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TOPOLOGICAL-ANTITOPOLOGICAL FUSION AND
THE QUANTUM COHOMOLOGY OF

GRASSMANNIANS

MARTIN A. GUEST

Abstract. We suggest an explanation for the part of the Satake
Correspondence which relates the quantum cohomology of complex
Grassmannians and the quantum cohomology of complex projec-
tive space, as well as their respective Stokes data, based on the
original physics approach using the tt* equations. We also use the
Stokes data of the tt* equations to provide a Lie-theoretic link be-
tween particles in affine Toda models and solitons in certain sigma-
models. Along the way, we illustrate some (well known) relations
between the tt* equations, the non-abelian Hodge Correspondence,
and quantum cohomology.

1. Introduction

An article [5] by Bourdeau (with a similar title), which appeared
in the physics literature some 25 years ago, presented a relation be-
tween complex Grassmannians and complex projective spaces based
on supersymmetric field theory. The topological-antitopological fusion
equations (tt* equations), which had just been introduced by Cecotti
and Vafa ([9],[10]), provided the means to compare these two kinds of
spaces: for each of them there is a sigma-model (an example of a 2-
dimensional N = 2 supersymmetric field theory), and hence a ground
state metric (a solution of the tt* equations), and then physical con-
siderations implied a relation between the metric for the Grassman-
nian and the metric for complex projective space. The argument was
sketched first by Cecotti and Vafa in section 8.3 and Appendix A of
[10], then the results were made more explicit in [5].

As far as we know, the tt* aspects of this result were never taken
up in the mathematical literature. However, it is a consequence of the
above observation that the quantum cohomology of the Grassmannian
can be expressed as the exterior product (in an appropriate sense) of
the quantum cohomology of complex projective space. This fact —
considered as a quantum version of the geometric Satake Correspon-
dence — has been studied by mathematicians from the viewpoint of
representation theory, algebraic geometry, and mirror symmetry. We
refer to section 7 of the article [13] by Cotti-Dubrovin-Guzzetti for a
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recent survey1 of this interesting work containing clear statements. It
is also known that the monodromy/Stokes data of the respective quan-
tum differential equations are related in a similar way, i.e. by taking
the exterior product. However, in the mathematical literature on the
Grassmannian/projective space correspondence, the “real structure”
implicit in the tt* metric has, so far, not played any role.

It is our aim to explain how the tt* aspects are in fact the most fun-
damental. This will serve two purposes: to give a mathematical foun-
dation for the results from physics (as in [5]), and to give a conceptual
explanation for the mathematical results (as in [13]). What makes this
possible is the recent series of papers [29],[30],[31],[40] which establish
the existence of the relevant solutions of the tt* equations and some
of their remarkable properties. The tt* origin of the correspondence
becomes visible when these results are interpreted Lie-theoretically, as
in [27],[28].

A benefit of keeping track of the tt* metric is that it represents addi-
tional analytic data beyond the purely algebro-geometric data of quan-
tum cohomology. Rather than expecting an equivalence of quantum
cohomology, one should expect an equivalence of quantum cohomol-
ogy together with this extra data (as in the original physics approach).
In particular this can reduce the ambiguities which bedevil a purely
algebraic approach.

Our explanation may also shed light on the relation between the affine
Toda model and various sigma-models. It was observed by Freeman
and others (see [20],[15],[16] and the review [12]) that rather intricate
properties of roots of Lie algebras play a significant role in the physics
of affine Toda theory, at the quantum level as well as the classical level.
On the other hand Lerche and collaborators ([39],[18]) studied “poly-
topic models”, a type of sigma-model in which the polytope spanned by
the weights of a representation contains essential physical data such as
vacuum/ground states, particles, mass and spin. Both situations illus-
trate Zamolodchikov’s fundamental idea that this kind of data emerges
purely on the grounds of symmetry — the “conformal bootstrap”. We
shall show that both structures arise from (and are therefore linked by)
the Stokes data of the tt* equations in a natural way.

This article is organised as follows. Section 2 presents a broad brush
picture of the relevant tt* equations and their physical meaning, just to

1We also recommend [13] for an introduction to the geometric Satake Corre-
spondence in the wider sense, which is a categorical relation between intersection
cohomology of Schubert varieties in the affine Grassmannian of a Lie group G and
representations of the Langlands dual group G∨. A precise statement of this rela-
tion can be found in section 7 of [13], with references to the original articles.
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the extent needed to explain their relevance to the Satake Correspon-
dence. Section 3 contains the main mathematical results. Based on
this, section 4 makes precise the statements in section 2, with further
details of the physical and mathematical significance of the tt* equa-
tions, and a new treatment of particles in Toda models and polytopic
models. This is illustrated by the case of the Grassmannian sigma-
model, our main example.

It may be appropriate to make some preliminary remarks on why the
tt* equations govern quantum cohomology, and why the Grassmannian
case illustrates this so well. For this it is important to have in mind
the physical background, i.e. the fact that solutions of the tt* equations
actually represent deformations of conformal field theories, a process
which will be described in sections 4.1 (physically) and 4.2 (mathemat-
ically). The field theory corresponding to the quantum cohomology
of a Kähler manifold is generally believed to admit such a deforma-
tion, but amongst all solutions of the tt* equations these are isolated
examples. The Grassmannians are, of course, very special Kähler man-
ifolds. Thus, the theory of the tt* equations is not specifically about
Grassmannians, or even Kähler manifolds, but about more general ob-
jects. These objects are in some sense “holomorphic” (or, in physical
language, topological).

One general principle which relates holomorphic objects to solutions
of the tt* equations is the Hitchin-Kobayashi Correspondence, or non-
abelian Hodge Correspondence, which relates Higgs bundles to flat con-
nections via harmonic bundles. How this is relevant to the tt* equa-
tions is explained in section 4.2. Essentially, the tt* metric provides the
canonical harmonic representative. From this viewpoint Grassmanni-
ans are related to projective spaces because the same solution of the
tt* equations represents both.

Another general principle concerns the relation between solutions of
the tt* equations and their asymptotics. Physics suggests that the
deformation of a conformal field theory corresponding to a solution
of the tt* equations is uniquely determined by its initial point (the
conformal field theory, e.g. quantum cohomology), or, equivalently, by
its final point (another field theory). Needless to say, this is neither
a general phenomenon for nonlinear differential equations, nor for the
Hitchin-Kobayashi Correspondence. It is related to a homogeneity or
“phase-invariance” condition of the type which occurs in the theory of
Frobenius manifolds.

A key idea of Dubrovin [17], relevant to both of these general princi-
ples, was to formulate the tt* equations as an isomonodromy condition
for a family of flat meromorphic connections. This makes the tt* equa-
tions susceptible to the Riemann-Hilbert method (which converts the
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nonlinear tt* p.d.e. to a linear integral equation — see [19]). By its
very nature the Riemann-Hilbert method has the advantage of relat-
ing the solutions directly to their asymptotics (which p.d.e. methods,
including the Hitchin-Kobayashi Correspondence, generally do not).
Thus the Riemann-Hilbert point of view is close in spirit to the original
physics problem, and the asymptotic data can be expected to contain
the essential physical or geometrical information.

On the other hand, it is technically difficult to implement the Riemann-
Hilbert method. In the very special case of the Grassmannian, and its
small quantum cohomology, the tt* equations become a version of the
two-dimensional Toda equations. Here (as we explain in this article)
Lie-theoretic techniques are extremely helpful. Moreover, the Grass-
mannians are examples of minuscule flag manifolds, and for such man-
ifolds the cohomology/representation dictionary is particularly simple
(see [13], [24], [36]). It can be expected that future refinements of
these methods will lead to results for the quantum cohomology of other
Kähler manifolds, and for more general solutions of the tt* equations.

