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We explore glassy dynamics of dense assemblies of soft particles that are self-propelled by active
forces. These forces have a fixed amplitude and a propulsion direction that varies on a timescale
τp, the persistence timescale. Numerical simulations of such active glasses are computationally
challenging when the dynamics is governed by large persistence times. We describe in detail a
recently proposed scheme that allows one to study directly the dynamics in the large persistence
time limit, on timescales around and well above the persistence time. We discuss the idea behind the
proposed scheme, which we call “activity-driven dynamics”, as well as its numerical implementation.
We establish that our prescription faithfully reproduces all dynamical quantities in the appropriate
limit τp → ∞. We deploy the approach to explore in detail the statistics of Eshelby-like plastic
events in the steady state dynamics of a dense and intermittent active glass.

I. INTRODUCTION

Disordered or amorphous solids, also known as glasses,
are one of the most abundant states of matter [1], but re-
main less well understood than their closest relatives, i.e.
liquids and crystals [2]. Many theoretical approaches has
been put forward over the last few decades, including
Mode Coupling Theory [3], Random First Order Tran-
sition Theory [4], Free Volume Theory [5], and more
recently exact solutions in infinite dimensions for hard
sphere glasses [6]. Alongside these efforts, many signifi-
cant and fundamental discoveries have been made in the
numerical investigation of model glass formers [2]. Still,
in spite of the enormous amount of research done in re-
cent decades, a complete understanding of this disordered
solid phase remains elusive [2, 7].

Compared to the physics of glasses, active matter is a
relatively recent field of study that lies at the intersection
of soft matter, non-equilibrium statistical mechanics and
biological systems [8, 9]. This field has emerged as one
of the most fruitful areas of research in the last decade.
Being inherently out of equilibrium [10], active matter
systems show fascinating dynamical phases (swirls or vor-
tices) and ordering (swarms, flocks, active nematic states
etc.), giant number fluctuations and intriguing mechani-
cal and dynamical responses [8, 9].

Active matter systems can exhibit gas, liquid, liq-
uid crystal and crystalline phases [8, 9] but also active
glasses. These are a dense and disordered form of active
matter, and our focus in this paper. They sit at the in-
tersection of the fields of glass physics and active matter,
and are relevant to understanding synthetic active mate-
rials such as dense assemblies of Janus colloids [11, 12]
as well as many biological systems including the cyto-
plasm [13], with its ATP dependent molecular activity,
or epithelial tissues [14], which are dense collections of
motile cells.
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FIG. 1. Schematic of particle motion resulting from the
random tilting of the effective potential landscape by ac-
tive forces, in a cartoon showing a two-dimensional landscape
V eff(x1, x2). The blue arrows in the centre indicate the time
evolution (inside to out) of a propulsion force direction in
small steps of rescaled time t′ = t/τp. Each change in this di-
rection (indicated by red arrows above the landscape) slightly
changes the tilt of the effective potential and thus the particle
configuration (black dot), which is always at a local minimum
of V eff . In the last step shown, the change in tilt destabilizes
the current local minimum and a plastic event takes place,
with a significant rearrangement of the particle configuration
into a new local minimum.

Recent studies on active glasses (see Ref. [15] for a com-
prehensive review) have revealed many interesting phe-
nomena. Glass transition boundaries have been found
to shift with increasing activity, for example, towards
higher area fractions [16–18] or lower temperature in den-
sity or temperature-controlled glasses [19, 20], respec-
tively. Similarities but also substantial differences to
passive glasses have been reported, including a novel in-
termittent dynamical phase [21] and two-step aging sce-
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narios [22]. Theoretical progress in understanding this
actively driven solid state of matter has also been made,
with the development of Mode Coupling Theory for dense
active systems [23], active Random First Order Transi-
tion theory [24] and active trap models [25], to name a
few.

