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Abstract

We study the massless Dirac field on the line in the presence of a point-like defect char-
acterised by a unitary scattering matrix, that allows both reflection and transmission.
Considering this system in its ground state, we derive the modular Hamiltonians of the
subregion given by the union of two disjoint equal intervals at the same distance from
the defect. The absence of energy dissipation at the defect implies the existence of two
phases, where either the vector or the axial symmetry is preserved. Besides a local term,
the densities of the modular Hamiltonians contain also a sum of scattering dependent
bi-local terms, which involve two conjugate points generated by the reflection and the
transmission. The modular flows of each component of the Dirac field mix the trajectory
passing through a given initial point with the ones passing through its reflected and trans-
mitted conjugate points. We derive the two-point correlation functions along the modular
flows in both phases and show that they satisfy the Kubo-Martin-Schwinger condition.
The entanglement entropies are also computed, finding that they do not depend on the
scattering matrix.
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1 Introduction

The study of the geometric entanglement between complementary spatial regions has provided
important insights in quantum field theory, quantum gravity, condensed matter and quantum
information during the last few decades.

Considering a quantum system in the state described by a density matrix p and assuming
that its Hilbert space is factorised as H = H4 ® Hp in correspondence with the spatial
bipartition A U B, the reduced density matrix p4 oc e %4 of the subregion A is a hermitean
and positive semidefinite operator normalised by Tr,p4 = 1. The hermitean operator K4 is
the modular Hamiltonian (also known as entanglement Hamiltonian) of the region A [1, 2]
and its spectrum provides the entanglement entropy S4 = — Tr,(palogpa). The modular
Hamiltonian K4 leads to define the family of unitary operators U (1) = e K4 parameterised
by the modular parameter 7 € R, that generates the modular flow O(7) = U(7) OU(—7) of
any operator O localised in A. This modular flow describes the intrinsic internal dynamics
induced by the reduced density matrix.

It is important analytic expressions for the modular Hamiltonians in terms of the funda-
mental fields and for the corresponding modular flows. The first seminal example, in generic



spacetime dimensions, is the modular Hamiltonian of half space > 0 for a Lorentz invariant
quantum field theory in its vacuum. This modular Hamiltonian, found by Bisognano and
Wichmann [3, 4], is given by the boost generator in the z-direction. In Conformal Field The-
ory, by combining the result of Bisognano and Wichmann with the conformal symmetry, some
modular Hamiltonians can be written in explicit form [5-10]. All these modular Hamiltonians
are local: they are written as an integral over A of a local operator multiplied by a proper
weight function.

The first example of non-local modular Hamiltonian has been found by Casini and Huerta
[11] for the massless Dirac field in its ground state and on the infinite line, when the subsystem
A is the union of disjoint intervals, by employing the lattice results for this operator obtained
by Peschel [12] (see also the reviews [13, 14]). In [11] also the modular flow of the Dirac
field has been found, while the two-point correlators along this evolution satisfying the Kubo-
Martin-Schwinger (KMS) condition [1] have been written in [15]. Other modular Hamiltonians
for the massless Dirac fermion containing non-local terms have been discussed in [16-19].

In the examples of modular Hamiltonians mentioned above, the underlying system is invari-
ant under spatial translations. The simplest way to break this symmetry in 1 4+ 1 dimensions
is to consider a quantum field theory on the half-line. For the massless Dirac field on the half
line, the energy conservation imposed in any boundary conformal field theory [20-22] allows
only two kinds of boundary conditions [23, 24]. Correspondingly, two inequivalent models
are defined: the vector phase and the axial phase. Each phase is parameterised by an angle
and characterised by specific conservation laws; indeed, either the charge or the helicity is
preserved but not both of them [25]. Instead, for the massless Dirac field on the line both
these symmetries are conserved. In these two inequivalent phases, the modular Hamiltonians
of an interval and the corresponding modular flows for the Dirac field have been studied in
[26]. These modular Hamiltonians contain bi-local terms and preserve the symmetry of the
underlying phase.

The invariance under spatial translations on the line is broken also by introducing a point-
like defect. A basic difference between boundaries and defects (see [27] for a recent review)
is that apart from reflection, the latter ones are able to transmit as well. In the theory of
quantum transport [28-31], a defect is usually implemented by a one-body scattering matrix,
which describes its interaction with the bulk particles. Such a scattering matrix can be
introduced by adding to the bulk Hamiltonian an interaction term localised at the defect.
This is for instance the conventional approach to the Kondo effect [32-35]. Another option,
which works for point-like defects, is to impose boundary conditions on the bulk fields at the
defect. This approach finds relevant applications to the transport in quantum wire junctions.
The boundary conditions characterising the defect have an important physical impact. For
quantum wires, where the universality in the bulk is described by a Luttinger liquid, the
boundary conditions at the junction can give origin to rich phase diagrams [36-38], whose
degree of universality has still not been fully understood. Instead, we recall in this respect
that for one dimensional systems with a single boundary, conformal field theory provides a
complete classification of the universality classes [20-22].
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Figure 1: The bipartition of the line mainly considered in this manuscript: Two disjoint equal
intervals with length b — a separated by a distance 2a, placed symmetrically with respect to

a point-like defect described by the scattering matrix S.