Acknowledgements: The author was partially supported by JSPS
grant 18H03668.

2. The tt*-Toda equations and their physical

interpretation

Cecotti and Vafa gave several concrete examples of tt* equations, one
of the main examples being a special case of the affine (i.e. periodic)
Toda equations, which we call the tt*-Toda equations. Although the
tt*-Toda equations exist for any complex Lie algebra, we focus on those
of type An, where complete mathematical results are available.

2.1. The tt*-Toda equations of type An. The equations (formula
(7.4) in [9]) are

(2.1) 2(wi)tt̄ = −e2(wi+1−wi) + e2(wi−wi−1), i ∈ Z

for functions wi : C
∗ → R, where, for all i,

(a) wi = wi+n+1 (periodicity),

(b) wi = wi(|t|) (radial condition), and
(c) wi + wn−i = 0 (anti-symmetry).

It turns out (see Theorem 3.1) that the solutions can be parametrized
by points of a compact region in a finite-dimensional vector space.
The asymptotic behaviour of a solution at t = 0 and at t = ∞ can
be expressed explicitly in terms of the corresponding parameter value
(Theorems 3.1 and 3.3). These theorems constitute the mathematical
foundation for what follows. It should be emphasized that they apply
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to the tt*-Toda equations (and may eventually extend to all tt* equa-
tions), but not to the Toda equations in general; they are not routine
consequences of differential equation theory. Undoubtedly the physical
interpretation of the tt*-Toda equations plays a significant role here.

2.2. Physical interpretation. In physics, solutions of (2.1) describe
massive deformations of two-dimensional N = 2 supersymmetric con-
formal field theories. For a general introduction to this we recommend
[43]. Here we just mention the basic ingredients relevant to (2.1), post-
poning more details to sections 4.1 and 4.2.

The function w = (w0, . . . , wn) represents a (positive-definite) Her-
mitian metric on a (trivial) vector bundle of rank n+ 1 over the space
C∗ of “couplings”, called the ground state metric, or tt* metric. The
fibre of the vector bundle is the space of “vacua”.

The particular form of the equations (2.1), together with the period-
icity property, is a consequence of having tt* equations of Toda type,
but (b) and (c) are general features of tt* geometry. Namely, the radial
property (b) is a homogeneity property (“chiral charge conservation”),
and the anti-symmetry property (c) is equivalent to preservation of a
“topological metric” on the vector bundle.

For a given solution of (2.1), the point t = 0 (the conformal point, or
ultra-violet limit) represents the superconformal theory that is being
deformed. This theory is massless. For each nonzero t the correspond-
ing theory has mass, hence the terminology. The point t = ∞ (the
infra-red limit) does not represent a superconformal theory; its mean-
ing will be discussed later.

Thus, the picture described so far is of a family of deformations of
superconformal theories, each represented by a solution of equation
(2.1). The particular physical characteristics of the deformation are
revealed through its asymptotics at t = 0 and at t = ∞. As we shall
explain later, these are the “chiral charges” (at t = 0) and the “soliton
multiplicities” (at t = ∞).

2.3. Functoriality and the Satake Correspondence. It is well
known (see, for example, [2]) that the two-dimensional Toda equations
can be defined for any complex simple Lie algebra g, and that these
equations are integrable in the sense that they admit a zero-curvature
representation. The corresponding tt*-Toda equations were formulated
in [28], as follows.

Let h be a Cartan subalgebra of g, with root system ∆, and let l =
dimC h. Let g = h⊕(⊕β∈∆ gβ) be the root space decomposition. Let B
be a positive scalar multiple of the Killing form such that B(eβ, e−β) =
1 for root vectors eβ , β ∈ ∆. We define Hβ ∈ h by B(x,Hβ) = β(x)
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for all x ∈ h. Thus, for any choice of simple roots Π = {β1, . . . , βl}
we obtain a basis Hβ1

, . . . , Hβl
of h. The tt*-Toda equations apply

to functions w = w(t, t̄) which take values in the vector space h♯ =
⊕l

i=1RHβi
∼= R

l.

To write the zero-curvature form of the equations, we define

E− =

l
∑

i=0

1√
qi
e−βi

, E+ =

l
∑

i=0

√
qieβi

,

where β0 = −ψ and ψ =
∑l

i=1 qiβi is the highest root. We define q0 = 1.
(In the case g = sln+1C all qi are 1.) Then we define α = α′dt + α′′dt̄
by

(2.2) α′ = wt +
1
λ
Ad(ew)E−, α′′ = −wt̄ + λAd(e−w)E+,

λ ∈ C∗ being a parameter. The zero-curvature condition dα+α∧α = 0
is equivalent to 2wtt̄ = [Ad(ew)E−,Ad(e−w)E+], which reduces to

(2.3) 2wtt̄ = −∑l
i=0 e

−2βi(w)Hβi
.

This is just a real form of the affine Toda equations; the tt*-Toda
equations require additional conditions w = w(|t|) and σ(w) = w,
where σ : g → g is a certain involution, first defined by Hitchin in [35]
(see [28], and also [1],[2]). In the case g = sln+1C we have σ(X) =
−∆XT ∆ where ∆ is the anti-diagonal matrix ∆ = (δi,n−i)0≤i≤n.

To write (2.2) using matrices in the case g = sln+1C, let us take the
standard diagonal Cartan subalgebra with diagonal entries x0, . . . , xn,
and simple roots β1 = x0 − x1, . . . , βn = xn−1 − xn. We define β0 =
xn −x0 (i.e. minus the highest root). As root vector exi−xj

we take the
matrix Ei,j which has 1 in the (i, j) entry and 0 elsewhere. Then we
have:

(2.4) α = (wt +
1
λ
W T )dt+ (−wt̄ + λW )dt̄,

where

w = diag(w0, . . . , wn), W =















ew1−w0

. . .

ewn−wn−1

ew0−wn















.

The zero-curvature condition is equivalent to 2wtt̄ = [W T ,W ]. Thus
we recover equation (2.1), and, if wi = wi(|t|) and wi + wn−i = 0,
conditions (a),(b),(c) are satisfied.

We can observe from this excursion into Lie theory that the connec-
tion form of the tt*-Toda equation arises in two steps:

Step 1 is the choice of the Lie algebra g = sln+1C, giving (2.2), then
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Step 2 is the choice of the standard matrix representation λn+1 of g
on the vector space Cn+1, giving the matrix version (2.4).

Obviously any other faithful representation θ of g gives an equivalent
system, with exactly the same solutions. However, the flat connection
(and its geometrical/physical interpretation) depends on θ. We claim
that the relation between Grassmannians and projective spaces arises
from choosing θ = ∧kλn+1 in step 2 and varying k. In other words,
from the same solution of (2.1) we obtain different geometrical inter-
pretations.

In the context of the Satake Correspondence, which in general relates
“cohomology” and “representations”, one could say that a solution of
(2.1) produces a package of data (including quantum cohomology, for
certain special solutions) which behaves functorially with respect to a
choice of representation.

We shall make this precise in section 4, after summarizing the rel-
evant theory underlying equation (2.1) in section 3. The key point
is that this theory exists first at the Lie algebra level (step 1), then
the representation θ gives corresponding results for matrices (step 2).
As a preview we just mention here two salient points. First, it is the
asymptotic data at t = 0 (of a specific solution) which shows that
the quantum cohomology of Grk(C

n+1) is the k-th exterior power of
the quantum cohomology of CP n. Second, it is the asymptotic data
at t = ∞ which shows that the soliton data (or monodromy data)
of Grk(C

n+1) is the k-th exterior power of the soliton data (or mon-
odromy data) of CP n. The link between the data at zero and the data
at infinity is provided by solutions of the tt* equations, as we shall see
in the next section. The existence of these solutions and their explicit
asymptotics is nontrivial.