A general observation from existing studies is that
in the limit of weak (more precisely, weakly persistent)
activity, active glasses behave essentially like passive
thermal systems with an effective temperature [19–22].
Strong departures from thermal behaviour appear in the
opposite limit of highly persistent activity. Our aim in
this article is to set out in detail a recently proposed
method [22] that allows for the efficient simulation of such
“extreme active matter” [21]. We refer to this approach
as Activity Driven Dynamics (ADD). By comparing a
range of dynamical quantities we establish that the new
algorithm can capture reliably the asymptotic behaviour
for τp → ∞ while remaining computationally efficient.
Finally we deploy the method to study the statistics of
Eshelby-like plastic rearrangements seen in the steady
state dynamics of an active glass.

II. ACTIVITY DRIVEN DYNAMICS

We consider in the following systems of active parti-
cles moving in d = 2 dimensions with a propulsion force
that remains fixed in magnitude but changes randomly
in time [26–29]. Assuming inertial dynamics with friction
against a stationary solvent then gives the equations of
motion

mr̈i = −γṙi + fi + fni (1)

Here ri is the position vector of particle i (i = 1, . . . , N),
m is the particle mass, γ is the friction coefficient and
fi = −∇iV is the total interaction force on particle i
derived from some potential V . We will use a sum of
pairwise Lennard-Jones interactions below but V can in
general contain arbitrary many-body interactions.

A key parameter for the physical behaviour is f , which
measures the strength – assumed constant in time – of
the propulsion force on each particle. The direction of
this propulsion force, ni, is a unit vector

ni ≡ (cos θi, sin θi) (2)

which is assumed to perform rotational Brownian motion
with timescale τp:

θ̇i =
√

2/τp ηi (3)

Here ηi is zero mean Gaussian white noise with correlator
〈η(t1)η(t2)〉 = δ(t1 − t2).

Our focus in the following will be the limit of large
τp, i.e. of a highly persistent active glass. Such a glass
can arise if the system is dense enough, and the active
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FIG. 2. (Top) A typical time series of kinetic energy (per
particle) in the ADD algorithm where red points represents
the state of the system after each ADD step and the black
segments (whose duration is indicated by the double dashed
arrows) show the minimisation steps, which are of varying
length due to their adaptive in nature. For large τp, the length
of the minimisation step becomes negligible compared to the
duration of the ADD steps. (Middle) Corresponding values of
potential energy per particle, U = V/N ; note that the linear
terms from the active forces are not included so that U does
not decrease monotonically during minimization. (Bottom)
The resulting potential energy time series in scaled time t′ =
t/τp, showing in red the results from the three successive ADD
steps in the top and middle panels.

propulsion force f not too large. If under these con-
ditions we fix the directions ni of the self-propulsion
forces, then the time evolution of the particle positions,
Eq.(1), will rapidly reach an arrested state where the to-
tal force on each particle vanishes. Now if τp is large but
finite, the propulsion force orientations ni will change on
a timescale of τp. On the other hand, the time for the
particles to reach an arrested state for any given set of ni
does not grow with τp. In the limit τp →∞, the particle
configuration thus tracks the propulsion forces effectively
instantaneously and we have Activity Driven Dynamics
(ADD): the time evolution of the system is driven only
by changes in the active forces. The reason why this
limiting dynamics is useful for numerical simulation is
that for each time step of O(τp) that corresponds to a
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FIG. 3. Two-point overlap correlation function Q(t) as a func-
tion of scaled time t′ = t/τp, calculated for active force am-
plitude f = 1.2 and for different τp as shown. The results
converge for large τp and approach the prediction of ADD
(black dashed line), confirming the validity of the method.

small change of the {ni}, we only need to simulate for a
time that does not scale with τp, until the particles have
reached their arrested state given the new {ni}. Thus
in the limit large τp we expect a reduction in computa-
tional effort by a factor of order τp, if we work in units
were typical relaxation times are of order unity.

