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Dependency links in single-layer networks offer a convenient way of modeling nonlocal percolation
effects in networked systems where certain pairs of nodes are only able to function together. We study
the percolation properties of the weak variant of this model: Nodes with dependency neighbours
may continue to function if at least one of their dependency neighbours is active. We show that
this relaxation of the dependency rule allows for more robust structures and a rich variety of critical
phenomena, as percolation is not determined strictly by finite dependency clusters. We study Erdős-
Rényi and random scale-free networks with an underlying Erdős-Rényi network of dependency links.
We identify a special “cusp” point above which the system is always stable, irrespective of the
density of dependency links. We find continuous and discontinuous hybrid percolation transitions,
separated by a tricritical point for Erdős-Rényi networks. For scale-free networks with a finite
degree cutoff we observe the appearance of a critical point and corresponding double transitions
in a certain range of the degree distribution exponent. We show that at a special point in the
parameter space, where the critical point emerges, the giant viable cluster has the unusual critical
singularity S − Sc ∝ (p − pc)

1/4. We study the robustness of networks where connectivity degrees
and dependency degrees are correlated and find that scale-free networks are able to retain their high
resilience for strong enough positive correlation, i.e., when hubs are protected by greater redundancy.

I. INTRODUCTION

The desire for an increasingly accurate description of
networked systems has resulted in various useful gener-
alizations of the classical percolation theory of random
graphs. One branch of these generalizations stems from
the notion that the functioning of a particular node may
depend on the functioning of certain other nodes in the
system to which the node in question may not be di-
rectly connected. This idea has led to the definition of
mutually connected components in interdependent (or
multiplex) networks [1–3]. Such a network is composed
of various network layers and a node in one layer may
have various interdependency neighbours in other lay-
ers. According to the most common definition a mutu-
ally connected component is one that is connected on
all layers, i.e., the interdependency neighbours of nodes
in a connected cluster in one layer must also form con-
nected clusters on all other layers. The giant mutually
connected component shows an increased vulnerability
to random damage, compared to the giant components
of the individual layers and, for random uncorrelated
layers, collapses in a discontinuous hybrid transition [3],
such as the one also seen in, e.g., k-cores [4]. Interdepen-
dent and multiplex networks have enjoyed considerable
popularity in recent years due to their ability to model
important and easily observed real-world systems such
as online social networks, transportation networks, neu-
ronal networks and many more [5].
The notion of dependencies between nodes in a net-

work was exploited in a somewhat simpler generaliza-
tion of ordinary percolation by Parshani et al. in Ref.
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[6]. Here a single-layer network of connectivity links is
considered, where there may also be “dependency links”
between certain pairs of nodes. The percolation rule is
given as a deactivation process. Initially a given fraction
of nodes in the network is activated, and nodes can only
remain active if (i) they belong to the giant connected
component of active nodes and (ii) all of their depen-
dency neighbours are also active. This deactivation pro-
cess either leads to a stable situation, where a fraction of
nodes in the network remain active, or all nodes in the
network are deactivated. Using the fraction of initially
active nodes as control parameter, it was shown in Ref.
[6] that the stable fraction of active nodes may undergo
a continuous or a discontinuous transition, depending on
the density and configuration of dependency links in the
network. The continuous transition regime is essentially
characterized by the fraction of nodes without dependen-
cies and the discontinuous one by the distribution of the
sizes of dependency groups (finite clusters of nodes con-
nected by dependency links). Scale-free networks, that
are highly robust in the continuous transitions regime,
were found to be particularly fragile in the discontinuous
transitions regime. The effect of various different depen-
dency group size distributions is explored in Refs. [7–9].
Several generalizations of this model have been inves-
tigated in recent years, such as networks with directed
[10] and time-varying dependency links [11] and multi-
layer networks with dependency links both between and
within the individual layers [12].
The dependency rules assumed in most of the initial

work on interdependent networks and single-layer net-
works with internal dependency links are too restric-
tive to describe certain systems that do not exhibit the
predicted fragility. A relaxation of the standard mul-
tiplex percolation rule was explored in Refs. [13, 14]
where a node is defined to belong to a component if it
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has at least one neighbour on each layer in the same
component—without the requirement that the compo-
nent be connected on each layer. It was found that a
two-layer network, of uncorrelated random networks, in
this case still exhibits a continuous percolation transi-
tion, as opposed to the discontinuous hybrid transition
of the standard giant mutually connected component. A
different approach was studied in Ref. [15] where mutu-
ally connected components in a multiplex network were
required to be connected on at least two layers, as op-
posed to all of them. For numbers of layers greater than
or equal to two, the addition of new layers in this case
increases the robustness of the system.

In this paper we consider single-layer networks with
internal dependency links and propose a relaxation of
the percolation rule introduced in Ref. [6]. We consider
a node to belong to a component if it has at least one
connectivity link to the given component and—if it has
dependency links—at least one of its dependency neigh-
bours is also in the same component. This weaker depen-
dency rule may be suitable for modeling systems where
individual nodes require some kind of input from other
nodes to function, but this input may be supplied by var-
ious different nodes, not just one. This model has the
interesting feature that the size of the giant component
is non-monotonic as a function of the density of depen-
dency links. Very few dependencies, as well as a high
number of redundant dependencies both correspond to
robust structures, with a “valley” of more fragile states
in between. We investigate the percolation properties
of such systems, with Erdős-Rényi and scale-free con-
nectivity networks, where dependency links are placed
randomly, i.e., the dependency network is Erdős-Rényi
with a given mean dependency degree. We find continu-
ous and discontinuous percolation transitions separated
by a tricritical point for Erdős-Rényi connectivity net-
works. For scale-free networks with a finite degree cutoff
we show that in a certain range of the degree distribu-
tion exponent a critical point appears, which is accom-
panied by a non-smooth switch between continuous and
discontinuous transitions, as well as double percolation
transitions. We show that at the point where a criti-
cal point appears the giant component has the critical
singularity S − Sc ∝ (p − pc)

1/4. We also consider the
situation where connectivity and dependency networks
are correlated and find that robustness can be greatly
improved by positive correlations between connectivity
and dependency degrees.

The paper is organized as follows. In Section II we
introduce our model and discuss some implications and
important differences compared to the definitions of Ref.
[6]. In Section III we set up self-consistency equations
to solve our model for uncorrelated random connectivity
and dependency networks, and present numerical solu-
tions compared with simulation results. In Section IV we
explore the various possible forms of critical behaviour.
We derive conditions for critical thresholds and obtain
the order parameter exponent for the various cases an-
alytically. In Section V we present results for scale-

free connectivity networks with a finite degree cutoff,
explaining the origin of double percolation transitions
and the unique order parameter exponent β = 1/4. In
Section VI we study the effect of correlations between
connectivity and dependency degrees. We give our con-
clusions in Section VII.

II. CONNECTED COMPONENTS IN
NETWORKS WITH REDUNDANT

DEPENDENCY LINKS

We consider an arbitrary undirected network of con-
nectivity links between nodes and an arbitrary undi-
rected network of dependency links between the same
nodes. Connectivity links establish reachability relation-
ships between nodes and serve as the backbone for con-
nected components. Dependency links signify the condi-
tions that certain nodes can only function if they are able
to reach certain other nodes. Connected components in
our percolation model of “weak dependencies” may be
defined as the stable state of the following iterative pro-
cess.

1. Identify all connected components based on con-
nectivity links.

2. Remove all connectivity links of all nodes i that
have at least one dependency neighbour, and none
of these dependency neighbours are in the con-
nected component of node i.