3. Results on the tt*-Toda equations

The case n = 1 of (2.1) is the radial sinh-Gordon equation, a spe-
cial case of the Third Painlevé equation. In fundamental work, moti-
vated by the Ising model, McCoy-Tracy-Wu studied this case in detail,
and their results provided an essential test case for the conjectures of
Cecotti and Vafa (see [9],[10]). The “separatrix solution” of the tt*
equations in that case was observed to correspond to the quantum co-
homology of CP 1. In [43], Zaslow described the prospects for further
examples as follows:

Other spaces, such as the higher projective spaces and Grassmanni-
ans, are too unwieldy for a direct analysis. Too little is known about the
solutions to the tt* equations, which for CP n correspond to affine Toda
equations. Perhaps the proposed relation between math and physics is
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best borne out by a rigorous analysis of these equations and their as-
ymptotic properties.

For the tt*-Toda equations we present results of this kind in this
section. We suppress some technical details, which may be found in
the references given.

Theorem 3.1. [34][29][30][40] There is a bijection between solutions
(w0, . . . , wn) of the tt

∗-Toda equations on C∗ and points of the region

{(m0, . . . , mn) ∈ R
n+1 | mi+1 −mi ≤ 1, mi +mn−i = 0}

in Rn+1. The correspondence is given by wi(t) ∼ −mi log |t|, as |t| → 0.

The proof in [34],[29],[30] is by p.d.e. methods. The signs on the
right hand side of (2.1) facilitate the use of the Maximum Principle,
and ensure the uniqueness of the solution with the given asymptotic
data. The method used by Mochizuki in [40] is also based on p.d.e.
theory, though it is more sophisticated, involving a transformation to a
(suitably extended) version of the non-abelian Hodge Correspondence.

To investigate the properties of these solutions we use integrable sys-
tems methods and the connection form α = α(t, t̄). For this, it will be
convenient to introduce a new variable z, related to t by (3.3) below.
A key role is played by a holomorphic (in z) connection form ω = ω(z),
given by

(3.1) ω = 1
λ
η dz, η =











zk0

zk1

. . .

zkn











where the ki are real numbers with ki ≥ −1, such that ki = kn−i+1 for
1 ≤ i ≤ n. If all ki ∈ Z the connection is holomorphic on C∗; if some
ki /∈ Z the connection is holomorphic only on the universal covering of
C∗. Using this holomorphic data we shall construct a connection form
α, and hence a family of local solutions of (2.1), which will include the
global solutions of Theorem 3.1.

The relation between ω and α is explained in sections 2 and 7 of [31].
We summarize this briefly. Given ω, there exist a loop γ : S1 → SLn+1C

and a gauge transformation G such that

(3.2) α = [(γL)RG]
−1d[(γL)RG],

where L is a normalized solution of the o.d.e. L−1Lz = 1
λ
η and (γL)R

is the first factor in the loop group Iwasawa factorization

γL = (γL)R(γL)+.
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This factorization exists in a neighbourhood of z = 0. Iwasawa factor-
ization is with respect to a real form isomorphic to the loop group of
SLn+1R. All functions here are in general multi-valued on C∗.

The normalized L is of the form

L(z, λ) = e
1
λ
N log z

(

I +
∑

i≥1

λ−iSi(z)

)

where N is nilpotent and Si(0) = 0 for all i. It takes values in the loop
group of SLn+1C. The relation between the variables t and z is:

(3.3) N
n+1

t = z
N

n+1 ,

where N = n + 1 +
∑n

i=0 ki. We exclude the trivial case N = 0 (i.e.
all ki = −1). The SLn+1C-valued gauge transformation G is G(z, z̄) =

(|t|/t)m = (|z|/z) N
n+1

m, where the matrix m = diag(m0, . . . , mn) is
given by 1 − mi + mi−1 = n+1

N
(ki + 1). Thus G is determined by

k0, . . . , kn. There is some freedom in the choice of γ; this freedom is
equivalent to replacing zki by ciz

ki and varying the ci (> 0). In [31] a
fixed γ was used and the ci were varied. Here we fix all ci = 1 and
allow γ to vary.

Thus, for each (k0, . . . , kn) — i.e. for the holomorphic data ω — we
obtain a solution w of the p.d.e. (2.1). By construction it satisfies
w ∼ −m log |t| as t → 0. However, this does not qualify as a solution
of the tt*-Toda equations until it has been proved that the solution is
defined on all of C∗. In fact the above construction gives a solution on
some open set 0 < |t| < ǫ, where ǫ depends on (k0, . . . , kn) and γ, and
all such solutions “near 0” arise this way. Theorem 3.1 ensures that,
for each (k0, . . . , kn), there is precisely one γ for which the solution is
global, i.e. for which ǫ = ∞:

Theorem 3.2. [31][32] Fix N = n + 1 +
∑n

i=0 ki > 0. For each
(k0, . . . , kn) (with ki = kn−i+1 and ki ≥ −1 for all i) there exists a
unique solution (w0, . . . , wn) of (2.1) on C∗, and all solutions on C∗

arise this way. The corresponding point (m0, . . . , mn) in Theorem 3.1
is determined uniquely by the equations 1−mi +mi−1 =

n+1
N

(ki + 1).

The fact that the solutions obtained by p.d.e. methods in Theorem
3.1 can be constructed from the holomorphic data ω is close to the
Hitchin-Kobayashi point of view, if ω is regarded as a Higgs field, and
we shall give a precise relation in section 4.2.
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Theorem 3.3. [30],[32] The solution (w0, . . . , wn) corresponding to
(m0, . . . , mn) in Theorem 3.1 has (and is uniquely defined by) the fol-
lowing asymptotic behaviour as |t| → ∞:

(3.4) − 4
n+1

[ 1
2
(n−1)]
∑

p=0

wp sin
(2p+1)kπ

n+1
∼ sk F (Lkx), k = 1, . . . , [1

2
(n+1)]

where
F (x) = 1

2
(πx)−

1
2 e−2x, Lk = 2 sin k

n+1
π,

and sk is the k-th elementary symmetric function of the n+1 quantities

e(2m0+n)π
√

−1

n+1 , e(2m1+n−2)π
√

−1

n+1 , . . . , e(2mn−n)π
√

−1

n+1 .

The notation [1
2
(n+1)] means 1

2
(n+1) if n is odd, and 1

2
n if n is even.

Note that, as wi+wn−i = 0, the independent functions arew0, . . . , w[ 1
2
(n−1)],

whether n is odd or even.

Remark 3.4. The linear system in formula (3.4) can be “solved” for
wp. When n is odd, for example, the result is

(3.5) wp ∼
1
2
(n−1)
∑

k=1

sk F (Lkx) sin
(2p+1)kπ

n+1
+ 1

2
(−1)ps 1

2
(n+1)F (L 1

2
(n+1)x).

Note that the “leading term” here depends on which (if any) of the sk
are zero.