To derive ADD more formally, we rescale time to t′ =
t/τp and write the equations of motion Eq.(1,3) in this
new time variable:

m
1

τ2
p

d2ri

dt′2
= −γ 1

τp

dri
dt′

+ fi + fni (4)

dθi
dt′

=
√

2 η′i. (5)

Here η′i is a scaled white noise defined to have unit vari-
ance in the scaled time variables, i.e. 〈η′i(t′1)η′i(t

′
2)〉 =

δ(t′1 − t′2), which gives η′i =
√
τpηi. Now the basic as-

sumption of ADD is that for large τp, the particle dy-
namics is driven by that of the ni (or equivalently θi),
so that the evolution of the particle configuration takes
place on timescales of O(τp). The derivatives w.r.t. the
rescaled time t′, dri/dt

′ and dr2
i /dt

′2, must then remain
finite as τp →∞. Eq.(4) thus implies that for τp →∞

0 = fi + fni. (6)

Together with Eq.(5) this equation defines ADD: in
rescaled time t′, the Brownian dynamics of the propulsion
force orientations has a fixed rotational diffusion constant
independently of τp, while the particle configuration sim-
ply tracks the evolution of the {ni} so that the total force
on every particle vanishes at all times (cf. Eq.(6)). The
latter condition can also be phrased as saying that the
particle configuration always locally minimizes an effec-

tive potential that has been tilted by the active forces,

V eff = V −
∑
i

fni · ri (7)

As the active force directions ni evolve, so does V eff . In
a small step δt′ of rescaled time t′, the system can then
either remain in a smoothly evolving minimum of V eff ,
or the existing minimum can become unstable and we
will observe a plastic event where particles rearrange ir-
reversibly and effectively instantaneously when measured
in rescaled time t′. Fig. 1 illustrates the distinction be-
tween these two types of motion with a sketch for a two-
dimensional particle configuration space.

Before discussing specific models and the computa-
tional implementation of ADD, we comment briefly on
the generality of the approach. Clearly the reasoning
behind ADD can be applied equally well in d = 3 di-
mensions, where the propulsion force directions ni then
perform a Brownian walk on a unit sphere rather than
a circle as in d = 2. Other models of active propul-
sion can also be treated for τp → ∞, including Active
Ornstein-Uhlenbeck particles. Their equation of motion
in the overdamped case can be written as [30, 31]

γṙi = fi + γvi (8)

τpv̇i = −vi +
√

2D ηi (9)

where vi is the active velocity and D the translational
diffusion constant. The noise ηi is now vectorial, with
zero mean and covariance 〈ηiα(t1)ηjβ(t2)〉 = δijδαβδ(t1−
t2), with α, β labelling the Cartesian components. In
the above way of writing the dynamics, the steady state
variance of each component of the active force γvi is
given by f̃2 = γ2D/τp. To identify this scale explicitly

we write γvi = f̃ ñi so that ñi will be a vector with length
of order unity. Scaling time by τp as we did previously
yields

γ
1

τp

dri
dt′

= fi + f̃ ñi (10)

dñi
dt′

= −ñi +
√

2η′i (11)

with η′i =
√
τp ηi the corresponding rescaled noise. The

ADD limit τp → ∞ (at constant f̃) now gives again a
limiting dynamics for the active force directions ñi, with
the force-free condition 0 = fi + f̃ ñi determining the
evolution of the particle configuration.

III. MODEL FOR SIMULATION

For numerical modelling we use in this paper the
widely studied Kob-Andersen model glass former [32, 33].
All our simulations are performed in d = 2 dimensions
with a number of particles between N = 1000 and 4000
in a square periodic box. The self-propulsion force on
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FIG. 4. Analogue of Fig. 3 for the mean squared displace-
ment as a function of scaled time. Convergence to the ADD
predictions is again observed for large τp.

each particle has fixed magnitude f and diffusive orien-
tational dynamics [21] as discussed above. The net in-
teraction force on particle i is fi =

∑
j fij where fij is a

pairwise interaction force derived from a Lennard-Jones
potential:

Vij(r) = 4εαβ

[(σαβ
r

)12

−
(σαβ
r

)6
]

(12)

where r = |ri−rj | is the distance between particles i and
j. The model contains a mixture of A- and B-type par-
ticles and the interaction parameters depend on the type
(α, β) of particles involved. The number ratio (A : B)
of particles is 65 : 35 and we have chosen the values of
σαβ and εαβ to be: σAB = 0.8σAA, σBB = 0.88σAA,
εAB = 1.5εAA, εBB = 0.5εAA with a number density
of ρ = 1.2 in accordance with the original passive Kob-
Andersen model [32, 33]. The Lennard-Jones potential
was truncated at rcαβ = 2.5σαβ with a constant and a
quadratic term to make the potential and its first deriva-
tive (i.e. force) continuous at the cutoff.

