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Recent milestone experiments establishing satellite-to-ground quantum communication are paving
the way for the development of the quantum internet, a network interconnected by quantum chan-
nels. Here we employ network theory to study the properties of the photonic networks that can be
generated by satellite-based quantum communication and compare it with the optical-fiber counter-
part. We predict that satellites can generate small-world networks, implying that physically distant
nodes are actually near from a network perspective. We also analyse the connectivity properties of
the network and show, in particular, that they are robust against random failures. This puts satellite-
based quantum communication as the most promising technology to distribute entanglement across
large distances in quantum networks of growing size and complexity.

I. INTRODUCTION

Quantum networks, distant nodes interconnected by
quantum channels, are ubiquitous in quantum informa-
tion science. Not only they can enhance our commu-
nication capabilities [1] but also allow for a fundamen-
tally secure quantum cryptography [2], the execution of
quantum teleportation [3], the establishment of nonlo-
cal correlations [4] and other applications such as clock
synchronisation [5] and quantum computation on the
cloud [6, 7]. The two most promising infrastructures
to build quantum networks are optical fibers and satel-
lites [8]. Recent experimental advances [9–13] allowed
for quantum communication and the sharing of quan-
tum entanglement through large distances, paving the
way for undergoing development of the quantum inter-
net [14–16].

Within this context, it becomes crucial to understand
the network properties of a quantum internet gener-
ated by these two technologies. For instance, the con-
nectivity of the network (i.e. if all nodes belong to
the same network or if there exist isolated islands of
nodes) tells us if it is possible to transmit information
across the whole network. The network distance be-
tween nodes tell us how many entanglement swaps are
needed if one wants to distribute entanglement between
these nodes. Finally, the network robustness (i.e. , how
many nodes must be removed from the network un-
til it breaks apart) informs us about how resilient the
network is under local failures. In a recent study [17]
we have shown that an optical-fiber-based network re-
quires a very small density of nodes in order to produce
fully connected photonic networks. However, the typ-
ical distances between nodes increase in a power-law
relation with the number of nodes, i.e. the size of the
network, meaning that it does not lead to the so-desired
small-world property [18–22].

Here we employ network theory [23] to study the
properties a satellite-based photonic network. Similarly
to an optical-fiber-based quantum internet (OFBQI), the
satellite-based quantum internet (SBQI) displays a tran-
sition from a disconnected to a connected network with
respect to the density of nodes in the network. How-
ever, differently from an OFBQI, we observe the exis-
tence of hubs in a SBQI, i.e. nodes with a high number
of connections, a phenomenon typically associated with
scale-free networks [23]. Consequently, the SBQI leads
to the small-world property, implying that very few en-
tanglement swappings are necessary to distribute en-
tanglement between any two nodes in the network.
Moreover, similarly to the actual internet [24, 25], the
SBQI also displays a significant robustness against ran-
dom failures in the network. On the down side, given
the existence of hubs, it is less robust against targeted
attacks, thus showing that highly connected nodes have
to be specially protected in order to maintain the quan-
tum network operative.

II. NETWORK MODEL FOR THE SATELLITE BASED
QUANTUM INTERNET

Formally, a network model is defined by a set of N
nodes being connected by edges according to a given
probabilistic rule. In our model (see Fig. 1) we assume
that there is a satellite covering a disk of radius R, capa-
ble of connecting any two nodes within this area. More
precisely, an entangled pair of photons are generated at
the satellite and sent to each pair of nodes, via a down-
link channel. The probability that a photon sent from
the satellite arrives at site i has been analyzed in [26]
and can be described by

pi,sat = η0(1− e2R2
rec/(wi

LT)
2
), (1)
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FIG. 1. Satellite-to-ground quantum communication and samples of the quantum internet. (a) A satellite produces an
entangled pair of photons and sends one photon to each station. The probability that each photon arrives at the destination is
given by pi,sat, and (b) a link between the two ground stations are formed when both photons arrive. (c) to (f) display samples
from the quantum internet. The gray edges represent the quantum link created by the satellite between two distant parts. The
bigger (smaller) and bluish (reddish) the nodes, more (less) connected they are. By increasing the number of nodes (c) N = 100,
(d) N = 200, (e) N = 500 and ( f ) N = 1000 in a fixed area of radius R = 1800 km, using np = 50 photons, the giant cluster will
appear, i.e. the number of nodes within the largest cluster NG is of the order of the total number of nodes N.

