the
wave-transport system is used to discuss the Strichartz estimate.

The first key point is how to obtain energy estimates when the Sobolev indices
of (v0, ρ) and ̟0 is different. We use the hyperbolic system to derive the basic
energy

‖v, ρ‖Hs ≤ ‖v0, ρ0‖Hs exp(‖dv, dρ‖L1
tL

∞

x
), s ≥ 0.

Concerning to the transport equation of specific vorticity T̟ = 0, it looks impos-
sible for us to obtain some energy estimates if the regularity between v0 and ̟ are
different. By deriving the nonlinear transport equation of ∆̟ − ∂ρ∂̟, we could
see a hope. That is,

T∆̟ = ∆v∂̟ + ∂v∂2̟ + l.o.t,

replaced by

(1.22) T(∆̟ − ∂ρ∂̟) = ∂v∂2̟ + ∂v∂ρ∂̟.
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In the first equation, one need the norm ‖∂̟‖L∞

x
to obtain energy estimates by

utilizing standard commutator estimates, and the regularity of velocity and vorticity
should be same. While, if we use the second equation (1.22), it allows us to close the
basic energy estimates of ̟ by using Strichartz estimates ‖dv, dρ‖L4

tL
∞

x
and some

lower-order norms of the velocity and density. Please see the proofs in Lemma 2.8,
Lemma 2.28, and Theorem 2.10 for details.

The second key point is to prove the Strichartz estimate. We first reduce the
problem to establish an existence result for small, supported initial data. Next, by
the continuity method, we can give a bootstrap argument on the regularity of the
solutions to the nonlinear equation. Then, by introducing null hypersurfaces, the
key is transformed to prove characteristic energy estimates of solutions along null
hypersurfaces, and the enough regularity of null hypersurfaces is crucial to prove the
Strichartz estimate. To establish characteristic energy estimates, we go back to see
the wave-transport system and hyperbolic system. We use the hyperbolic system
to get these characteristic energy estimates for (v, ρ), which is independent with
̟. As for ̟, the characteristic energy estimate is very different. Let us explain it
as follows. On the Cauchy slice {t} × R2, we can use elliptic estimates to get the
energy estimate of all derivatives of ̟ only by using ̟ and ∆̟. However, on the
characteristic hypersurface, these type of elliptic energy estimates don’t work. We
use Hodge decomposition and (1.22) to handle this difficulty. That is, operating
Pij on (1.22) giving rise to

(1.23) T
[
∂2ij̟ − Pij(∂ρ∂̟)

]
= Pij(∂v∂

2̟ + l.o.t) + [Pij ,T](∆̟ − ∂ρ∂̟).

Here, the Riesz operator Pij = ∂2ij(−∆)−1, i, j = 1, 2. From (1.23), we can get some
type of characteristic energy estimates for second derivatives of ̟, where we use
Sobolev imbedding to calculate the lower term

‖Pij(∂ρ∂̟)‖L2
Σ
≤ ‖Pij(∂ρ∂̟)‖L2

tH
a
x
, a >

1

2
.

On the right hand side of (1.23), especially for the second one, we need some commu-
tator estimates, which is introduced in Lemma 2.6. Based on these observations,
we can recover some energy bounds for ̟ along the characteristic hypersurface.
Please refer Lemma 6.8 for detials.

After obtaining enough regularity of null hypersurfaces and coefficients from null
frame, we can obtain the Strichartz estimate of a linear wave equation with the
acoustical metric g by using Smith-Tataru’s conclusion in [41]. Through Duhamel’s
principle, we can prove the Strichartz estimate ‖dv, dρ‖L4

tL
∞

x
.

1.6. Notations. In the paper, the notation X . Y means X ≤ CY , where C is
a universal constant. We use the notation X ≪ Y to mean that X ≤ CY with a
sufficiently large constant C.

We use four small parameters

(1.24) ǫ3 ≪ ǫ2 ≪ ǫ1 ≪ ǫ0 ≪ 1.

Let ζ be a smooth function with support in the shell {ξ : 1
2 ≤ |ξ| ≤ 2}. Here,

ξ denotes the variable of the spatial Fourier transform. Let ζ also satisfy the
condition

∑
k∈Z

ζ(2kξ) = 1. We introduce the Littlewood-Palay operator Pk with

the frequency 2k(k ∈ Z), which satisfies

Pkf =

∫

R3

e−ix·ξζ(2−kξ)f̂(ξ)dξ.
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We also set
f<j = Sjf =

∑

k<j

Pkf.

1.7. Outline of the paper. The organization of the remainder of this paper is as
follows. In Section 2, we introduce the reductions of (1.16) and commutator esti-
mates, and also prove the total energy estimates and stability theorem. In Section
3, we reduce our problem to the case of smooth initial data by using compactness
methods. In the subsequent Section, using a physical localized technique, we reduce
the problem to the case of smooth, small, compacted supported initial data. In sec-
tion 5, we give a bootstrap argument based on continuous functional. In Section
6 we derive some characteristic energy estimates along null hypersurfaces, which is
used to prove the regularity of null hypersurfaces. Finally, in section 7, we prove
the Strichartz estimate and continuous dependence.

2. Basic energy estimates and stability theorem

In this part, our goal is to give energy estimates and stability theorem. Firstly,
we introduce a hyperbolic system and a wave-transport system of (1.16). We then
give some classical commutator estimates. After that, we derive new transport
equations for the specific vorticity. At last, we prove the energy estimates and
stability theorem.

2.1. The reduction to a hyperbolic system and a wave-transport system.

In the beginning, let us introduce a hyperbolic system of 2D compressible Euler
equations.

Lemma 2.1. [30] Let v and ρ be a solution of (1.16). Then (v, ρ) satisfies the
following symmetric hyperbolic system

(2.1) A0(U)Ut +A1(U)Ux1
+A2(U)Ux2

= 0,

where U = (v1, v2, p(ρ))T and

A0 =




ρ̄eρ 0 0
0 ρ̄eρ 0
0 0 ρ̄−1e−ρc−2

s


 , A1 =




ρ̄eρv1 0 1
0 ρ̄eρv1 0
1 0 v1ρ̄−1e−ρc−2

s


 ,

A2 =




ρ̄eρv2 0 0
0 ρ̄eρv2 1
0 1 v2ρ̄−1e−ρc−2

s


 .

Lemma 2.2. [32] Let (v, ρ) be a solution of (1.16) and ̟ be defined in (1.8). Then
(v, ρ,̟) satisfies

(2.2)





�gv
i = −[ia]eρc2s∂

a̟ +Qi + Ei,

�gρ = D,

T̟ = 0.

Above, Qi, Ei,D are null forms relative to g, which are defined by

Qi := 2[ia]c2s̟∂
iρ,

Ei := −
(
1 + c−1

s c′s
)
gαβ∂αρ∂βv

i,

D := −3c−1
s c′sg

αβ∂αρ∂βρ+ 2
∑

1≤a<b≤2

{
∂av

a∂bv
b − ∂av

b∂bv
a
}
,

(2.3)
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and

[ia] =





0, if i = a ,

1, if i < a ,

−1, if i > a .

We also define Q := (Q1, Q2)T ,E := (E1, E2)T.

2.2. Commutator estimates. We first introduce a classical commutator esti-
mate.

Lemma 2.3. [23] Let Λ = (−∆)
1
2 , s ≥ 0. Then for any scalar function h, f , we

have
(2.4)
‖Λs(hf)− (Λsh)f‖L2

x(R
n) . ‖Λs−1h‖L2

x(R
n)‖∂f‖L∞

x (Rn) + ‖h‖Lp
x(Rn)‖Λ

sf‖Lq
x(Rn),

where 1
p
+ 1

q
= 1

2 .

Next, let us introduce some product estimates.

Lemma 2.4. [23] Let F (u) be a smooth function of u, F (0) = 0 and u ∈ L∞
x . For

any s ≥ 0, we have

(2.5) ‖F (u)‖Hs . ‖u‖Hs(1 + ‖u‖L∞

x
).

Lemma 2.5. [41] Suppose that 0 ≤ r, r′ < n
2 and r + r′ > n

2 . Then

(2.6) ‖hf‖
H

r+r′−n
2 (Rn)

≤ Cr,r′‖h‖Hr(Rn)‖h‖Hr′ (Rn).

Moreover, if −r ≤ r′ ≤ r and r > n
2 , then the following estimate

(2.7) ‖hf‖Hr′ (Rn) ≤ Cr,r′‖h‖Hr(Rn)‖h‖Hr′ (Rn),

holds.

Lemma 2.6. Denote the Riesz operator R := ∂2(−∆)−1. For δ ∈ (0, s− 7
4), then

‖[R,v · ∇]f‖L2
x(R

2) . ‖∂v‖Cδ
x
‖f‖L2

x(R
2).

Proof. By using paraproduct decomposition, we have

∆j [R,v · ∇]f =
∑

|k−j|≤2∆j [R(∆kv · ∇Sk−1f)−∆kv · ∇RSk−1f ]

+
∑

|k−j|≤2∆j [R(Sk−1v · ∇∆kf)− Sk−1v · ∇R∆kf ]

+
∑

k≥j−1∆j [R(∆kv · ∇∆kf)−∆kv · ∇R∆kf ]

= B1 +B2 +B3,

where

B1 =
∑

|k−j|≤2∆j {R(∆kv · ∇Sk−1f)−∆kv · ∇RSk−1f} ,

B2 =
∑

|k−j|≤2∆j {R(Sk−1v · ∇∆kf)− Sk−1v · ∇R∆kf}

B3 =
∑
k≥j−1∆j {R(∆kv · ∇∆kf)−∆kv · ∇R∆kf} .

By Hölder’s inequality and Bernstein’s inequality, we arrive at the bound

{‖B1‖L2
x
}l2j .

{∑
|k−j|≤2(‖∇RSk−1f‖L∞

x
+ ‖∇Sk−1f‖L∞

x
)‖∆j∆kv‖L2

}
l2j

.
{∑

|k−j|≤22
k‖∆j∆kv‖L∞

x
(‖RSk−1f‖L2 + ‖Sk−1f‖L2)

}
l2j

. ‖v‖Ḃ1
∞,∞

(‖Rf‖L2
x
+ ‖f‖L2

x
) . ‖∂v‖Cδ

x
‖f‖L2

x
.

(2.8)
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By Hölder’s inequality, we see that

{‖B3‖L2
x
}l2j . {

∑
k≥j−12

k‖∆kv‖L∞

x
· 2−k(‖∇∆kf‖L2

x
+ ‖∇R∆kf‖L2

x
)}l2j

. ‖v‖Ḃ1
∞,∞

‖f‖L2
x

. ‖∂v‖Cδ
x
‖f‖L2

x
.

(2.9)

Note
B2 =

∑
|k−j|≤2∆j [R, Sk−1v·]∆k∇f.

By [37](Lemma 3.2), we get

{‖B2‖L2
x
}l2j .

{∑
|k−j|≤2‖xΦ‖L1

x
‖∇Sk−1v‖L∞

x
‖∆j∆kf‖L2

x

}
l2j

.
{∑

|k−j|≤2‖∇Sk−1v‖L∞

x
‖∆j∆kf‖L2

x

}
l2j

.‖v‖Ḃ1
∞,∞

‖f‖L2
x
.

.‖∂v‖Cδ
x
‖f‖L2

x
.

(2.10)

Here, we use the fact that Φ =
xixj

|x|2 2
2jΨ(2jx) and Ψ is in Schwartz space. Gathering

(2.8), (2.9) and (2.10) together, we have finished the proof of Lemma 2.6. �

2.3. New transport equations. We derive a new transport equation for deriva-
tives of ∆̟.

Lemma 2.7. Let (v, ρ) be a solution of (1.16) and ̟ be defined in (1.8). Then
the quantities ∂i̟(i = 1, 2) and ∆̟ satisfy the transport equation:

(2.11) T(∂i̟) = −∂iv
j∂j̟, i = 1, 2,

and

T(∆̟ − ∂ρ∂̟) = R,(2.12)

where

(2.13) R = −2
2∑

i,j=1

∂jv
i∂jρ∂i̟ − eρ(∂⊥ρ̟ + ∂⊥̟)∂̟ − 2

2∑

i,j=1

∂iv
j∂2ij̟.

Proof. Taking the spatial derivatives on T̟ = 0, we first get

T∂i̟ = −∂iv
j∂j̟, i = 1, 2.

Taking the spatial derivative ∂i again, one has

(2.14) T∆̟ = −∆vi∂i̟ − 2
∑
i=1,2∂iv

k∂2ki̟.