IV. NUMERICAL IMPLEMENTATION OF ADD
AND CONVERGENCE

To implement ADD we iterate a sequence of two steps
in turn: (a) angular update (Eq.(5)) and (b) minimisa-
tion step (Eq.(6)). We first (step (a)) update the propul-
sion direction for each particle while keeping the position
coordinates fixed, using the discretized version of Eq.(5)

θi(t
′ + δt′) = θi(t

′) +
√

2δt′ η̃i (13)

where η̃i is a Gaussian random variable with zero mean
and unit variance. After each such change in the orien-
tational degrees of freedom we relax the particle configu-
ration to the nearest local energy minimum (of the tilted

landscape, step (b)). The total force on each particle
vanishes there as prescribed by Eq.(6). In our numer-
ical implementation, this energy minimization step fol-
lows the original inertial dynamics until the root mean
square of the total force on each particle, [

∑
i f

2
i /N ]1/2,

falls below a small threshold value Fc that we use to de-
cide whether the system has effectively reached a local
energy minimum.

For the minimisation step (b) we use following integra-
tion scheme to update the position ri of the i-th particle
in a time step ∆t:

ri(t+ ∆t) = ri(t) + c1vi(t) + c2[fi(t) + fni] (14)

where c1 = m
γ (1− Γ), c2 = m

γ2

(
γ∆t
m − 1 + Γ

)
and Γ =

exp (−γ∆t
m ). For the velocity vi of the i-th particle the

update scheme we use is

vi(t+ ∆t) = Γvi(t) +
1

γ
(1− Γ) [fi(t) + fni]. (15)

We continue to update the system using the above steps
until the root mean square force threshold is reached, up
to some maximum time tstep = 250 in LJ units (defined
by setting εAA and σAA to unity). Because of the pres-
ence of the force threshold, the actual time tmin < tstep

taken for the minimization is not fixed but depends on
the positions and velocities of the particles at the begin-
ning of the minimization as well as the orientations of
active forces; recall that the latter are fixed during the
minimization dynamics. The computational advantage
of ADD discussed above can now be stated more explic-
itly by saying that, for large τp, the minimization times
tmin are significantly smaller than the (unscaled) time in-
terval δt′τp corresponding to the update of the propulsion
forces in step (a), see Eq.(13); in fact in the limit τp →∞
one has tmin/(δt

′τp)→ 0. Fig. 2 shows the different time
intervals graphically; tmin for one ADD step is indicated
by the double arrows.

The dynamics discussed above become an exact imple-
mentation of ADD in the joint limit of unlimited preci-
sion in the minimization step (b) (in other words a zero
threshold Fc on the root mean square force) and van-
ishing time step for the update of the propulsion force
directions, i.e. δt′ → 0. To check convergence to these
limits, we first choose an appropriate δt′ (at fixed force
threshold). We do this by running a set of simulations
with decreasing δt′ until we observe convergence of the
two-point correlation function Q defined in the next sec-
tion; this occurs for δt′ ≤ 10−2. In order to determine the
force threshold Fc we similarly check for fixed δt′ = 10−2

that the two-point correlation function Q becomes inde-
pendent of Fc for Fc ≤ 10−7. Based on these observations
we use the parameter values δt′ = 10−2 and Fc = 10−8

for all ADD simulations, including a safety margin of one
order of magnitude for Fc as this has very little effect on
overall computation time.
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FIG. 5. (a) Time series of potential energy drops (δεp) at each step of activity driven dynamics, showing both background
fluctuation (δεp < 0; see inset for a zoomed in version) and spikes (δεp > 0) at the irreversible plastic events. (b) Distribution
of positive potential energy drops shows power law decay with an exponent ∼ 1.2. (c) Distribution of negative potential energy
drops shows a narrow uni-modal distribution; these energy “drops” indicate small changes of the particle configuration within a
smoothly evolving local minimum of V eff . (d) Root mean squared particle displacement drms for plastic events (where δεp > 0,
blue points) and for background fluctuations (δεp < 0, red points). Lines represent the expected δt′-independence (black solid)

and scaling with
√
δt′ (blue dashed). Data in sub figures (a,b) taken from Supplementary Information of [22].