3. Repeat steps 1 and 2 until no further changes are
made.

We will refer to the resulting components as weakly de-

pendent components (WDCs) to distinguish from “or-
dinary” connected components based purely on connec-
tivity links. Similarly we will refer to the components
defined in [6] as strongly dependent components (SDCs).
Note that in the strong dependence model Step 2 of the
above iterative process is replaced with “Remove all con-
nectivity links of all nodes i that have at least one depen-
dency neighbour, and at least one of these dependency
neighbours is not in the connected component of node
i.” A schematic representation of strongly and weakly
dependent components is shown in Fig. 1 for a simple
network of two connected components (in the standard
percolation sense).
From the definitions it follows that the SDC that node

i belongs to is always a subgraph of its WDC. Also,
the sizes of WDCs may increase or decrease as a result
of the addition of a dependency link, while the sizes of
SDCs cannot increase. For large, sparse, random uncor-
related connectivity and dependency networks the giant
connected component (GCC) of the dependency network
constitutes a barrier to the existence of SDCs: none of
the nodes that belong to the GCC of the dependency
network can belong to an SDC. For this reason it is the
finite clusters (dependency groups) of the dependency
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strong dependence

weak dependence

FIG. 1. Example of a simple network with dependencies
consisting of two connected components (in the standard
percolation sense). Solid black lines represent connectivity
links, dashed blue lines represent dependency links. Strongly
and weakly dependent components (of the same network) are
shown on the right.

network that determine the percolation properties un-
der the strong dependency rule [6–9]. Such a restriction
does not apply in the case of the weak dependency rule.
This might make the weak dependency model (or some
combination of the weak and strong models) a better
candidate to describe the behaviour of certain real-world
systems with dependencies. Similarly to k-cores and mu-
tually connected components in multiplex networks, the
probability that a random node belongs to a finite de-
pendent component that contains dependencies is neg-
ligible in large, sparse, uncorrelated random networks,
according to both the weak and strong definition. Fi-
nite components, with non-negligible probability, exist
in both models only if none of the nodes in the given
component have dependencies.

In this paper we focus on the properties of the giant
weakly dependent component (GWDC) for Erdős-Rényi
and random scale-free connectivity networks, with an
Erdős-Rényi dependency network. To demonstrate the
effect of the weak model (compared to the strong model),
in Fig. 2 we present phase diagrams of these two types of
connectivity networks, indicating the regions where a gi-
ant dependent component—strong or weak—exists. The
threshold value of zc in the strong model is a monotoni-
cally increasing function of zd, while it initially increases,
then decreases in the weak model due to an increasing
number of redundant dependency links. This qualitative
behaviour applies to both types of connectivity networks.
The weak model allows for stable structures in a much
wider range of parameters. (Note the logarithmic scale
on the y axis.)
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FIG. 2. Phase diagrams of (a) Erdős-Rényi and (b) scale-
free connectivity networks with mean connectivity degree zc,
both with an Erdős-Rényi dependency network of mean de-
gree zd. The scale-free connectivity network is an uncor-
related random network with a degree distribution of the
form Pc(k) ∼ (k+B)−γ , with lower and upper degree cutoffs
kmin = 1 and kmax = 1000, respectively. The parameter B

was chosen to achieve a given mean degree zc. The degree dis-
tribution exponent was γ = 3. The phase separation curves
were obtained by numerical analysis of the self-consistency
equations presented in Section III.

III. SELF-CONSISTENCY EQUATIONS

For infinite sparse random uncorrelated connectivity
and dependency networks, exploiting their local tree-
likeness, the problem of finding the relative size of the
GWDC may be solved by setting up appropriate self-
consistency equations. Let us consider a connectivity
network with degree distribution Pc(k) and a depen-
dency network with degree distribution Pd(k). We con-
sider each connectivity link to be active with probability
p. We introduce two probabilities that will allow us to
write exact self-consistency equations for this problem.
First, let x be the probability that following a random
connectivity link in a random direction we can reach the
GWDC. Second, let y be the probability that we en-
counter a node in the GWDC by following a random
dependency link emanating from a node in the GWDC.
We can write the following equation for x,

x=p

[

1−

∞
∑

k=1

kPc(k)

zc
(1−x)k−1

][

1−

∞
∑

k=1

Pd(k)(1−y)k

]

,

(1)

where zc denotes the mean degree of the connectivity
network. The first factor in square brackets in Eq. (1)
gives the probability that following a random connectiv-
ity link, the node encountered has at least one outgo-
ing connectivity link to the GWDC. The second factor
gives the probability that following a random connectiv-
ity link, the node encountered has either no dependency
neighbours, or has at least one dependency neighbour
in the GWDC. These two factors must be multiplied by
p, the probability that the link on which we arrived is
active. The equation for y is simpler,
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y =

[

1−
∞
∑

k=0

Pc(k)(1− x)k

]

. (2)

Note that the right-hand side of Eq. (2) does not de-
pend on y, i.e., x is the only independent variable in this
problem. We can solve Eqs. (1) and (2) numerically by
iteration. Once the solutions x and y are found, we can
express the relative size of the GWDC,

S=

[

1−

∞
∑

k=0

Pc(k)(1−x)k

][

1−

∞
∑

k=1

Pd(k)(1−y)k

]

.

The self-consistency equations (1) and (2) can be writ-
ten in more compact form using probability generating
functions. Let us introduce the generating function for
the connectivity degree distribution, the dependency de-
gree distribution, and the connectivity “excess degree”
distribution, respectively,

Gc(x) =

∞
∑

k=0

Pc(k)x
k, (3)

Gd(x) =

∞
∑

k=0

Pd(k)x
k, (4)

Hc(x) =

∞
∑

k=0

(k + 1)Pc(k + 1)

zc
xk. (5)

Using these generating functions, Eqs. (1) and (2) can
be written as

x = p [1−Hc(1− x)] [1−Gd(1− y) + Pd(0)] , (6)

y = [1−Gc(1 − x)] . (7)

Substituting Eq. (7) into Eq. (6) we arrive at one single
self-consistency equation for x,

x=p[1−Hc(1−x)][1+Pd(0)−Gd(Gc(1−x))]

≡pΨ(x). (8)

The relative size of the GWDC may be expressed as

S=[1−Gc(1−x)][1+Pd(0)−Gd(Gc(1−x))]. (9)

Figure 3(a) shows numerical solutions for S obtained
using Eqs. (8) and (9), compared with simulations. Both
the connectivity and dependency networks are Erdős-
Rényi, with mean connectivity degree zc and mean de-
pendency degree zd. For high enough zc [zc = 2 in Fig.
3(a)] we see that the GWDC exists in the entire range
of zd values, although its size exhibits a minimum for an

intermediate value of zd. With decreasing zc, below the
point zc ≈ 1.848, the S(zd) curve breaks up into two sep-
arate regions that correspond to a low and high density
of dependencies. The region in the middle is not able to
support a GWDC. It can also be seen that, with increas-
ing zd, the GWDC disappears and reappears in a discon-
tinuous transition [zc = 1.6 in Fig. 3(a)]. At the point
zc ≈ 1.422 the first transition changes to continuous. All
four numerical curves show very good agreement with
simulations except close to the critical regions, where
large fluctuations are expected. To further demonstrate
the different types of transitions, Figure 3(b) shows a
phase diagram of the same network class, with S over-
laid as a colormap.
For the sake of completeness we present here also the

exact self-consistency equations necessary to solve the
strong variant of the model, in the same settings. Let
the probabilities x and y have the same meaning as above
(except for replacing the word “GWDC” with “GSDC”
in the definition). The two equations for the strong
model are

x = p

[

1−

∞
∑

k=1

kPc(k)

zc
(1− x)k−1

][

∞
∑

k=0

Pd(k)y
k

]

,

y =

[

1−

∞
∑

k=0

Pc(k)(1 − x)k

] [

∞
∑

k=1

kPd(k)

zd
yk−1

]

,

and the relative size of the GSDC is expressed as

S =

[

1−

∞
∑

k=0

Pc(k)(1 − x)k

][

∞
∑

k=0

Pd(k)y
k

]

.