The proof of Theorem 3.3 is superficially analogous to that of Theo-
rem 3.2: first, local solutions near t = ∞ are constructed by solving a
Riemann-Hilbert problem, then Theorem 3.1 is invoked to guarantee a
global solution. However, there is much more involved, as the setting
of the Riemann-Hilbert problem in the case of Theorem 3.3 requires
a link between the asymptotic data at 0 and ∞, and this depends on
the isomonodromy formulation of (2.1). That is, it depends on the fact
that (2.1) is the condition for the monodromy data (monodromy ma-
trices, formal monodromy matrices, Stokes matrices, and connection
matrices) of the meromorphic (in λ) connection form

(3.6) α̂ =
[

− t
λ2 W

T − 1
λ
xwx + t̄ W

]

dλ, x = |t|
to be independent of the parameter t. As was pointed out by Dubrovin
in [17], the existence of such an isomonodromy formulation for the tt*
equations follows from a homogeneity condition (the radial condition,
in the tt*-Toda situation).

The connection form α̂ has (in the variable λ) poles of order 2 at
λ = 0 and λ = ∞. The parameter si arises in the computation of the
Stokes matrices at these (irregular) poles. We explain this briefly next,
with more details in section 4.
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Stokes matrices (as formulated in classical o.d.e. theory) generally
depend on various non-canonical choices. However, in the case of α̂,
they are equivalent to the data

S = (s1, . . . , sn), si = sn−i+1

which can be defined canonically as the coefficients of the character-
istic polynomial of a certain matrix M ∈ SLn+1C. This M (we shall
give a precise definition below) represents (plus or minus) the “ 1

n+1
-th

monodromy” of the connection form α̂. It can be shown (see sections
3 and 4 of [27]) that all Stokes matrices and the monodromy matrix
can be recovered from M . In the context of Theorems 3.2 and 3.3,
the formal monodromy is trivial, and the connection matrix will take
a fixed canonical value, so only the Stokes and monodromy matrices
can vary. Because of this we shall refer toM simply as the monodromy
data from now on.

Example 3.5. (Complex projective space) The point (m0, . . . , mn) =
(−n

2
,−n

2
+ 1, . . . , n

2
), i.e. k0 = 0 and k1 = · · · = kn = −1, corresponds

to the connection form

ω = 1
λ











z
1

. . .

1











dz
z

which represents the Dubrovin connection (or quantum D-module) as-
sociated to the quantum cohomology of complex projective space CP n.
We refer to [14] or [26] for more information on this well known fact.
By the last assertion of Theorem 3.3, for the corresponding solution of
(2.1), we have si =

(

n+1
i

)

. �

To go further (in particular, to explain the role of the Satake Corre-
spondence), it will be useful to formulate the holomorphic data ω and
the monodromy data M Lie-theoretically. We refer to sections 5 and 6
of [28] for the details of what follows.

Let G be the (complex, simple) simply-connected Lie group with Lie
algebra g. First, we take

(3.7) ω = 1
λ

l
∑

i=0

zkie−βi
dz

as the Lie-theoretic version of (3.1). The Lie-theoretic version of α̂ in
(3.6) is

(3.8) α̂ =
[

− t
λ2 Ad(e

w)E− − 1
λ
xwx + t̄Ad(e−w)E+

]

dλ

where x = |t|. The role of the i-th elementary symmetric function is
played by the character χi of the i-th basic irreducible representation
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of G. We write χ = (χ1, . . . , χl) : G → Cl. We shall also need the

Coxeter number h =
∑l

i=0 qi of g; here we recall that the qi are defined

by ψ =
∑l

i=1 qiβi, and we put q0 = 1.

Then (Theorem 6.8 of [28]), if w is a (local) solution constructed from
the holomorphic data ω, the Stokes data of α̂ is given by

(3.9) S = (s1, . . . , sl) = χ(e2π
√

−1 (m+x0)/h),

where m ∈ h is defined by βi(m) = −1+ h
N
(ki+1), 1 ≤ i ≤ l, and N =

h +
∑l

i=0 qiki (as in the case g = sln+1C we have w(|t|) ∼ −m log |t|,
when |t| → 0). The element x0 ∈ h is defined by x0 =

∑l
i=1 ǫi, where

βi(ǫj) = δij . The Lie-theoretic version of the monodromy data M is
then

(3.10) M = CΓ(S),
where CΓ is a suitable “Steinberg cross-section” of χ.

For the definition of CΓ, see [42], Theorem 4, page 120. Explicitly,
for any choice of Cartan subalgebra c and (ordered set of) simple roots
Γ = (φ1, . . . , φl) with respect to c, CΓ is defined by

CΓ(t1, . . . , tl) =
l

Π
i=1

exp(tieφi
)ni,

where ni is a representative (in G) of the Weyl group element given
by reflection in Kerφi. It is a cross-section of the map χ : Greg → Cl,
where Greg is the set of regular elements of G.

Thus we have the following purely Lie-theoretic statement:

Theorem 3.6. [28] From the holomorphic data ω = 1
λ

∑l
i=0 z

kie−βi
dz

(with ki ≥ −1 for all i) we obtain the explicit monodromy data M =
CΓ(S) = CΓ(χ(e2π

√
−1 (m+x0)/h)).

Now let θ : g → End(V ) be a faithful representation of g. We denote
by Θ : G→ Aut(V ) the corresponding representation of G. We define

ωθ = θ(ω) = 1
λ

l
∑

i=0

zkiθ(e−βi
)dz, MΘ = Θ(M).

We remark that there is also a Lie-theoretic formula for individual
Stokes matrices — to be given later as (4.7) in section 4.3 — and Θ
may be applied to that, in the same way.

Corollary 3.7. From the holomorphic data ωθ we obtain the explicit
monodromy data MΘ.

Although this corollary is merely a “matrix representation” of Theo-
rem 3.6, we consider it important as it reveals the functorial nature of
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the relation between ωθ and MΘ. Formula (3.10), the formula for the
monodromy data at the Lie group level, is the key ingredient.

Now we return to the case g = sln+1C, where we have Theorems
3.1, 3.2, 3.3 on the global solutions of the tt*-Toda equations (2.1).
Combining the results of this section gives:

Theorem 3.8. Let g = sln+1C, G = SLn+1C. Consider the global
solutions of the tt*-Toda equations (2.1) as in Theorems 3.1, 3.2, 3.3.
Each such solution w gives rise to a correspondence between the holo-
morphic data ωθ (constructed from the asymptotic data of w at t = 0)
and the monodromy data MΘ (constructed from the asymptotic data of
w at t = ∞).

The deceptively simple condition ki ≥ −1, which is equivalent to
mi−mi−1 ≥ 1, looks more complicated when written in terms of S (an
example can be seen in section 5 of [30]). It is analogous to the stability
conditions which are needed in the Hitchin-Kobayashi Correspondence.
Although the formula for M in Theorem 3.6 is meaningful without the
restriction ki ≥ −1, it would not (in the absence of this restriction)
represent the correct data for the connection α̂; it would not bear any
relation to the tt*-Toda p.d.e.

Example 3.9. (Complex Grassmannians) Consider again the solution
of (2.1) corresponding to the point m = (−n

2
,−n

2
+ 1, . . . , n

2
) = −x0.

For θ = λn+1, ωθ represents the quantum cohomology ring of CP n (as
in Example 3.5), and MΘ represents the Stokes/monodromy matrices
of the Dubrovin connection for CP n. For θ = ∧kλn+1, ωθ represents
the quantum cohomology ring of Grk(C

n+1) (see section 7 of [13], and
also [24], [36]), and MΘ represents the Stokes/monodromy matrices of
the Dubrovin connection for Grk(C

n+1). The canonical Stokes data
si =

(

n+1
i

)

is the same, for any k.