V. COMPARISON WITH DIRECT
SIMULATIONS

We benchmark ADD against direct simulations with
large τp in terms of both a two-point correlation function
Q(t) and the particles’ mean squared displacement. The
definition of Q(t) is

Q(t) =
1

N

〈∑
i

q(| ri(t)− ri(0) |)

〉
(16)

where

q(x) =

{
1 if x ≤ b
0 otherwise

(17)

and we choose b = 0.3 (in units of σAA). The mean

squared displacement (MSD) is defined as 〈∆r(t)2〉 =
1
N

〈∑
i(| ri(t)− ri(0) |)2

〉
where as before ri(t) is the po-

sition of particle i at time t. We compare the data for
both Q(t) and 〈∆r(t)2〉 from standard simulations [21]
with different τp and plot them as a function of t′ = t/τp.
The trend one observes (see Fig. 3 and Fig. 4) indicates
that these two point quantities converge in the large per-
sistence time limit. More importantly for our purposes,
the limiting behaviours for large τp of both Q(t) and

〈∆r(t)2〉 are entirely consistent with the results predicted
by ADD. This confirms that the dynamics obtained from
ADD correctly captures the asymptotic limit of τp →∞
at fixed t′ = t/τp while being significantly faster, in our
concrete case by a factor of about an order of magnitude
compared to standard simulations at τp = 104.

VI. EVENTS DURING ACTIVITY DRIVEN
DYNAMICS

Having established ADD as the correct description of
the large τp-dynamics of active glasses both theoretically
and by numerical benchmarking, we next use the method
to study the statistics of plastic events in the steady state.
As explained above, an advantage of ADD is that it gives
us a clean separation between smooth parts of the dy-
namics, where the particle configuration tracks a gradu-
ally evolving local minimum of the potential energy tilted
by active forces (see Eq.(7)), and instantaneous plastic
events where the existing local minimum becomes unsta-
ble and the particle configuration rearranges irreversibly
to relax to a new minimum. The sketch in Fig. 1 il-
lustrates the distinction using a simple two dimensional
energy landscape schematic: the varying tilt of V eff ei-
ther keeps the particle configuration close to the previous
local minimum in any time step or it takes the system
away from this original minimum to a new one, signifying
an irreversible plastic rearrangement.

To detect for any given time step of duration δt′ in
ADD whether a plastic event has occurred, we calculate
the reduction in the tilted potential energy (see Eq.(7))
with the active force directions fixed to their values at
the beginning of the time step. We call this quantity
(per particle) the energy drop δεp. To aid in the analy-
sis we also measure the root mean squared displacement
drms of particles with δt′. In a time step where a stable
local minimum is changing smoothly, δεp must be neg-
ative: the particle configuration at the beginning of the
time step is at a local minimum of V eff by construction,
and as we are keeping the shape of the tilted potential
fixed in the definition of δεp, the new configuration at the
end of the time step must have a higher V eff and hence
δεp < 0. The example results from a time series of δεp
confirm this (see Fig. 5a,c). In such a smooth time step
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FIG. 6. (Top) Spatial map of displacement vectors (scaled
by a factor of 2) for an Eshelby-like event, shown circled by
a black dashed line. (Bottom) The displacement field scaled
by a factor of 20 for better visualisation, with displacements
for particles at the core removed to highlight the far field
behaviour, clearly shows the expected dipolar structure.