IV. CRITICAL BEHAVIOUR

We explore the various types of critical behaviour that
occur in the weak dependency model, associated with
the appearance of the GWDC. To study the behaviour
of Eq. (8) it will be useful to introduce the function
f(x) = Ψ(x)/x. (We should remember that apart from
x, f depends on the distributions Pc and Pd.) Equation
(8) now reads

pf(x) = 1. (10)

Note that Eq. (10) is equivalent to Eq. (8) only for
x > 0. x = 0 is always a solution of Eq. (8). Apart
from this trivial solution, all other solutions can be found
using Eq. (10). The first nonzero solution x∗ occurs
when the maximum of curve pf(x) first becomes 1. If
the maximum of f in the range ]0, 1] is denoted by fmax,
then the value of p at which this happens is given by pc =
1/fmax. We now discuss the various possible situations
that correspond to different types of phase transitions
with different critical singularities.
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FIG. 3. (a) Relative size S of the GWDC as a function of
mean dependency degree zd, where both the connectivity and
dependency networks are Erdős-Rényi networks. Curves are
shown for four different values of the mean connectivity de-
gree zc. Open circles represent simulation results, solid lines
correspond to the numerical solution of Eqs. (8) and (9).
(Number of nodes was N = 106 in all cases and results were
averaged over 100 realizations.) (b) Phase diagram of the
same network class, with S overlaid as a colormap. Solid and
dashed black lines correspond to continuous and discontin-
uous transitions respectively. The tricritical point and cusp
point (see Sections IVA and IVB) are marked by a solid red
circle and solid blue square, respectively.

A. Continuous transitions, discontinuous
transitions and tricritical point

Let us first consider the situation where f(x) is mono-
tonically decreasing, i.e., f ′(x) < 0 for all x > 0 [solid
red line in Fig. 4(a)]. In this case fmax = limx→0 f(x),
which corresponds to a continuous transition. [Remem-
ber that f(0) is not defined.]
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FIG. 4. (a) Function f(x) (scaled to be at the critical thresh-
old) for different values of the mean dependency degree zd.
(b) Relative size S of the GWDC as a function of connec-
tivity link activation probability p, for different values of zd.
The three curves on each panel correspond to a continuous
transition (zd = 0.2), the tricritical point (zd = 0.3517) and
a discontinuous transition (zd = 0.5). The mean connectivity
degree is zc = 3 in all cases. Both the connectivity and the
dependency network is Erdős-Rényi.

This limit can be evaluated using L’Hospital’s rule,

lim
x→0

f(x) = lim
x→0

Ψ(x)

x
= lim

x→0

Ψ′(x)

x′
= Ψ′(0).

Using Eqs. (3), (4), (5), (8) and basic properties of prob-
ability generating functions we obtain

Ψ′(0) = Pd(0)
〈k(k − 1)〉c

〈k〉c
,

resulting in the threshold for a continuous phase transi-
tion,

pc =
〈k〉c

Pd(0)〈k(k − 1)〉c
. (11)

We see that only Pd(0) plays a role, i.e., the shape of
the dependency degree distribution is irrelevant and only
the fraction of nodes with no dependencies matters. For
the case where both the connectivity and dependency
networks are Erdős-Rényi (with mean degrees zc and
zd, respectively) and pc = 1, the condition (11) can be
written simply as

zc = ezd .

The corresponding curve is plotted in Fig. 3(b) as a
solid black line. Using the probability p as a control
parameter, the behaviour of S near the transition is given
by S ∝ (p − pc)

1 [see solid red line in Fig. 4(b)]. This
can be shown by expanding Eq. (8) about the point
(x = 0, p = pc) and using Eq. (10) (see Appendix for
details).
As noted above, a continuous transition can only hap-

pen if fmax = limx→0 f(x). If limx→0 f
′(x) > 0 then this

is not the case and fmax = f(x∗) for some x∗ > 0, mean-
ing that the nontrivial solution emerges with a jump [see
dashed green line in Fig. 4(a,b)]. The condition for this
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to happen is f ′(x∗) = 0, and the corresponding threshold
for the discontinuous transition is

pc =
1

f(x∗)
.

The behaviour of S near such a transition is given by
S − Sc ∝ (p − pc)

1/2. This type of phase transition
is also frequently referred to as a hybrid transition, in-
volving a discontinuity and a critical singularity. The
critical behaviour can be derived by expanding Eq. (8)
about the point (x = x∗, p = pc) and using the condition
f ′(x∗) = 0 (see Appendix for details).
Assuming for now that f has only one maximum in the

interval ]0, 1], we saw that limx→0 f
′(x) < 0 results in a

continuous transition, while limx→0 f
′(x) > 0 produces a

discontinuous hybrid transition. The two types of tran-
sitions meet at a tricritical point where limx→0 f

′(x) = 0
[see dotted blue line in Fig. 4(a,b)]. Using L’Hospital’s
rule we find

lim
x→0

f ′(x)= lim
x→0

(

Ψ(x)

x

)

′

=lim
x→0

xΨ′(x)−Ψ(x)

x2
=

=lim
x→0

(xΨ′(x)−Ψ(x))′

(x2)′
=
Ψ′′(0)

2
.

Using the properties of generating functions, Ψ′′(0) can
be expressed as

Ψ′′(0) = 2〈k(k − 1)〉c〈k〉d − Pd(0)
〈k(k − 1)(k − 2)〉c

〈k〉c
,

resulting in the condition for a tricritical point,

Pd(0)

2〈k〉d
=

〈k(k − 1)〉c〈k〉c
〈k(k − 1)(k − 2)〉c

. (12)

For Erdős-Rényi networks, and setting pc = 1, Eqs. (12)
and (11) are equivalent to

zc = e1/(2zc)

zd = 1/(2ezd),

which have the solution ztcc ≈ 1.4215 and ztcd ≈ 0.3517.
This tricritical point is shown as a solid red circle on
Fig. 3(b). Using the probability p as a control param-
eter, the behaviour of S near such a transition is given
by S ∝ (p − pc)

1/2. Thus the tricritical point has the
same type of critical singularity as hybrid transitions,
only here the jump size is zero. The critical behaviour
can be derived by expanding Eq. (8) about the point
(x = 0, p = pc) and using the condition limx→0 f

′(x) = 0
(see Appendix for details). Equation (12) also means
that infinite scale-free connectivity networks with a de-
gree distribution exponent γ < 4 (and no finite degree
cutoff) cannot have a tricritical point for any finite value
of the mean dependency degree [as long as Pd(0) > 0].