The Hodge’s decomposition implies that

(2.15) ∆v = ∂divv + ∂⊥curlv, ∂⊥ = (−∂2, ∂1)
T.

Substituting Tρ = −divv and ̟ = e−ρcurlv to (2.15), we get

∆v = −∂Tρ+ ∂⊥(eρ̟)

= [T, ∂]ρ−T∂ρ+ ∂⊥(eρ̟)

= −T∂ρ+
∑

j=1,2∂jv∂jρ+ eρ(∂⊥ρ̟ + ∂⊥̟).

Putting the above formula to (2.14), we obtain the transport equation:

T∆̟ = T(∂ρ)∂̟ +R1,
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where

R1 = −
∑
i,j=1,2∂jv

i∂jρ∂i̟ − eρ(∂⊥ρ̟ + ∂⊥̟)∂̟ −
∑
i=1,2∂iv

k∂2ki̟.

Using the fact

T(∂ρ)∂̟ = T(∂ρ∂̟)− ∂ρT(∂̟)

= T(∂ρ∂̟)−
∑
j=1,2∂jρ∂jv

i∂i̟,

we then prove

T(∆̟ − ∂ρ∂̟) = R,

where

R =R1 −
∑

j=1,2∂jρ∂jv
i∂i̟,

=− 2

2∑

i,j=1

∂jv
i∂jρ∂i̟ − eρ(∂⊥ρ̟ + ∂⊥̟)∂̟ − 2

2∑

i,j=1

∂iv
j∂2ij̟.

�

2.4. Energy estimates.

Lemma 2.8. Let (v, ρ) be a solution of (1.16). Then for any a ≥ 0, we have

‖ρ‖Ha
x
+ ‖v‖Ha

x
. (‖ρ0‖Ha + ‖v0‖Ha) exp

(∫ t

0

‖dv, dρ‖L∞

x
dτ

)
, t ∈ [0, T ].(2.16)

Proof. Let U = (v, p(ρ))T . Then

A0(U)Ut +A1(U)∂x1
U+A2(U)∂x2

U = 0.

A straightforward computation on the above equation using integration by parts
and classical commutator estimates in Lemma 2.3 yields

(2.17) ‖U(t)‖Ha
x
. ‖U(0)‖Ha exp

( ∫ t

0

‖dU‖L∞

x
dτ

)
.

As a result, we obtain

‖ρ‖Hs
x
+ ‖v‖Hs

x
. (‖ρ0‖Ha + ‖v0‖Ha) exp

( ∫ t

0

‖dv, dρ‖L∞

x
dτ

)
, t ∈ [0, T ].

�

Lemma 2.9. Let v and ρ be a solution of (1.16) and ̟ be defined in (1.8). Then,
we have the 1−order energy estimates for the specific vorticity

(2.18) ‖̟‖2H1
x
. ‖̟0‖

2
H1 exp

(∫ t

0

‖∂v‖L∞

x
dτ

)
.

Moreover, the following inequality

d

dt

(
‖∆̟‖2L2

x
− 2

∫

R2

∂ρ∂̟∆̟dx
)

.
(
1 + ‖∂ρ‖L∞

x
+ ‖∂v‖L∞

x

)2 (
‖v‖2

H
3
2
x

+ ‖ρ‖2
H

3
2
x

+ ‖̟‖2H2
x

)
.

(2.19)

holds.
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Proof. By using T̟ = 0 and Hölder’s inequality, we get

(2.20)
d

dt
‖̟‖2L2

x
. ‖∂v‖L∞

x
‖̟‖2L2

x
,

By using (2.11) and Hölder’s inequality, we arrive at the bound

(2.21)
d

dt
‖∂̟‖2L2

x
. ‖∂v‖L∞

x
‖∂̟‖2L2

x
.

Adding (2.20) and (2.21) together yields

d

dt
‖̟‖2H1

x
. ‖∂v‖L∞

x
‖̟‖2H1

x
.

By Gronwall’s inequality, we can reach to

‖̟‖2H1
x
≤ ‖̟0‖

2
H1 exp

(∫ t

0

‖∂v(τ)‖L∞

x
dτ

)
.

It remains for us to prove (2.19). Multiplying ∆̟ on (2.3) and taking inner product
on R2, we have

1

2

d

dt
(‖∆̟‖2L2

x
− 2

∫

R2

∂ρ∂̟∆̟dx)

≤

∫

R2

∂ρ∂v∂̟∆̟dx+

∫

R2

R∆̟dx+

∫

R2

divv|∆̟|2dx.

(2.22)

So we need to estimate the right hand side of (2.22) one by one. For the right one,
by Hölder’s inequality, we could derive∣∣∣∣

∫

R2

∂ρ∂v∂̟∆̟dx

∣∣∣∣ . ‖∂ρ‖L∞

x
‖∂v‖L∞

x
‖∆̟‖L2

x
‖∂̟‖L2

x

. (‖∂ρ‖L∞

x
+ ‖∂v‖L∞

x
)2‖̟‖2H2

x
.

(2.23)

For the second one, by using (6.43) and Hölder’s inequality, we can show that
∣∣∣∣
∫

R2

R∆̟dx

∣∣∣∣ . ‖∆̟‖L2
x

(
‖∂ρ‖L∞

x
+ ‖∂v‖L∞

x

)
‖∂v‖L∞

x
‖∂̟‖L2

x

+ ‖∆̟‖L2
x
‖∂̟‖2L4

x
+ ‖∂v‖L∞

x
‖∆̟‖L2

x
‖∂2̟‖L2

x

+ ‖∂ρ‖L∞

x
‖∂v‖L∞

x
‖∆̟‖L2

x
‖∂̟‖L2

x

. (1 + ‖∂ρ‖L∞

x
+ ‖∂v‖L∞

x
)2(‖v‖2

H
3
2
x

+ ‖ρ‖2
H

3
2
x

+ ‖̟‖2H2
x
).

(2.24)

For the last term, by Hölder’s inequality, we deduce

(2.25)

∣∣∣∣
∫

R2

divv|∆̟|2dx

∣∣∣∣ . ‖∂v‖L∞

x
‖̟‖2H2

x
.

Gathering (2.22), (2.23), (2.24), and (2.25), we can obtain (2.19). We have com-
pleted the proof of Theorem 2.8. �

Based on the above estimate, we can get the following energy estimates.

Theorem 2.10. (Total energy estimates) Assume s > 7
4 . Let (v, ρ) be a solution

of (1.16) and ̟ be defined as (1.8). Set

E(t) = ‖(v, ρ)‖Hs
x
+ ‖̟‖H2

x
+ ‖(∂tv, ∂tρ)‖Hs−1

x
+ ‖∂t̟‖H1

x
,

and
E0 = ‖ρ0‖Hs

x
+ ‖v0‖Hs

x
+ ‖̟0‖H2

x
.
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Then the following energy estimate

E(t) . E0(1 + E
1
2

0 ) exp
(∫ t

0

(1 + ‖dv, dρ‖L∞

x
)2dτ

)
,(2.26)

hold.

Proof. By using (2.16), (2.18), (2.19), and Gronwall’s inequality, we have

‖ρ‖2Hs
x
+ ‖v‖2Hs

x
+ ‖̟‖2H1

x
+ ‖∆̟‖2L2

x
− 2

∫

R2

∂ρ∂̟∆̟dx

. (‖̟0‖
2
H2 + ‖ρ0‖

2
Hs + ‖v0‖

2
Hs) exp

(∫ t

0

(1 + ‖dv, dρ‖L∞

x
)2dτ

)

+ ‖∆̟0‖
2
L2 +

∣∣∣∣
∫

R2

∂ρ0∂̟0∆̟0dx

∣∣∣∣

. (‖̟0‖
2
H2 + ‖ρ0‖

2
Hs + ‖v0‖

2
Hs) exp

(∫ t

0

(1 + ‖dv, dρ‖L∞

x
)2dτ

)

+ ‖̟0‖
2
H2 + ‖ρ0‖Hs‖̟0‖

2
H2 .

(2.27)

Note

‖∆̟‖2L2
x
− 2

∫

R2

∂ρ∂̟∆̟dx ≥ ‖∆̟‖2L2
x
− C‖∂ρ‖L4

x
‖∂̟‖L4

x
‖∆̟‖L2

x
.(2.28)

By Sobolev inequality, it implies that

‖∂ρ‖L4
x
‖∂̟‖L4

x
‖∆̟‖L2

x
≤ ‖∂ρ‖

H
1
2
x

‖∂̟‖
H

1
2
x

‖∆̟‖L2
x
.(2.29)

By interpolation formula, we have

(2.30) ‖∂f‖
H

1
2
x

. ‖∂f‖
1
2

L2
x
‖∂2f‖

1
2

L2
x
.

Using (2.30) and Young’s inequality, we can update (2.31) by

‖∂ρ‖L4
x
‖∂̟‖L4

x
‖∆̟‖L2

x
≤ ‖ρ‖4

H
3
2
x

‖∂̟‖2L2
x
+

1

100
‖̟‖2H2

x
.(2.31)

We also note that

(2.32) ‖̟‖2H1
x
+ ‖∆̟‖2L2

x
≥

1

2
‖̟‖2H2

x
.

Gathering (2.27), (2.28), (2.31), and (2.32), we get

‖ρ‖Hs
x
+ ‖v‖Hs

x
+ ‖̟‖H2

x
. E0(1 + E

1
2

0 ) exp
(∫ t

0

(1 + ‖dv, dρ‖L∞

x
)2dτ

)
.(2.33)

By using (1.16) and T̟ = 0, we can carry out

‖∂tρ‖Hs−1
x

+ ‖∂tv‖Hs−1
x

+ ‖∂t̟‖H1
x
. ‖ρ‖Hs

x
+ ‖v‖Hs

x
+ ‖̟‖H2

x
.(2.34)

By (2.33) and (2.34), we can obtain (2.26). �

We are now ready to give the stability theorem.

Theorem 2.11. (Stability theorem) Assume 7
4 < s ≤ 2. Let (v, ρ) be a solution of

(1.16) and ̟ be defined in (1.8), where the corresponding initial data (v0, ρ0, ̟0) ∈
Hs×Hs×H2. Then, there exists a positive number T1 = T1(‖v0‖Hs , ‖ρ0‖Hs , ‖̟0‖H2)
such that (v, ρ) ∈ C([0, T1], H

s
x) ∩ C

1([0, T1], H
s−1
x × Hs−1

x ), ̟ ∈ C([0, T1], H
2
x) ∩

C1([0, T1], H
1
x), and (dv, dρ) ∈ L4

[0,T1]
L∞
x .
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Let (h, ψ) be another solution to (1.16) and V = ρ̄e−ψcurlh. And the corre-
sponding initial data (h0, ψ0, V0) is in Hs × Hs × H2. Then, there exists a posi-
tive number T2 = T2(‖h0‖Hs , ‖ψ0‖Hs , ‖V0‖H2) such that (h, ψ) ∈ C([0, T2], H

s
x) ∩

C1([0, T2], H
s−1
x ), V ∈ C([0, T2], H

2
x) ∩ C1([0, T2], H

1
x) and dh, dψ ∈ L4

[0,T2]
L∞
x .

Therefore, for t ∈ [0,min{T1, T2}], the following estimate

‖(v − h, ρ− ψ)(t, ·)‖Hs−1
x

+ ‖(̟ − V )(t, ·)‖H1
x
. ‖(v0 − h0, ρ0 − ψ0)‖Hs + ‖̟0 − V0‖H2

(2.35)

holds.

Proof. Let U = (v, p(ρ))T and B = (h, p(ψ))T. For t ∈ [0,min{T1, T2}], we can
derive that

A0(U)∂tU+

2∑

i=1

Ai(U)∂xi
U = 0,

A0(B)∂tB+

2∑

i=1

Ai(B)∂xi
B = 0.

As a result, U−B satisfies

A0(U)∂t(U −B) +

2∑

i=1

Ai(U)∂xi
(U−B) = F,

where

F = −

2∑

i=0

(Ai(U)−Ai(B))∂xi
B.

By using the commutator estimates in Lemma 2.3, we could show

d

dt
‖U−B‖Hs−1

x
≤ CU,B

(
‖dU, dB‖L∞

x
‖U−B‖Hs−1

x
+ ‖U−B‖L∞

x
‖dB‖Hs−1

x

)
,

whereCU,B depends on the L∞
x norm of (U,B). By using (v, ρ,h, ψ) ∈ C([0,min{T1, T2}], H

s
x)∩

C1([0,min{T1, T2}], H
s−1
x ) and dv, dρ, dh, dψ ∈ L4

[0,min{T1,T2}]L
∞
x , we then have

‖(U−B)(t, ·)‖Hs−1
x

. ‖(U−B)(0, ·)‖Hs−1

= ‖(v0 − h0, ρ0 − ψ0)‖Hs .