one also expects that the particle displacements scale lin-
early with the changes in the propulsion force directions,

so that drms ∼ δt′
1/2

. This is what we see in the ADD
simulations (Fig. 5d). As the tilted potential energy in-
creases quadratically from a local minimum, we find from

drms ∼ δt′
1/2

the further estimate −δεp ∼ d2
rms ∼ δt′,

which we also find to be confirmed (data not shown).
If on the other hand a plastic event occurs within a time
step δt′, we expect to see values of both δεp and drms

that do not decrease with δt′. Also, δεp will be positive
as the system relaxes from a local minimum that has be-
come unstable to another, lower one. Both expectations
are confirmed by our numerical data (see Fig. 5). Note
that drms and δεp are independent of δt′ but somewhat
smaller than O(1): this makes sense as while we expect
maximum particle displacements comparable to the par-
ticle diameter in a plastic event, such events are typically
localized in space (more on this later) and so only a frac-
tion of particles effectively contributes to drms and δεp.

Summarizing, we can identify plastic events in ADD
time steps using the energy drop δεp that we have de-
fined: δεp > 0 means that an irreversible particle re-
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FIG. 7. (Top) Radial decay of the displacement field in a
plastic event, averaged azimuthally, shows ∼ 1/r behaviour
consistent with the prediction from elasticity theory. (Bot-
tom) The angular dependence of the radial displacements is
consistent with dipolar behaviour cos(2θ) (blue dashed line).

arrangement has occurred, while negative values of δεp
indicate smooth, reversible dynamics. Accordingly, in
the histogram of δεp (Fig. 5b,c) we observe a clear peak
around negative δεp that is well separated from the dis-
tribution of positive energy drops. As pointed out above,
the root mean squared particle displacements in the two
types of dynamics – identified according to the sign of
δεp – then also scale differently with δt′ (Fig. 5d).

We conclude this initial discussion of plastic events by
commenting on the conceptual similarity between our ac-
tivity driven dynamics (ADD) and Athermal Quasistatic
Shear (AQS) [34–38] as used to understand the behaviour
of glasses under slow shear. Whereas during ADD we
make incremental changes in the orientational degrees of
freedom determining the active forces, in AQS the ana-
logue is the incremental shear deformation of the system.
In both cases an energy minimization follows, which can
cause destabilization of local potential energy minima
and hence irreversible events. But there is an important
distinction between ADD and AQS: in ADD the slow per-
turbation of the system – what we have called the tilting
of the energy landscape – is a random process, coming
from the diffusive dynamics of the propulsion force ori-
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FIG. 8. Distribution of plastic event sizes for two different
active force amplitudes f = 0.8, 0.9, showing a clear power
law decay in both cases.

entations. In AQS, on the other hand, the steady shear
perturbation has no random component and essentially
keeps “pulling” the system in the same direction. We
have recently shown that this can lead to very different
physical behaviour [22]: at moderate f ADD can facil-
itate aging while AQS “interrupts” [39–41] the aging
process and instead leads to a stationary state. Even
when ADD reaches a stationary state (at higher active
force amplitudes f), the distribution of (positive) poten-
tial energy drops δεp follows a different power law than
observed for AQS [22].

We next turn to an analysis of the spatial structure
of plastic events in ADD. We will find that again there
are similarities here to AQS: the events are typically of
Eshelby type, consisting of a core of large plastic displace-
ments with nearly elastic deformations outside the core.
An example by way of orientation is shown in Fig. 6.

VII. STATISTICS OF ESHELBY-LIKE EVENTS

As before we use ADD to study the steady state dy-
namics at moderate active force amplitudes f . Events
are identified as time steps with positive potential energy
drops as explained in the previous section. We determine
for each event the core with the largest displacements (see
Fig. 6) and the orientation of the event, i.e. the direction
where in the far field the deformation is most strongly
extensional. In steady shear as explored by AQS the ex-
tensional axis of plastic events tends to be oriented at an
angle of π/4 to the flow direction, as set by the shear ge-
ometry. In ADD, on the other hand, the random changes
of active force directions that cause plastic events have
no preferred spatial direction and accordingly we find
that the orientations of the Eshelby-like events that oc-
cur are distributed uniformly between 0 and 2π (data not
shown).

