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Strange metals possess highly unconventional electrical properties, such as a linear-in-temperature (T) 

resistivity,1-6 an inverse Hall angle7-9 that varies as T2 and a linear-in-field (H) magnetoresistance.10-13 Identifying 

the origin of these collective anomalies has proved profoundly challenging, even in materials such as the hole-

doped cuprates that possess a simple band structure. The prevailing dogma is that strange metallicity in the 

cuprates is tied to a quantum critical point at a doping p* inside the superconducting dome.14,15 Here, we study 

the high-field in-plane magnetoresistance of two superconducting cuprate families at doping levels beyond p*. 

At all dopings, the magnetoresistance exhibits quadrature scaling and becomes linear at high H/T ratios, 

indicating that the strange metal regime extends well beyond p*. Moreover, its magnitude is found to be much 

larger than predicted by conventional theory and is insensitive to both impurity scattering and magnetic field 

orientation. These observations, coupled with analysis of the zero-field and Hall resistivities, suggest that 

despite having a single band, the cuprate strange metal region hosts two charge sectors, one containing 

coherent quasiparticles, the other scale-invariant `Planckian' dissipators. 

 

Our understanding of metallic behaviour is rooted in the concept of coherent quasiparticles, low-lying excitations 

that propagate through a periodic lattice as Bloch waves. Their interactions with all other quasiparticles are 

encapsulated in a description that subsumes all many-body interactions into a small number of renormalisation 

parameters, including a renormalised effective mass m*. This treatment, enshrined in Fermi-liquid (FL) theory, also 

laid the foundations for the BCS theory of superconductivity. The condition for quasiparticle coherence is met once 

its decay rate Γ becomes smaller than its excitation energy ε which, in a FL, is guaranteed by the relation Γ ~  ε2. In 

correlated metals, electron interactions can become so strong that the quasiparticle description may no longer be 

valid, even though the resistivity ρ(T) retains metallic character. This class of materials includes so-called bad 



metals, where the quasiparticle concept breaks down at high T,16 and strange metals, where it breaks down even 

at low T.3 In the latter, quasiparticle decoherence is implicit in the linear dependence of Γ on T and ε, as well as in 

its associated ‘Planckian’ timescale τħ (= ħ/Γ = ħ/akBT) where a is of order unity3,5,17) that is conjectured to be the 

shortest time in which energy can be dissipated.18-20 

 

The high-Tc cuprates are exceptional in that they exhibit both bad and strange metallic behaviour; the in-plane 

resistivity ρab(T) near optimal doping grows linearly in T right up to its melting point with a slope defined by the 

Planckian time. Such a condition is believed to occur in the strongly interacting critical state anchored at a 

quantum critical point (QCP) where a phase transition is tuned to zero temperature. Within the quantum critical 

‘fan’ above the QCP, ρ(T) typically displays the same T-linear behaviour seen in cuprates.2,4,6 While some evidence 

exists for a QCP in certain cuprate materials near a hole doping p* = 0.1915 – where the normal state pseudogap 

vanishes – recent analysis of the anti-nodal states across p* in photoemission,21 as well as analysis of transport and 

thermodynamic data,22,23 has cast doubt on the ubiquity of a QCP at p*. In particular, there is as yet no evidence 

for a phase transition below p* that is suppressed to T = 0 as p is increased.23 

 

In this report, we explore further the issue of criticality in cuprates via a study of the in-plane magnetoresistance 

(MR) of two families of heavily overoped (OD), single layer cuprates – (Pb/La)-doped Bi2Sr2CuO6+δ  (Bi2201) and 

Tl2Ba2CuO6+δ (Tl2201) – across an extended region of the phase diagram as indicated in Figure 1a (see Methods and 

Extended Data Fig. 1 for more details on the samples themselves). It is widely assumed that beyond p*, 

conventional FL physics (e.g. ρab(T) ~ T2) is re-established.14 Yet across this entire regime, the low-T resistivity 

retains a finite T-linear component.3,5,24 Although the ‘strange’ component ρab(T) ~ AT (Figure 1b) gradually 

diminishes as a function of p,3,24 its persistence is difficult to explain within the usual QCP scenarios.3 Moreover, as 

shown in Figure 1c, recent high-field Hall effect studies have revealed an anomalous drop in the Hall number25 

from 1 + p to p26 over a similar doping range, while the observed decrease in superfluid density with overdoping is 

claimed to be at odds with BCS theory.27 Hence, descriptions of superconducting OD cuprates as conventional 

metals seem to fail in capturing the full experimental picture. Here, we reveal that the in-plane MR is also highly 

unconventional. 

 

Magnetoresistance scaling 

In a FL (Drude) metal, the magneto-transport is determined uniquely by the magnetic field strength H, which 

enters via the cyclotron frequency ωc = eμ0H/m* and the transport relaxation time τtr. Both quantities then 

combine into a dimensionless parameter x = ωcτtr. The low-field Hall angle tanϑH ∝ x while typically, the 

longitudinal MR Δρ(H)/ρ(0) = [ρ(H) - ρ(H = 0)]/ρ(H = 0) ∝ x2 ∝ (H/ρ(0))2. The latter relationship (Δρ(H)/ρ(0) ∝ 

(H/ρ(0))2) is known as Kohler’s scaling and is found in many standard metals. While various scenarios can lead to a 

violation of Kohler’s scaling, such as T-dependent anisotropic scattering or multi-carrier systems where the 



mobility of each carrier-type has a distinct T-dependence,28 the violation reported recently in the quantum critical 

metal BaFe2(As1-xPx)2 (P-Ba122)10 suggests an entirely new form of MR scaling. At the antiferromagnetic QCP in P-

Ba122, Δρ(H,T) = ρ(H,T) - ρ(0,0) = �(𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇)2 + (𝛾𝛾𝜇𝜇𝐵𝐵𝜇𝜇0𝐻𝐻)2 where γ and α are constants independent of T and H 

and γ/α ~ 1. By analogy with the Drude metal, we can re-express this MR response in terms of a new dimensionless 

parameter xħ = βμ0H/T, where β = γμB/αkB and thus Δρ(T, x) = αkBT�1 + 𝑥𝑥ℏ2. This implies that the timescale 

associated with the field (1/ωħ) plays a similar role to the thermal time τħ (=  ℏ/kBT) in this state (though we stress 

here that ωħ is not necessarily associated with cyclotron motion). Starting from generalities of thermal quantum 

field theory, it is unclear why this should be the case,29 and even within a more conventional effective medium 

approach, such ‘Planckian quadrature’ behaviour requires significant fine tuning of parameters.30,31 The fact that 

similar behaviour has now been reported in both the electron-doped cuprate La2-xCexCuO4 (LCCO)11 and in FeSe1-

xSx
13 at or near their putative QCPs suggests that it is a generic feature of quantum critical metals. 

 

In Tl2201 and Bi2201, at all doping levels marked in Figure 1a, the MR is found to exhibit a similar crossover from 

H2 to H-linear dependence with increasing field strength – as exemplified in Fig. 1d for a highly OD Bi2201 sample 

(Tc < 1 K) at T = 4.2 K and in Fig. 2A for a OD Tl2201 sample (Tc < 26.5 K) over a wide temperature range. In contrast 

to P-Ba122, however, ρab(H,T) does not collapse onto a single line when plotted as Δρab(H,T)/T vs. H/T. In OD 

cuprates, this is to be expected since, in the absence of a magnetic field, ρab(T) has a super-linear (not T-linear) 

dependence. Hence, the quadrature expression alone is not sufficient to describe ρab(H,T) completely. However 

and remarkably, the derivatives dρab(H,T)/dH for all our Tl2201 and Bi2201 samples are found to collapse onto a 

universal curve when plotted against H/T (see Fig. 2c-j). Moreover, the form of the derivative is found to be 

identical to that for a pure quadrature MR, indicating that all terms in ρab(H,T) that are dependent upon both field 

and temperature can be well described by the quadrature expression. A more complete (and still general) form of 

ρab(H,T) is therefore: 

 

𝜌𝜌𝑎𝑎𝑎𝑎(𝐻𝐻,𝑇𝑇) = ℱ(𝑇𝑇) + �(𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇)2 + (𝛾𝛾𝜇𝜇𝐵𝐵𝜇𝜇0𝐻𝐻)2   (1) 

 

where ℱ(𝑇𝑇) is an additional term in the zero-field resistivity that accounts for the super-linear form of ρab(T) but 

does not of itself display significant MR. Taking the derivative of the raw ρab(H,T) data thus isolates the quadrature 

MR and reveals the hidden H/T scaling (see Extended Data Fig. 2 for more details of how the H/T scaling is 

revealed). 