B. “Cusp” point

Assuming an Erdős-Rényi dependency network, let us
now set p = 1 and take zd, the mean dependency de-
gree, to be our control parameter. As can be seen in
Fig. 3, for Erdős-Rényi connectivity networks, for small
enough values of zc there are two percolation transitions,
when varying zd. The GWDC first disappears, and then
reappears for large enough zd. When zc < ztcc , the first
transition of the two is continuous and for zc > ztcc it
is discontinuous (ztcc denoting the value of zc at the tri-
critical point). An interesting consequence of the weak
dependency model is that for large enough zc, perco-
lation transitions disappear altogether, i.e., a GWDC
always exists, for any zd. For the particular value of zc
where this happens, the S(zd) curve has a unique “cusp”
shape. To find the values of zc and zd where this cusp
point occurs, let us consider also the zd-dependence of
the function f : f = f(x, zd). It is easy to see that the
cusp point is a saddle point of the function f(x, zd): at
this point f is maximal with respect to x and minimal
with respect to zd [see Fig. 5(a)]. The cusp point, there-
fore, has the following conditions,

∂f

∂x

∣

∣

∣

∣

xcp,zcp

d

=
∂f

∂zd

∣

∣

∣

∣

xcp,zcp

d

= 0.

f(xcp, zcpd ) = 1. (13)

These are three equations for the three unknowns xcp,
zcpd and zcpc . For Erdős-Rényi networks the cusp point
occurs at zcpc ≈ 1.848 and zcpd ≈ 1.371. Using zd as
control parameter the behaviour of S near the cusp point
is given by S − Scp ∝ |zd − zcpd |1 (for zc = zcpc ), i.e., the
critical exponent changes from 1/2 to 1 at this point.
Note also that S − Scp is proportional to the distance
from zcpd on both sides of the cusp point [see Fig. 5(b)].
This critical behaviour can be derived by expanding Eq.
(8) about the point (x = xcp, zd = zcpd ) and using the
conditions (13) (see Appendix for details).
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FIG. 5. (a) The maximum (with respect to x) of the function
f(x, zd), as a function of zd, for three different values of zc.
(b) The relative size S of the GWDC as a function of zd for
the same three values of zc as in panel (a). The three curves
in each panel correspond to a case with two discontinuous
transitions with S = 0 in between (zc = 1.847), the cusp
point (zc = 1.848) and a situation with no transitions (zc =
1.849). Both the connectivity and the dependency network
are Erdős-Rényi.
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C. Critical point and double transitions

Up to now we have assumed that the function f has
one maximum in the interval ]0, 1]. This is true for
Erdős-Rényi connectivity networks, but not necessarily
so for broader degree distributions. We consider scale-
free connectivity networks with degree distributions of
the form

Pc(k) = A(k +B)−γ , (14)

with finite lower and upper degree cutoffs kmin and kmax.
The parameter A is a normalization constant and B is
adjusted in order to achieve a given mean connectivity
degree zc. Figure 6(a) shows the phase diagram of a net-
work with a connectivity degree distribution of the form
(14) with zc = 3, γ = 3, kmin = 1 and kmax = 1000.
The diagram was obtained by numerical solution of Eq.
(8). (The dependency degree distribution is Erdős-Rényi
with mean dependency degree zd, as before.) The tran-
sition is continuous for low values and discontinuous for
high values of zd, similar to the case of Erdős-Rényi con-
nectivity networks. However, here there is no smooth
switch between the two types of transitions and the dis-
continuous line ends in a critical point. Also, in this
case there is a region (shaded green on Fig. 6(a)) where
double percolation transitions occur.
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FIG. 6. (a) Phase diagram for a scale-free connectivity net-
work (zc = 3, γ = 3, kmin = 1, kmax = 1000) and Erdős-Rényi
dependency network. Solid line represents continuous tran-
sitions, dashed line corresponds to discontinuous transitions.
The shaded green region indicates double percolation transi-
tions. (b) Function f(x) (scaled to be at the critical thresh-
old) for different values of the mean dependency degree zd.
(c) Relative size S of the GWDC as a function of connectivity
link activation probability p, for different values of zd. The
four curves in panels (b) and (c) correspond to the critical
point (zd = 1.896), a double transition (zd = 1.95), the point
where continuous transitions disappear (zd = 2.155) and a
discontinuous transition (zd = 2.25).

For low values of zd the function f has only one maxi-
mum (at x → 0), corresponding to a continuous transi-

tion as discussed already in Section IVA. With increas-
ing zd the function f develops a second local maximum
at some point x∗ > 0 [see solid red line in Fig. 6(b)],
corresponding to a singularity on the S(p) curve [solid
red line in Fig. 6(c)]. The conditions for this point (a
critical point) are

f ′(x∗) = f ′′(x∗) = 0. (15)

Expanding Eq. (8) about the point (x = x∗, p = pc)
[with pc = 1/f(x∗)] and using the conditions (15) we
find the behaviour S − Sc ∝ (p − pc)

1/3 close to the
critical point (see Appendix for details). This type of
singularity has been shown to appear in heterogeneous
threshold models, see e.g. [16, 17].
Increasing zd beyond the critical point we find that f

has two maxima, one at x → 0 and one at some x∗ > 0.
The first maximum corresponds to a continuous transi-
tion, and the second corresponds to a subsequent discon-
tinuous transition [see dotted blue line in Fig. 6(b,c)].
The second, discontinuous transition has the critical sin-
gularity S−Sc ∝ (p−pc)

1/2 already described in Section
IVA. The double transition exists in the region where f
has two local maxima and limx→0 f(x) > f(x∗), where
x∗ is the position of the second maximum. This region is
shown shaded green in Fig. 6(a). The thresholds of the
two transitions become equal when limx→0 f(x) = f(x∗)
[dashed green line in Fig. 6(b,c)], and above this point
only discontinuous transitions can happen [dotted ma-
roon line in Fig. 6(b,c)], as the local maximum at x → 0
now corresponds to a non-physical solution.
Similar double transitions were also found in a mixed

contagion model of simple and complex contagion [17].
The situation is similar in our case: the continuous tran-
sition signifies an ordinary percolation phase, determined
by the fraction of nodes without dependencies. The
second, discontinuous transition corresponds to a “com-
plex” phase, where at a certain point enough nodes have
enough redundant dependencies to participate in a larger
giant weakly dependent component.

D. Emergence of the critical point

For scale-free connectivity networks—i.e. ones with
a degree distribution of the form (14)—we find that
a critical point, and corresponding double transitions,
only exist in a certain range [γ(low), γ(high)] of the de-
gree distribution exponent. For zc = 3, kmin = 1 and
kmax = 1000 we find numerically that γ(low) ≈ 2.146 and
γ(high) ≈ 6.33 (to a precision of 0.001). Starting at high
values of γ (coming from narrower connectivity degree
distributions) the first point at which a critical point ap-

pears is (γ = γ(high), zd = z
(high)
d , pc = p

(high)
c ) for some

z
(high)
d and p

(high)
c . It can be shown that at this point S

has the critical behaviour S ∝ (p − p
(high)
c )1/3 (see Ap-

pendix for derivation). At the other extreme, however,

at the point (γ = γ(low), zd = z
(low)
d , pc = p

(low)
c ) we find
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S − S(low)
c ∝ (p− p(low)

c )1/4.

This unusual critical behaviour is explained in Section
V.

V. RESULTS FOR SCALE-FREE NETWORKS

As we saw in Section IVA, Erdős-Rényi connectiv-
ity networks exhibit a tricritical point where continuous
transitions switch smoothly to discontinuous ones. For
scale-free connectivity networks this switch may be non-
smooth for certain values of γ, due to the existence of a
critical point. A critical point and corresponding double
percolation transitions occur because the function f(x)
has two maxima (with respect to x) in a certain range of
zd and γ values. Figure 7(a) shows phase diagrams for
scale-free connectivity networks with different values of
γ. For relatively small and relatively large γ values the
switch between continuous and discontinuous transitions
is smooth, as for Erdős-Rényi connectivity networks. A
critical point exists only for intermediate γ values.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0

p
c

zd

γ = 6.5

γ = 4.5

γ = 3.5

γ = 3.0

γ = 2.7

γ = 2.4

γ = 2.2

γ = 2.0

0.4

0.45

0.5

0.55

0.6

1.0 1.1 1.2 1.3 1.4 1.5

p
c

zd

0.28

0.3

0.32

0.34

0.36

0.38

3.1 3.2 3.3 3.4

p
c

zd

(a)

(b) (c)

FIG. 7. (a) Phase diagrams for scale-free connectivity net-
works (zc = 3, kmin = 1, kmax = 1000) for different values
of the degree distribution exponent γ. Continuous transi-
tions are represented by solid lines and discontinuous ones
by dashed lines. A critical point and double transitions ap-
pear for intermediate values of γ, while there is a smooth
switch (at a tricritical point) between continuous and discon-
tinuous transitions for low and high γ values. (b,c) Parts of
two phase diagrams zoomed in from panel (a): γ = 4.5 (b)
and γ = 2.2 (c). In panels (b,c) non-physical solutions of Eq.
(8) and (9) are also shown.