Looking more closely into the Eshelby-like structure,
we find a decrease of radial displacements d(r) with dis-
tance r from the core as |d| ∼ r−1 (see Fig. 7). This

10-3
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10-2 10-1 100

ADD

FIG. 9. Distribution of inter event time scale at small activity
f = 0.8 limit from usual simulation (red points) at τp =
104 and same quantity from activity driven dynamics (black
dashed line) shows that ADD can capture the inter event
spacing correctly.

matches with the analytical prediction from elasticity
theory, which predicts a scaling with r−(1+d/2) [42] for
the stress profile; as stress is proportional to displace-
ment gradients the displacement must then scale with
an exponent that is larger by one, i.e. as r1−2 = r−1 in
d = 2 dimensions. Note that the results in Fig. 7 relate
to a single plastic event; to reduce statistical error we
have averaged azimuthally, i.e. over all particles within
each radial bin [r, r + dr].

Conversely we have also explored the azimuthal varia-
tion of the radial displacement component, now averaging
over particles at all distances r. Again (see Fig. 7) we
find a good match with the prediction for Eshelby-like
events, with the azimuthal variation being of the form
d(θ) ∼ cos(2θ) [42].

For further insight into the dynamics of plastic events
we have analysed the temporal spacing between events
using ADD; as the events (defined as before by δεp > 0)
are instantaneous in the ADD scheme we can directly
measure the time τ ′ between any two successive events.
The distribution P (τ ′) that results (see Fig. 8) has the
form of a power law with an exponential cut-off [21]. For
comparison we have determined the analogous distribu-
tion from a standard simulation [21] at τp = 104 and
then converted the inter-event times τ to scaled time
τ ′ = τ/τp. Fig. 9 shows the comparison between the
two approaches; we again find very good overlap, con-
firming once more the correctness of the ADD method.

Finally we consider the statistics of event sizes (S). We
choose two different values of the active force amplitude,
f = 0.8, 0.9, which are close to the boundary between in-
termittent liquid and dynamical arrest in our system [21].
We define event size by counting the number of particles
that participate in a plastic rearrangement [43]. A par-
ticipating particle is defined in this context as one that
moves a distance δr > 0.1 in a single ADD step. The
resulting distribution P (S) shows a power law decay (see
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Fig. 8) with an exponent close to the mean field value − 3
2

[42], at least within the accuracy here and without study-
ing in more detail potential finite size effects. Intrigu-
ingly, the observed behaviour exhibits similarities with
the event size distribution observed for oscillatory shear
simulation across the yielding transition [43], a connec-
tion that poses an interesting question for future work.

VIII. DISCUSSION

Active glassy systems in the large persistence time
limit τp → ∞ (or extreme active matter systems) ex-
hibit many fascinating dynamical behaviours [21, 22]. In
this paper we have demonstrated an efficient algorithm to
explore this particular limit, which we refer to as activity
driven dynamics (ADD). We have discussed in detail the
idea behind the simulation scheme and also the details
of its implementation. We have also explored briefly the
convergence with respect to finite energy minimization
accuracy and finite scaled timestep, and have established
that ADD can reliably reproduce the dynamics seen in
standard simulations for large τp, e.g. for mean-squared
displacements, two-point correlation functions and the
distribution of time intervals between plastic events. In

the last two sections we then demonstrated that the plas-
tic events that occur in ADD are of Eshelby type, show-
ing radial displacements falling off as ∼ r−1 with dis-
tance from the plastic core and varying in dipolar fashion
(∼ cos(2θ)) in the azimuthal direction. The orientations
of the events are distributed isotropically. This is consis-
tent with the absence of any orientational preference in
the driving by active force variations and is a key physi-
cal difference to driving by quasistatic steady shear. The
distribution of event sizes, finally, exhibits a power law
scaling close to the transition between intermittent liquid
and dynamical arrest, with a quantitative theory for the
observed exponent an outstanding question for further re-
search. More broadly, the ADD technique opens the way
to systematic exploration of many other properties of ex-
treme active matter in the dense limit, in a manner that
avoids computational bottlenecks arising for τp → ∞ in
standard simulations.
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