By Lemma 2.4, we further obtain

‖(v − h, ρ− ψ)(t, ·)‖Hs−1
x

. ‖(v0 − h0, ρ0 − ψ0)‖Hs .(2.36)

On the other hand, ̟ and V satisfy

∂t̟ + v · ∇̟ = 0,

and

∂tV + h · ∇V = 0.

So we get

(2.37) ∂t(̟ − V ) + v · ∇(̟ − V ) = −(v − h)∇V.
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By using standard energy estimates for (2.37), we get

‖(̟ − V )(t, ·)‖H1
x
≤(‖(̟ − V )(0, ·)‖H1

x
+ ‖v− ϕ‖

L1
tH

3
2
x

‖V ‖L∞

t H
2
x
) exp{

∫ t

0

‖∂v‖L∞

x
dτ}

≤CV
(
‖(̟ − V )(0, ·)‖H1

x
+ ‖(v − ϕ)(0, ·)‖Hs

)
,

(2.38)

for t ∈ [0,min{T1, T2}]. Combining (2.37) and (2.38), we complete the proof of
(2.35). �

Corollary 2.12. (Uniqueness of the solution) Assume 7
4 < s ≤ 2. Suppose (v, ρ)

and (h, ψ) to be solutions of (1.16) with the same initial data (v0, ρ0) ∈ Hs ×Hs.
We assume the initial specific vorticity ̟0 = ρ̄eρ0curlv0 ∈ H2. Then there exists
a constant T > 0 such that (v, ρ,h, ψ) ∈ C([0, T ], Hs

x) ∩ C1([0, T ], Hs−1
x ), ̟ ∈

C([0, T ], H2
x)∩C

1([0, T ], H1
x) and dv, dρ, dh, dψ ∈ L4

[0,T ]L
∞
x . Furthermore, we have

v = h, ρ = ψ.

3. Reduction to the case of smooth initial data

In this part, we will reduce Theorem 1.2 to the case of smooth initial data by
compactness arguments.

Proposition 3.1. For each R > 0, there exist constants T,M and C such that,
for each smooth initial data (v0, ρ0) satisfies

‖v0‖Hs + ‖ρ0‖Hs + ‖̟0‖H2 ≤ R,(3.1)

where
̟0 = ρ̄−1e−ρ0curlv0.

Then there exists a smooth solution (v, ρ,̟) to

(3.2)





�gv
i = −[ia]eρc2s∂

a̟ +Qi + Ei,

�gρ = D,

T̟ = 0.

(v, ρ,̟)|t=0 = (v0, ρ0, ̟0),

(∂tv, ∂tρ)|t=0 = (−v0 · ∇v0 + c2s∇ρ0,−v0 · ∇ρ0 − divv0),

on [−T, T ]× R2, which satisfies

(3.3) ‖(v, ρ)‖Hs
x
+ ‖(∂tv, ∂tρ)‖Hs−1

x
+ ‖̟‖H2

x
+ ‖∂t̟‖H1

x
≤M.

Here, the quantities Qi,D and Ei are defined in Lemma 2.2. Furthermore, the
solution satisfies the condition

(1) the dispersive estimate for v and ρ

(3.4) ‖dv, dρ‖L4
tC

δ
x
≤M,

(2) for 1 ≤ r ≤ s+ 1, the linear equation

(3.5)

{
�gf = 0

(f, ∂tf)|t=0 = (f0, f1)

is well-posed in Hr ×Hr−1, and the following estimates

(3.6) ‖ 〈∂〉
k
f‖L4

tL
∞

x
. ‖f0‖Hr + ‖f1‖Hr−1 , k < r −

3

4
,
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and

(3.7) ‖f‖L∞

t H
r
x
+ ‖∂tf‖L∞

t H
r−1
x

. ‖f0‖Hr + ‖f1‖Hr−1 ,

holds.

In the following, we will use Proposition 3.1 to prove Theorem 1.2.

proof of Theorem 1.2 by Proposition 3.1. Consider arbitrary initial data (v0, ρ0, ̟0) ∈
Hs ×Hs ×H2 satisfying

‖v0‖Hs + ‖ρ0‖Hs + ‖̟0‖H2 ≤ R.

Let {(v0k, ρ0k, ̟0k)}k∈N+ be a sequence of smooth data which satisfies

lim
k→∞

v0k = v0, lim
k→∞

ρ0k = ρ0, in Hs,

̟0k = ρ̄e−ρ0kcurlv0k, lim
k→∞

̟0k = ̟0, in H2.

By Proposition 3.1, for each k, there exist the corresponding solution (vk, ρk, ̟k)
to (3.2). Also

(vk, ρk, ̟k)|t=0 = (v0k, ρ0k, ̟0k)
T.

Notice that the solutions of (3.2) also satisfy the symmetric hyperbolic system (2.1).
Set

Uk = (v1k, v2k, p(ρk)), k ∈ N+.

For j, l ∈ N+, we could derive

A0(Uj)∂tUj +A1(Uk)∂x1
Uj +A2(Uj)∂x2

Uj = 0,

A0(Ul)∂tUl +A1(Ul)∂x1
Ul +A2(Ul)∂x2

Ul = 0.

The standard energy estimates imply that

d

dt
‖Uj−Ul‖Hs−1

x
≤ CUj ,Ul

(
‖dUj , dUl‖L∞

x
‖Uj −Ul‖Hs−1

x
+ ‖Uj −Ul‖L∞

x
‖dUl‖Hs−1

x

)
,

where CUj ,Ul
depends on the L∞

x norm of Uj ,Ul. By using Strichartz estimates
(3.4) for dvk, dρk, k ∈ N+ and the energy estimates (3.3) for vk, ρk, k ∈ N+, we can
derive that

‖(Uj −Ul)(t, ·)‖Hs−1
x

. ‖(Uj −Ul)(0, ·)‖Hs

. ‖(v0j − v0l, ρ0j − ρ0l)‖Hs .
(3.8)

Thus, the sequence {(vk, ρk)}
∞
k=1 is a Cauchy sequence in C([−T, T ];H

s−1). Denote
(v, ρ) to be the limit. We therefore have

(3.9) lim
k→∞

(vk, ρk) = (v, ρ) ∈ C([−T, T ];Hs−1).

Consider the transport equation

∂t̟k + vk · ∇̟k = 0, k ∈ N+.

It’s direct to get

∂t(̟j −̟l) + vj · ∇(̟j −̟l) = (vj − vl) · ∇̟l, j, l ∈ N+.

By Sobolev equality and energy estimates, we have

‖̟k −̟l‖Hs−1 . (‖̟0k −̟0l‖Hs−1 + ‖vj − vl‖L∞

t H
s−1
x

‖∇̟l‖L∞

t H
1
x
) exp{

∫ t

0

‖∂vj‖L∞

x
dτ}.

(3.10)
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For {̟0k}k∈N+ and {vk}k∈N+ being two Cauchy sequence in Hs and L∞
t H

s−1
x

respectively, then {̟k}k∈N+ is a Cauchy sequence in C([−T, T ];Hs−1). We denote
the limit

(3.11) lim
k→∞

̟k = ̟ ∈ C([−T, T ];Hs−1).

Since (vk, ρk, ̟
k) is uniformly bounded in L∞

t H
s
x×L

∞
t H

s
x×L

∞
t H

2
x. Noting the

convergence (3.9) and (3.11), we can deduce that

(3.12) (v, ρ,̟k) ∈ L∞
t H

s
x × L∞

t H
s
x × L∞

t H
2
x.

Also, for (v, ρ,̟) satisfying (3.2) and (3.2) being equivalent with (1.16), we get

(3.13) (∂tv, ∂tρ, ∂t̟) ∈ L∞
t H

s−1
x × L∞

t H
s−1
x × L∞

t H
1
x.

On the other hand, using Proposition 3.1, (dvk, dρk) is uniformly bounded in
L4([−T, T ];Cδx). As a result, we have

(3.14) lim
k→∞

(dvk, dρk) = (dv, dρ), in L4([−T, T ];L∞
x ).

It remains for us to prove (1.20) and (1.21) in Theorem 1.2. For 1 ≤ r ≤ s+ 1, by
Proposition 3.1, we have that there exists solutions fk satisfying

(3.15)

{
�gkfk = 0

(fk, ∂tfk)|t=0 = (f0, f1).

Here the metric gk has the same formula as in Definition 1.4, and whose velocity
and density should be replaced by vk and ρk. Using (3.6) and (3.7), we have

(3.16) ‖ 〈∂〉
a
fk‖L4

tL
∞

x
. ‖f0‖Hr + ‖f1‖Hr−1 , a < r −

3

4
,

and

(3.17) ‖fk‖L∞

t H
r
x
+ ‖∂tfk‖L∞

t H
r−1
x

. ‖f0‖Hr + ‖f1‖Hr−1 .

From (3.17), we obtain that there exists a subsequence such that there is a limit f
satisfying

(3.18) ‖f‖L∞

t H
r
x
+ ‖∂tf‖L∞

t H
r−1
x

. ‖f0‖Hr + ‖f1‖Hr−1 .

Utilizing (3.16), we have

(3.19) ‖ 〈∂〉
a
f‖L4

tL
∞

x
. ‖f0‖Hr + ‖f1‖Hr−1 , a < r −

3

4
.

Also, taking limit to (3.15), then the limit f satisfies

(3.20)

{
�gf = 0

(f, ∂tf)|t=0 = (f0, f1).

Combining (3.12)-(3.14), and (3.18)-(3.20), we have finished the proof of Theorem
1.2. �
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4. Reduction to existence for small, smooth, compactly supported

data

In this section, our goal is to give a reduction of Proposition 3.1 to the exis-
tence for small, smooth, compactly supported data by using physical localization
arguments.

Proposition 4.1. Assuming 7
4 < s ≤ 2, (1.15), and (1.24) hold. Let the initial

data (v0, ρ0, ̟0) be smooth, supported in B(0, c+ 2) such that

‖v0‖Hs + ‖ρ0‖Hs + ‖̟0‖H2 ≤ ǫ3.(4.1)

and

̟0 = ρ̄e−ρcurlv0.

Then the Cauchy problem (3.2) admits a unique, smooth solution (v, ρ,̟) on
[−1, 1]× R2, which has the following properties:

(1) energy estimate

‖(v, ρ)‖L∞

t H
s
x
+ ‖(∂tv, ∂tρ)‖L∞

t H
s−1
x

+ ‖̟‖L∞

t H
2
x
+ ‖∂t̟‖L∞

t H
1
x
≤ ǫ2.(4.2)

(2) dispersive estimate for v and ρ

(4.3) ‖dv, dρ‖L4
tC

δ
x
≤ ǫ2,

(3) dispersive estimate for the linear equation
for 1 ≤ r ≤ s+ 1, the linear equation

(4.4)

{
�gf = 0

(f, ∂tf)|t=0 = (f0, f1)

is well-posed in Hr ×Hr−1, and the following estimates

(4.5) ‖ 〈∂〉
k
f‖L4

tL
∞

x
. ‖f0‖Hr + ‖f1‖Hr−1 , k < r −

3

4
,

and

(4.6) ‖f‖L∞

t H
s
x
+ ‖∂tf‖L∞

t H
s−1
x

. ‖f0‖Hr + ‖f1‖Hr−1

holds.

proof of Proposition 3.1 by Proposition 4.1. To achieve the goal, we will firstly re-
duce Proposition 3.1 to small data by scaling and physical localization, and then
using the conclusion in Proposition 4.1 to prove Proposition 3.1.

Step 1. Scaling. The the initial data in Proposition 3.1 satisfies

‖v0‖Hs + ‖ρ0‖Hs + ‖̟0‖H2 ≤ R.(4.7)

By scaling

ṽ(t, x) = v(T t, Tx), ρ̃(t, x) = ρ(T t, Tx), ˜̟ (t, x) = ̟(T t, Tx),

we get

‖ṽ0‖Ḣs + ‖ρ̃0‖Ḣs ≤ RT s−1,

‖ ˜̟ 0‖Ḣ2 ≤ RT.

Let ǫ3 be stated in (1.24). Choose sufficiently small T such that

RT s−1 ≪ ǫ3.
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We then derive that

‖ṽ0‖Ḣs + ‖ρ̃0‖Ḣs + ‖ ˜̟ 0‖Ḣ2 ≤ ǫ3.