It is important to note that the networks considered
here have a finite degree cutoff, therefore all moments of
the degree distribution are finite. We are, therefore, not
discussing the effect of asymptotically power-law degree
distributions. We are using bounded power-law degree
distributions to study the effect of broad distributions,
that may also occur in real-world networks, where, of
course, a finite cutoff always exists.

To understand how the critical point emerges it is use-
ful to first look at zoomed-in versions of the phase dia-
grams for γ = 4.5 [Fig. 7(b)] and γ = 2.2 [Fig. 7(c)].
(In these figures the transition lines corresponding to
the initial maximum are continued as long as this initial
maximum exists, however they do not represent physical
solutions after the intersection with the second transi-
tion line.) Figure 7(c) shows that for γ = 2.2 a tricriti-
cal point actually exists and the critical point occurs in
the discontinuous range, corresponding to discontinuous-
discontinuous double transitions. Considering that the
jump size in discontinuous transitions goes to zero at the
critical point, we know that close to the point where the
critical point emerges the two local maxima—of f(x)—
must be close together. In other words, the second lo-
cal maximum, and the corresponding critical point, is
a result of the initial maximum splitting into two local
maxima. Figures 7 (b,c) suggest that the critical point
emerges differently for high and low γ.

According to numerical analysis of the function f(x),
the highest γ value for which f(x) has two maxima for
some zd, i.e. a critical point exists, is γ(high) ≈ 6.33.
The lowest such γ value is γ(low) ≈ 2.146. (These values
apply to degree cutoffs kmin = 1, kmax = 1000.) We find
that the emergence of the second maximum at γ(high)

corresponds to the tricritical point “breaking up”, i.e.,
happens at x∗ = 0. At γ(low) the second maximum is a
result of the initial maximum (at some x∗ > 0) splitting
into two. These two different ways in which the second
maximum can emerge are explained graphically in Fig.
8.
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FIG. 8. Appearance of the second maximum of the function
f(x) for scale-free networks (zc = 3, kmin = 1, kmax = 1000).
Panels (a,c) show the appearance of the second maximum
at x = 0 [γ = 6.1, zd = 0.888 and zd = 0.889 for (a) and
(c), respectively]. Panels (b,d) show the appearance of the
second maximum at some x > 0 [γ = 2.15, zd = 3.357 and
zd = 3.359 for (b) and (d), respectively].

The fact that at γ(low) the second maximum emerges at
some x∗ > 0 means that the following conditions must
all hold,

f ′(x∗) = f ′′(x∗) = f ′′′(x∗) = 0, (16)

unlike at γ(high), where the emergence of the second max-
imum only has the conditions,

f ′(0) = f ′′(0) = 0.

Having a zero-condition also for the third derivative of
f results in an unusual critical behaviour at γ(low). Ex-
panding Eq. (8) about the point (x = x∗, p = pc) and
using the conditions (16) leads to

S − Sc ∝ (p− pc)
1/4, (17)

(see Appendix for details). This type of transition, in
our current setup, has little practical significance, how-
ever, as the emergence of the second maximum at γ(low)

happens at an x∗, which, although clearly positive, is
still quite close to zero. Also, the maximum of f is very
sharp, and f ′′′(x∗) ≈ 0 holds only in a very close vicin-
ity of x∗, making the type of singularity difficult to ob-
serve. It is nevertheless an interesting phenomenon and
its analysis sheds light on the necessary ingredients for
this unique critical behaviour to occur. Here we consid-
ered a scale-free connectivity degree distribution with
a finite upper cutoff, therefore the double transitions
and the unique critical exponent are not a consequence
of power-law asymptotics, and would probably also oc-
cur for different types of broad degree distributions in

this weak dependency model. Investigating the effect of
“truly” scale-free networks, with no degree cutoff in the
infinite network size limit, is left for future work.

Figure 9 presents a map of the complex landscape of
various types of transitions that are possible in the scale-
free networks considered here. The boundary curves
were determined numerically.
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FIG. 9. Map of the different types of phase transitions oc-
curring in a model of random scale-free connectivity net-
work coupled with an Erdős-Rényi dependency network. The
scale-free connectivity network had a degree distribution of
the form of Eq. (14), the parameter B always adjusted to
achieve a mean connectivity degree of zc = 3. The green
(blue) region corresponds to a single continuous (discontin-
uous) transition. The yellow (red) region corresponds to
a double transition of the type “continuous-discontinuous”
(“discontinuous-discontinuous”). The point marked with a
green triangle corresponds to the conditions (16) and the crit-
ical behaviour (17). Right panel is a zoomed-in version of the
framed rectangular area of the left panel.

VI. EFFECT OF CORRELATION BETWEEN
CONNECTIVITY AND DEPENDENCY DEGREE

Degree-degree correlations are a common feature
among many real-world networks, both natural and ar-
tificial. In single-layer networks, without dependencies,
positive (assortative) correlations between nearest neigh-
bour degrees increase the robustness of networks [18],
i.e., decrease the percolation threshold in random perco-
lation (in terms of the fraction of active links). Similar
results were found for multiplex networks [19–21]: pos-
itive correlations between degrees of nodes on different
layers made networks more robust against random dam-
age. Here we investigate the effect of positive correla-
tions between the connectivity and dependency degrees
of nodes on the weakly dependent percolation thresh-
old. There are various ways in which such a correlated
network model could be built. As before we want to
start with an uncorrelated random connectivity network
with arbitrary degree distribution Pc(k). We also fix
the mean dependency degree, zd, which may be differ-
ent from zc. To allow for simple, exact, self-consistency
equations (in the infinite network size limit) we assume
that the distribution of dependency degrees for a node
of given connectivity degree is given by
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P (kd=k′|kc=k)=(1−f)
zk

′

d e−zd

k′!
+f

(k zd
zc
)k

′

e−(k
z
d

zc
)

k′!
,

(18)

where f is a tuning parameter: it allows us to interpolate
between an Erdős-Rényi dependency network which has
no correlation with the connectivity network (f = 0),
and a network in which a node’s dependency degree is
Poisson distributed, with the node’s rescaled connectiv-
ity degree as the mean (maximal correlation, f = 1).
This kind of network construction resembles the “hid-
den variable” model of Chung and Lu [22, 23], where a
unique degree distribution is prescribed for each node,
parametrized by the expected degree, a hidden variable
of the given node. It is easy to check that the mean
degree of the dependency network, using Eq. (18), is
indeed equal to zd, for any f . (Note that f = 1 in this
model still does not mean complete positive correlation
in, e.g., the Pearson correlation coefficient sense, as the
connectivity and dependency degrees will not match ex-
actly. An exact match would not be attainable if we
want to maintain the possibility of zc 6= zd.)
To write exact self-consistency equations for the

weakly dependent percolation model, we start by writing
the degree distribution of the dependency network,

Pd(k
′)=

∞
∑

k=0

Pc(k)

[

(1−f)
zk

′

d e−zd

k′!
+f

(k zd
zc
)k

′

e−(k
z
d

zc
)

k′!