This shows that the the tt* metrics associated to the quantum co-
homology of CP n and Grk(C

n+1) have the same analytic origin: the
global solution of (2.1) corresponding to the point m = −x0. The “ini-
tial data” (asymptotic data at t = 0) of the solution is the holomorphic
connection form ω = 1

λ
(ze−β0

+
∑n

i=1 e−βi
)dz
z
. This connection form has

been discovered empirically by other authors — it is the “Frenkel-Gross
connection” of [21], and was an important ingredient of [24], where the
link with Kostant’s work [37] was attributed to [25]; the latter was
apparently motivated by work of Lerche-Vafa-Warner which we shall
discuss in the next section. We emphasize that this particular connec-
tion form originates naturally from the tt*-Toda equations.

The (uniqueness of the) global solution of (2.1) corresponding to
m = −x0 also has practical consequences: it leads to a canonical choice
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of fundamental solution of the quantum differential equation (the equa-
tion for flat sections of d+ω), and hence a canonical choice of “central
connection matrix” (cf. [31]). �

4. Applications to field theories

We return now to the field theory point of view. Our aim is to explain
how the results of section 3 provide a mathematical foundation for the
article [5] of Bourdeau and for related results in the physics literature.
For this we need to describe some of the physics aspects more precisely.

4.1. The physical data. The physical data at t = 0 is the chiral ring
structure on the vector space V of states. A state |α〉 corresponds
to a chiral operator φ, where |α〉 = φ |0〉. Composition of operators
gives a product operation on V . The matrix of multiplication by the
i-th basis element of V is denoted by Ci. The structure constants
(with respect to the basis) are the 3-point correlation functions; there
is also a C-linear inner product on V , the topological metric, and its
entries are the 2-point correlation functions. In the context of quantum
cohomology, these are the Gromov-Witten invariants and intersection
form, respectively.

Regarded as in the Neveu-Schwarz sector, each state has a chiral
charge and there is a distinguished state of charge 0 (essentially the
cohomology grading, in the case of quantum cohomology). Regarded
as in Ramond sector, the charges are normalized to be symmetric about
0.

The chiral operators are themselves holomorphic functions of V ; more
precisely, they are endomorphisms of the tangent bundle of V . They
satisfy the associativity equations (WDVV equations). The data de-
scribed so far has been abstracted in the mathematical theory of Frobe-
nius manifolds. Physically, this holomorphic data is regarded as “topo-
logical”.

The tt* equations (see section 4.2) are the equations for plurihar-
monic metrics g associated to the holomorphic data. Such metrics
combine the holomorphic data with complex conjugate antiholomor-
phic data; this is the “fusion” of topological data with antitopological
data. It has also been abstracted, in the mathematical theory of har-
monic bundles/Higgs bundles.

In our tt*-Toda example, V = Cn+1. The topological metric is rep-
resented by the anti-diagonal matrix ∆ = (δi,n−i)0≤i≤n. The Neveu-
Schwarz charges are (related to) our k0+1, . . . , kn+1 and the Ramond
charges are our m0, . . . , mn. Either of these parametrize the solutions
of the tt*-Toda equations (though only for certain special parameter
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values, for example m = −x0, is there a quantum cohomology inter-
pretation).

In our situation, and in the examples of [9],[10], the product opera-
tion depends only on a (complex) one-dimensional subspace of V (this
means that only “small quantum cohomology” is being treated). In-
stead of the tangent bundle of V , we are working with its restriction
to the one-dimensional subspace, and we just have one chiral matrix
C. The WDVV part of the tt* equations becomes trivial; we have har-
monic maps rather than general pluriharmonic maps. Some vestiges
of Frobenius manifold theory remain, such as the homogeneity (Euler)
condition and the topological metric, but the harmonic/Higgs theory
is now the main focus.

The physical data at t = ∞ consists of Bogomolnyi solitons inter-
polating between vacua; this arises from path-integral considerations
(see pages 345-6 of [43]), and in our situation is detected in the leading
term of the asymptotics of a solution w as t → ∞. The multiplicity
of the i-th soliton is the si of Theorem 3.3. For this reason si must be
a nonnegative integer if w corresponds to a physically realistic model.
Which vacua are relevant for the i-th soliton will be explained later.

4.2. The topological-antitopological fusion equations. The tt*
equations, as formulated by Cecotti and Vafa in section 3 of [9], are

(4.1) ∂̄(g∂g−1)− [C, gC†g−1] = 0 (∂ = ∂
∂t
, ∂̄ = ∂

∂t̄
)

where C is the (holomorphic) chiral matrix, C† = C̄T , and g−1 is the
Hermitian matrix representing the tt* metric, i.e. the metric is (x, y) 7→
x̄Tg−1y. Thus gC†g−1 is the Hermitian adjoint of C with respect to
g−1. This is equation (3.9) in [9]; the companion equation (3.10) there
is vacuous as we assume only one chiral matrix. All matrices here
are defined with respect to a holomorphic local frame h0, . . . , hn, or
“holomorphic gauge”.

Section 4.2 of [10] gives a zero-curvature formulation

(4.2) [∂ + g∂g−1 − xC, ∂̄ − 1
x
g C†g−1] = 0

of (4.1), due to Dubrovin, where x is a parameter. Expanding in powers
of x and setting the coefficients equal to zero, we see that it is equivalent
to (4.1) together with ∂̄C = 0. The link with harmonic/Higgs theory
is now visible: (4.2) has the form of the Higgs bundle equations

[∂ + h−1∂h + xΘ′, ∂̄ + 1
x
Θ′′] = 0

where h is a Hermitian metric and Θ = Θ′dt + Θ′′dt̄ is a Higgs field.
For this reason we have called g−1 the tt* metric, rather than g.

A more symmetrical form is

(4.3) [∂ − ∂e e−1 − xe−1Ce, ∂̄ + e−1∂̄e− 1
x
eC†e−1] = 0
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where e =
√
g. The gauge transformation

∂ +X 7→ ∂ + e ∂e−1 + eXe−1, ∂̄ + Y 7→ ∂̄ + e ∂̄e−1 + eY e−1

by e converts (4.3) to (4.2). The symmetrical zero-curvature condition
(4.3) is equivalent to the tt* equation (4.1) together with the condition

∂̄(e−1Ce) + [e−1∂̄e, e−1Ce] = 0,

which says that e−1Ce is holomorphic (as an endomorphism) with re-
spect to the ∂̄-operator ∂̄+e−1∂̄e. The gauge transformation e converts
∂̄ + e−1∂̄e to ∂̄, and e−1Ce to C.

Let us denote the new “symmetrical” frame by e0, . . . , en, so that
ei = ehi. In this frame the chiral matrix is e−1Ce and the tt* metric is
ēTg−1e = I, i.e. just the standard Hermitian metric (thus, the frame
is orthonormal).

Compatibility with the topological metric (x, y) 7→ xT∆y imposes
further conditions on (4.2), (4.3). In the holomorphic frame these con-
ditions are ∆CT∆ = C and ∆g−T∆ = g, where g−T denotes the trans-
pose of the matrix g−1. The latter condition means that g (and also e)
belong to the ∆-modified complex orthogonal group

SO∆
n+1C = {A ∈ SLn+1C | ∆A−T∆ = A}.

Then our flat connection is an sl∆n+1R-valued connection, where

SL∆
n+1R = {A ∈ SLn+1C | ∆Ā∆ = A}.

Let F be a (locally defined) fundamental solution matrix of the corre-
sponding linear system

∂F = F (−∂e e−1 − xe−1Ce), ∂̄F = F (e−1∂̄e− 1
x
eC†e−1).

Then (see [26], section 7.4) the zero-curvature condition (4.3) is ex-
actly the condition that the map F |x=1 induces a harmonic map to
SL∆

n+1C/SO
∆
n+1.