 

Panels c-j of Fig. 2 highlight the data collapse observed in all samples and at all temperatures studied, indicating 

that cuprates exhibit anomalous scale-invariant MR across an extended region of the strange metal regime. In 

another hole-doped cuprate La2-xSrxCuO4 (LSCO) near p* = 0.19, the MR is also found to become H-linear at high 

fields12 (green diamond in Figure 1a). In that report, it was concluded that there were in fact two quantum critical 



fans in cuprates, one in the T – p plane and one in the H – p plane, both of which terminate at a QCP at p*. Our 

observation of a similar MR response at low H/T at p » p* (for a recent discussion of the location of p* in Tl2201 

and Bi2201, see ref. 25) reveals that, just as the T-linear ρab(T) persists over a wide doping range beyond p*,3 so too 

does the anomalous linear MR. A similar extended region of T-linear resistivity and H-linear MR is also observed in 

electron-doped LCCO, though there, the MR does not follow precisely the quadrature form,11 the reasons for 

which are unclear. In LSCO, departures from quadrature behaviour are also observed,31 possibly due to the 

presence of the pseudogap, though clearly more measurements across p* would be required to establish the role 

of the pseudogap in causing a breakdown in H/T scaling.  

 

Finally, as shown in panels k and l of Fig. 2, while there is a marked difference in the relative size of β (= γμB/αkB) in 

Tl2201 and Bi2201, neither family exhibits any significant p-dependence in β. Since 𝛾𝛾 is found to be comparable in 

both families, the larger values of β in Tl2201 are likely to be related to the smaller T-linear coefficient of the zero-

field resistivity in Tl2201, shown in Fig. 1b (we note though that the coefficients of the T2 term in both families are 

comparable29). The ratio γ/α determines the field scale at which there is a crossover from quadratic to linear MR. A 

lack of doping dependence in β implies that there is no quantum critical ‘fan’. Specifically, there is no indication 

that the H-linear behaviour only extends to lower magnetic fields (at a given temperature) upon approach to p*, as 

implied for LSCO.12 Moreover, the fact that γ ~ α (panels k and l) indicates that the quadrature MR has the same 

origin as the T-linear resistivity, implying that models based on real-space inhomogeneity31,32 are not applicable 

here. This is reaffirmed by the observed MR responses of Tl2201 and Bi2201 being so similar despite them having 

very different levels of electronic inhomogeneity.33,34 

 

Signatures of incoherent transport 

Several features of the uncovered MR response are surprising and reveal new aspects of the strange metal phase 

in hole-doped cuprates. In Fig. 3a-d, we show evidence that the magnitude of the quadrature MR in OD cuprates is 

far greater than one would expect from standard Boltzmann theory and is insensitive to 1/τ0, the impurity 

scattering rate. The dashed lines in panels a and b represent estimates for ρab(H) at T = 0 K for both Bi2201 and 

Tl2201 (using the known Fermi surface parameters – see Methods for details). In both cases, the observed MR is 

two orders of magnitude larger. In a FL, since Δρ(H)/ρ(0) ∝ (ωcτtr)2, where 1/τtr = 1/τ0 + 1/τin (with 1/τin the inelastic 

scattering rate), the size of the MR is extremely sensitive to the residual resistivity ρ0. Panels c and d of Figure 3, 

however, show that the magnitude of the linear slope of the transverse MR at high H and low T is very similar in 

the two families, despite the fact that ρ0(Bi2201) ~ 10 x ρ0(Tl2201) (and hence 1/τ0(Bi2201) ~  10 x 1/τ0(Tl2201) 

which according to Kohler’s rule would lead to a large suppression of the MR in Bi2201). This indicates that the 

fundamental timescale associated with the Planckian quadrature MR is largely insensitive to elastic scattering. 

 



The next striking feature in the data is the lack of anisotropy in the MR response. As shown in Figure 3e/f, the 

longitudinal MR (with H || I || ab) for both families exhibits the same quadrature form as the transverse MR (with H 

|| c) (shown in panels c and d), with a similar magnitude. In contrast, the quadrature MR in Ba-122 was found to be 

anisotropic and tied to the crystallographic lattice rather than to the current direction.35 These findings may point 

more to a MR response driven by Zeeman (i.e. spin) physics, though clearly, further investigations will be needed 

to confirm this (see also Methods for an expanded discussion of this point). Whatever its origin, it follows directly 

from experiment that this Planckian quadrature MR is highly anomalous; the scaling itself is not at all understood, 

it appears to be independent of ρ0 with an isotropic MR that has no intrinsic Hall response of its own (see below). 

These signatures of a possible non-orbital origin, coupled with its intimate association with the T-linear resistivity, 

suggests that the quadrature MR is itself a consequence of incoherent, non-quasiparticle transport persisting down 

to low T. 

 

Dual character of the strange metal 

This brings us to arguably the most profound finding. The insensitivity of the in-plane MR to field orientation 

contrasts markedly with the strongly angle-dependent interlayer magnetoresistance (ADMR) found in OD Tl2201 (p 

> 0.27, Tc < 30 K) and modelled previously using Boltzmann transport theory to map out its entire Fermi surface.36 

Importantly, the Fermi surface derived from ADMR was found to agree with that determined both by ARPES37 and 

by quantum oscillations33 for these highly doped crystals. Subsequent T-dependent ADMR studies38 revealed a 

momentum-dependent scattering rate 1/τ(k) in heavily OD Tl2201 that could self-consistently explain both the T- 

and H-dependence of the in-plane Hall resistivity.25,38 Thus, the field and temperature dependence of the Hall 

response appears to be well described by conventional Boltzmann theory. As shown in Extended Data Figs. 4 and 

5, it was not possible to replicate the in-plane MR response using the same parameterisation, nor any other 

parameterisation (for τ(k, T) and the Fermi velocity vF(k)) based on the same Fermi surface geometry. In particular, 

the fact that the measured MR is both insensitive to the magnitude of impurity scattering rate (panels c-f of Fig. 3) 

and at least an order of magnitude larger than the anticipated Boltzmann response (at low T - dashed line in Fig. 

3a,b) dictates that no variant of the Boltzmann formalism can reproduce the experimental data. This dichotomy 

hints strongly at the presence of two distinct contributions to the in-plane transport in OD cuprates, one described 

by conventional transport theory (albeit with anisotropic scattering), the other highly non-FL but characteristic of 

Planckian dissipation physics. We reiterate here that these highly OD cuprates appear to have no direct relation to 

a QCP. A similar coexistence of two charge sectors was also deduced recently from high-field magneto-transport 

studies on both FeSe1-xSx (where they were assumed to add in parallel)13 and P-Ba122 (where they were assumed 

to add in series).39 Both these systems possess multiple pockets of charge carriers which might provide a natural 

framework for the appearance of two sectors. In OD cuprates, on the other hand, there is only one Fermi sheet. 