The above homogeneous norm is not enough for us to use Proposition 4.1. We then
need to reduce the data in a further step.

Step 2. Localization. Let c be the largest speed of propagation of (3.2). Set
χ be a smooth function supported in B(0, c+2), and which equals 1 in B(0, c+1).
For any given y ∈ R2, we define the localized initial data near y:

v
y
0 = χ(x − y) (v0 − v0(y)) ,

ρy0 = χ(x− y) (ρ0 − ρ0(y)) .

Then the initial specific vorticity should be given by

̟y
0 = ρ̄−1e−ρ

y
0 curlvy0 .

Since s ∈ (74 , 2], it is not difficult for us to verify

(4.8) ‖(vy0 , ρ
y
0)‖Hs

x
+ ‖̟y

0‖H2
x
. ‖v0, ρ0‖Ḣs + ‖̟0‖Ḣ2 . ǫ3.

Step 3. Using Proposition 4.1. By Proposition 4.1, there is a smooth
solution (vy , ρy, ̟y) on [−1, 1]× R2 satisfying the following Cauchy problem

(4.9)





�gv
i = −[ia]eρc2s∂

a̟ +Qi + Ei,

�gρ = D,

T̟ = 0.

(v, ρ,̟)|t=0 = (vy0 , ρ
y
0, ̟

y
0),

(∂tv, ∂tρ)|t=0 = (−v
y
0 · ∇v

y
0 + c2s∇ρ

y
0 ,−v

y
0 · ∇ρy0 − divvy0),

where Qi, Ei and D are stated as (2.3). As a result, vy +v0(y), ρ
y + ρ0(y), ̟

y also
solves (4.9), and its initial data coincides with (v0, ρ0, ̟0) in B(y, c+ 1). Besides,
the Strichartz estimate

(4.10) ‖dvy, dρy‖L4
tL

∞

x
≤ ǫ2.

also holds. Consider the restriction, for y ∈ R2,

(vy + v0(y)) |Ky , (ρy + ρ0(y)) |Ky , ̟y|Ky ,

where

Ky := {(t, x) : ct+ |x− y| ≤ c+ 1, |t| < 1} .

Then this restrictions solve (4.9) on Ky. By finite speed of propagation and the
uniqueness of solutions of (3.2), a smooth solution (v, ρ,̟) satisfying (3.2) in
[−1, 1]× R2 could be set by

v(t, x) = vy(t, x) + v0(y), (t, x) ∈ Ky,

ρ(t, x) = ρy(t, x) + ρ0(y), (t, x) ∈ Ky,

̟(t, x) = ̟y(t, x), (t, x) ∈ Ky.
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For the problem (3.2) is equivalent with (1.16), using Theorem 2.10, we have for
t ∈ [−1, 1]

‖(v, ρ)‖Hs
x
+ ‖̟‖H2

x
+ ‖(∂tv, ∂tρ)‖Hs−1

x
+ ‖∂t̟‖H1

x

=‖(vy, ρy)‖Hs
x
+ ‖̟y‖H2

x
+ ‖(∂tv

y, ∂tρ
y)‖Hs−1

x
+ ‖∂t̟

y‖H1
x

≤C
(
‖(vy0 , ρ

y
0)‖Hs

x
+ ‖̟y

0‖H2
x

)
exp{

∫ t

0

(1 + ‖dvy, dρy‖L∞

x
)2dτ}

≤M.

(4.11)

By (4.10), we can directly get

(4.12) ‖dv, dρ‖L4
tL

∞

x
≤ C‖dvy , dρy‖L4

tL
∞

x
≤M.

It remains for us to prove (3.6) and (3.7). Let the cartesian grid 2−
1
2Z2 be in R2,

and a corresponding smooth partition of unity be
∑

y∈2−
1
2 Z2

ψ(x− y) = 1,

such that the function ψ is supported in the unit ball. Consider the solution fy for

(4.13)

{
�gyf

y = 0,

fy|t=0 = ψ(x − y)f0, ∂tf
y|t=0 = ψ(x− y)f1,

where gy has the same formulation as in (1.4) with the velocity vy and ρy. Thus,

(4.14) gy = g, (t, x) ∈ Ky.

By finite speed of propagation, for (t, x) ∈ Ky, we can conclude that

fy = f, (t, x).

Write f as

f(t, x) =
∑
y∈2−

1
2 Z2

ψ(x− y)fy(x, t),

Using (4.5) and (4.6), for k < r − 3
4 , we could get

‖ 〈∂〉
k
f‖4L4

tL
∞

x
≤C

∑

y∈2−
1
2 Z2

‖ψ(x− y) 〈∂〉
k
fy(x, t)‖4L4

tL
∞

x

≤C
∑

y∈2−
1
2 Z2

‖ψ(x− y)(f0, f1)‖
4
Hr×Hr−1 .

.‖(f0, f1)‖
4
Hr×Hr−1 ,

(4.15)

and

‖f‖L∞

t H
s
x
+ ‖∂tf‖L∞

t H
s−1
x

≤C
∑

y∈2−
1
2 Z2

(‖ψ(x− y)fy(t, x)‖L∞

t H
s−1
x

+ ‖ψ(x− y)∂tf
y‖L∞

t H
s−1
x

)

.‖(f0, f1)‖Hr×Hr−1 ,

(4.16)

Therefore, by (4.11), (4.12), (4.15), and (4.16), we have finished the proof of Propo-
sition 4.1. �
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5. A bootstrap argument

Let mαβ be a standard Minkowski metric satisfying

m00 = −1, mij = δij , i, j = 1, 2.

Taking v = 0 and ρ = 0 in g, the inverse matrix of the metric g is

g−1(0) =




−1 0 0
0 c2s(0) 0
0 0 c2s(0)


 .

By a linear change of coordinates which preserves dt, we may assume that gαβ(0) =
mαβ. Let χ be a smooth cut-off function supported in the region B(0, 3 + 2c) ×
[− 3

2 ,
3
2 ], which equals to 1 in the region B(0, 2 + 2c)× [−1, 1]. Set

(5.1) g = χ(t, x)(g − g(0)) + g(0),

where g is denoted in (1.4). Consider the following Cauchy problem

(5.2)





�gv
i = −[ia]eρc2s∂

a̟ +Qi + Ei,

�gρ = D,

T̟ = 0.

(v, ρ,̟)|t=0 = (v0, ρ0, ̟0),

(∂tv, ∂tρ)|t=0 = (−v0 · ∇v0 + c2s∇ρ0,−v0 · ∇ρ0 − divv0),

where, g is defined in (5.1). We denote byH the family of smooth solutions (v, ρ,̟)
to (5.2) for t ∈ [−2, 2], with initial data (v0, ρ0, ̟0) supported in B(0, 2+ c), where

̟0 = ρ̄−1e−ρ0curlv0,

and for which

‖v0‖Hs + ‖ρ0‖Hs + ‖̟0‖H2 ≤ ǫ3,(5.3)

‖(v, ρ)‖L∞

t H
s
x
+ ‖(∂tv, ∂tρ)‖L∞

t H
s−1
x

+ ‖̟‖L∞

t H
2
x
+ ‖∂t̟‖L∞

t H
1
x
+ ‖dv, dρ‖L4

tC
δ
x
≤ 2ǫ2.

(5.4)

Then, the bootstrap argument can be stated as follows:

Proposition 5.1. Let (1.24) hold. Then there is a continuous functional G : H →
R+, satisfying G(0) = 0, so that for each (v, ρ,̟) ∈ H satisfying G(v, ρ) ≤ 2ǫ1 the
following hold:

(1) The function (v, ρ,̟) satisfies

(5.5) G(v, ρ) ≤ ǫ1.

(2) The following estimate holds,
(5.6)
‖(v, ρ)‖L∞

t H
s
x
+ ‖(∂tv, ∂tρ)‖L∞

t H
s−1
x

+ ‖̟‖L∞

t H
2
x
+ ‖∂t̟‖L∞

t H
1
x
+ ‖dv, dρ‖L4

tC
δ
x
≤ ǫ2.

(3) For 1 ≤ r ≤ s+1, the equation (3.5) endowed with the metric g is well-posed
in Hr ×Hr−1. Moreover, the following estimates

(5.7) ‖ 〈∂〉
k
f‖L4

tL
∞

x
. ‖f0‖Hr + ‖f1‖Hr−1 , k < r −

3

4
,

and

(5.8) ‖f‖L∞

t H
s
x
+ ‖∂tf‖L∞

t H
s−1
x

. ‖f0‖Hr + ‖f1‖Hr−1 ,

hold.
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proof of Proposition 4.1 by Proposition 5.1. The initial data in Proposition 4.1 sat-
isfies

‖v0‖Hs + ‖ρ0‖Hs + ‖̟0‖H2 ≤ ǫ3.

We denote by A the subset of those γ ∈ [0, 1] such that the equation (5.2) admits
a smooth solution uγ having the initial data

vγ(0) =γv0,

ργ(0) =γρ0,

̟γ
0 (0) =ρ̄e

−ργ(0)curlvγ0 ,

and such that G(vγ , ργ) ≤ ǫ1 and (5.6) hold.
If γ = 0, then

(vγ , ργ , ̟γ)(t, x) = (0, 0, 0).

is a smooth solution of 5.2 with initial data

(vγ , ργ , ̟γ)(0, x) = (0, 0, 0).

Thus, the set A is not empty. If we can prove that A = [0, 1], then 1 ∈ A. As a
result, the Proposition 4.1 holds. It suffices for us to prove that A is both open and
closed in [0, 1].

(1) A is open. Let γ ∈ A. Then (vγ , ργ , ̟γ) is a smooth solution to (5.2), where

̟γ = ρ̄e−ρ
γ

curlvγ .

Let β be close to γ. By the continuity of G, it follows that

G(vβ , ρβ) ≤ 2ǫ1,

and also (5.4) holds. Using Proposition 5.1, we have

G(vβ , ρβ) ≤ ǫ1,

and (5.6). Thus, we have showed that β ∈ A.
(2) A is closed. Let γk ∈ A, k ∈ N+ and limk→∞ γk = γ. Then there exists a

sequence {(vγk , ργk , ̟γk)}k∈N+ is smooth solutions to (5.2) and

‖(vγk , ργk)‖L∞

t H
s
x
+ ‖(∂tv

γk , ∂tρ
γk)‖L∞

t H
s−1
x

+ ‖̟γk‖L∞

t H
2
x
+ ‖∂t̟

γk‖L∞

t H
1
x
+ ‖dvγk , dργk‖L4

tC
δ
x
≤ ǫ2.

Then there exists some subsequence such that there is a limit (vγ , ργ , ̟γ) satisfying

‖(vγ , ργ)‖L∞

t H
s
x
+‖(∂tv

γ , ∂tρ
γ)‖L∞

t H
s−1
x

+‖̟γ‖L∞

t H
2
x
+‖∂t̟

γ‖L∞

t H
1
x
+‖dvγ , dργ‖L4

tC
δ
x
≤ ǫ2,

and G(v, ρ) ≤ ǫ1. Therefore, γ ∈ A. We could conclude that A = [0, 1]. So we
complete the proof of Proposition 4.1.

�

6. Regularity of the characteristic hypersurface

Recalling Proposition 5.1, the Strichartz estimate (5.7) plays a crucial role and
it is a class of Fourier restriction estimate [47]. So we need to find a background
hypersurface to work. In this section, we will define the characteristic hypersurface
and discuss it’s regularity.

Let (v, ρ,̟) ∈ H, and the corresponding metric g which equals the Minkowski
metric for t ∈ [−1,− 1

2 ]. Let Γθ be the flowout of this section under the Hamiltonian
flow of g. For each θ, the null Lagrangian manifold Γθ is the graph of a null covector
field given by drθ, where rθ is a smooth extension of θ ·x− t, and that the level sets
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of rθ are small perturbations of the level sets of the function θ · x − t in a certain
norm captured by G. We also let Σθ,r for r ∈ R denote the level sets of rθ. The
characteristic hypersurface Σθ,r is thus the flow out of the set θ · x = r − 2 along
with the null geodesic flow in the direction θ at t = −1.

Let us introduce an orthonormal set of coordinates on R2 by setting xθ = θ · x.
Let x′θ be given orthonormal coordinates on the hyperplane perpendicular to θ,
which then define coordinates on R2 by projection along θ. Then (t, x′θ) induces
the coordinate on Σθ,r, where Σθ,r is given by

Σθ,r = {(t, x) : xθ − φθ,r = 0}

for a smooth function φθ,r(t, x
′
θ). We now introduce two norms for functions defined

on [−1, 1]× R2,

|||u|||2,∞ = sup
−1≤t≤1

sup
0≤j≤1

‖∂jtu(t, ·)‖H2−j(R2),

|||u|||2,2 =
(

sup
0≤j≤1

∫ 1

−1

‖∂jtu(t, ·)‖
2
H2−j(R2)dt

) 1
2 .