where wi
LT ' 0, 25× 10−5di,sat (for a downlink) is the

long-term beam width and depends on the distance
di,sat between the site and the satellite; η0 ≈ 0.1 is
an empirical factor [27] comprising the detection effi-
ciency, the pointing losses and the atmospheric attenu-
ation; Rrec is the radius of the telescope receptor (in our
simulations we consider Rrec = 0, 75m). The distance
di,sat between site i and the satellite will depend on the
position of the site within the coverage radius and the
altitude hsat of the satellite, that for the Micius satellite
[28], used as reference here, is hsat = 500 km. Fur-
thermore, we assume that the position of the satellite is
fixed and positioned in the center of the disk. Finally,
we will consider that the satellite can send np entangled
pairs as an attempt to generate a link. A successful link
is then established between sites i and j if at least one
out of np entangled pairs generated at the satellite ar-

rive in the stations. This connection will happen with
probability

Πij = 1− (1− pi pj)
np , (2)

with pi ≡ pi,sat (similarly for pj).
Within this framework, our model for the SBQI can

be constructed in three steps:

1. N nodes are uniformly distributed in a disk of
radius R (km);

2. Compute the Euclidean distance (di,sat, dj,sat) be-
tween i and j and the satellite, for all pair of nodes
i and j;

3. For each pair (i, j) randomly sample a number
uniformly distributed in the range 0 ≤ r ≤ 1. If
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FIG. 2. Connectivity distribution of SBQI model and a comparison with the OFBQI. Connectivity distribution of a SBQI
model for (a) different values of N, setting ρ = 5× 10−3 and (b) several values of ρ, setting N = 1000. In solid lines, the
log-normal distribution (3) parameterized by µ and σ, fitting almost perfectly the distribution generated by the model. (c)
Comparison between the satellite (red diamond) and the optical fibers (blue circle) networks for N = 1000 and ρ = 2× 10−4

(R ' 1261 km). The appearance of hubs in the satellite model becomes evident, according to the fat-tailed behaviour. For the
satellite model np = 50 and for the fiber one np = 1000, that is, we are allowing 20 times more photons for the optical-fiber
model to establish a quantum link, an important advantage of the satellite implementation.

r ≤ Πij the sites are connected, otherwise they are
not.

To calculate the relevant properties of our network
model in a statistically relevant manner, we used the
standard Monte Carlo method until 1000 steps to gen-
erate different instances of the SBQI model. In our sim-
ulations we have employed different values of the pa-
rameter np, observing that it does not change the qual-
itative properties of our model (np = 50 was chosen as
a reference for the rest of the paper, unless stated other-
wise). Examples of the generated networks are shown
in Fig. 1 (c)-(f). As it can be seen, even a few nodes
in a large area can generate a network in a connected
phase, i.e. NG ∼ N, where the variable NG is defined as
the number of nodes in the largest connected compo-
nent (the giant cluster), and N is the size of the entire
network, see Fig. 1 (e) and (f). Another interesting fea-
ture is that, as the number of nodes increases, the most
connected sites will naturally appear in the center of
the disk (directly under the satellite). The further away
from the center, the less connected are the nodes, also
meaning that the hubs are likely to appear in the center
of the network area.

III. SATELLITE-BASED QUANTUM
COMMUNICATION GENERATES SMALL-WORLD

NETWORKS

A crucial property of a network that dictates most of
its qualitative and quantitative properties is the connec-
tivity distribution P(k), i.e. the probability of finding a

node with k connections. As shown in Fig. 2, we find
that P(k) can be well fitted by a log-normal distribution

P(k) =
1

kσ
√

2 π
exp

[−(ln(k)− µ2)2

2σ2

]
, (3)

that depends on the parameters µ ≡ ln
[
〈k〉2/

√
〈k2〉

]
and σ ≡

√
ln [〈k2〉/〈k〉2], where 〈k〉 = ∑i ki/N and ki is

the number of connections that node i has.
A comparison between the connectivity distribution

of the SBQI and OFBQI highlights a few important dif-
ferences. The OFBQI is governed by a Poissonian distri-
bution, meaning that most of the nodes will have a con-
nectivity close to 〈k〉 with deviations that become expo-
nentially smaller as the network size increases [17]. On
the contrary, the SBQI being governed by a log-normal
distribution implies that there will be a non-negligible
probability of finding nodes with a considerably high
number of connections, which accounts for the fat-tail
behavior seeing in Fig. 2. That is, the SBQI leads
to the existence of hubs, a characteristic trait of scale-
free networks describing many networks [29–34]. For
a long time, real-world networks were often claimed to
be scale-free and thus governed by a power law dis-
tribution. Recent works have shown robust evidences,
however, that strongly scale-free structure is empirically
rare: for most networks the log-normal distributions fit
the data as well or better than power-laws [35].