Moreover, the observation of quantum oscillations (QO) in OD Tl2201 consistent with orbits encircling the whole 

sheet would seem to rule out incoherence on any significant portion of the Fermi surface, at least for p > 0.27. It is 



noted, however, that under certain circumstances, QO are observable even in insulators40 which by their nature do 

not possess a conventional Fermi surface.  Clearly, further theoretical work will be required to establish if all the 

now known characteristics of the strange metallic state can be explained in a single framework; one that also 

includes the emergence of the high temperature superconducting state.  
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Figure Captions 

Figure 1. The strange metal regime of overdoped cuprates. a: Temperature T vs. doping p phase diagram showing 
the superconducting (Tc vs. p) dome (dotted lines) for the single-layer hole-doped cuprates Tl2Ba2CuO6+δ (Tl2201), 
La/Pb-doped Bi2Sr2CuO6+δ (Bi2201) and La2-xSrxCuO4 (LSCO).12 The thick orange dashed line marks  (approximately) 
the temperature onset T* for physical manifestations of the opening of the normal state pseudogap in the single-
particle excitation spectrum and the temperature at which the resistivity deviates from its high-T T-linear 
dependence. The faint dashed line on the right side of the graph indicates the temperature below which the 
resistivity in LSCO is purely quadratic. The red squares, blue circles and green diamonds indicate doping levels at 
which the in-plane magnetoresistance (MR) is found to vary linearly with magnetic field (at high field strengths) in 
Tl2201, Bi2201 (this work) and LSCO12 respectively. b: Coefficient A of the low-T T-linear resistivity in Tl2201 (red 
squares),24 Bi2201 (blue circles)25 and LSCO (green diamonds),3 normalized by the interlayer distance d. Note the 
different ordinate axes to accommodate the (smaller) A values for Tl2201. c: Evolution of the low-T Hall number 
nH(0) across the strange metal regime in Tl2201 (red squares) and Bi2201 (blue circles), as determined from Hall 
resistivity measurements in high magnetic fields.25 A crossover from nH(0) ~ p to nH(0) ~ 1 + p is found to occur 
across a wide doping range beyond p*, the doping level at which the pseudogap vanishes. The grey dashed line is a 
guide to the eye. At low doping in LSCO, nH(0) follows closely the number of doped holes,26 as indicated by the 
green diamonds. The evolution of nH(0) in LSCO beyond p = 0.08 is difficult to obtain from Hall effect 
measurements due to the onset of charge order and a change in the Fermi surface geometry around p = 0.20, 
when the Fermi level crosses the van Hove singularity. d: Transverse in-plane MR of a heavily overdoped Bi2201 
sample (Tc < 1 K) at T = 4.2 K, showing the crossover from quadratic MR at low-field to H-linear MR at higher field 
as indicated by dashed lines. The error bars in panels a, b and c are reproduced from published data and reflect 
uncertainty in doping level, where known, as well as geometrical uncertainty in the sample dimensions and the 
positioning of the voltage contacts.  Since transport is a one-dimensional probe of superconductivity, we ascribe an 
error margin of p = 0.005 to the doping levels of Tl2201 and Bi2201 defined by their Tc values, except for the 0K 
Bi2201 sample, whose error margin is set at p = 0.01 in panel a. 
 
 
Figure 2. Quadrature scaling of the in-plane magnetoresistance (MR) in heavily overdoped cuprates. a: In-plane 
transverse (H || c) MR ρab(H) of OD Tl2201 (Tc = 26.5 K) up to 35 T for a temperature range between 1.4 K and 60 K.  
b: The derivatives with respect to the magnetic field for the MR curves shown in panel a. (In panel i, the same data 
are shown plotted against H/T). c-j: Scaled derivatives of the in-plane MR at different fixed temperatures between 
4.2 K and 60 K for various Tl2201 and Bi2201 samples with Tc values as indicated. To emphasize the similarity of the 
MR response of all the measured samples, the y-axis has been multiplied by 1/μBγ and the x-axis by β = γμB/αkB) 
(see Eq. (1) for definitions of α and γ). In this way, all the data collapse onto the same form given by the derivative 
of the function 𝑦𝑦 = √1 + 𝑥𝑥2 as indicated by dashed lines. Note that the sections of individual curves that reside 
within the mixed state are here plotted faintly, since only in the normal state can the quadrature MR be probed. 
k,l: Plots of the scaling parameter β for Bi2201 and Tl2201 respectively plotted versus doping (top axis) and Tc 
(bottom axis). For both materials, β is found to be independent of doping (and Tc) as indicated by the horizontal 
dashed lines. The error bars in panels k,l reflect the sensitivity of β to details of the fitting procedure, in particular 
the field and temperature range over which the fits are performed. 
 
 
Figure 3. Evidence for incoherent transport in heavily overdoped cuprates. a-b: In-plane transverse (H || c) MR 
ρab(H) of OD Tl2201 (Tc = 26.5 K) and OD Bi2201 (Tc = 7 K) up to 35 T. Note the much larger residual resistivity ρ0 in 
the Bi2201 crystal. For ease of comparison, the y-axes of both panels span the same range in absolute resistivity. 
The dashed lines in both panels are estimates of the orbital transverse MR at T = 0 (see Supplementary Material 
for details). c-f: Derivatives dρab/dH for the same single crystals with c/d: H || c (transverse MR) and e/f: H || ab 
(longitudinal MR). The form and magnitude of the MR is comparable for all materials and field orientations.  
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Methods 

Sample preparation and measurement  
Single crystals of Tl2201 were grown via a self-flux method similar to that detailed in ref. 41 and subsequently 
annealed in flowing oxygen at elevated temperatures to set their oxygen content (and hole doping). The usual 
parabolic relationship42 between doping p and Tc fails to account for the higher range of dopings over which 
superconductivity persists in Tl2201 as determined through quantum oscillation studies.33 Instead, a simple linear 
parameterisation p = (228.4–Tc)/737.2 was used which is found to more closely match Tc(p) from the aforementioned 
quantum oscillation studies at high dopings. 

Electrical contacts were made by sputtering gold pads with a copper sub-layer onto both the top and sides 
of a sample before attaching gold wires with Dupont 4929 silver paint. The contacts were then annealed in flowing 
oxygen at 450 °C for 15 minutes prior to annealing to set Tc. Typical contact resistances were around 1 Ω. Care was 
taken to ensure that the sputtered gold and silver paint covered the sides of the sample in order to minimise 
contributions to the measured MR from currents flowing along the c-axis. Typical in-plane sample dimensions were 
800 μm x 250 μm with a thickness of 10-15 μm. 

Single crystals of La/Pb doped Bi2201 were grown using the floating zone technique at two different sites. 
The doping was estimated from the measured Tc using the parabolic relation42:  1 – (Tc/ Tc max) = 82.6(p - 0.16)2 with 
Tc

max = 35 K. Electrical contacts were made to bar-shaped samples cut from the as-grown crystals by attaching gold 
wires with Dupont 6838 silver paint. The contacts were then annealed in flowing O2 at 450 °C for 10 minutes. Unlike 
Tl2201, these anneal times are sufficiently short to have a negligible effect on Tc. Typical contact resistances were 
around 1 Ω. Typical sample dimensions, meanwhile were 1000 μm x 250 μm with thicknesses varying between 6 and 
25 μm. 

A standard four-point ac lock-in detection method was used to measure the in-plane resistivity of all 
samples. Extended Data Tables 1 and 2 list the contacted samples used in this study and Extended Data Figure 1 
shows a representative set of ρab(T) curves for samples with different Tc values. Note that all of the samples exhibit 
the super-linear T-dependence characteristic of OD cuprates with doping levels beyond p*. This super-linear 
behaviour in the zero-field resistivity dictates that pure H/T scaling of the MR can never be realised in these samples 
(see following section). Measurements in magnetic fields up to 35 T were performed at the HFML in Nijmegen. The 
field was oriented either parallel or perpendicular to the CuO2 planes using a rotating sample stage. 

The lack of agreement with standard Boltzmann theory in the MR response highlighted below, coupled with 
the lack of any angle-dependence in the MR when the field is applied either perpendicular or parallel to the current, 
points towards a non-orbital origin for the in-plane MR of highly OD cuprates. High-Tc cuprates, however, are layered 
compounds with a highly anisotropic electronic state characterised by electrical resistivity ratios ρc/ρab as high as 106 
for Bi2201.43 Moreover, in OD Tl2201, the interlayer MR Δρc(H) has a quasi-linear dependence on H at high fields (H 
|| c)44 due to the specific c-axis warping of the FS in (body-centred-tetragonal) Tl2201 that leads to an effective 
cancellation of the c-axis velocity around any in-plane cyclotron orbit.45 Hence, it is important to eliminate c-axis 
mixing of the resistivity tensor as a source of the H-linear MR and quadrature scaling reported here.  