We have already seen that a solution of the tt* equations defines a
Higgs bundle. It is well known that this is equivalent to being a har-
monic bundle, i.e. (locally) a harmonic map to SLn+1C/SUn+1. Com-
patibility with the topological metric means that the image of the map
lies in the smaller space SL∆

n+1R/SO
∆
n+1, which is (see [34], section 2)

isomorphic to SLn+1R/SOn+1, the space of all inner products on R
n+1.

For this reason the topological metric condition is sometimes referred to
as a “reality condition” (although the symmetric space SLn+1C/SUn+1

is already real).

The relation with Hitchin’s work ([35] and references therein) was
mentioned incidentally2 in the original work of Cecotti and Vafa. In

2(see the footnote on page 371 of in [9])
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more recent work on tt* geometry (notably [22],[11]), the Higgs point
of view has been emphasized.

Our tt*-Toda equation is the following special case of (4.3)

(4.4) [∂ + wt +
1
λ
ewE−e

−w, ∂̄ − wt̄ + λe−wE+e
w] = 0,

in which we have

C = E−, C
† = E+, g = e−2w, e = e−w, x = −1/λ.

The corresponding special case of (4.2) is

(4.5) [∂ + 2wt +
1
λ
E−, ∂̄ + λgE+g

−1] = 0.

The holomorphic chiral matrix C is constant here, but we claim that
it corresponds to our original “Higgs field” ω from (3.1) through a
holomorphic gauge transformation and change of variable from t to z.

To see this, we apply to (4.5) a holomorphic gauge transformation of
the form k = atm where a = diag(a0, . . . , an) is to be chosen later. The
gauged connection form is

(4.6) (k−1kt + 2wt +
1
λ
k−1E− k)dt+ (λk−1gE+ g

−1k)dt̄.

The chiral matrix part 1
λ
k−1E−k dt of this is

1
λ











an
a0
tmn−m0+1

a0
a1
tm0−m1+1

. . .
an−1

an
tmn−1−mn+1











dt
t
.

From (3.3) we have N
n+1

t = z
N

n+1 , hence dt
t
= N

n+1
dz
z
. From Theorem 3.2

we have mi−1 −mi + 1 = n+1
N

(ki + 1). Converting to z gives exactly ω

if we choose the ai so that aian−i = 1 and ai−1/ai =
n+1
N

( N
n+1

)
n+1
N

(ki+1).
Thus our holomorphic data ω is indeed equivalent to the chiral matrix
and to the Higgs field.

Remark 4.1. (Gaiotto’s Conjecture) The remaining terms of (4.6) can
be “removed” by taking a suitable limit, leaving just the chiral (Higgs)
part. This gives a direct computational relation between α and ω. To
verify this, we put s = t/λ and let t, λ → 0 without changing s. The
dt term is (2twt+m)ds

s
and the nonzero entries in the matrix of the dt̄

term are of the form λt̄e−2wi−1+2wit−mi−1+mn+1 ds̄
s̄
. Now we use the fact

that wi ∼ −mi log |t| as t → 0, and mi−1 −mi + 1 = n+1
N

(ki + 1) ≥ 0.
The limit of each term is zero. Thus, the (suitably scaled) limit of (4.6)
is just ω. This fact, a special case of a conjecture by Gaiotto in [23], is
thus a consequence of the Iwasawa factorization construction of local
solutions of the tt*-Toda equations.
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4.3. Particles and the Coxeter Plane. Having explained how our
tt*-Toda equations fit into the physics framework, we can now give
some further applications of the results of section 3. Although we are
mainly concerned with the An case in this article, it will be conceptually
clearer to continue using the Lie-theoretic notation introduced in earlier
sections.

First we need the relation between particles in affine Toda field theory
and roots, which was proposed in [7],[15],[16],[20]. Recall that we have
chosen a Cartan subalgebra h and root system ∆, and simple roots
β1, . . . , βl. Let us choose also a Coxeter element γ (the product of the
reflections in the simple roots). This is an element of order h in the
Weyl group of g, and it acts naturally on ∆. It is well known (see
[37]) that ∆ decomposes into l orbits, each consisting of h roots, and
also that the eigenvalues of γ on h∗ are e2π

√
−1n1/h, . . . , e2π

√
−1nl/h where

1 = n1 ≤ · · · ≤ nl = h− 1 are the exponents of g.

The first eigenvalue e2π
√

−1 /h always has multiplicity 1, and the cor-
responding eigenspace determines a two-dimensional real plane in h∗♯ ,
called the Coxeter Plane. (The complexification of this real plane is the
sum of the eigenspaces of e±2π

√
−1 /h.) Projecting the hl roots (regarded

as elements of h∗♯ ) orthogonally with respect to the Killing form, we
obtain hl points in the Coxeter Plane. It is known (see [37],[38]) that
γ acts on the Coxeter Plane (and hence on this set of hl points) by
rotation through the angle 2π/h.

Drawing the rays (“spokes”) from the origin to each of these points,
and the concentric circles (“wheels”) passing through them, we obtain
a picture of the type shown in Figure 1. Each wheel contains an orbit

Figure 1. Example of a Coxeter Plane.

of the action of γ on ∆ (in some cases, more than one; such orbits may
or may not be coincident).

The model proposed in [7],[15],[16],[20] associates a particle to each
orbit (or wheel), the mass of the particle being (up to an overall scale
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factor) the radius of the wheel. Thus there are l particles (though some
may coincide). Let us denote by [β] the particle given by the orbit of
(the projection of) β ∈ ∆, and by L[β] its mass.

Similarly, the i-th eigenvalue of γ gives rise (if it has multiplicity one)
to an i-th Coxeter Plane, again with spokes and wheels. In this case
the radius of the wheel is declared to be the ni-spin of [β] (mass is
n1-spin, i.e. 1-spin).

This structure of particles and spins passes various physical consis-
tency checks. The case of E8 has even been investigated experimentally
([4],[38]). We emphasize that this structure depends only on G (not a
particular matrix representation of G) and that the tt*-Toda equations
did not (yet) play any role in its description.

Nevertheless, as was shown in [28], the particle/mass structure is
directly related to the Stokes Phenomenon for the meromorphic con-
nection form α̂ of (3.8). Namely, the 2l rays in the Coxeter Plane may
be identified with the 2l singular directions in the λ-plane for the pole
of order 2 of the meromorphic connection form α̂ at λ = 0. In order to
explain this, we shall sketch the proof of Theorem 3.3 in Lie-theoretic
terms.

To prepare, we recall that singular directions can be defined for α̂ (at
λ = 0) as the rays (starting at the origin, in the λ-plane) which bisect
the intersections of successive maximal Stokes sectors, and thus index
“Stokes factors” (see section 3 of [27] and section 4 of [28]). There
are 2l such rays. The products of any l successive Stokes factors are
“Stokes matrices”. Thus all Stokes data can be obtained from these
Stokes factors.

As shown in Appendix B of [28], the relation between the singular
directions and α̂ leads to a simple “differential equation theoretic” de-
scription of the hl points in the Coxeter Plane. In this description the
2-plane is just C (rather than a somewhat implicitly defined subspace
of h∗♯ ), and the points are obtained by evaluating the roots on the coef-

ficient of λ−2 in the dual3 of α̂ (rather than by taking their orthogonal
projections to that 2-plane).

As might be expected there is something to pay for this simplicity:
the roots must be those associated to the unique Cartan subalgebra h′

containing that leading coefficient, which is (up to a scalar factor) E+,
rather than the roots associated to h. In the terminology of [37], the
Cartan subalgebra h′ is said to be in apposition to the original Cartan
subalgebra h.

3The same points would be obtained using α̂, but we use the dual −α̂T for
consistency with [28].