]

.

(19)

Since the connectivity network is uncorrelated, the de-
pendency network is also uncorrelated, with degree dis-
tribution given by Eq. (19), and correlations only ex-
ist between the connectivity and dependency degrees of
nodes. Let P (k, k′) denote the probability that the con-
nectivity degree of a randomly chosen node is k and its
dependency degree is k′. This can be expressed in two
equivalent ways,

P (k, k′) = Pc(k)P (kd = k′|kc = k)

= Pd(k
′)P (kc = k|kd = k′). (20)

Using Eqs. (18) and (20) we can write the following,

P (kc = k|kd = k′) =

=
Pc(k)

Pd(k′)

[

(1− f)
zk

′

d e−zd

k′!
+ f

(k zd
zc
)k

′

e−(k
z
d

zc
)

k′!

]

.

To proceed it will be useful to express Pc(k, k
′), the

probability that a node arrived at by a random connec-
tivity link, has connectivity degree k and dependency
degree k′:

Pc(k, k
′) =

=
kPc(k)

〈k〉c
P (kd = k′|kc = k)

=
kPc(k)

〈k〉c

[

(1− f)
zk

′

d e−zd

k′!
+ f

(k zd
zc
)k

′

e−(k
z
d

zc
)

k′!

]

.

Similarly, let Pd(k, k
′) be the probability that a node ar-

rived at by a random dependency link, has connectivity
degree k and dependency degree k′:

Pd(k,k
′)=

=
k′Pd(k

′)

〈k〉d
P (kc=k|kd=k′)

=
k′Pd(k

′)

〈k〉d

Pc(k)

Pd(k′)

[

(1−f)
zk

′

d e−zd

k′!
+f

(k zd
zc
)k

′

e−(k
z
d

zc
)

k′!

]

=
k′Pc(k)

〈k〉d

[

(1−f)
zk

′

d e−zd

k′!
+f

(k zd
zc
)k

′

e−(k
z
d

zc
)

k′!

]

.

Finally, let us express the probability Pd→c(k) that a
node arrived at by a random dependency link, has con-
nectivity degree k,

Pd→c(k)=

=

∞
∑

k′=1

Pd(k,k
′)

=

∞
∑

k′=1

k′Pc(k)

〈k〉d

[

(1−f)
zk

′

d e−zd

k′!
+f

(k zd
zc
)k

′

e−(k
z
d

zc
)

k′!

]

.

With these quantities we can now set up exact self-
consistency equations for this correlated model. The
probabilities x and y have the same meaning as before.

x = p

∞
∑

k=1

∞
∑

k′=0

{

Pc(k, k
′)
[

1− (1 − x)k−1
]

×

×
[

δk′,0 + 1− (1− y)k
′

]}

, (21)

y =

∞
∑

k=0

Pd→c(k)
[

1− (1− x)k
]

. (22)

The probability that a random node belongs to the
GWDC is now given as

S=

∞
∑

k=0

∞
∑

k′=0

P (k,k′)
[

1−(1−x)k
]

[

δk′,0+1−(1−y)k
′

]

.
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Plugging Eq. (22) into Eq. (21) results in a single self-
consistency equation, and allows for the same kind of
analysis as for the uncorrelated model in Sections III
and IV.

We considered the above model for different connectiv-
ity networks and different degrees of positive correlation
between connectivity and dependency degrees. To as-
sess the robustness of these networks, from Eqs. (21)
and (22) we numerically identified pc, the lowest link
activation probability that provides a nonzero value of
S. This threshold may correspond to a continuous or
a discontinuous transition, but here we are only inter-
ested in the value pc where the transition occurs. Figure
10 shows pc as a function of the mean dependency de-
gree, zd, for different values of the correlation parameter
f . As expected, in Erdős-Rényi connectivity networks
[Fig. 10 (a)], correlations only have a moderate effect,
since the connectivity and dependency degrees in this
case cannot be too different, irrespective of the degree of
correlation. It is clear, however, that increasing positive
correlation increases robustness (i.e., decreases pc) for a
relatively dense dependency network. (Note that the op-
posite must be true for the strong dependency model of
[6].) This can be easily understood qualitatively: higher
degree nodes, which are more important for percolation,
have more dependency links, i.e., have a higher prob-
ability of surviving. Interestingly, the opposite is true
for low density dependency networks (zd smaller than
≈ 0.5): here higher positive correlation means that high
degree nodes have a higher probability of actually hav-
ing at least one dependency link, as most dependency
degrees are now 0 or 1. The same dual phenomenon is
seen amplified for random scale-free networks: positive
correlation dramatically increases robustness for higher
density of dependency links, while it decreases robust-
ness for low dependency density [Fig 10 (b,c,d)]. The
effect becomes greater for smaller values of the degree
distribution exponent γ. The low dependency density
regime also becomes narrower with decreasing γ. For
maximal positive correlation (f = 1) and γ = 2, the
value of pc is practically the same as the percolation
threshold for ordinary percolation (without any depen-
dencies), irrespective of the density of dependency links.
This suggests that networks, in this model setting, can
be efficiently protected from random damage by strong
enough positive correlation between connectivity and de-
pendency degrees. The scale-free networks considered
here had a finite degree cutoff, so pc always remains
nonzero, i.e., there is no true “hyper-resilience”, which
is a hallmark of a true, asymptotically power-law de-
gree distribution. It is an interesting problem for future
work to check if the percolation threshold can indeed go
to zero for the maximally correlated case, for any value
of zd, when considering a power-law connectivity degree
distribution without a degree cutoff.
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FIG. 10. Phase diagrams for the model of correlated con-
nectivity and dependency degrees defined by the distribution
(18). The percolation threshold values, pc, were determined
by numerical analysis of Eqs. (21) and (22). The mean con-
nectivity degree was zc = 3 for all networks. For scale-free
connectivity networks the degree distribution (14) was used,
with degree cutoff values kmin = 1 and kmax = 1000. [For
the dependency degree distributions the cutoff values were
changed to kmin = 0 and kmax = 1200, because in the model
described by Eq. (18) a dependency degree equal to zero
is possible and also the biggest dependency degree may be
slightly greater than the biggest connectivity degree.]

VII. DISCUSSION AND CONCLUSIONS

We have investigated the percolation properties of ran-
dom networks where nodes can have dependency neigh-
bours, but only require that at least one of them be in
the same component. Assuming also a random network
of dependency links, we have demonstrated that net-
works in this model are considerably more robust than
in the strong dependency model of [6], due to the redun-
dancy of dependency links for dense enough dependency
networks. Our weak dependency model predicts a non-
monotonic behaviour of the size of the GWDC as a func-
tion of the mean dependency degree: both low and high
density of dependency links allows for robust structures,
with more fragile structures in between. This also gives
a natural scale for “maximum fragility” in terms of the
mean dependency degree.