As mentioned above, gold pads were sputtered onto both the top and sides of all samples in order to 
minimise such mixing. Importantly, the absolute magnitudes and T-dependencies of the resistivities shown in 
Extended Data Figure 1 are comparable with those reported in the literature.41,46,47 Moreover, the variation in 
absolute resistivities across our series of Bi2201 samples is no greater than the geometrical uncertainty (± 20%). (The 
variation in Tl2201 is larger due to the fact that these samples were mounted for measurements inside a pressure 
cell and due to their small size, larger contact pads relative to the sample dimensions were required.) Due to the 
very large electrical resistivity anisotropy in both Bi2201 and Tl2201, any mixing of the current paths would lead to 
a marked increase in the absolute value of the as-measured resistivity relative to the intrinsic in-plane response as 
well as a different T-dependence. The lack of either aspect in our measurements is a strong indication that there is 
no c-axis mixing. Similarly, the fact that all samples exhibit the same MR, both in terms of its magnitude and field 
dependence, is incompatible with a scenario in which c-axis mixing was present, as its influence would be 
randomised between samples. Finally, we note that the anisotropic resistivity ratios in Bi2201 are approximately 3 
orders of magnitude larger than in Tl2201, yet the quadrature MR is comparable in all samples studied. 

 



Quadrature scaling in overdoped cuprates 
In BaFe2(As1-xPx)2 (P-Ba122) at the critical doping xc = 0.31,10 the following ansatz was found to accurately describe 
ρ(H,T):  

𝜌𝜌(𝐻𝐻,𝑇𝑇) − 𝜌𝜌(0,0) = �(𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇)2 + (𝛾𝛾𝜇𝜇𝐵𝐵𝜇𝜇0𝐻𝐻)2   (1) 

That is, when the total MR is subtracted by a temperature- and field-independent residual resistivity, the remaining 
MR is of a purely quadrature form. As a result, plots of ρ(H,T)- ρ(0,0)/T versus H/T collapse onto a universal curve. 
While the in-plane MR of OD Tl2201 and Bi2201 exhibits a very similar crossover from H2 (at low H) to H-linear (at 
high H), the form shown in Eq. (1) is not sufficient to describe the MR in OD cuprates. An example of this is shown in 
Extended Data Fig. 2 for an OD Tl2201 with Tc = 26.5 K. The raw MR curves are reproduced in panel a. Panels b and 
c, meanwhile, show the same data plotted as Δρ(H,T)/T vs. H/T as done for P-Ba122.10 Although a reasonable collapse 
of the data is found at low T (Extended Data Fig. 2b), the data deviate significantly from the scaling form at higher 
temperatures (Extended Data Fig. 2c). This deviation comes about due to the fact that the zero-field resistivity has a 
super-linear, rather than strictly linear T-dependence. Hence, while any single field-sweep (at a fixed temperature) 
can be fitted using the same form of the MR as above, a global fit to ρ(H,T) is not possible. It is therefore necessary 
to include additional T-dependent terms (in the zero-field resistivity) to account for this discrepancy. Indeed, as 
shown in panels d and e of Extended Data Fig. 2, if ρ(0,T) is subtracted from ρ(H,T), rather than ρ(0,0), the full data 
set duly collapse onto a single line over the entire temperature range studied. 

A similar collapse can also be achieved by plotting the derivative dρ/dH vs. H/T, as shown in Extended Data 
Fig. 2g (the non-scaled data are plotted in panel f). This procedure of plotting the derivative versus H/T was repeated 
for all samples and the results are summarised in Figure 2 of the main text. 

 
Success of Boltzmann formalism in overdoped cuprates 
In highly overdoped, superconducting Tl2201, many of its resistive properties - the form of the zero-field resistivity 
ρab(T), the interlayer angle-dependent magnetoresistance (ADMR) Δρc(ϕ,θ,T,H), the T-dependent Hall coefficient 
RH(T) and the field-dependent Hall resistivity ρxy(T,H) - have been effectively understood and modelled within a 
Boltzmann transport framework and the Shockley-Chambers tube-integral formalism (SCTIF) in particular. These 
collective successes are summarised in Extended Data Figure 3. Extended Data Fig. 3a shows a representative set of 
c-axis ADMR sweeps at various azimuthal angles (as a function of polar angle) at T = 50 K for an OD Tl2201 sample 
with Tc = 15 K.48 The ADMR traces were fitted by generalising to the case where the product vFτ varies around the 
FS. Detailed aspects of this FS parameterisation were later confirmed in a comprehensive quantum oscillation study. 

49 A two-dimensional projection of the resultant FS is plotted in Extended Data Fig. 3b. In addition to a small four-
fold anisotropy in kF (of order 5%), the primary ingredient necessary to model the ADMR was a decomposition of τ-1 
into two additive components: an isotropic τ-1

iso that grows as T2 (solid black line in Extended Data Fig. 3c) and an 
anisotropic τ-1

ani (solid red line in Extended Data Fig. 3c) that is negligible at zero temperature but grows 
predominantly linearly with T (with a small T2 component). More specifically, the in-plane geometry was defined by 
the FS wave vector kF(ϕ) = k00 + k40 cos(4ϕ), a scattering lifetime (also with 4-fold symmetry): τ(ϕ)= τ0/(1 + λ cos(4ϕ)) 
and a cyclotron frequency that is assumed to vary linearly with field (ωc = ωc

0H). The decomposition was then 
parameterised as follows: (1 -  λ)/ωc

0τ(T) = Aiso + BisoT2 and 2λ/ωc
0τ(T) = Aani + BaniT + CaniT2.  The parameters extracted 

from this analysis48 are listed in Extended Data Table 3. 
Knowledge of kF(ϕ) (which itself can be used to define vF(ϕ)), λ, ωc

0
 and τ0 is all that is required, in principle, 

to calculate the corresponding in-plane transport properties. The solid line in Extended Data Fig. 3d represents the 
resultant low-T zero-field resistivity ρab(T). The T-linear and T2 components deduced from the ADMR combine to 
generate a ρab(T) curve with a super-linear T-dependence that matches well the experimental data  (black dots in 
Extended Data Fig. 3d).  

Despite OD Tl2201 having a single, cylindrical FS, RH(T,H) has a non-trivial temperature and field 
dependence. For a sample with Tc ~ 25 K, for example, the low-field RH(T,H → 0) grows by approximately 50% from 
its low-T value up to ~ 120 K before subsequently falling to a value  at T = 300 K that is comparable to RH(0,H → ∞). 
At the lowest temperatures, RH(0,H) is field-independent (beyond the vortex state),25 suggesting that the system is 
effectively isotropic (or in the high-field limit which is not the case since ωcτ < 1. In this regime, RH(0,H → ∞) has a 
value consistent with the carrier density deduced from quantum oscillation studies, as expected. At intermediate 



temperatures, RH(T,H) is suppressed in field, asymptotically approaching its low-T isotropic value.25 All of these 
complexities have been successfully reproduced using the same ADMR-derived parameterisation,25 as summarised 
in panels e-h in Extended Data Fig. 3. With increasing temperature, the linear growth of τani leads to an increase in 
the in-plane anisotropy of the mean-free-path ℓ(ϕ) . As a result, RH(T,H → 0) becomes enhanced. As H increases, this 
anisotropy is progressively ‘smeared out’ as the quasiparticles traverse more of the FS. Eventually, at the highest 
fields, RH(T,H → ∞) again approaches RH(0,H → ∞) (the isotropic case). For T > 125 K, the system approaches the 
isotropic-τ limit, returning RH(T,H → 0) to a value similar to that found at 0 K. The overall evolution of RH(T,H) thus 
mirrors the evolution of ℓ(ϕ,T,H) - as one expects for a single-band quasi-2D metal with unitary curvature50 - with a 
k-dependent anisotropy that is washed out at either end of the studied temperature range as well as in the high-
field limit. 