20 MARTIN A. GUEST

The Stokes factor corresponding to a singular ray can be described
Lie-theoretically, as follows. Let us denote by R(φ) the set of roots
β ′ ∈ ∆′ (with respect to h′) which project to points on the singular
direction with argument φ. Then the Stokes factor corresponding to
this ray is of the form

(4.7) Qφ = exp





∑

β′∈R(φ)

sβ′eβ′



 ∈ G

where the eβ′ are suitably normalized root vectors; here we follow
Boalch’s formulation in [3]. The symmetries of the connection form
α̂ show that sβ′

1
= sβ′

2
if β ′

1, β
′
2 are in the same Coxeter orbit, that

sβ′ = s−β′, and that all sβ′ are real.

In particular, sβ′ only depends on [β ′] (the particle), so we may write
sβ′ = s[β′]. The sβ′ are (up to permutation) the numbers s1, . . . , sl
introduced earlier in formula (3.9). It follows immediately from our
description of the Coxeter Plane that the radius of the wheel containing
[β ′] is

|β ′(E+)| = L[β′] = mass of the particle [β ′].

Here we ignore the scalar factor in the coefficient as this overall ambi-
guity is allowed in the definition of mass, and we ignore the effect of
Ad e−w because it corresponds to a harmless conjugation of h′ (which
does not change lengths).

Now we can sketch the argument which relates the parameters s[β′]

to the asymptotics as t → ∞ of solutions to the tt*-Toda equations.
For the An case full details can be found in [30],[32].

The idea is to use the singular directions — the rays of the Coxeter
Plane — as the contour for a Riemann-Hilbert problem, whose solutions
(if such exist) would give rise to solutions of the tt*-Toda equations.
Let us denote this contour by Γ, and let us define a piecewise constant
“jump function” QΓ : Γ → SLn+1C by

QΓ | ray with argument φ
= Qφ

where the sβ′ in Qφ are now arbitrary real numbers. The Riemann-
Hilbert problem is to find a (piecewise) holomorphic function on C∗−Γ,
holomorphic on each of the 2l sectors, whose discontinuities (jumps)
are given by QΓ. Such a function would (almost tautologically) serve
as a fundamental solution matrix of α̂, hence would (in principal) lead
to a solution w.

In order to formulate a Riemann-Hilbert problem to which standard
methods of solution (as in [19], for example) apply, we replace QΓ by

GΓ =
(

exp t
λ
E+ exp t̄λE−

)

QΓ

(

exp t
λ
E+ exp t̄λE−

)−1
.
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For λ on the ray with argument φ, i.e., λ = ke
√

−1φ with k > 0, we have

GΓ | ray with argument φ
= exp





∑

β′∈R(φ)

sβ′ Ad(exp t
λ
E+ exp t̄λE−)eβ′





= exp





∑

β′∈R(φ)

sβ′ e
t
λ
adE+ et̄λ adE− eβ′





= exp





∑

β′∈R(φ)

sβ′e−x( 1
k
+k)|β′(E+)| eβ′



 .

Here we make use of the fact (from [38]) that E− = Ē+, hence |β ′(E+)| =
|β ′(E−)|, where the bar denotes conjugation with respect to the real
form h′♯ of h

′.

We see from this that GΓ approaches I (exponentially) on each ray
ζ = ke

√
−1φ as k → ∞ or k → 0. By Theorem 8.1 of [19]), the Riemann-

Hilbert problem — when formulated as a linear integral equation —
is uniquely solvable for x = |t| sufficiently large (for any s[β′] ∈ R).
This means that there exists a (piecewise) holomorphic function Y =
Y (ζ, x) whose discontinuities on the 2l rays are given precisely by GΓ.
Moreover, this Y extends continuously to λ = 0, where it must be of
the form e2w for some solution w = w(x) of the tt*-Toda equations (and
this solution is smooth for x large, and approaches zero as x→ ∞).

From the integral equation we obtain

Y (0, x) ∼ I + 1
2π

√
−1

∫

Γ

G(ζ, x)− I

ζ
dζ

as x → ∞ (here, for notational convenience, we are regarding G as a
matrix group). Integrating, we obtain

Y (0, x) ∼ I + 1
2π

√−1

∑

β′∈∆′

sβ′

∫ ∞

0

e−x( 1
k
+k)|β′(E+)| dk

k
eβ′ .

Laplace’s method gives 1
2π

∫∞
0
e−x( 1

k
+k) dk

k
∼ 1

2
(πx)−

1
2 e−2x as x → ∞.

Replacing Y (0, x) by e−2w ∼ I − 2w, we obtain

−2w ∼ −√
−1

∑

β′∈∆′

sβ′F (|β ′(E+)| x) eβ′ ,

where F (x) = 1
2
(πx)−

1
2 e−2x. This can be written as

(4.8) w ∼
∑

[β′]

s[β′]F (L[β′] x)
(

1
2
√

−1

∑

γ′∈[β′] eγ′

)

.

In section 4.5 we shall make (4.8) more explicit in the An case, and
show how it gives (3.4) and (3.5).
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Formula (4.8) demonstrates, at the very least, that the relation be-
tween particles/masses and the Stokes data of α̂ (via the Coxeter Plane
and the singular directions) is not merely superficial. It shows that
the predicted particle/mass data [β ′] and L[β′] appear naturally in the
asymptotics of the solution w, and it produces the coefficients s[β′],
which can be interpreted as “soliton multiplicities”. It will be exploited
further in the next section, in certain types of model, to describe the
solitons themselves more explicitly.

Remark 4.2. The operator adE+ adE− (= adE− adE+), with eigen-
values L2

[β′] = |β ′(E+)|2 on h, was the central ingredient in the article

[8] by Brillon and Schechtman (also motivated by the particle/mass
interpretation of the Toda equations). It arises there because the lin-
earization of

(2wtt̄ =) 1
2
(wxx +

1
x
wx) = [Ad(ew)E−,Ad(e

−w)E+]

is just
1
2
wxx = [E+, [E−, w]]

(assuming rapid decrease of w as x → ∞). As in our situation, the
computation of the eigenvalues uses properties of h′ from [37],[38], so
the Coxeter Plane is implicit in [8] too. On the other hand [8] em-
phasizes the Cartan matrix, rather than the Coxeter element, using a
well known relation between the two. From this viewpoint, the masses
arise in [8] (as they did originally in [20]) as the coordinates of the
Perron-Frobenius eigenvector of the Cartan matrix.

4.4. Solitons in polytopic models. Now we come to the polytopic
models of Fendley, Lerche, Mathur, and Warner ([18],[39]). Here we
shall make use of a global solution θ(w) of the tt*-Toda equations
together with a choice of faithful representation θ : g → End(V ) of g.

Let V = ⊕N
i=1Cvi, where vi ∈ V is a weight vector, with correspond-

ing weight λi ∈ h∗, and let us assume for simplicity that all weights
have multiplicity one (as will be the case in our examples). In this sit-
uation, the solitons — which we have glimpsed rather indirectly so far,
just through their attributes of mass and multiplicity, without actually
identifying them as particles tunnelling between vacua — will be made
more concrete.

The proposal of [39] (section 4) is this: there is (fundamental) soliton
between vacua vi and vj precisely when the difference of the correspond-
ing weights λi − λj is a4 root. If λi − λj = β ∈ ∆ then the soliton is
(or is dual to) a particle of type [β], and its mass is L[β].

4(i.e. one root, as opposed to a sum of roots)
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The polytope in h∗ whose vertices are the weights of θ is called the
soliton polytope. Its projection to the Coxeter Plane provides a visu-
alization of the solitons and the relevant vacua. Namely, the mass of
a soliton between two given vertices is the length of the straight line
between the projected vertices (and similarly for the ni-spin in the i-th
Coxeter Plane).