The same notation applies for functions defined on [−1, 1]× R2. Denote

|||f |||2,2,Σθ,r
= |||f |Σθ,r

|||2,2,

where the right-hand side is the norm of the restriction of f to Σθ,r, taken over the
(t, x′θ) variables used to parametrise Σθ,r. Besides, the notation

‖f‖Ha(Σθ,r)

denotes the Ha−1(R) norm of f restricted to the time t slice of Σθ,r using the x′θ
coordinates on Σtθ,r.

We now set

(6.1) G(v, ρ) = sup
θ,r

|||dφθ,r − dt|||2,2,Σθ,r
.

Proposition 6.1. Let (v, ρ,̟) ∈ H so that G(v, ρ) ≤ 2ǫ1. Then

(6.2) |||gαβ −mαβ|||2,2,Σθ,r
+ |||λ(gαβ − g

αβ
λ ), dgαβλ , λ−1∂dgαβλ |||1,2,Σθ,r

. ǫ2.

Proposition 6.2. Let (v, ρ,̟) ∈ H so that G(v, ρ) ≤ 2ǫ1. Then

(6.3) G(v, ρ) . ǫ2.

Furthermore, for each t, we have

(6.4) ‖dφθ,r(t, ·)− dt‖
C

1,δ

x′

. ǫ2 + sup
i,j

‖dg(t, ·)‖Cδ
x(R

2).

6.1. Energy estimates on the characteristic hypersurface. Let (v, ρ,̟) ∈
H. Then the following estimates hold:

(6.5) ‖dv, dρ‖L4
tC

δ
x
+ |||v, ρ|||s,∞ + |||̟|||2,∞ . ǫ2.

It suffices for us to prove Proposition 6.1 and Proposition 6.2 for θ = (0, 1) and
r = 0. We fix this choice, and suppress θ and r in our notation. We use (x2, x

′)
instead of (xθ, x

′
θ). Then Σ is defined by

Σ = {x2 − φ(t, x′) = 0} .

The hypothesis G ≤ 2ǫ1 implies that

(6.6) |||dφθ,r(t, ·)− dt|||s,2,Σ ≤ 2ǫ1.



TWO-DIMENSIONAL COMPRESSIBLE EULER EQUATIONS 25

According to Sobolev imbeddings, the following estimate holds:

(6.7) ‖dφ(t, x′)− dt‖
L4

tC
1,δ

x′

+ ‖∂tdφ(t, x
′)‖L4

tC
δ
x′

. ǫ1.

Lemma 6.3. [41] Assume s ∈ (74 , 2]. Let h̃(t, x) = h(t, x′, x2 + φ(t, x′)). Then we
have

|||h̃|||s,∞ . |||h|||s,∞, ‖dh̃‖L4
tL

∞ . ‖dh‖L4
tL

∞ ,

and

|||h̃|||Ha
x
. |||h|||Ha

x
, 0 ≤ a ≤ 2.

Proof. �

Lemma 6.4. [41] For r > 1 we have

|||hf |||r,2,Σ . |||h|||r,2,Σ|||f |||r,2,Σ.

Lemma 6.5. Assume s ∈ (74 , 2]. Suppose U to satisfy the hyperbolic system

(6.8) A0(U)Ut +
2∑

i=1

Ai(U)Uxi
= F.

Then

|||U|||2s,2,Σ . ‖U‖L∞

t H
s
x

(
‖dU‖L4

tL
∞

x
+ ‖U‖L∞

t H
s
x
+ ‖F‖L1

tH
s−1
x

)
.(6.9)

Proof. Choosing the change of coordinates x2 → x2−φ(t, x
′) and setting Ũ(t, x) =

U(t, x′, x2+φ(t, x′)), F̃(t, x) = F(t, x′, x2+φ(t, x′)), the system (6.8) is transformed
to
(6.10)

A0(U)∂tŨ+A1(Ũ)∂x1
Ũ+A2(Ũ)∂x2

Ũ = −∂tφ∂2Ũ−
2∑

i=0

Ai(Ũ)∂xi
φ∂1Ũ+ F̃.

Multiplying Ũ on (6.10) and integrating it by parts on [−1, 1]× R2, we get

|||Ũ|||20,2,Σ . ‖dŨ‖L1
tL

∞

x
‖Ũ‖L2

x
+ ‖Ũ‖L2

x
‖F̃‖L1

tL
2
x
,

where we use the fact that φ is independent of x2. Using Lemma 6.3, (6.6), and
(6.7), we may bound the above expression by

(6.11) |||U|||20,2,Σ . ‖U‖L∞

t L
2
x

(
‖dU‖L4

tL
∞

x
+ ‖U‖L∞

t L
2
x
+ ‖F‖L1

tL
2
x

)
.

Taking the derivative of Λβx′ , |β| = s on (6.10) and integrating it on [−1, 1] × R2,
we could arrive at the bound

‖Λβx′Ũ‖2L2
Σ
. ‖dŨ‖L1

tL
∞

x
‖ΛβxŨ‖L∞

t L
2
x
+ ‖ΛβxŨ‖L∞

t L
2
x
‖ΛβxF̃‖L1

tL
2
x
+ I,(6.12)

where

I = −

2∑

i=0

∫

[−1,1]×R2

Λβx′

(
Ai(Ũ)∂xi

φ∂2Ũ
)
· Λβx′Ũdxdτ.
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Rewrite I as

I =−

2∑

i=0

∫

[−1,1]×R2

(
Λβx′

(
Ai(Ũ)∂xi

φ∂2Ũ)−Ai(Ũ)∂xi
φ∂i∂2Λ

β
x′Ũ

)
· Λβx′Ũdxdτ

+

2∑

i=0

∫

[−1,1]×R2

Ai(Ũ)∂xi
φ∂i∂2Λ

β
x′Ũ · Λβx′Ũdxdτ

= I1 + I2,

where

I1 =

2∑

i=0

∫

[−1,1]×R2

[Λβx′ , Ai(Ũ)∂iφ∂2]Ũ · Λβx′Ũdxdτ,

I2 =

2∑

i=0

∫

[−1,1]×R2

Ai(Ũ)∂xi
φ∂2(Λ

β
x′Ũ) · Λβx′Ũdxdτ.

By commutator estimates, we get

|I1| .
(
‖ΛβŨ‖L∞

t L
2
x
‖∂dφ‖L2

tL
∞

x
+ sup

θ,r

‖Λβx′dφ‖L2(Σθ,r)‖dŨ‖L2
tL

∞

x

)
· ‖ΛβŨ‖L2

tL
2
x

(6.13)

and

|I2| .
(
‖dŨ‖L2

tL
∞

x
‖∂φ‖L2

tL
∞

x
+ ‖Ũ‖L2

tL
∞

x
‖∂2φ‖L2

tL
∞

x

)
· ‖ΛβŨ‖2L∞

t L
2
x
.(6.14)

Due to (6.13), (6.14), Lemma 6.3, (6.6) and (6.7), we obtain

|||Λβx′U|||20,2,Σ . ‖U‖L∞

t H
s
x

(
‖dU‖L4

tL
∞

x
+ ‖U‖L∞

t H
s
x
+ ‖F‖L1

tH
s−1
x

)
.(6.15)

Using A0(U)∂tU = −A1(U)Ux1
−A2(U)Ux2

and Lemma 6.7, we can easily carry
out

|||∂tU|||2s−1,2,Σ . |||U|||2s−1,2,Σ|||∂U|||2s−1,2,Σ

. ‖U‖L∞

t H
s
x

(
‖dU‖L4

tL
∞

x
+ ‖U‖L∞

t H
s−1
x

+ ‖F‖L1
tH

s−1
x

)
.

(6.16)

Therefore, we can conclude the proof of Lemma 6.5 by using (6.11), (6.15), and
(6.16). �

Based on Lemma 6.5, we get

Corollary 6.6. Let (v, ρ,̟) ∈ H. Then

(6.17) |||v, ρ|||s,2,Σ . ǫ2.

Lemma 6.7. Suppose f to satisfy the linear equation

(6.18) Tf = G.

Then

|||f |||20,2,Σ . ‖G‖L1
tL

2
x
‖f‖L2

x
+ ‖∂v‖L4

tL
∞

x
‖f‖L∞

t L
2
x
.(6.19)

If ̟ ∈ H satisfies

(6.20) T̟ = 0,

then we have

|||̟|||0,2,Σ . ǫ2.(6.21)
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Proof. Choosing the change of coordinates x2 → x2 − φ(t, x′), then the equation
(6.18) is transformed to

∂tf̃ + ṽ · ∇f̃ = G̃− ∂tφ · ∂2f̃ − ṽi∂iφ∂2f̃ .

Taking the inner product with f̃ on [−1, 1]× R2, it gives

‖f‖2L2
Σ

. ‖G‖L1
tH

s
x
‖f‖L2

x
+ ‖∂v‖L1

tL
∞

x
‖f‖L2

x
+ I1 + I2,(6.22)

where

I1 = −

∫ 1

−1

∫

R2

∂tφ · ∂2f̃ · f̃dxdτ,

I2 = −

∫ 1

−1

∫

R2

ṽi∂iφ∂2f̃ · f̃dxdτ.

For φ is independent of x2, we have

(6.23) I1 =
1

2

∫ 1

−1

∫

R2

∂2∂tφ · |f̃ |2dxdτ = 0,

and

|I2| =
1

2

∣∣
∫ 1

−1

∫

R2

∂2ṽ
i∂iφ · |f̃ |2dxdτ

∣∣

. ‖∂v‖L4
tL

∞

x
‖f‖2L2

x
‖∂φ‖L4

tL
∞

x
.

Using (6.33), we get

|I2| . ǫ1‖∂v‖L1
tL

∞

x
‖f‖2L2 ≤ ‖∂v‖L1

tL
∞

x
‖f‖2L2

x
.(6.24)

By (6.22), (6.23), and (6.24), we can obtain (6.19). If G = 0, using (6.19), we can
conclude (6.21). �

Lemma 6.8. Let (v, ρ,̟) ∈ H. Let s ∈ (74 , 2]. Then we have

(6.25) |||̟|||s,2,Σ + |||̟|||2,2,Σ + |||∂2̟|||0,2,Σ + |||∂̟|||1,2,Σ . ǫ2.

Proof. The proof is separated into several steps.
Step 1: |||∂̟|||0,2,Σ. Recall

T∂̟ = ∂v∂̟.

By changing coordinates x2 → x2 − φ(t, x′), we have

(∂t + ∂tφ∂2)∂̟̃ + ṽi · (∂i + ∂iφ∂2)∂̟̃ = (∂ + ∂φ∂2)ṽ · (∂ + ∂φ∂2) ˜̟ ,

where ·̃ denotes the function under new coordinates. Multiplying ∂̟̃ on the above
equation, we derive that

|||∂̟|||20,2,Σ . ‖dv‖L4
tL

∞

x
(1 + ‖dφ‖L∞

t,x
)2‖∂̟‖L2

x
. ǫ22.

Taking square of the above expression, we conclude that

(6.26) |||∂̟|||0,2,Σ . ǫ2.

Step 2: |||∂2̟|||0,2,Σ. We find ∆̟ satisfying

T(∆̟ − ∂ρ∂̟) = R,(6.27)

where R is defined in (6.43). Denote the operator Pij by

(6.28) Pij = ∂2ij(−∆)−1.
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Then

(6.29) ∂2ij̟ = Pij∆̟, i, j = 1, 2.

Operating Pij on (6.27), we then get

T {Pij(∆̟ − ∂ρ∂̟)} = PijR+ [Pij ,T](∆̟ − ∂ρ∂̟).(6.30)

Inserting (6.29) into (6.30), we have

T
(
∂2ij̟ − Pij(∂ρ∂̟)

)
= K.(6.31)

Above, we define

(6.32) K = PijR+ [Pij ,T](∆̟ − ∂ρ∂̟).

Choosing the change of coordinates x2 → x2 − φ(t, x′) and setting ˜̟ (t, x′, x2) =
̟(t, x1, x2 − φ(t, x′)), then the term ∂2ij̟ is transformed to

∂2ij ˜̟ − ∂2ijφ∂2 ˜̟ − ∂jφ∂
2
2i ˜̟ − ∂iφ∂

2
2j ˜̟ + ∂iφ∂jφ∂

2
22 ˜̟ + ∂iφ∂

2
2jφ∂2 ˜̟ .