We also notice that it is intuitive to expect that the
current model leads to a connectivity distribution be-
havior that is in between the random networks (given
by a Poissonian) and scale-free networks (given by a
power-law). This is because, while in the first every pair
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FIG. 3. Comparison between SBQI and OFBQI networks. Average shortest path 〈l〉 and average diameter 〈d〉 as function of
N for different values of ρ ≡ N/πR2. Here we are considering only the giant cluster, once that by definition two disconnected
nodes has 〈l〉 = ∞. (a) Comparison of 〈l〉 between OFBQI (red dashed line) and SBQI (blue straight line) for ρ = 2.0(×10−4)
(circles) and 5.0(×10−4) (squares). (b) Comparison of the diameter of the network 〈d〉 for OFBQI and SBQI models for the same
parameters as before, once more highlights the advantage of the satellite model. Plots (c) and (d) show that 〈l〉 and 〈d〉 remain
small for the SBQI, even for very large N (also considering different density values ρ). The inset plots in (c) (right) and (d) show
the relative size of the giant cluster as a function of the average shortest path and diameter respectively. In the connected regime
of the network (NG ∼ N) the shortest path is at most 〈l〉max ∼ 4 and 〈d〉max ∼ 10, independently of N and ρ. The black straight
lines in Fig. 3(c) are given by the equation c(ρ) ln(N)/ ln(〈k〉/ρ) with c(ρ) = e0.312ρ−0.182

, the dependence of c(ρ) as a function of
ρ is displayed in the left inset plot in (c).

of nodes have the same probability of receiving a con-
nection, in the later nodes that have more links are more
likely to receive more connections. However, in the
current model, although there is no preferential attach-
ment, the distance between the nodes and the satellite
changes the probability to receive links: the nodes lying
below the satellite will naturally display more connec-
tions than the ones lying in the extremes of the satellite
coverage area. Thus, although we expect the appear-
ance of hubs, they will be highly concentrated in the
central area.

A consequence of the existence of hubs is to decrease
the typical network distance between nodes. This can
be checked by looking at how the average shortest path
〈l〉 of the network (the average being performed over
all pairs of nodes as well as over all samples of the net-

works) scales with the network size. To compute the
average shortest path length 〈l〉 we use the standard
definition in the network science literature, given by

〈l〉 = 2
N(N − 1) ∑

i<j
dij,

where dij is the shortest path between the sites i and
j. Thus 〈l〉 is the average of the shortest paths between
all pairs of nodes in the network. As standard in the
literature, we only compute 〈l〉 for the sites belonging
to the giant cluster, once that dij = ∞ if i and j do not
belong to the same subgraph. In a quantum network
in the connected phase, any node can become entan-
gled to any other node, via a entanglement swapping
over the intermediate nodes. However, due to unavoid-
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FIG. 4. Average clustering coefficient. (a) 〈C〉 for SBQI model as a function of N for several values of ρ. (b) As can be seen,
〈C〉 nearly decreases as a power of N. The simulations were done for 1000 realizations for each value of N with Nmax = 10000.
To be sure if 〈C〉 ∼ N−α would be necessary to run for higher values of N.

able noise, each of those intermediary processes dam-
ages the final amount of entanglement between the end
nodes, highlighting the relevance of having a small 〈l〉.
Efficient communication networks display the small-
world property. Unfortunately, as shown in [17], the
fiber based quantum internet displays no small-world
property with 〈l〉 ∼

√
N. Here, on the contrary, as

shown in Fig. 3, 〈l〉 for the SBQI is governed by the
functional c(ρ) ln N/ ln[〈k〉/ρ] with c(ρ) = e0.312ρ−0.182

.
Thus, the satellite-based quantum networks displays
the small-world phenomenon. This property comes
from the presence of hubs in the center of the net-
work area that tend to shorten the path between any
two nodes in the network. We also analyse the av-
erage clustering coefficient defined by 〈C〉 = 1