Although Lerche and Vafa make these assertions only as a “working
hypothesis”, they go on to present “compelling evidence”, from the
point of view of physical consistency. The tt*-Toda equations (whose
solutions did not play any role in the theory of Lerche and Vafa) con-
tribute further evidence to this proposal. The tt*-Toda equations also
provide more information: the Stokes parameter s[β] (which was absent
in [18],[39]) can be interpreted as the multiplicity of the particle (soli-
ton) [β] whose mass is L[β]. This will be made precise in the examples
below.

Example 4.3. (SLOHSS models [18],[39]) Although we have used any
(faithful) representation θ in the above formulation, the polytopic mod-
els of [18],[39] require θ to be minuscule, i.e. that the weights λ1, . . . , λN
form a single orbit of the action of the Weyl group. This is a very strong
restriction, which implies that the vector space V can be identified with
H∗(G/P ;C), the cohomology of the projectivized maximal weight orbit
G/P of G. The weight spaces are the Neveu-Schwarz vacua, and the
chiral charges are (half of) the cohomological degrees. Striking pictures
of projections of soliton polytopes (to the Coxeter Plane, and to higher
Coxeter Planes) can be found in section 5 of [39]. From the tt* point
of view (at least in the case of Theorem 3.1, this model corresponds to
the global solution given by m = −x0. This is essentially the sigma-
model of the Kähler manifold G/P . Then ωθ is the matrix of quantum
multiplication by the Kähler class (for a discussion of this, and further
references, see [24], [36]). The Stokes data is given by (3.9) as

si = χi(1) = dim θi, 1 ≤ i ≤ l

where χi is the i-th basic irreducible representation θi of G. These
dimensions are, of course, nonnegative integers. All minuscule repre-
sentations of G give rise to this same set of Stokes data. �

The Grassmannian sigma-model — our main interest in this article
— is a case to which all of the theory described in this section applies.
As promised in the introduction, we return now to this case and to the
article [5] of Bourdeau.

4.5. Topological-antitopological fusion and the quantum co-
homology of Grassmannians. Now we take the Lie algebra g =
sln+1C with the standard diagonal Cartan subalgebra h and simple
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roots x0 − x1,. . . ,xn−1 − xn. We take θ = ∧kλn+1. For k = 1, . . . , n
these give the minuscule representations.

First we have to clarify the particle/mass structure. This is the same
for all global solutions. As l = n, there are (a priori) n particles,
corresponding to the n orbits of the cyclic permutation (n n−1 . . . 1 0)
on the roots ∆ = {xi−xj | i 6= j}. We shall see that some of these orbits
coincide after projection to the Coxeter Plane, resulting in [1

2
(n + 1)]

distinct particles.

To compute the projections (by our simplified method), it is conve-
nient to choose an identification h′ ∼= h, so that we may compute using
the original roots ∆ rather than the apposition roots ∆′. This may
be accomplished using the Vandermonde matrix Ω = (ωij)0≤i,j≤n, with
ω = e2π

√
−1 /(n+1). In the present situation we have

E+ = En,0 +

n−1
∑

i=0

Ei,i+1 ∈ sln+1C

and E− = ET
+. We have Ω−1h′Ω = h because h′ is spanned by

the matrices E+, . . . , E
n
+ and the columns of Ω are the eigenvectors

of E+ with eigenvalues 1, ω, . . . , ωn respectively. Thus Ω−1E+Ω =
dn+1, Ω−1E−Ω = d−1

n+1 where dn+1 = diag(1, ω, . . . , ωn).

For compatibility with [28] we shall evaluate apposition roots on
−E+, rather than E+. The projection of the root β = xi − xj to
the Coxeter Plane is then given by β(−dn+1) = −(ωi − ωj) ∈ C, and
its length (the radius of the wheel on which it lies) is just

|β(−dn+1)| = |ωi − ωj| = 2 sin |i−j|
n+1

π.

We obtain [1
2
(n+1)] wheels with these radii, each wheel containing n+1

equally-spaced points. This means that there are [1
2
(n + 1)] distinct

particles, and the mass of the k-th particle is Lk = 2 sin k
n+1

π. More

generally, from (−dn+1)
r, the r-spin of the k-th particle is 2 sin rk

n+1
π.

Thus we have the explicit particle/mass data.

Next, we discuss data which depends on the particular model (i.e.
solution of the tt*-Toda equations). For the global solution w corre-
sponding to m, the Stokes data S = (s1, . . . , sn) is given in terms of
m by the formula of Theorem 3.3. The formula for the asymptotics of
w as x → ∞, although stated in (3.4) and (3.5) for the global solu-
tions, actually applies to any solution which is smooth near infinity, as
the Riemann-Hilbert argument sketched above shows. Formula (3.5) is
thus a special case of (4.8). To derive (3.4) from (4.8), we just have to
conjugate by Ω−1.

We justify in this way the asymptotic formulae of Bourdeau in [5] for
the CP n sigma-model (which corresponds to the solution m = −x0 and
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the representation θ = λn+1). For the solution m = −x0 and the rep-
resentation θ = ∧kλn+1 we obtain the asymptotic formulae appearing
in [5] for the Grk(C

n+1) sigma-model.

The soliton polytope for Grk(C
n+1) is the polytope in h∗♯ spanned by

the weights xi1 + · · · + xik where 0 ≤ i1 < · · · < ik = n. The vacua
are the weight vectors ei1 ∧ · · · ∧ eik . The projections of the weights
to the Coxeter Plane are the complex numbers −(ωi1 + · · · + ωik).
The difference of two weights is a root if and only if their index sets
have precisely k− 1 common elements. When this happens, we have a
soliton between the two vacua, whose particle type and mass are those
associated to that root.

We illustrate this using the example of Gr3(C
6), which was described

somewhat mysteriously in section 4 of [5]. For g = sl6C there are

L  = 1

L  =  3

L  = 2

or

[345]

[034]=[245]

[024]=[135]

[025]=[014]

Figure 2. The soliton structure of the Gr3(C
6) sigma-model.

[1
2
(n + 1)] = 3 particles, and the particle data is as follows:

particle [x0 − x1] [x0 − x2] [x0 − x3]

mass 2 sin π
6
= 1 2 sin 2π

6
=

√
3 2 sin 3π

6
= 2

multiplicity
(

6
1

)

= 6
(

6
2

)

= 15
(

6
3

)

= 20

The vertices of the soliton polytope, when projected to (our formulation
of) the Coxeter Plane, produce the points (xi + xj + xk)(−dn+1) =
−(ωi + ωj + ωk), where ω = e2π

√
−1 /3.

Let us denote the state vector ei ∧ ej ∧ ek in ∧3C6 by |ijk〉 and its
projection to the Coxeter Plane by [ijk]. As shown in Figure 2 we
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obtain 13 distinct points: the origin [024] = [135], six vertices of a
regular hexagon on a circle of radius 1 (the Coxeter orbit of [034] =
[245] or [025] = [014]), and six vertices of a regular hexagon on a circle
of radius 2 (the Coxeter orbit of [345]). The Coxeter element (543210)
acts on the diagram by rotation through −π/3.
The soliton structure can be read off from Figure 2. For example,

there is a soliton between the states |025〉 and |245〉 of type [x0 − x2]
and multiplicity 15. Its mass is the distance between the points [025]
and [245], namely

√
3. Examples of pairs connected by no solitons are

|024〉 and |135〉, or |034〉 and |245〉.
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