Under the change of coordinates, we see the term Pij(∂ρ∂̟) and K as a whole
part,i.e,

˜[Pij(∂ρ∂̟)] = [Pij(∂ρ∂̟)] (t, x1, x2 − φ(t, x′)),

K̃ = K(t, x1, x2 − φ(t, x′)),

As a result, the left side of (6.31) becomes

T̃
(
∂2ij ˜̟ − ∂2ijφ∂2 ˜̟ − ∂jφ∂

2
2i ˜̟ − ∂iφ∂

2
2j ˜̟ + ∂iφ∂jφ∂

2
22 ˜̟ + ∂iφ∂

2
2jφ∂2 ˜̟ − ˜[Pij(∂ρ∂̟)]

)
,

where
T̃ = (∂t + ∂tφ∂2) + ṽi(∂i + ∂iφ∂2).

Organizing it in order, the expression of (6.27) could be

(∂t + ṽi∂i)B̃ + (∂tφ+ ṽi∂iφ)∂2B̃ = K̃,(6.33)

where

B̃ :=∂2ij ˜̟ − ∂2ijφ∂2 ˜̟ − ∂jφ∂
2
2i ˜̟ − ∂iφ∂

2
2j ˜̟

+ ∂iφ∂j∂
2
22 ˜̟ + ∂iφ∂

2
2jφ∂2 ˜̟ − ˜[Pij(∂ρ∂̟)].

(6.34)

If we set

B = ∂2ij̟ − Pij(∂ρ∂̟),(6.35)

then B is transformed to B̃ under changing of coordinates x2 → x2 − φ(t, x′).
Multiplying B̃ on (6.33) and integrating it on [−1, 1]× R2, one has

‖B̃‖2L2(Σ) ≤ |

∫ 1

−1

∫

R2

K̃ · B̃dxdτ | + ‖dv‖L1
tL

∞

x
‖B̃‖2L2

x

+ |

∫ 1

−1

∫

R2

(∂tφ+ ṽi∂iφ)∂2B̃ · B̃dxdτ |.

(6.36)

On the left side, we see that

(6.37) ‖B̃‖2L2(Σ) = ‖B|Σ‖L2
tL

2

x′
(Σ) = |||B|||20,2,Σ.

Let us estimate the right hand of (6.36) as follows. By using Lemma 6.3, we have

(6.38) ‖B̃‖2L2
x
≤ ‖B‖2L2

x
.
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By Hölder’s inequality and φ independent with x2, we arrive at the bound

|

∫ 1

−1

∫

R2

(∂tφ+ ṽi∂iφ)∂2B̃ · B̃dxdτ | = |

∫ 1

−1

∫

R2

∂2(∂tφ+ ṽi∂iφ)|B̃|2dxdτ |

= |

∫ 1

−1

∫

R2

|∂2ṽ
i| · |∂iφ||B̃|2dxdτ |

≤ ‖∂v‖L1
tL

∞

x
‖∂φ‖L∞

t L
∞

x
‖B̃‖L∞

t L
2
x

≤ ‖∂v‖L1
tL

∞

x
‖∂φ‖L∞

t L
∞

x
‖B‖L∞

t L
2
x
.

(6.39)

We note that there is a Riesz operator in K, we then pull the coordinate back by
the transform x2 − φ(t, x′) → x2. Then, we have

|

∫ 1

−1

∫

R2

K̃ · B̃dxdτ | = |

∫ 1

−1

∫

R2

K · Bdxdτ |

≤ ‖K‖L1
tL

2
x
‖B‖L∞

t L
2
x
.

(6.40)

Combining (6.36)-(6.39) yields

|||B|||20,2,Σ . ‖∂v‖L1
tL

∞

x
‖∂φ‖L∞

t L
∞

x
‖B‖L∞

t L
2
x
+‖dv‖L1

tL
∞

x
‖B‖2L2

x
+‖K‖L1

tL
2
x
‖B‖L∞

t L
2
x
.

By (5.4) and (6.7), we have

(6.41) |||B|||20,2,Σ . ǫ22 + ‖K‖L1
tL

2
x
‖B‖L∞

t L
2
x
.

It remains for us to bound ‖K‖L1
tL

2
x
. Recalling (6.32), we can obtain

(6.42) ‖K‖L1
tL

2
x
≤ ‖PijR‖L1

tL
2
x
+ ‖[Pij,T](∆̟ − ∂ρ∂̟)‖L1

tL
2
x
.

Using Pij , a Riesz operator, we can show that by Hölder’s inequality

‖PijR‖L1
tL

2
x
. ‖R‖L1

tL
2
x

. ‖∂v‖L4
tL

∞

x
‖∂ρ‖L∞

t L
2
x
+ ‖eρ‖L∞

t L
∞

x
(‖∂ρ‖L4

tL
∞

x
‖̟‖L∞

t L
2
x
+ ‖∂̟‖L1

tL
2
x
)

+ ‖∂v‖L4
tL

∞

x
‖∂2̟‖L∞

t L
2
x
+ ‖∂v‖L4

tL
∞

x
‖∂ρ‖L∞

t L
4
x
‖∂̟‖L∞

t L
4
x

.
(
‖∂v, ∂ρ‖L4

tL
∞

x
+ ‖∂v‖L4

tL
∞

x
‖∂ρ‖L4

tL
∞

x

)
(‖̟‖L∞

t H
2
x
+ ‖ρ‖L∞

t H
s
x
)

. ǫ22.

(6.43)

By Lemma 2.6, we see that

‖[Pij,T](∆̟ − ∂ρ∂̟)‖L1
tL

2
x
≤ ‖∂v‖L4

tC
δ
x
‖∆̟ − ∂ρ∂̟‖L∞

t L
2
x
.(6.44)

On the other hand, by using (5.4), we have

‖∆̟ − ∂ρ∂̟‖L2
tL

2
x
≤ ‖∆̟‖L2

tL
2
x
+ ‖∂ρ∂̟‖L2

tL
2
x

≤ ‖̟‖L∞

t H
2
x
+ ‖∂ρ‖L4

tL
∞

x
‖∂̟‖L∞

t L
2
x

. ǫ2 + ǫ22 . ǫ2.

(6.45)

Substituting (6.45) to (6.44) and using (5.4), we could get the bound

(6.46) ‖[Pij,T](∆̟ − ∂ρ∂̟)‖L1
tL

2
x
. ǫ2.

Adding (6.46) and (6.43), one has

(6.47) ‖K‖L1
tL

2
x
≤ ‖PijR‖L1

tL
2
x
+ ‖[Pij ,T](∆̟ − ∂ρ∂̟)‖L1

tL
2
x
. ǫ2,
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which when inserted into (6.41) yields the inequality

(6.48) |||B|||20,2,Σ . ǫ22 + ǫ2‖B‖L∞

t L
2
x
.

Recalling (6.35) and using (5.4), we have

‖B‖L∞

t L
2
x
≤ ‖∂2̟ − Pij(∂ρ∂̟)‖L∞

t L
2
x

≤ ‖∂2 ˜̟ ‖L∞

t L
2
x
+ ‖Pij(∂ρ∂̟)‖L∞

t L
2
x

≤ ‖∂2̟‖L∞

t L
2
x
+ ‖∂ρ∂̟‖L∞

t L
2
x

. ‖̟‖L∞

t H
2
x
(1 + ‖∂ρ‖L∞

t H
s−1
x

) . ǫ2,

which combing with (6.48) give us

(6.49) |||B|||0,2,Σ . ǫ2.

Using (6.35) again, we derive that

|||B|||0,2,Σ = |||∂2 ˜̟ − Pij(∂ρ∂̟)|||0,2,Σ

≥ |||∂2̟|||0,2,Σ − |||Pij(∂ρ∂̟)|||0,2,Σ.
(6.50)

It remains for us to estimate |||Pij(∂ρ∂̟)|||0,2,Σ. For the 1−codimension of Σ in
R+ × R2, by Sobolev imbedding, we have

|||Pij(∂ρ∂̟)|||0,2,Σ = ‖Pij(∂ρ∂̟)‖L2
tL

2

x′

≤ ‖Pij(∂ρ∂̟)‖L2
tH

a
x
, a >

1

2
,

≤ ‖∂ρ∂̟‖L2
tH

a
x

≤ ‖∂ρ‖L2
tH

s−1
x

‖∂̟‖L2
tH

1
x
. ǫ22.

(6.51)

Combining (6.50) and (6.51), we derive

(6.52) |||∂2̟|||0,2,Σ ≤ |||∂2̟|||0,2,Σ + |||Pij(∂ρ∂̟)|||0,2,Σ . ǫ2.

Step 3: |||∂̟|||1,2,Σ. We also note

∂t∂̟ + v · ∇∂̟ = ∂v · ∂̟.

By (6.54) and Sobolev imbedding, we see that

|||∂t∂̟|||0,2,Σ ≤ |||v · ∇∂̟|||0,2,Σ + |||∂v · ∂̟|||0,2,Σ

≤ ‖v‖L∞

t,x
|||∂2̟|||0,2,Σ + ‖∂v · ∂̟‖L2

tH
a
x
, a >

1

2
,

≤ ‖v‖L∞

t H
s
x
|||∂2̟|||0,2,Σ + ‖∂v‖L∞

t H
s−1
x

‖∂̟‖L∞

t H
1
x

. ǫ2.

(6.53)

For any function f , the term ∂x′ f̃ can be calculated by

∂x′ f̃ = ∇f · (1, dφ)T,

where ·̃ denotes the function expressed in the new coordinates and f̃(t, x) = f(t, x′, x2+
φ(t, x′)). We then have

|||∂x′f |||0,2,Σ ≤ (1 + ‖dφ‖L∞

t,x′
)|||∂f |||0,2,Σ.

Based on this fact, we can deduce

(6.54) |||∂x′∂̟|||0,2,Σ ≤ (1 + ‖dφ‖L∞

t,x′
)|||∂(∂̟)|||0,2,Σ ≤ (1 + ǫ1)ǫ2 . ǫ2.
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Gathering (6.26), (6.54), and (6.53), we get

(6.55) |||∂̟|||1,2,Σ . ǫ2.

Step 4: |||̟|||2,2,Σ. Note

T̟ = 0.

By changing of coordinates x2 → x2 − φ(t, x′), we can get

(∂t + ∂tφ∂2) ˜̟ + ṽi(∂i + ∂iφ∂2) ˜̟ = 0.

Multiplying W̃ and integrating it on the whole space-time, we have

|||̟|||20,2,Σ . ‖dv‖L4
tL

∞

x
(1 + ‖dφ‖L∞

t,x′
)‖̟‖2L∞

t L
2
x
. ǫ22,

which when taken square yields

(6.56) |||̟|||0,2,Σ . ǫ2.

By using

(6.57) ∂x′ ˜̟ = ∇̟ · (1, dφ)T,

we thus have

∂2x′ ˜̟ = ∂x′(∇̟) · (1, dφ)T +∇̟ · (0, ∂x′dφ)T.

Combining (6.7), (6.26), (6.54), and (6.59), we see that

|||∂2x′ ˜̟ |||0,2,Σ ≤ |||∂x′(∇̟)|||0,2,Σ‖(1, dφ)
T‖L∞

t,x′

+ ‖∇̟‖L∞

t L
2

x′
(Σ)|||(0, ∂x′dφ)T|||L2

tL
∞

x′
(Σ)

. ǫ2ǫ1 + ‖̟‖
L∞

t H
3
2

x′
(Σ)

|||(0, ∂x′dφ)T|||L2
tL

∞

x′
(Σ)

. ǫ2ǫ1 + |||̟|||2,2,Σ|||dφ − dt|||L2
tH

s
x′

(Σ)

. ǫ2ǫ1 + ǫ1|||̟|||2,2,Σ.

(6.58)

Above, we use the trace theorem

(6.59) ‖̟‖
L∞

t H
3
2

x′
(Σ)

≤ |||̟|||2,2,Σ.

Operating ∂t on (6.57), we get

|||∂t∂x′̟|||0,2,Σ ≤ |||∂t(∇̟)|||0,2,Σ · ‖(1, dφ)T‖L∞

t,x

+ ‖∇̟‖L∞

t L
2

x′
(Σ) · |||(0, ∂tdφ)

T|||L2
tL

∞

x′
(Σ)

. ǫ2ǫ1 + ‖̟‖
L∞

t H
3
2

x′
(Σ)

· |||(0, ∂x′dφ)T|||L4
tL

∞

x′
(Σ)

. ǫ2ǫ1 + |||̟|||2,2,Σ · |||(0, ∂x′dφ)T|||L4
tL

∞

x′
(Σ)

. ǫ2ǫ1 + ǫ1|||̟|||2,2,Σ.