 
Failiure of Boltzmann formalism in overdoped cuprates 
This evolution of ℓ(ϕ,T,H) is also expected to determine the form of the in-plane MR Δρab(T). Intuitively, for the same 
FS geometry, Δρab(T) should be comparatively small at both ends of the measured temperature range. At high-T, 
Δρab(T) will be reduced due to the smallness of ωcτ. At low-T, the effective isotropy of ℓ(ϕ), coupled with the weak 
anisotropy in kF(ϕ), will lead to near cancellation of the magnetoconductance Δσxy/σxx by the (square of the) Hall 
angle σxy/σxx.51 At low but finite temperatures, Δρab(T,H) will grow in magnitude (provided that the anisotropy in ℓ(ϕ) 
grows at a faster rate than its orbitally-averaged length diminishes). At sufficiently high field strengths, however, 
Δρab(T,H) will always saturate, as the anisotropy in ℓ(ϕ) is ultimately averaged out. 

The SCTIF captures all of these essential features. Extended Data Figure 4a shows the simulated field-
dependence of the in-plane MR for OD Tl2201 with a FS volume corresponding to p = 0.28 using the same (ADMR-
derived) parameters listed in Extended Data Table 3. The in-plane response has been modelled using the following 
SCTIF-based expression: 

 

𝜎𝜎𝑖𝑖𝑖𝑖 =  𝑒𝑒3𝐵𝐵
2𝜋𝜋2ℏ2𝑐𝑐 ∫ 𝑑𝑑𝜙𝜙2𝜋𝜋

0 ∫ 𝑑𝑑𝜙𝜙′ 𝑣𝑣𝑖𝑖(𝜙𝜙)𝑣𝑣𝑗𝑗(𝜙𝜙−𝜙𝜙ʹ)
𝜔𝜔𝑐𝑐(𝜙𝜙)𝜔𝜔𝑐𝑐(𝜙𝜙−𝜙𝜙′)

∞
0 𝑒𝑒𝑒𝑒𝑒𝑒 �∫ 𝜙𝜙′′/𝜔𝜔𝑐𝑐(𝜙𝜙′′)𝜏𝜏(𝜙𝜙′′)𝑑𝑑𝜙𝜙′′𝜙𝜙′

𝜙𝜙 �  (2) 

 
where vx = kF(ϕ)ωc cos(ϕ - ζ) ℏ/(eB) and vy = kF(ϕ)ωc sin(ϕ - ζ) ℏ/(eB) and ζ is the angle between kF and vF. That is, 
anisotropy in vF follows from anisotropy in kF with the assumption that the mass renormalisation is isotropic. 

There are a number of notable discrepancies between the measured in-plane MR and that predicted by the 
SCTIF. Firstly, as illustrated in panel b of Extended Data Figure 4, the absolute magnitude of Δρ = ρ(μ0H = 35 T) - ρ(μ0H 
= 0) within the SCTIF formalism is much smaller than found in experiment (see Figure 2a of the main manuscript for 
comparison). This discrepancy is most striking at the lowest temperatures where the calculated MR effectively 
vanishes once the total scattering rate (now dominated by impurity scattering) becomes isotropic in k-space whereas 
the experimental MR remains large. Secondly, the calculated field-dependence at high field strengths is sub-linear, 
indicating a tendency towards saturation, and not strictly linear as in experiment. This is most evident in the 
derivative plots shown in Extended Data Fig. 4c. Finally, when plotted vs H/T as done in Extended Data Figure 4d, 
the quadrature scaling and the collapse of dρ/dH found in experiment are completely absent.52 

Whilst it is evident that the ADMR-derived parameterisation of kF(ϕ) and τ-1(ϕ,T) is unable to reproduce the 
quadrature MR reported in this work, it is interesting to explore whether a different parameterisation (i.e. ignoring 
the ADMR-derived parameterisation because c-axis transport is, for some reason, intrinsically different to in-plane 
transport - see, e.g. ref. 53) is capable of simultaneously reproducing the MR and Hall responses. The Fermi surface 
of OD Tl2201 is well established, having been corroborated by ADMR, ARPES, quantum oscillations and DFT 
calculations. We therefore choose to fix kF(ϕ) and primarily investigate whether different forms of vF(ϕ) and τ-1(ϕ,T) 
are able to model the in-plane magnetotransport more successfully. To this end, we have performed a number of 
alternative simulations, summarised in Extended Data Figure 5. In each simulation, the FS parameterisation (kF(ϕ), 
vF(ϕ)) is shown in column 1, the scattering rate (τ-1(ϕ,T)) in column 2, the derivative of the MR with and without H/T 
scaling in columns 3 and 4, respectively, and the Hall coefficient RH(H) in column 5.  

For comparison, the top row of Extended Data Fig. 5 (simulation 1) uses the ADMR-derived para-
meterisation of τ-1(ϕ,T) (column 2) with the minor simplification that there is no residual anisotropy at T = 0 K and 



that the growth in the anisotropic component is strictly T-linear. As before, the resulting MR (column 3) is strongly 
T-dependent and an order of magnitude smaller than that seen in experiment. Additionally, there is no extended 
region of high-field linearity. Instead, any region of H-linearity is simply an inflection point resulting from the 
anisotropy being progressively averaged out at sufficiently high magnetic fields. Quadrature scaling is not observed 
(column 4) though, in agreement with Section 3.2, RH(H,T) (column 5) closely matches experiment.  

As previously discussed, fitting of the ADMR was not sensitive to anisotropy in vF(ϕ) and τ-1(ϕ) individually, 
but to the product vFτ. Tight-binding modelling of ARPES measurements on Tl2201 with Tc = 30 K37 suggests that 
vF(ϕ) has an anisotropy of ~ 50%. Furthermore, the anisotropy in τ-1(ϕ,T = 10 K) was found to be inverted (maximal 
along (π, π), i.e, the nodal directions) when compared to that derived from ADMR. In simulation 2 (row 2 of Extended 
Data Figure 5), we take vF(ϕ) from the tight-binding model that was used to model the ARPES data and also 
incorporate an inverted anisotropy in τ-1(ϕ) at low T such that the mean-free-path (ℓ = vFτ) is roughly isotropic, 
consistent with the ADMR at low T. Also in accordance with ADMR, it is assumed that the anisotropy in τ-1(ϕ) 
becomes maximal along (π, 0) with increasing temperature. Thus, simulation 2 yields a quantitatively similar MR and 
RH to that found in simulation 1.  

We note that in ref. 37, a factor of ~ 4 anisotropy in the low-T scattering rate was determined (again with 
maxima where the ADMR predicts minima). If the anisotropy in vFτ(ϕ) is still required to be consistent with ADMR at 
high temperatures, the anisotropy in vF and τ will necessarily cancel at finite temperature. That is, effective isotropy 
is achieved not at low-T, but at some elevated temperature. Thus, the MR will be finite at low-T, zero at intermediate-
T, and finite at high-T. This parameterisation is therefore inconsistent with the experimentally observed MR. It also 
fails to capture the Hall coefficient as the field-dependence of RH is predicted to be positive at low T in this scenario, 
contrary to the experimental observation.25  

Although there is no extended region of H-linearity (and therefore no possibility of quadrature scaling) in 
either simulation 1 or simulation 2, one might ask what is required for the maximum slope in the H-linear MR to be 
T-independent in order to reproduce at least one key feature of the quadrature scaling and with a magnitude that 
is comparable to experiment. The minimum change in the parameterisation to achieve this is to impose an 
anisotropy ratio in τ-1(ϕ) that is both large (~ 7) and independent of temperature. This scenario is modelled in 
simulation 3 (row 3 of Extended Data Fig. 5). The resultant MR has a maximum slope that is indeed independent of 
temperature and is of the same order of magnitude as seen in experiment (albeit a factor of 2 lower). There is still 
no extended region of H-linearity, however, and importantly, the curves do not collapse when plotted against H/T. 
An important consequence of fixing the anisotropy ratio is that the low-field RH also becomes T-independent. Thus, 
it is not possible to reconcile a T-independent maximum slope in the MR with a highly T-dependent RH simply by 
changing the magnitude of the anisotropy in τ-1(ϕ).  