Studying Erdős-Rényi and scale-free connectivity net-
works we have revealed a wide variety of percolation
critical phenomena. Varying the mean dependency de-
gree, continuous and discontinuous hybrid transitions
were found for Erdős-Rényi connectivity networks, sep-
arated by a tricritical point. We have derived expres-
sions for the different threshold conditions in terms of
the moments of the connectivity and dependency degree
distributions. We found standard mean field critical be-
haviour for continuous transitions, and the same type
of critical behaviour for the discontinuous transitions as
already seen in k-cores and multiplex networks, with or-
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der parameter exponent 1/2. We have identified a spe-
cial “cusp” point, above which the system is always sta-
ble, irrespective of the density of dependency links. At
this point the order parameter exponent of discontinuous
transitions was found to change from 1/2 to 1.
We have found continuous and discontinuous hybrid

transitions also for scale-free connectivity networks, in
the low and high dependency regimes, respectively. For
a certain range of the degree distribution exponent γ the
switch between the two types of transitions was found to
be non-smooth, corresponding to the existence of a crit-
ical point marking the end of the line of discontinuous
transitions. In this range double percolation transitions
were observed. The order parameter exponent at the
critical point was found to be 1/3, as seen also in het-
erogeneous k-core, and bootstrap percolation. For the
smallest γ value where a critical point first appears, we
found the exponent to change from 1/3 to 1/4 at the
(emergent) critical point. The power-law degree distri-
bution used here had a finite cutoff, and hence did not
represent a “truly” scale-free network. The critical point,
double transitions and the unique 1/4 exponent would
likely also appear in other forms of broad degree dis-
tributions, not necessarily power-law. These effects can
be attributed mainly to the structure of the weak de-
pendency model. Studying the effect of asymptotically
power-law degree distributions is an interesting problem
for future work.
We have investigated the effect of correlation between

connectivity and dependency degrees, and found that
positive correlation enhances robustness, except for net-
works with a low density of dependency links. The ro-
bustness enhancing effect is amplified for scale-free con-
nectivity networks. For a low enough value of γ, strong
enough positive correlation between connectivity and de-
pendency degree appears to completely negate the effect
of dependencies: the percolation threshold is practically
the same as for the network without any dependencies.
The study of asymptotically power-law connectivity de-
gree distributions is left for future work.
In addition to degree-degree correlations, network

models with a certain fraction of connectivity and de-
pendency links overlapping, may provide a more realis-
tic representation of many real-world systems. Our weak
dependency model may also be combined with the strong
variant: certain nodes may follow the former rule, oth-
ers may follow the latter. Such generalizations may be
interesting avenues to consider for future research.
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APPENDIX: DERIVATION OF ORDER PARAMETER EXPONENTS

Here we derive the order parameter exponent for the different types of phase transitions that are discussed in the
main text. Our starting point is the self-consistency equation

x = p [1−Hc(1− x)] [1 + Pd(0)−Gd(Gc(1− x))] ≡ pΨ(x). (A1)

In the main text we defined the function f(x) = Ψ(x)/x and discussed the various threshold conditions in terms of
the derivatives of f . To derive the order parameter exponents it is more convenient to consider the function

g(x, p) = pΨ(x)− x.

The conditions in terms of the derivatives of f can be easily transformed into conditions in terms of the derivatives
of g. Equation (A1) can be written as

g(x, p) = 0.

Note that Ψ(0) = 0, which implies that the “unmixed” partial derivatives of g with respect to p are all zero at x = 0.
We will use this fact extensively.

Continuous transitions

A continuous transition happens at x = 0, p = pc, so we expand g(x, p) about the point (0, pc):
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g(0 + δx, pc + δp) = g(0, pc) +
∂g

∂x

∣

∣

∣

∣

0,pc

δx+
∂g

∂p

∣

∣

∣

∣

0,pc

δp+
1

2

∂2g

∂x2

∣

∣

∣

∣

0,pc

(δx)2+

+
1

2

∂2g

∂p2

∣

∣

∣

∣

0,pc

(δp)2 +
∂2g

∂x∂p

∣

∣

∣

∣

0,pc

(δx)(δp) + . . . . (A2)

We know that g(0, pc) = 0. Requiring also that g(0 + δx, pc + δp) = 0 (i.e., we are expanding along the solution
curve) we have that the expansion terms of equal powers on the right-hand side of Eq. (A2) must cancel out. The
unmixed partial derivatives of g with respect to p are all 0 at x = 0. The condition for a continuous transition, as
expressed in terms of the function f , is

pc

(

lim
x→0

f(x)
)

= 1.

This condition is equivalent to

g(0, pc) =
∂g

∂x

∣

∣

∣

∣

0,pc

= 0.

With the above conditions, the leading terms of Eq. (A2) are

1

2

∂2g

∂x2

∣

∣

∣

∣

0,pc

(δx)2 +
∂2g

∂x∂p

∣

∣

∣

∣

0,pc

(δx)(δp) = 0,

which results in

δx ∝ δp.

Discontinuous transitions

A discontinuous transition happens at some x = x∗, p = pc, so we expand g(x, p) about the point (x∗, pc):

g(x∗ + δx, pc + δp) = g(x∗, pc) +
∂g

∂x

∣

∣

∣

∣

x∗,pc

δx+
∂g

∂p

∣

∣

∣

∣

x∗,pc

δp+
1

2

∂2g

∂x2

∣

∣

∣

∣

x∗,pc

(δx)2+

+
1

2

∂2g

∂p2

∣

∣

∣

∣

x∗,pc

(δp)2 +
∂2g

∂x∂p

∣

∣

∣

∣

x∗,pc

(δx)(δp) + . . . . (A3)

In this case, since x∗ > 0, the unmixed derivatives of g with respect to p are nonzero. The conditions for a
discontinuous transition, as expressed in terms of the function f , are

pcf(x
∗) = 1,

f ′(x∗) = 0.

These conditions are equivalent to

g(x∗, pc) =
∂g

∂x

∣

∣

∣

∣

x∗,pc

= 0.

With the above conditions, the leading terms in Eq. (A3) are

∂g

∂p

∣

∣

∣

∣

x∗,pc

δp+
1

2

∂2g

∂x2

∣

∣

∣

∣

x∗,pc

(δx)2 = 0,

which results in

δx ∝ (δp)1/2.
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Tricritical point

A tricritical point occurs at x = 0, p = pc, so we expand g(x, p) about the point (0, pc):

g(0 + δx, pc + δp) = g(0, pc) +
∂g

∂x

∣

∣

∣

∣

0,pc

δx+
∂g

∂p

∣

∣

∣

∣

0,pc

δp+
1

2

∂2g

∂x2

∣

∣

∣

∣

0,pc

(δx)2+

+
1

2

∂2g

∂p2

∣

∣

∣

∣

0,pc

(δp)2 +
∂2g

∂x∂p

∣

∣

∣

∣

0,pc

(δx)(δp)+

+
1

6

∂3g

∂x3

∣

∣

∣

∣

0,pc

(δx)3 +
1

6

∂3g

∂p3

∣

∣

∣

∣

0,pc

(δp)3+

+
1

2

∂3g

∂x2∂p

∣

∣

∣

∣

0,pc

(δx)2(δp) +
1

2

∂3g

∂x∂p2

∣

∣

∣

∣

0,pc

(δx)(δp)2 + . . . . (A4)

As before, for continuous transitions, the unmixed derivatives of g with respect to p are all 0. The conditions for a
tricritical point, as expressed in terms of the function f , are

pc

(

lim
x→0

f(x)
)

= 1,

lim
x→0

f ′(x) = 0.

These conditions are equivalent to

g(0, pc) =
∂g

∂x

∣

∣

∣

∣

0,pc

=
∂2g

∂x2

∣

∣

∣

∣

0,pc

= 0.

With the above conditions, the leading terms in Eq. (A4) are

∂2g

∂x∂p

∣

∣

∣

∣

0,pc

(δx)(δp) +
1

6

∂3g

∂x3

∣

∣

∣

∣

0,pc

(δx)3 = 0,

which results in

δx ∝ (δp)1/2.