N ∑i ci,
where ci is the clustering coefficient of the site i given
by ci =

2ni
ki(ki−1) with ni being the number of edges be-

tween the ki neighbours of the site i and ki(ki− 1)/2 be-
ing total possible number of edges between them. This
property is a measure of the local link density, that is,
how connected are the neighbours of a given site. Con-
trary to the traditional small-world model, proposed
by Watts and Strogatz [36], and differently of OFBQI
network, 〈C〉SBQI decreases nearly as power of N (see
Fig. 4). The small-world property (〈l〉 ∼ log N) with a
decreasing clustering coefficient is also observed in the
paradigmatic Erdos-Renyi [37] or Albert-Barabási [29]
networks.

The satellite network also improves over the optical
fiber one when considering the diameter of the net-
work (the greatest distance between any pair of nodes)
〈d〉. This quantity gives the maximum number of en-
tanglement swaps needed in order to directly entangle
any two nodes. As it can be seen in Fig. 3(b), using

a satellite as a quantum channel generates a final net-
work with a considerably shorter diameter as compared
to optical fibers. For instance, choosing N = 1000 and
the coverage area as R ≈ 1260 km and even by setting
nOFBQI

p = 1000 while nSBQI
p = 50, the diameter of the

OFBQI network would be greater than the SBQI case
(dOFBQI ∼ 20, dSBQI ∼ 4).

In summary, using satellites and a few number of
nodes one can achieve a fully connected network cov-
ering significantly large areas and requiring few entan-
glement swaps to interconnect any two nodes, a clear
advantage in the practical implementation of the quan-
tum internet.

IV. CONNECTIVITY OF THE QUANTUM INTERNET

Another relevant difference between the two models
is that, in the fiber model the average connectivity de-
pends linearly on the density of nodes ρ = N/πR2 such
that 〈k〉 = αρ [17]. We observe that for the SBQI 〈k〉 has
a much more intricate functional dependence, well de-
scribed by

〈k〉 = A(ρ)

ln(πR2)σ
√

2π
exp

[
− (ln ln(πR2)− µ)2

2σ2

]
, (4)

with A(ρ) ' 4.5× 105ρ + 0.97, µ ' 2.73 and σ ' 0.126.
To find the expression for 〈k〉, we generated the model
varying the parameters N and ρ and analyzed how 〈k〉
changed with N fixing ρ and the other way around (see
Fig. 5(a,b)). By rescaling the axis of the Fig. 5(a), we
could find a universal behavior (data collapse) of 〈k〉.
We fit the final data (Fig. 5(c)) and derived an expres-
sion for 〈k〉 that describes very well the simulation data.
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FIG. 5. Average degree of the network (a), (b) show 〈k〉 as a function of N and ρ, respectively. (c) Eq. 4 (solid black line)
fits very well the average degree where by replacing 〈k〉 → 〈k〉/ρ and N → ln[N/ρ], all curves colapse obtaining an universal
behaviour independently of N and ρ.

Interestingly, as can be seen in Fig. 5 (a), 〈k〉 has a
maximum value (peak) from which the curve decreases.
Since ρ is fixed, by increasing N we also increase R.
This means that when we increase N we adding nodes
which are far from the satellite, and will consequently
receive less connections, leading to a decrease of 〈k〉.

For a communication network to be useful it should
have most of its nodes belonging to the same cluster,
and not isolated in a few small-size clusters. Mod-
els like the paradigmatic Erdos-Rényi random network
model [37] or the OFBQI [17], the emergence of the gi-
ant cluster is regulated by the average connectivity, such
that it happens if 〈k〉 is above a critical value. As shown
in Fig. 6, the SBQI also displays a transition from small
disconnected clusters to a connected largest cluster.

Notice that the SBQI model generates a connected
network in large areas and still keeps the average path
small. For instance, for N = 1000 and np = 50, the SBQI
model generates a fully connected network (NG ∼ N),
covering an area of radius R ≈ 1800 km. With the same
parameters the OFBQI network would cover a maxi-
mum area of radius R ≈ 1100 km.