Recently, Grissonnanche et al. used the SCTIF to model ADMR measurements in La1.6-xNd0.4SrxCuO4 (Nd-
LSCO) with a Sr concentration x = 0.24 i.e. near the end of the pseudogap phase.54 There, the ADMR-derived 
parameterisation was able to reproduce the observed in-plane MR showing a H2 to H-linear crossover. In Nd-LSCO 
at this doping level, the FS undergoes a Lifshitz transition as the Fermi level crosses through the vHs near the zone 
boundary. Proximity to the saddle point near (π, 0) generates regions of positive and negative curvature on the FS 
as well as an in-plane anisotropy in vF(ϕ) that is approximately one order of magnitude larger than that of Tl2201.37,38 
In addition, the impurity scattering rate 1/τ0 is also found to be highly anisotropic, while the T-dependent (T-linear) 
component of the scattering rate is isotropic.54 In light of these findings, we have considered whether such a 
parameterisation of τ-1 can also be applied to Tl2201. It is important to note that the large vF (and τ-1) anisotropy 
used in the modelling of Nd-LSCO arises from proximity of the Fermi level to a vHs at the zone edge. Band structure 
calculations of Tl2201 (supported by ADMR and quantum oscillation studies) indicate that the zone edge lies far 
below the vHs. Because of the lack of evidence for such a large anisotropy in vF in Tl2201 (from ADMR, APRES or 
DFT), this has not been incorporated into our simulations. 

In simulation 4 (row 4 of Extended Data Fig. 5), we consider a form of τ-1(ϕ) that is highly peaked, similar to 
the one presented in ref. 54, with the proviso that the T-dependence of the mean scattering rate maintains the 
correct form of ρ(T). Intriguingly, this highly peaked form of the scattering rate shifts the H-linear inflection point to 
higher fields making Δρ(H) resemble the high-field linearity over the field-range measured in this work. However, 
regardless of the precise parameters used, the combination of a T-independent anisotropic term and a growing 
isotropic term will always result in an effective anisotropy ratio that decreases as T increases. This makes the 
maximum dρ/dH decrease with increasing T and as such, quadrature scaling can never be achieved. In addition, RH(T) 



also decreases with T (the inverse of what is seen in experiment). It therefore appears that this parameterisation, 
whilst possibly relevant to Nd-LSCO, cannot reproduce the in-plane transport properties of Tl2201. 

The final simulation (simulation 5) in Extended Data Figure 5 considers the case of OD Bi2201. While the FS 
of OD Bi2201 has not been probed as extensively by multiple experiments as that of Tl2201, it is clear that it has 
essentially the same geometry within the strange metal regime. The primary differences between Tl2201 and Bi2201 
are the substantial (factor of 3) anisotropy in vF(ϕ)55 (presumed to arise from the closer proximity of the vHs in the 
latter) and a factor of 10 increase in ρ0 (and thus 1/τ0). Simulation 5 (row 5 of Extended Data Fig. 5) thus uses the 
Tl2201 FS but includes a form of vF(ϕ) and τ(ϕ) appropriate for OD Bi2201.55 As in simulation 2, the π/4 shift between 
the anisotropy in vF(ϕ) and τ0

-1(ϕ) results in a partial cancellation of the total effective anisotropy of the system. Both 
the magnitude of the MR and the field-sensitivity of RH are reduced accordingly. As in the case of Tl2201, in order to 
rectify the situation, one would have to impose a very large T-independent anisotropy in τ-1(ϕ). In passing, we also 
note here that the H-linear MR (and associated H/T scaling) is seen to be a robust feature of not only Tl2201 and 
Bi2201, but several strange metals too, including the multi-band pnictides10 and chalcogenides,13 as well as a number 
of other cuprate families with very different FS shapes and anisotropies. This universality, coupled with the extreme 
fine tuning required to model such behaviour within the SCTIF, suggests strongly that its origin lies beyond 
conventional Boltzmann analysis.  

On more general grounds, combining the residual resistivity of OD Bi2201 ρ0 ~ 100 μΩcm and the in-plane 
Hall coefficient RH(0) ~ 1 x 10-9 m3/C,25 we obtain an estimate for ωcτ of order RH/ρ0 ~ 10-3/T. This in turn provides an 
estimate for the strength of the orbital magnetoconductance Δσab/σab of (ωcτ)2 ~ 1 x 10-6/T2. The magnitude of the 
quadratic MR found in our OD Bi2201 crystals at low fields is almost 3 orders of magnitude larger than this Drude 
estimate. While a large anisotropy can increase the size of the MR, the previous Boltzmann analysis shows that even 
in-plane anisotropies in ωcτ ~ 3-4 generate a MR that is still more than an order of magnitude smaller than found 
experimentally in Bi2201 and that varies quadratically with field up to 30 T. Hence, just as in Tl2201, the MR observed 
in OD Bi2201 cannot be attributed easily to conventional orbital effects. 

Finally, we turn to address the observation of quantum oscillations in OD Tl2201 in the presence of a 
putative incoherent sector. We first note that despite concerted experimental effort over a few decades, quantum 
oscillations (QOs) have only been observed to date in Tl2201 with doping levels p > 0.275.48 The observation of QOs 
in both the far OD regime of Tl2201 and in several cuprates (YBa2Cu3O7-δ,56 YBa2Cu4O8

57 and HgBa2CuO4+δ
58) in the 

underdoped regime, could be taken as evidence that there are coherent quasiparticles which can complete cyclotron 
orbits at these compositions. This does not however rule out the co-existence of an incoherent sector. In the 
underdoped case, ARPES measurements suggest that incoherence exists around the anti-nodal directions in k-space 
and QOs are possible because of a reconstruction of the Fermi surface, probably resulting from a charge density 
wave, which connects the nodal arcs together. In the far OD regime however, the QO frequency suggest the whole 
(1+p) Fermi surface is traversed. Any k-space regions of incoherence would have to be very small (a few percent of 
the total circumference of the orbit) for magnetic breakdown to be effective in overcoming this at, for example, μ0H 
= 20 T. The question then is how could such small regions of incoherence give rise to an MR which exceeds the SCTIF 
calculations by more than one order of magnitude? 

We do not claim to have the answer to this question, or the similar one of why the SCTIF explains so well 
the c-axis MR but not the in-plane MR, but it is worth noting that QOs are a thermodynamic quantity and can arise 
in circumstances far departed from a conventional Fermi liquid state.  For example, it has been shown theoretically 
that QOs can exist even in band-insulators.59 Moreover, QOs have been observed in the Kondo insulator SmB6

60,61 
and more recently in YbB12.62 QOs have also been observed in the superconducting state where the coherent 
quasiparticles are separated in real space from the gapped regions (See ref. 63 for a review).  There have also been 
theories of QOs in strongly interacting quantum critical non-Fermi liquids.64 QOs therefore do not necessarily 
indicate a conventional metallic state. However, it remains a theoretical challenge to explain their existence inside 
the strange metallic state of OD cuprates. 

 
Kohler's rule vs. quadrature MR in overdoped cuprates 
For normal metals with a quadratic low-field MR, Kohler’s rule states that Δρ/ρ(0,T) ∝ (H/ρ(0,T))2. Hence for a metal 
obeying Kohler’s rule, all the magnetoresistance curves collapse once plotted versus (H/ρ(0,T))2. To illustrate Kohler's 
rule violation in OD cuprates, we have plotted Δρab/ρab(0,T) versus (H/ρab(0,T))2 for a Bi2201 sample with Tc = 13 K in 



Extended Data Fig. 6a. A second way of illustrating Kohler behaviour is to plot the product Δρab·ρab(0,T) (normalised 
to Δρab(H) at 1 T). If Kohler scaling is obeyed, this quantity should be independent of temperature. However, as 
demonstrated in Extended Data Fig. 6c, Δρab·ρab(0,T) exhibits a marked T-dependence, appearing to diverge as T → 
0. (Here, fits were made to the low field part of the MR with the quadratic function f(x) = A(μ0H)2.) 