Cusp point

To describe this point, as discussed in the main text, we assume p = 1 and we consider f to be a function
of x and zd (the mean dependency degree). The function g is now also assumed to be a function of x and zd:
g(x, zd) = Ψ(x, zd) − x = xf(x, zd) − x. The cusp point occurs at some x = xcp, zd = zcpd , so we expand g(x, zd)
about the point (xcp, zcpd ):

g(xcp + δx, zcpd + δzd) = g(xcp, zcpd ) +
∂g

∂x

∣

∣

∣

∣

xcp,zcp

d

δx+
∂g

∂zd

∣

∣

∣

∣

xcp,zcp

d

δzd +
1

2

∂2g

∂x2

∣

∣

∣

∣

xcp,zcp

d

(δx)2+

+
1

2

∂2g

∂z2d

∣

∣

∣

∣

xcp,zcp

d

(δzd)
2 +

∂2g

∂x∂zd

∣

∣

∣

∣

xcp,zcp

d

(δx)(δzd) + . . . . (A5)

The conditions for the cusp point, as expressed in terms of the function f , are

f(xcp, zcpd ) = 1,

∂f

∂x

∣

∣

∣

∣

xcp,zcp

d

= 0

∂f

∂zd

∣

∣

∣

∣

xcp,zcp

d

= 0.
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These conditions are equivalent to

g(xcp, zcpd ) =
∂g

∂x

∣

∣

∣

∣

xcp,zcp

d

=
∂g

∂zd

∣

∣

∣

∣

xcp,zcp

d

= 0.

With the above conditions, the leading terms in Eq. (A5) are

1

2

∂2g

∂x2

∣

∣

∣

∣

xcp,zcp

d

(δx)2 +
1

2

∂2g

∂z2d

∣

∣

∣

∣

xcp,zcp

d

(δzd)
2 +

∂2g

∂x∂zd

∣

∣

∣

∣

xcp,zcp

d

(δx)(δzd) = 0,

which results in

δx ∝ δzd.

Critical point

A critical point occurs at some x = x∗, p = pc, so we expand g(x, p) about the point (x∗, pc):

g(x∗ + δx, pc + δp) = g(x∗, pc) +
∂g

∂x

∣

∣

∣

∣

x∗,pc

δx+
∂g

∂p

∣

∣

∣

∣

x∗,pc

δp+
1

2

∂2g

∂x2

∣

∣

∣

∣

x∗,pc

(δx)2+

+
1

2

∂2g

∂p2

∣

∣

∣

∣

x∗,pc

(δp)2 +
∂2g

∂x∂p

∣

∣

∣

∣

x∗,pc

(δx)(δp)+

+
1

6

∂3g

∂x3

∣

∣

∣

∣

x∗,pc

(δx)3 +
1

6

∂3g

∂p3

∣

∣

∣

∣

x∗,pc

(δp)3+

+
1

2

∂3g

∂x2∂p

∣

∣

∣

∣

x∗,pc

(δx)2(δp) +
1

2

∂3g

∂x∂p2

∣

∣

∣

∣

x∗,pc

(δx)(δp)2 + . . . . (A6)

Here, as in the case of discontinuous transitions, the unmixed derivatives of g with respect to p are nonzero. The
conditions for a critical point, as expressed in terms of the function f , are

pcf(x
∗) = 1,

f ′(x∗) = 0,

f ′′(x∗) = 0.

These conditions are equivalent to

g(x∗, pc) =
∂g

∂x

∣

∣

∣

∣

x∗,pc

=
∂2g

∂x2

∣

∣

∣

∣

x∗,pc

= 0.

With the above conditions, the leading terms in Eq. (A6) are

∂g

∂p

∣

∣

∣

∣

x∗,pc

δp+
1

6

∂3g

∂x3

∣

∣

∣

∣

x∗,pc

(δx)3 = 0,

which results in

δx ∝ (δp)1/3.
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Birth point of critical point (at γ(high))

The critical point, at γ(high) emerges from a tricritical point, which always occurs at x = 0, p = pc, so we expand
g(x, p) about the point (0, pc):

g(0 + δx, pc + δp) = g(0, pc) +
∂g

∂x

∣

∣

∣

∣

0,pc

δx+
∂g

∂p

∣

∣

∣

∣

0,pc

δp+
1

2

∂2g

∂x2

∣

∣

∣

∣

0,pc

(δx)2+

+
1

2

∂2g

∂p2

∣

∣

∣

∣

0,pc

(δp)2 +
∂2g

∂x∂p

∣

∣

∣

∣

0,pc

(δx)(δp)+

+
1

6

∂3g

∂x3

∣

∣

∣

∣

0,pc

(δx)3 +
1

6

∂3g

∂p3

∣

∣

∣

∣

0,pc

(δp)3+

+
1

2

∂3g

∂x2∂p

∣

∣

∣

∣

0,pc

(δx)2(δp) +
1

2

∂3g

∂x∂p2

∣

∣

∣

∣

0,pc

(δx)(δp)2 + . . . . (A7)

The unmixed derivatives of g with respect to p are 0. The conditions for the birth point of the critical point at x = 0,
as expressed in terms of the function f , are

pc

(

lim
x→0

f(x)
)

= 1,

lim
x→0

f ′(x) = 0,

lim
x→0

f ′′(x) = 0.

These conditions are equivalent to

g(0, pc) =
∂g

∂x

∣

∣

∣

∣

0,pc

=
∂2g

∂x2

∣

∣

∣

∣

0,pc

=
∂3g

∂x3

∣

∣

∣

∣

0,pc

= 0.

With the above conditions, the leading terms in Eq. (A7) are

∂2g

∂x∂p

∣

∣

∣

∣

0,pc

(δx)(δp) +
1

24

∂4g

∂x4

∣

∣

∣

∣

0,pc

(δx)4 = 0,

which results in

δx ∝ (δp)1/3.

Birth point of critical point (at γ(low))

The critical point, at γ(low), emerges at some x = x∗, p = pc, so we expand g(x, p) about the point (x∗, pc):

g(x∗ + δx, pc + δp) = g(x∗, pc) +
∂g

∂x

∣

∣

∣

∣

x∗,pc

δx+
∂g

∂p

∣

∣

∣

∣

x∗,pc

δp+
1

2

∂2g

∂x2

∣

∣

∣

∣

x∗,pc

(δx)2+

+
1

2

∂2g

∂p2

∣

∣

∣

∣

x∗,pc

(δp)2 +
∂2g

∂x∂p

∣

∣

∣

∣

x∗,pc

(δx)(δp)+

+
1

6

∂3g

∂x3

∣

∣

∣

∣

x∗,pc

(δx)3 +
1

6

∂3g

∂p3

∣

∣

∣

∣

x∗,pc

(δp)3+

+
1

2

∂3g

∂x2∂p

∣

∣

∣

∣

x∗,pc

(δx)2(δp) +
1

2

∂3g

∂x∂p2

∣

∣

∣

∣

x∗,pc

(δx)(δp)2 + . . . . (A8)
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The unmixed derivatives of g with respect to p are nonzero. The conditions for the birth point of the critical point,
as expressed in terms of the function f , are

pcf(x
∗) = 1,

f ′(x∗) = 0,

f ′′(x∗) = 0,

f ′′′(x∗) = 0.

These conditions are equivalent to

g(x∗, pc) =
∂g

∂x

∣

∣

∣

∣

x∗,pc

=
∂2g

∂x2

∣

∣

∣

∣

x∗,pc

=
∂3g

∂x3

∣

∣

∣

∣

x∗,pc

= 0.

With the above conditions, the leading terms in Eq. (A8) are

∂g

∂p

∣

∣

∣

∣

x∗,pc

δp+
1

24

∂4g

∂x4

∣

∣

∣

∣

x∗,pc

(δx)4 = 0,

which results in

δx ∝ (δp)1/4.
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