V. ROBUSTNESS AGAINST FAILURES AND ATTACKS

Here, we analyze and compare the robustness of the
satellite and optical fiber models, considering the be-
havior of the networks under random failures and tar-
geted attacks on nodes and links [24]. As a bench-
mark, we will also use the paradigmatic random [37]
and scale-free networks [29]. If there is a random failure
in a node, all its connections are broken. Alternatively,
one can think of a targeted attack breaking the nodes
on the most connected sites of the network. Our goal is
to determine how many nodes have to fail in network

in order to break it apart.
To answer this we need to compute the ratio

NG( f )/NG(0) as a function of f (number of removed
nodes divided by the size N of the network). The pa-
rameter NG( f ) is the size of the giant cluster after we
remove a fraction f of nodes from the network, and
NG(0) is the size of the largest cluster before any node
removal. Analysing this ratio as a function of f is the
standard procedure in network science to obtain the ro-
bustness of the network under random failures (if we
randomly remove the nodes) or target attack (if start re-
moving the most connected nodes of the network) [23–
25].

In Fig. 7 we show the average value of NG( f )/NG(0),
denoted by 〈ng〉 for both random failures and targeted
attacks. For random failures, the SBQI is significantly
more robust than the OFBQI, as it can be seen com-
paring the critical values fc (for which 〈ng〉 is approx-
imately zero) and the faster decay rate of the OFBQI.
Furthermore, we can see that the SBQI has a similar
behaviour to a scale-free network, that is known to be
robust against random failures [24, 38].

Due to the existence of hubs, it is well known that the
scale-free model is less robust against targeted attacks
as compared, for instance, with random networks. In
the SBQI such hubs are also present and as shown in
Fig. 7 this leads to a smaller robustness in this situation.

An alternative to obtain the critical threshold fc is to
compare 〈ng〉 with the average size of the isolated clus-
ters 〈niso〉 as a function of the fraction f of removed
nodes [24]. As shown in Fig. 7(e) and (f) the peak of
the 〈niso〉 coincides with 〈ng〉 ∼ 0 indicating the value
of the critical threshold fc. From this point on, the net-
work loses its communication capacity. As it can be
seen in Fig. 7 (f), under random failures, a failure of
68% of nodes it is enough to bring down the communi-
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FIG. 6. Relative size of the giant cluster (NG/N). Comparison between (a) OFBQI and (b) SBQI models for np = 50 and
N = 50, 100, 500, 1000. Comparison between the (c) OFBQI and (d) SBQI models for N = 1000 and np = 5, 10, 25, 50. Nicely,
the satellite network can be connected in considerably large areas, even with relatively small values of np and N. In figures (e)
and ( f ) we show the transition between the disconnected and connected phases in the satellite model (for various values of N)
as a function of ρ and ln(R/ρ), respectively. As we can see in ( f ) the network remains connected (NG ∼ N) if ln(R/ρ) . 17

that is equivalent to ρ &
[
e−17√N/π

]2/3, indicating that for each N exist a density from which the network becomes connected.

cation capabilities of the OFBQI network, whereas for
the SBQI network (Fig. 7(e)) almost all nodes of the net-
work (∼ 95%) would have to fail in order to break it
down. In turn, under targeted attacks, the failure of
only ∼ 25% of the nodes, would be already enough to
break the SBQI network (Fig. 7(e)), while for OFBQI it
is necessary that ∼ 52% of the nodes fail (Fig. 7(f)).

We also study two cases of link failure: 1) random
link failures; 2) ”edge-cut” attack. Notice that the first
kind of failure would correspond to the sources of noise
(decoherence etc). And the second kind would corre-
spond to an attack choosing specifically the links nec-
essary to break down all the paths between two nodes
(breaking off the communication between them). In the
Figs. 8(a,b), we are fixing the parameters ρ = 0.0002
sites/km, N = 10000 under 1000 realizations, and we
show the robustness of the (a) SBQI and (b) OFBQI
models under random link failures. By comparing the
random link failure with the case of the random node
failure, we can see that for the SBQI network the critical

thresholds fc are equivalent. This result is known for
networks where the probability to link two sites does
not strongly depend on distances between them (for in-
stance, Erdos-Renyi [37] and Barabási-Albert [29] net-
works). As discussed in the text, in the SBQI model
the distance between the sites is almost irrelevant in
the link probability, explaining this result. On the con-
trary, the OFBQI model displays higher robustness un-
der random link failures as compared to node failures.
In conclusion, also for random link failures the SBQI is
still much more robust than the OFBQI.