Below p*, the MR response in high-Tc cuprates appears to become dominated by an orbital contribution, 
that either obeys65 conventional Kohler's scaling (in the underdoped regime) or violates it (at optimal doping).66 In 
both cases, the T-dependence of Δρab/ρab(0,T) = 1/(A + BT2)2 links the MR to the square of the Hall angle (though in 
UD cuprates, the longitudinal resistivity also approaches more of a Fermi-liquid response.67,68   

For a long time, it has been believed, rightly or wrongly, that the in-plane MR of overdoped cuprates could 
also be captured by the so-called modified Kohler’s rule in which Δρab/ρab(0,T) = A cot(θH)-2. In this case, Δρab·ρab(0,T) 
= a(ρab tan(θH))-2 ~ a(ρxy)2, i.e. Δρab·ρab(0,T) should have the same T-dependence as the square of the Hall coefficient 
RH. As shown in Extended Data Fig. 6b, while this relation appears to work well at elevated temperatures, it clearly 
breaks down below around 60 K where Δρab·ρab(0,T) grows while RH

2 becomes smaller. One possible origin of this 
enhancement in Δρab·ρab(0,T) is the onset of paraconductivity contributions. As shown in Extended Data Fig. 6d, 
however, superconducting fluctuations only manifest themselves - as an upturn in the derivative of ρab(0,T) - below 
about 30 K. 

In a system governed by quadrature MR, the T-dependence of the quadratic A term must vary as 1/T. This 
is obvious from the fact that the derivatives of the field dependence scale once plotted versus H/T. Hence, for the 
quadrature MR to be realized, the product A·T should be constant. As shown in Extended Data Fig. 6e, this relation 
does indeed appear to hold over a decade in temperature. We therefore conclude that the T-dependence of the 
low-field H2 MR is better described by quadrature MR than by the modified Kohler's rule. The fact that at high 
temperatures, the quadratic A term has a T-dependence that follows expectations for both the modified Kohler's 
rule and the quadrature MR may explain why previous low-field measurements47 could not make this distinction. 

 
Determination of β in Tl2201 and Bi2201 
The quadrature form of ρab(H,T) is characterised by a crossover from H-linear MR at high H/T to a H2 dependence at 
low H/T. The crossover scale (μ0H/T)* is universal for all T as illustrated by the collapse of the derivatives of the field 
sweeps taken at different temperatures onto a single curve (Figure 2 of the main manuscript) and is determined by 
the ratio β of the quadrature field and temperature coefficients. As it happens, (μ0H/T)* does not depend on the 
absolute value of the measured ρab(H,T) and is therefore insensitive to errors arising from the determination of the 
sample dimensions, for example. It is therefore possible to make a direct comparison between different samples, as 
done in panels k and l of Figure 2. 

Since the crossover scale (μ0H/T)* is larger for Bi2201 than for Tl2201 a different approach was used to 
obtain β for Bi2201. There, a fit was made to the derivatives plotted against H/T (for example, see panel d of Figure 
2 in the main manuscript), where only the normal state data was used in the fit. This approach allows for all the 
normal state data to be fitted at once and gives a representative value of β for Bi2201. 

As mentioned above, in certain Tl2201 samples, hydrostatic pressure was also applied to enable the 
evolution of β to be studied as a function of Tc independent of the level of disorder. Moreover, whereas previously 
it was only possible to directly compare β (~ γ/α), by changing pressure on a single sample, it became possible to 
study the relative changes in α and γ individually with Tc. In one sample, Tc was suppressed in small steps from 35 K 
to 26 K with the application of 2 GPa. These results are presented elsewhere.69 

 
Planckian dissipation and Zeeman coupling 
The specific form of the quadrature scaling discovered by Hayes and co-workers in P-Ba12210 implies that magnetic 
field and temperature influence the resistivity through the transport relaxation rate in a similar manner. Moreover, 
since the ansatz can be written as: 
 

𝜌𝜌(𝐻𝐻,𝑇𝑇) − 𝜌𝜌0 = 𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇�1 + (𝛾𝛾𝜇𝜇𝐵𝐵𝜇𝜇0𝐻𝐻/𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇)2   (3)  



the residual resistivity ρ0 has no influence on the MR scaling. This is in marked contrast to what is observed in normal 
metals where Δρ/ρ(0) scales with (ωcτtr)2, where 1/τtr = 1/τ0 + 1/τin, 1/τ0 is the impurity (elastic) scattering rate and 
1/τin is the T-dependent (inelastic) scattering rate. The independence of the quadrature MR from the strength of the 
impurity scattering (or more precisely, from ρ0) has been confirmed not only here in Tl2201 and Bi2201 -- despite 
almost one order of magnitude difference in their respective ρ0 - but also previously in FeSe1-xSx (near the nematic 
QCP) where the quadrature MR was found to be comparable in samples with ρ0 values that differed by a similar 
factor of around 5.13 Crucially, observance of the quadrature scaling also demands that the zero-field resistivity 
associated with the MR response has a T-linear dependence. If we rewrite �1 + (𝛾𝛾𝜇𝜇𝐵𝐵𝜇𝜇0𝐻𝐻/𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇)2 as 
�1 + (𝛾𝛾∗𝜔𝜔ℏ𝜏𝜏ℏ)2, we may define an effective ωℏτℏ product for the Planckian sector where ωℏ = eμ0H/m* (m* here is 
the corresponding ‘cyclotron’ mass) and τℏ = ℏ/akBT. Moreover, since μB =eℏ/2me, we find that γ* = aγ/2α(m*/me). 
Assuming γ* ~ 1 and m* = me, we obtain a ~ 0.3 for Tl2201 and a ~ π for Bi2201. Thus, one can generate directly 
from the quadrature MR response a relaxation rate compatible with Planckian dissipation without a priori knowledge 
of parameters such as (a) the carrier density or (b) quasiparticle mass that (a) would determine the absolute 
magnitude of the resistivity and (b) may be irrelevant for a description based on Planckian dissipation. Nevertheless, 
notions of cyclotron frequency and mass do not sit comfortably with the fact that the MR response appears to be 
non-orbital in nature (as deduced from the lack of angle dependence in the in-plane MR of both Bi2201 and Tl2201).  
 In light of this and the fact that the zero-field resistivity is associated with Planckian dissipation with 
temperature as the only relevant energy scale, it is also feasible that the H/T scaling of the MR originates from the 
spin sector, with the magnetic field introducing a second energy scale via Zeeman coupling. Even in this overdoped 
regime, the system may still behave like a doped Mott-insulator where a separate spin system may be identifiable. 
The antiferromagnet at half filling is very isotropic and the angular momentum associated with the charged currents 
may dissipate by coupling to the non-conserved spin angular momentum. The difficulty is however that for this to 
happen a strong spin-orbit coupling λ is required. In the cuprates λ should be small, as confirmed by the isotropy of 
the spin system of the Mott insulator. A potential loophole may relate to the unanticipated strong spin-orbital locking 
of the quasiparticles observed recently by spin-resolved ARPES.70 

In P-Ba12210 and FeSe1-xSx,13 the quadrature MR term is much reduced when H is rotated into the conducting 
plane. In order to account for such anisotropy, one would require the Zeeman term to be highly anisotropic. In 
elemental bismuth, such anisotropy (in the hole band) was shown to arise from the combined effects of spin-orbit 
coupling and multiple bands.71 FeSe1-xSx and P-Ba122 are, of course, both multi-band (semi-)metals and the pivotal 
role of spin-orbit coupling in creating large spin-space anisotropy in FeSe1-xSx has already been discussed.72 Tl2201 
and Bi2201 are single-band cuprates, while spin-orbit coupling is thought to play only a minor role. The near-isotropy 
of the MR response in these OD cuprates may therefore support a picture in which magnetic field influences the 
incoherent sector by adding a second energy scale that leads to a H-linear growth in the resistivity. Such a scenario 
might then account for the difference in the anisotropy in the MR response in both the copper-based and iron-based 
superconductors. 