(6.60)

Adding (6.58), (6.56), and (6.60) can give us

|||̟|||2,2,Σ . ǫ2ǫ1 + ǫ1|||̟|||2,2,Σ.

For ǫ1 is sufficiently small, we can see

(6.61) |||̟|||2,2,Σ . ǫ2ǫ1 . ǫ2.

By using s ∈ (74 , 2], we have

(6.62) |||̟|||s,2,Σ ≤ |||̟|||2,2,Σ . ǫ2.
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Combining (6.54), (6.55), (6.62), and (6.62), we complete the proof of Lemma
6.8. �

Lemma 6.9. Let U be stated in Lemma 6.5. Then

(6.63) |||2j(U− PjU), dSkU, 2
−jd∂SjU|||s−1,2,Σ . ‖U‖L∞

t H
s
x
+ ‖dU‖L4

tL
∞

x
.

Proof. Let P be a standard multiplier of order 0 on R2, such that P is additionally
bounded on L∞

x (R2). Clearly,

A0(U)(PU)t +A1(U)(PU)x1
+A2(U)(PU)x2

= −

2∑

i=0

[P,Ai(U)]∂xi
U.

By Lemma 6.5, this implies that

(6.64) |||PU|||s,2,Σ . ‖dU‖L4
tL

∞

x
+ ‖U‖L∞

t H
s
x
+ ‖F‖L1

tH
s−1
x

.

To control the norm of 2j(U− PjU), we write

2j(U− PjU) =

2∑

k=1

∂kPkU,

where Pk satisfies the above conditions for P . Using (6.64), we get

|||2j(U− PjU)|||s−1,2,Σ . ‖U‖L∞

t H
s
x
+ ‖dU‖L4

tL
∞

x
.

Finally, applying (6.64) to P = Sj and P = 2−j∂Sj can give us

|||dSjU|||s−1,2,Σ + |||2−jd∂SjU|||s−1,2,Σ . ‖U‖L∞

t H
s
x
+ ‖dU‖L4

tL
∞

x
.

Therefore, the proof of Lemma 6.9 is completed. �

As a direct corollary, we can see

Lemma 6.10. Let (v, ρ,̟) ∈ H and J = (v, ρ)T. Then

(6.65) |||2j(J− PjJ), dSjJ, 2
−jd∂SjJ|||s−1,2,Σ . ‖v, ρ‖L∞

t H
s
x
+ ‖dv, dρ‖L4

tL
∞

x
. ǫ2.

We are now ready to give a proof of Proposition 6.1.

proof of Proposition 6.1. For (v, ρ,̟) ∈ H, then (v, ρ,̟) is the solution of (5.2).
Using Lemma 6.10, it suffices for us to verify that

|||gαβ −mαβ |||s,2,Σθ,r
. ǫ2.

By Corollary 6.6, one has

sup
θ,r

|||v|||s,2,Σθ,r
+ sup

θ,r

|||ρ|||s,2,Σθ,r
. ǫ2.

Using the expression of g, and using Lemma 6.7, we arrive at the bound

|||gαβ −mαβ|||s,2,Σθ,r
. |||v|||s,2,Σθ,r

+ |||v · v|||s,2,Σθ,r
+ |||c2s(ρ)− c2s(0)|||s,2,Σθ,r

. ǫ2.

Consequently, the conclusion of Proposition 6.1 holds. �
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6.2. The null frame. We introduce a null frame along Σ as follows. Let

V = (dr)∗,

where r is the defining function of the foliation Σ, and where ∗ denotes the iden-
tification of covectors and vectors induced by g. Then V is the null geodesic flow
field tangent to Σ. Let

(6.66) σ = dt(V ), l = σ−1V.

Thus l is the g-normal field to Σ normalized so that dt(l) = 1, hence

(6.67) l = 〈dt, dx2 − dφ〉
−1
g (dx2 − dφ)

∗
.

So the coefficients lj are smooth functions of v, ρ and dφ. Conversely,

(6.68) dx2 − dφ = 〈l, ∂x2
〉
−1
g l∗,

so that dφ is a smooth function of v, ρ and the coefficients of l.
Next, we introduce the vector fields e1 tangent to the fixed-time slice Σt of Σ.

We do this by applying Grahm-Schmidt orthogonalization in the metric g to the
Σt-tangent vector fields ∂x1

+ ∂x1
φ∂x2

.
Finally, we let

l = l + 2∂t.

It follows that {l, l, e1} form a null frame in the sense that

〈l, l〉g = 2, 〈e1, e1〉g = 1,

〈l, l〉g = 〈l, l〉g = 0, 〈l, e1〉g = 〈l, e1〉g = 0.

The coefficient of each of the fields is a smooth function of (v, ρ) and dφ, and by
assumption, we also have the pointwise bound

|e1 − ∂x1
|+ |l − (∂t + ∂x2

)|+ |l − (−∂t + ∂x2
)| . ǫ1.

After that, we can state the following lemma concerning the decomposition of the
Ricci curvature tensor.

Corollary 6.11. Let R be the Riemann curvature tensor of the metric g. Let
e0 = l. Then

(6.69) Rll = l(f2) + f1,

where |f1| . |∂̟|+ |dg|2, |f2| . |dg|,

(6.70) ‖f2‖L2
tH

s−1

x′
(Σ) + ‖f1‖L1

tH
s−1

x′
(Σ) . ǫ2,

and for any t ∈ [0, T ],

(6.71) ‖f2(t, ·)‖Cδ
x′

(Σt) . ‖dg‖Cδ
x(R

2).

Proof. By using the remarkable decomposition in Klainerman-Rodianiski [26], we
have

Rll = l(f2)−
1

2
lαlβ�ggαβ +H,

where |H | . |dg|2 and

z = lγgαβ∂βgαγ −
1

2
gαβl(gαβ).

According to (2.2), we derive that

|f1| . |∂̟|+ |dg|2, |f2| . |dg|.
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Due to Lemma 6.5 and Lemma 6.7, we get

‖f2‖L2
tH

s−1

x′
(Σ) + ‖f1‖L1

tH
s−1

x′
(Σ) . ǫ2.

It’s clear that the estimate (6.71) can be obtained directly from Sobolev embed-
dings. Thus, the proof is completed. �

6.3. The estimate of connection coefficients. Define

χ = 〈De1 l, e1〉g , l(lnσ) =
1

2
〈Dll, l〉g .

For σ, we set the initial data σ = 1 at the time −2. Thanks to Proposition 6.1, we
have

(6.72) ‖χ‖L2
tH

s−1

x′
(Σ) + ‖l(lnσ)‖L2

tH
s−1

x′
(Σ) . ǫ1.

In a similar way, if we expand l = lα/∂α in the tangent frame ∂t, ∂x′ on Σ, then

(6.73) l0 = 1, ‖l1‖s−1,2,Σ . ǫ1.

Lemma 6.12. Let χ be defined as before. Then

(6.74) ‖χ‖L2
tH

s−1

x′
(Σ) . ǫ2.

Furthermore, for any t ∈ [0, T ],

(6.75) ‖χ‖Cδ
x′
(Σt) . ǫ2 + ‖dg‖Cδ

x(R
2).

Proof. The famous transport equation for χ along null hypersurfaces (see references
[25] and [41]) can be described as

l(χ) = 〈R(l, e1)l, e1〉g − χ2 − l(lnσ)χ.

Due to Corollary 6.11, we write the above equation as

(6.76) l(χ− f2) = f1 − χ2 − l(lnσ)χ,

where

(6.77) ‖f2‖L2
tH

s−1

x′
(Σ) + ‖f1‖L1

tH
s−1

x′
(Σ) . ǫ2,

and for any t ∈ [0, T ],

(6.78) ‖f2(t, ·)‖Cδ
x′

(Σt) . ‖dg‖Cδ
x(R

2).

Let Λ be the fractional derivative operator in the x′ variables. We thus have

‖Λs−1(χ− f2)(t, ·)‖L2

x′
(Σt) . ‖[Λs−1, l](χ− f2)‖L1

tL
2

x′
(Σt)

+ ‖Λs−1
(
f1 − χ2 − l(lnσ)χ

)
‖L1

tL
2

x′
(Σt).

(6.79)

A direct calculation shows that

‖Λs−1
(
f1 − χ2 − l(lnσ)χ

)
‖L1

tL
2

x′
(Σt) . ‖f1‖L1

tH
s−1

x′
(Σt) + ‖χ‖2

L2
tH

s−1

x′
(Σt)

+ ‖χ‖L2
tH

s−1

x′
(Σt) · ‖l(lnσ)‖L2

tH
s−1

x′
(Σt),

(6.80)

where we use the fact that Hs−1
x′ (Σt) is an algebra.

We next bound

‖[Λs−1, l](χ− f2)‖L2

x′
(Σt) ≤ ‖/∂αl

α(χ− f2)(t, ·)‖Hs−1

x′
(Σt)

+ ‖[Λs−1/∂α, l
α](χ− f2)(t, ·)‖L2

x′
(Σt).
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By Kato-Ponce commutator estimate and Sobolev embeddings, the above could be
bounded by

(6.81) ‖l1(t, ·)‖Hs−1

x′
(Σt)‖Λ

s−1(χ− f2)(t, ·)‖L2

x′
(Σt).

Gathering (6.72), (6.73), (6.77), (6.79), (6.80), and (6.81) together, we thus prove
that

sup
t

‖(χ− f2)(t, ·)‖Hs−1

x′
(Σt) . ǫ2.

From (6.76), we can see

(6.82) ‖χ− f2‖Cδ
x′

. ‖f1‖L1
tC

δ
x′

+ ‖χ2‖L1
tC

δ
x′

+ ‖l(lnσ)χ‖L1
tC

δ
x′

.

Using the Sobolev imbedding H1(R) →֒ Cδ(R) and Gronwall’s inequality, we can
derive that

‖χ‖Cδ
x′
(Σt) . ǫ2 + ‖dg‖Cδ

x(R
2).

�

6.4. The proof of Proposition 6.2. We first recall that

G(v, ρ) = |||dφ(t, x′)− dt|||s,2,Σ.

Using (6.68) and the estimate of |||g−m|||s,2,Σ in Proposition 6.1, then the estimate
(6.3) follows from the bound

|||l − (∂t − ∂x2
)|||s,2,Σ . ǫ2,

where it is understood that one takes the norm of the coefficients of l − (∂t − ∂x2
)

in the standard frame on R2+1. The geodesic equation, together with the bound
for Christoffel symbols ‖Γαβγ‖L4

tL
∞

x
. ‖dg‖L4

tL
∞

x
. ǫ2, imply that

‖l− (∂t − ∂x2
)‖L∞

t,x
. ǫ2,

so it suffices to bound the tangential derivatives of the coefficients of l− (∂t − ∂x2
)

in the norm L2
tH

s−1
x′ (Σ). By Proposition 6.1, we can estimate Christoffel symbols

‖Γαβγ‖L2
tH

s−1

x′
(Σt) . ǫ2.

Note that Hs−1
x′ (Σt) is a algebra. We then have

‖Γαβγe
β
1 l
γ‖L2

tH
s−1

x′
(Σt) . ǫ2.

We are now in a position to establish the following bound,

‖ 〈De1 l, e1〉 ‖L2
tH

s−1

x′
(Σt) + ‖ 〈De1 l, l〉 ‖L2

tH
s−1

x′
(Σt) + ‖ 〈Dll, l〉 ‖L2

tH
s−1

x′
(Σt) . ǫ2.

The first term is χ, which has estimated in Lemma 6.12. For the second term,
noting

〈De1 l, l〉 = 〈De1 l, 2∂t〉 = −2 〈De1∂t, l〉 ,

then it can be bounded by using Proposition 6.1. Similarly, we can control the last
term by proposition 6.1. It remains for us to show that

‖dφ(t, x′)− dt‖
C

1,δ

x′
(R) . ǫ2 + ‖dg(t, ·)‖Cδ

x(R
2).