In the second case showed in Figs. 8(c,d) (”edge-cut”
attack), we compare the networks by removing the min-
imum amount of links necessary to fully disconnect two
randomly chosen nodes. As can be seen in the figures
(c) SBQI and (d) OFBQI, under this kind of attack, the
SBQI model is again more robust than OFBQI model.
We can see in figure (c) that there is no critical thresh-
old from what NG/N = 0 and the network becomes
disconnected. However, the OFBQI network becomes
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FIG. 7. Quantum Network Robustness. Comparison between the optical fiber and satellite models having also the Barabási-
Albert (BA) (scale-free model) and the standard Erdos-Renyi random graph (ER) as benchmarks. We set N = 10000 and, as
standard in the literature, choose the parameters of the each model to get a network with 〈k〉 ' 6. (a) The SBQI is as robust as
the BA model under random failures. A removal of 94% of the nodes is necessary to break the network. On the other hand, the
OFBQI is the least robust network. (b) As expected, the ER model is the most robust under targeted attacks, with fc ∼ 40%,
followed by the OFBQI with fc = 32%. The least robust is the BA ( fc ∼ 12%) that is similar to SBQI model with fc ∼ 19%. In
figures (c) and (d) a comparison between the fiber and satellite models fixing N = 10000 and ρ = 0.00022 sites/km, varying
np = 50, 100 and 1000 for OFBQI network and fixing np = 50 for SBQI model. Even allowing for considerably more losses,
the OFBQI is less robust than SBQI network under random failures and it becomes less robust as np decreases. However, the
SBQI model is very fragile against targeted attacks, while OFBQI becomes more robust for larger values of np (for instance
np ≥ 100). In graphs (e)− ( f ) we show the critical threshold fc for SBQI and OFBQI under random failures and target attacks
fixing ρ = 0.0002 sites/km. (e) SBQI, with np = 50, and ( f ) OFBQI, with np = 1000, under random failures (blue) and target
attacks (red). We compare 〈ng〉 (blue diamonds/red circles) with 〈niso〉 (blue dashed dotted line/red straight line) as a function
of the fraction f of removed nodes under random failures/targeted attacks. The peak of the 〈niso〉 coincides with 〈ng〉 ∼ 0
indicating the value of the critical threshold fc.

more fragile under this kind of attack.

In summary, under link failures, the SBQI is again
more robust than OFBQI. We must highlight, however,
that the results regarding link failures are preliminary.
The bottleneck of the analysis is the computational cost
to consider very large networks. For this reason we
have considered a relatively small N as compared to
the node failure case.

VI. DISCUSSION

We have studied the network properties of a quan-
tum internet assuming that the links interconnecting
the different nodes are quantum channels mediated by
a satellite with down-link communication with stations
on the ground. We have shown that such networks dis-
play hubs, i.e. nodes that have a big number of con-
nections, naturally present closer to the satellite. These
nodes have the effect of making the typical networks
distances and diameter small. This leads to a clear ad-
vantage of such networks in entanglement distribution,
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FIG. 8. Robustness under link removal. In these figures we show the the robustness of (a) SBQI and (b) under random link
failures. The results were done for ρ = 0.0002, N = 10000 under 1000 realizations. Below, we show the robustness of the
models, (c) SBQI and (d) OFBQI, by removing the minimum amount of links necessary to break the communication between
two randomly chosen nodes. The results were done for ρ = 0.0002 sites/km, N = 1000 under 1000 realizations. In both cases
the SBQI is more robust than OFBQI network.

as compared to networks based on optical fibers [17].
The presence of hubs also make the network more ro-
bust against random node and link failures, since these
nodes also have the capability of holding the network
together after a considerable number of nodes are re-
moved. However, if the attacks are targeted to destroy
the hubs, the network are dismantled pretty easily. This
highlights the need for a special protection of these
nodes.

Our results provide a useful guide for the develop-
ment of future quantum networks. Together with the
network based on optical fibers [17], our results can be
seen as the first step towards more complicated and re-
alistic models. It would be interesting to consider non-
uniform distribution of nodes that simulates, for in-
stance, the fact that big cities typically concentrate more
nodes than rural areas. We expect that this situation
could lead to the appearance of communities. Other
important line of research could be to study quantum
features of the transmitted photons, such as coherence
and entanglement, and how these features impact the
usefulness of the network for specific protocols. Finally,

we believe that future quantum networks will be hy-
brid, using simultaneously optical fibers and satellites
in the most efficient way.
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