Finally, while the near-isotropy of the MR response for in-plane currents points more towards a spin-based, 
rather than orbitally driven, origin for the H-linear MR, we note here that a similar isotropic component to the c-axis 
MR is not evident in any of the ADMR measurements performed to date. However, it is important to recognise that 
while spin effects might generate an isotropic contribution for a particular current direction with respect to field 
orientation, it is not necessarily the case that they will generate isotropic contribution with respect to current 
direction, particularly if the processes for charge transport in the two orthogonal directions are different. The in-
plane MR that we observe is significantly larger than what we would expect from the analysis of the c-axis MR, 
suggesting that it may be an additional contribution. Alternatively, one might need to go beyond the relaxation time 
approximation and consider vertex corrections for in-plane transport, corrections that do not necessarily play a role 
in c-axis transport. It has been argued,73,74 for example, that for layered materials, c-axis transport can be described 
as a product of single-particle in-plane spectral functions and thus can be computed without vertex corrections. 
Hence, even though ADMR may be observed,74 it does not imply that the transport processes in the two orthogonal 
directions are identical.   
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Extended Data Figure captions 
Extended Data Fig. 1 | Zero-field resistivities of Tl2201 and Bi2201. Zero field, ambient pressure resistivity ρab(T) 
curves for representative a, Tl2201 and b, Bi2201 crystals investigated in this study. Note the super-linear T-
dependence for all samples. The spread in absolute magnitudes of ρab(T) is higher in the Tl2201 crystals due to the 
fact that they were mounted for pressure measurements and as such, their absolute resistivities were harder to 
quantify accurately. 
 
 
Extended Data Fig. 2 | Quadrature scaling in overdoped Tl2201. a, ρab(H,T) as measured in Tl2201 with Tc = 26.5 K. 
H2 behaviour cedes to a H-linear resistivity at high fields. b, c, Scaling plots of (ρab(H,T) - ρab(0,0))/T vs H/T  for OD 
Tl2201 (Tc = 26.5 K). As shown in panel c, there is a clear break down of the scaling at low H/T. d, e, Scaling plots of 
(ρab(H,T) - ρab(0,T))/T vs H/T for the same sample where ρ(0,T) = ℱ(𝑇𝑇) = ρ0 + AgT + BT2. Note that Ag does not 
correspond to A, the full T-linear coefficient of the zero-field resistivity, since part of that is contained within the 
quadrature form. The inclusion of these additional T-dependent terms makes the data collapse over the full T-
range. Taking the derivative with respect to H (as done in the main text) provides another means of isolating the 
quadrature MR from ℱ(𝑇𝑇). The dashed lines in all panels represent the quadrature expression Δ𝜌𝜌𝑎𝑎𝑎𝑎(𝐻𝐻) =
𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇�1 + (𝛽𝛽𝜇𝜇0𝐻𝐻 𝑇𝑇⁄ )2   (ρ0 = 15.5 μΩcm, Ag = 0.14 μΩcm/K, B = 0.003 μΩcm/K2, αkB = 0.04 μΩcm/K, γμB = 0.20 
μΩcm/T). f, The derivatives with respect to magnetic field of the measured curves shown in a. g, When plotted 
against H/T, the derivatives presented in f collapse onto a universal curve (bar those sections of each field sweep 
that are in the mixed state). 
 
 
Extended Data Fig. 3 | Success of ADMR-derived modelling of the in-plane transport of OD Tl2201. a, The c-axis 
ADMR of Tl2201 with Tc = 15 K measured at 50 K and at various (labelled) azimuthal angles taken from ref. 48. b, 
Projection of the in-plane FS derived from the ADMR fitting. c, Schematic showing the isotropic T2 component 
(black solid line) and anisotropic T + T2 component (red solid line) of the scattering rate as deduced from the ADMR 
fitting. d, Black dots: ρab(T) data for OD Tl2201 (Tc = 15 K) in which superconductivity has been suppressed by a 
magnetic field (H || c)46 and corresponding simulation based on the ADMR fitting.48 The difference in the residual 
resistivities is likely due to the fact that different samples have been used in the two studies.46,48 e, Corresponding 
simulation for RH(T).48 f, Simulation of RH(H) = ρxy(H)/H at various temperatures as indicated. g, Same simulation 
data plotted versus H/ρ(0) where here, ρ(0) is the zero-field resistivity at each temperature. h, RH(H) versus H/ρ(0) 

https://doi.org/XXXX


data taken from ref. 25. For OD Tl2201 (Tc = 25 K) for comparison with the simulation in panel g. The larger absolute 
values of RH in panel h relative to panel g are due to the fact that the high-field data in h are taken on a sample 
with a higher Tc value where the anisotropy in τ-1(ϕ) is expected to be larger. 
 
 
Extended Data Fig. 4 | Failure of ADMR-derived modelling to reproduce quadrature scaling. a, The field 
dependence of the longitudinal resistivity (ρ(T)) determined with the SCTIF using parameters derived from the 
ADMR parameterization for OD Tl2201. b, Δρ – the change in ρxx with field – at selected temperatures. c, 
Corresponding derivative plots of ρ(H) showing distinctly non-quadrature behaviour. d, As a consequence, the data 
fail to collapse when plotted against μ0H/T. 
 
 
Extended Data Fig. 5 | Failure of the SCTIF to reproduce both the MR and Hall response. Simulations of the MR 
and Hall responses within the SCTIF given different parameterisations of vF(ϕ) and τ-1(ϕ, T). In each simulation, the 
experimentally determines FS (kF(ϕ)) has been used. Note that the SCTIF is slow to converge at low fields and so 
the simulations do not extend all the way to H = 0. Simulation 1, ADMR-derived parameterisation of OD Tl2201 
albeit with no anisotropy at T = 0 and an anisotropic term that increases strictly linearly with T. Simulation 2, A 
scenario incorporating the vF anisotropy derived from tight-binding modelling of ARPES measurements.37 
Simulation 3, A scenario in which the anisotropy ratio of τ-1(ϕ) is strictly T-independent in order to generate an MR 
with a maximum slope that is also independent of temperature (reminiscent of quadrature scaling). Simulation 4, 
A scenario in which a similar τ-1(ϕ) parameterisation to the one used to model Nd-LSCO54 is applied to OD Tl2201. 
Simulation 5, Simulation for OD Bi2201 with an enhanced anisotropy in vF and τ-1(T = 0) consistent with ARPES.51 
Column 1, The FS parameterisations kF(ϕ) and vF(ϕ). Column 2, τ-1(ϕ, T). Column 3, dρ/d(μ0H) versus H. Column 4, 
dρ/d(μ0H) versus H/T. Column 5, RH(H, T). 
 
 
Extended Data Fig. 6 | Kohler versus quadrature scaling in Bi2201. a, Δρab/ρab(0) plotted versus (H/ρab(0))2  for a 
Bi2201 sample with Tc = 13 K. In a system that shows Kohler scaling, these curves would collapse. Clearly, that is 
not the case here. b, Δρab plotted versus H2

 for the same Bi2201 sample. The dotted lines are fits to the function 
f(x) = A(µ0H)2 in the regions where the MR is strictly quadratic. Note that the quadrature form of the MR is only 
purely quadratic in the zero field limit while fits to the data are taken at finite field ranges. Our simulations have 
shown that fitting up to µ0Hmax = β.T (with β as given in Fig. 2 of the main text) agrees with the zero field limit 
within a few percent and falls within our experimental error. c, T-dependence of A·ρab(0) (with A taken from the 
fits in panel b) compared to the square of the Hall coefficient RH

2. d, Temperature derivative of ρab(T) for the same 
sample. Note that the onset of superconducting fluctuations appears only below 30 K. e, The product A·T plotted 
over the full temperature range. The dotted line is a guide to the eye.  
 
 
Extended Data Table 1. | Tl2201 samples studied. The Tc values are defined as the temperature below which 
ρab(T) falls below the noise floor. The doping levels are determined from the Tc  values, as explained in the text. 
 
 
Extended Data Table 2. | Bi2201 samples studied. The Tc values are defined as the temperature below which the 
zero-field resistivity falls below the noise floor. The doping levels are determined from the Tc values, as explained 
in the text. Bi2201 samples labelled with a Tc < 1 K were measured down to 1.4 K, and although they show a clear 
onset of superconductivity, they do not become fully superconducting. We have therefore specified their doping 
level as p = 0.27. 
 
 
Extended Data Table 3. | ADMR simulation parameters. Parameters derived from ADMR fits used for the SCTIF 
calculations for a Tc = 15 K sample of Tl2201.48 
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