To do that, it suffices to establish

‖l(t, ·)− (∂t − ∂x2
)‖
C

1,δ

x′
(R) . ǫ2 + ‖dg(t, ·)‖Cδ

x(R
2).
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The coefficients of e1 are small in Cδx′(Σt) perturbations of their constant-coefficient
analogs, so it suffices to show that

‖ 〈De1 l, e1〉 (t, ·)‖Cδ
x′

(Σt) + ‖ 〈De1 l, l〉 (t, ·)‖Cδ
x′

(Σt) . ǫ2 + ‖dg(t, ·)‖Cδ
x(R

2).

Above, the first term is bounded by Lemma 6.12, and the second by using

‖ 〈De1∂t, l〉 (t, ·)‖Cδ
x′

(Σt) . ‖dg(t, ·)‖Cδ
x(R

2).

Consequently, we complete the proof of Proposition 6.2.

7. proof of Proposition 5.1 and continuous dependence

7.1. Proof of Proposition 5.1. To prove Proposition 5.1, let us first give a type of
Stricharz estimates. In the above sections, we obtain characteristic energy estimates
of solutions and get enough regularity of hypersurfaces. By using the result of Smith
and Tataru([41], Proposition 7.1, page 36), we can directly obtain the following

Proposition 7.1. Suppose that (v, ρ,̟) ∈ H and G(v, ρ) ≤ 2ǫ1. For 1 ≤ r ≤ s+1,
then the linear equation �gf = 0 is well-posed with the initial data in Hr ×Hr−1.
Moreover, the following estimates

‖ 〈∂〉
k
f‖L4

tL
∞

x
. ‖f0‖Hr + ‖f1‖Hr−1 , k < r −

3

4
,

and

‖f‖L∞

t H
s
x
+ ‖∂tf‖L∞

t H
s−1
x

. ‖f0‖Hr + ‖f1‖Hr−1 ,

hold.

Proposition 7.2. Suppose that (v, ρ,̟) ∈ H and G(v, ρ) ≤ 2ǫ1. Then (v, ρ) of
(5.2) satisfies the Strichartz estimate

(7.1) ‖dv, dρ‖L4
tC

δ
x
≤ ǫ2.

Proof. Note (5.2). Using Duhamel’s principle, we can get

‖dv, dρ‖L4
tC

δ
x
≤ C(‖∂̟‖L1

tH
s−1
x

+ ‖Q‖L1
tH

s−1
x

+ ‖E‖L1
tH

s−1
x

+ ‖D|L1
tH

s−1
x

)

≤ 4C‖∂̟‖L∞

t H
1
x
+ C[1− (−1)]

3
4 ‖dv, dρ‖L4

tL
∞

x
‖dv, dρ‖L∞

t H
s−1
x

≤ C(‖ρ0‖Hs + ‖v0‖Hs + ‖∂̟0‖H2) exp
(
1 + ‖dv, dρ‖L4

tL
∞

x

)2

≤ Cǫ3 ≤ ǫ2,

where we use (5.3) and Lemma 6.5. �

Proof of Proposition 5.1. By using Proposition 6.2, we know that (5.5) holds. By
using Proposition 7.1, we obtain (5.7) and (5.8). Using (2.10) and (7.1), we have

‖(v, ρ)‖L∞

t Hs
x
+ ‖(∂tv, ∂tρ)‖L∞

t H
s−1
x

+ ‖̟‖L∞

t H
2
x
+ ‖∂t̟‖L∞

t H
1
x

.ǫ3(1 + ǫ
1
2

3 ) exp(

∫ 1

−1

[1 + ǫ2]
2)

≤ǫ2.

(7.2)

The estimate (7.2) combining (7.1) can yield (5.6). Therefore, we complete the
proof of Proposition 5.1. �
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7.2. Continuous dependence. We will discuss the continuous dependence by
referring Ifrim-Tataru’s paper [20].

Corollary 7.3 (Continuous dependence on data). If (v0j , ρ0j, ̟0j) is a sequence
of initial data converging to (v0, ρ0, ̟0) in space Hs×Hs×H2, then the associated
solutions (vj , ρj , ̟j) of (5.2) converge uniformly to (v, ρ,̟) on [0, T ] in ∈ Hs

x ×
Hs
x ×H2

x. Moreover,

‖(vj − v)(t)‖Hs
x
+ ‖(ρj − ρ)(t)‖Hs

x
+ ‖(̟j −̟)(t)‖H2

x

.‖v0j − v0‖Hs + ‖ρ0j − ρ0‖Hs + ‖̟0j −̟0‖H2 .
(7.3)

Before we prove it, let us introduce a frequency envelope in [20, 48].

Definition 7.1. We say that {ck}k∈N+ ∈ ℓ2 is a frequency envelope for a function
f in Hs if we have the following two properties:

(1) Energy bound:

(7.4) ‖Pkf‖Hs . ck,

(2) Slowly varying:

(7.5)
ck
cj

. 2δ|j−k|, j, k ∈ N+.

We call such envelopes sharp, if

‖f‖2Hs ≈
∑

k≥0

c2k.

proof of Corollary 7.3. We divide the proof into three steps.
Step 1: the convergence in a weaker space. By using Theorem 2.11, it yields

‖(vj − v, ρj − ρ)(t, ·)‖Hs−1
x

+ ‖(̟j −̟)(t, ·)‖H1
x
. ‖(v0j − v0, ρ0j − ρ0)‖Hs + ‖̟0j −̟0‖H2 .

Taking j → ∞, we obtain

lim
j→∞

(vj , ρj) → (v, ρ) in Hs−1
x , lim

j→∞
̟j → ̟ in H1

x.

By interpolation formula, we then have

‖(vj−v, ρj−ρ)‖Hσ
x
. ‖(vj−v, ρj−ρ)‖

s−σ
H

s−1
x

‖(vj−v, ρj−ρ)‖
1+σ−s
Hs

x
, s−1 ≤ σ < s.

and

‖̟j −̟‖Hγ
x
. ‖̟j −̟‖2−γ

H1
x
‖̟j −̟‖γ−1

H2
x
, 1 ≤ γ < 2.

As a result, we get

lim
j→∞

(vj , ρj) → (v, ρ) in Hσ
x , 0 ≤ σ < s,

and

lim
j→∞

̟j → ̟ in Hγ
x , 0 ≤ γ < 2.

Step 2: the construction of smooth solutions. Consider the initial data v0 =
(v10 , v

2
0) and ρ0 ∈ Hs. We set U0 = (v10 , v

2
0 , ρ0). By [20], there exists a sharp

frequency envelope for v10 , v
2
0 , and ρ respectively. Let {c

(i)
k }k≥0(i = 1, 2, 3) be a

sharp frequency envelope for v10 , v
2
0 , ρ0 in Hs. Set Ck = (c

(1)
k , c

(2)
k , c

(3)
k ). We choose
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a family of regularizations Uh
0 = (v1h0 , v2h0 , ρh0 ) ∈ H∞ := ∩∞

s=0H
s at frequencies

. 2h where h is a dyadic frequency parameter. Denote

̟h
0 = ρ̄−1e−ρ

h
0 curlvh0 .

Then we have ̟h
0 ∈ H∞. At the same time, there exists a sharp frequency for ̟h

0 ,

we record it {c
(4)
k }k≥0. Also, the function v

1h
0 , v2h0 , ρh0 , ̟

h
0 , and ̟

h
0 has the following

properties:
(i) uniform bounds

‖Pkv
ih
0 ‖Hs . c

(i)
k , i = 1, 2, ‖Pkρ

h
0‖Hs . c

(3)
k , ‖Pk̟

h
0‖H2 . c

(4)
k ,

(ii) high frequency bounds

‖vih0 ‖Hs+j . 2jhc
(i)
h , i = 1, 2, ‖ρh0‖Hs+j . 2jhc

(3)
h , ‖̟h

0‖H2+j . 2jhc
(4)
h ,

(iii) difference bounds

‖v
i(h+1)
0 − vih0 ‖L2 . 2−shc(i)h , i = 1, 2,

‖ρh+1
0 − ρh0‖L2 . 2−shc(3)h , ‖̟h+1

0 −̟h
0‖L2 . 2−2hc

(4)
h ,

(iv) limit

U0 = lim
h→∞

Uh
0 in Hs,

̟0 = lim
h→∞

̟h
0 in H2.

(7.6)

Taking the smooth initial data (v1h0 , v2h0 , ρh0 , ̟
h
0 ), we obtain a family of smooth

solutions (v1h, v2h, ρh, ̟h) satisfying (5.2). Based on the existence of (5.2), this
yields a time interval [0, T ] where all these solutions (v1h, v2h, ρh, ̟h) exists, and
T depends only on the size of ‖v0‖Hs + ‖ρ0‖Hs + ‖̟0‖H2 . Furthermore, we have:

(i) high frequency bounds

(7.7) ‖vih‖
H

s+j
x

. 2jhc
(i)
h , ‖ρh‖

H
s+j
x

. 2jhc
(3)
h , ‖̟h‖

H
2+j
x

. 2jhc
(4)
h ,

(ii) difference bounds
(7.8)

‖vi(h+1)−vih‖L2
x
. 2−shc(i)h , ‖ρh+1−ρh‖L2

x
. 2−shc(3)h , ‖̟h+1−̟h‖L2

x
. 2−2hc

(4)
h .

Taking the convergence h→ ∞ on (7.8), we get

‖v − vh‖L2
x
. 2−sh, ‖ρ− ρh‖L2

x
. 2−sh, ‖̟ −̟h‖L2

x
. 2−2h,

where vh = (v1h, v2h). By using

ρ− ρh =

∞∑

m=h

ρm+1 − ρm,

we obtain

‖ρ− ρh‖Hs
x
. c

(3)
≥h :=

( ∑

m≥h
[c(3)m ]2

) 1
2 .

Similarly, we also have

‖vi − vih‖Hs
x
. c

(i)
≥h, ‖ρ− ρh‖Hs

x
. c

(3)
≥h, ‖̟ −̟h‖H2

x
. c

(4)
≥h.
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Step 3: the convergence. Based on these facts above, we deduce that

‖(vj − v)(t)‖Hs
x
.‖(v1hj − v1h)(t)‖Hs

x
+ ‖(v1h − v1)(t)‖Hs

x
+ ‖(v1hj − v1j )(t)‖Hs

x

+ ‖(v2hj − v2h)(t)‖Hs
x
+ ‖(v2h − v2)(t)‖Hs

x
+ ‖(v2hj − v2j )(t)‖Hs

x
,

(7.9)

and

‖(ρj − ρ)(t)‖Hs
x
.‖(ρhj − ρh)(t)‖Hs

x
+ ‖(ρh − ρ)(t)‖Hs

x
+ ‖(ρhj − ρj)(t)‖Hs

x
,(7.10)

and

‖(̟j −̟)(t)‖H2
x
.‖(̟h

j −̟h)(t)‖H2
x
+ ‖(̟h −̟)(t)‖H2

x
+ ‖(̟h

j −̟j)(t)‖H2
x
.

(7.11)

Now, let us first estimate (7.10). Taking the limit for j → ∞, this leads to

(7.12) ‖(ρh − ρ)(t)‖Hs
x
→ 0, j → ∞, for fixed h,

and

(7.13) ‖(ρhj − ρj)(t)‖H2
x
→ 0, j → ∞.

Let {c
(i)j
k }k≥0 be frequency envelopes for the initial data vi0j in Hs, i = 1, 2. Let

{c
(3)j
k }k≥0 be frequency envelopes for the initial data ρ0j in Hs. Let {c

(4)j
k }k≥0 be

frequency envelopes for the initial data ̟0j in H2. By (7.12) and (7.13), we can
update (7.10) by

‖(ρj − ρ)(t)‖Hs
x
. ‖(ρhj − ρh)(t)‖Hs

x
+ c

(3)
≥h + c

(3)j
≥h ,(7.14)

On the other hand, we know

(7.15) ρh0j → ρh0 in Hσ
x , 0 ≤ σ <∞.

By using a similar way in Step 1, we can derive that

(7.16) ρhj → ρh in Hσ
x , 0 ≤ σ <∞.

From (7.15), it yields

(7.17) c
(3)j
k → c

(3)
k , j → ∞.

Therefore, using (7.15), (7.16), (7.17), and passing to the limit j → ∞ for (7.14),
we have

lim
j→∞

‖(ρj − ρ)(t)‖Hs
x
. c

(3)
≥h.(7.18)

Taking h→ ∞ in (7.18), we derive

lim
j→∞

‖(ρj − ρ)(t)‖Hs
x
= 0.(7.19)

In a similar process, we can also obtain

lim
j→∞

‖(vj − v)(t)‖Hs
x
= 0, lim

j→∞
‖(̟j −̟)(t)‖H2

x
= 0.

�

At this stage, we have finished the proof of Theorem 1.2.
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