The entanglement entropies, namely the entanglement entropy S4 and the Rényi entropies
51(4”) = ﬁlog(Trpﬁ) with n > 2, have been studied in many models in the presence of
a boundary or a defect [39-47]. Some local entanglement Hamiltonians in models with a
boundary have been explored in [9, 10, 26, 48, 49].

In this manuscript we consider the massless Dirac fermion on the line in the presence of a
point-like defect and in its ground state. The defect is characterised by a unitary scattering
matrix S, which is determined by imposing the most general scale invariant boundary condi-
tions without energy dissipations. In this setup, we derive the modular Hamiltonians of the
union of two disjoint equal intervals at the same distance from the defect (see Fig.1). The
associated modular flows are also investigated. Our analysis heavily employs the results of
[26] for the modular Hamiltonian of one interval on the half-line.

The outline of the manuscript is as follows. In Sec. 2 we discuss the massless Dirac fermion
on the line in the presence of a defect, introducing also the auxiliary fields. These new fields
are used in Sec. 3 to write the modular Hamiltonians. In Sec.4 we compute the entanglement
entropies. The modular flows and the correlation functions along them are discussed in Sec. 5
and in Sec. 6 respectively. In Sec.7 we consider some limits of the spatial bipartition shown
in Fig.1 where the modular Hamiltonians become local. In Sec.8 we extend the modular
Hamiltonians and their modular flows to a generic value of the physical time. The results are
summarised and further discussed in Sec.9.

2 Dirac fermions with a point-like defect on the line

In this section we review the basic properties of the massless Dirac field with a point-like defect.
The defect, localised in the origin « = 0 of the infinite line R without loss of generality, splits
the line in two half-lines (edges). In order to treat these two edges in a symmetric way, we

find it convenient to adopt the following coordinates
{(z,i) :2>0,i=1,2} (2.1)

where x indicates the distance from the defect and ¢ labels the edges, as shown in Fig. 1.



2.1 General features

The massless Dirac field (¢, z,4) in the i-th half-line is the following doublet made by the

two complex fields
N ¢1(t, z, Z)
vl = <w2<t7x, z‘)) 22

whose dynamics in the coordinates (2.1) is described by the Dirac equation

(’Ytat - ’Y:L‘a:c)i/)(tafa 7!) =0 x>0 (23)

%2((1) (1)) %:G _01). (2.4)

The associated energy-momentum tensor is

where

Ttt(ta €Ly Z) = % [(&W*) TtV ¢ - ¢* YtV (&ﬂﬁ)] (tv T, Z) (2'5)

T (t, Z, Z) = % [(3t¢*) YtV w - ¢* NtV (8,51/1)] (ta €, Z) (26)

where * denotes Hermitean conjugation.

The bulk dynamics is invariant under both U, (1) vector and U, (1) axial phase transforma-
tions, which are defined respectively by

Uity i) — & (8, 4) Up(t,m,4) > OV g (1, 4) 0. ,0. € [0,2).
(2.7)
The corresponding vector current {j;, j,} and axial current {k;, k;} are given by

jt<t7x7i) - k‘z<t,.%',i) - WJWJ] (t, .%',i) jtc(tv x72‘> - kt(tv T, Z) = W*%%ﬂb] (t7mvi) (2'8)

which describe respectively the electric charge and helicity transport in the system.

The equation of motion (2.3) implies the local conservation laws in the bulk, namely
Ty (t,x,i) — Op Ty (t,z,i) =0 z>0 (2.9)
and
Oje(t, ) — Opju(t,x,i) =0 Opky(t, ) — Opky(t,z,i) =0 z>0. (2.10)

In order to determine the dynamics of the system on the line, we must fix the boundary
conditions at = 0. These boundary conditions define the defect.

In this manuscript we consider the most general boundary conditions which ensure energy
conservation. This requirement is equivalent to impose [23] the validity of the Kirchhoff rule

2
lim ;th(t,x, i) =0 VteR. (2.11)
1=



In the presence of defects which allow both reflection and transmission, the Kirchhoff rule
(2.11) is the counterpart of the Cardy condition [20-22], imposing the vanishing of the energy
flow through a boundary. Using the explicit form of T}, in (2.6), we find that the condition
(2.11) can be satisfied in two ways: either

2
7=1

or 9
7=1

where S™ and S® are generic 2 x 2 unitary matrices whose physical meaning is clarified below.

Like on the half-line [23, 24, 26], the boundary conditions (2.12) and (2.13) are scale in-
variant and determine the bulk internal symmetry group. In particular, the condition (2.12)
preserves U, (1), but breaks down U,(1). Instead, the condition (2.13) preserves U, (1), break-
ing down U, (1). Thus, in the presence of an energy preserving defect, one cannot keep both
the U,(1) and U,(1) symmetries. This means that (2.12) and (2.13) define two inequivalent
models, called respectively vector phase and axial phase throughout the manuscript.

The components of the Dirac field satisfy the following anticommutation relations at equal
time

[ (tx1,00) 5 ), (8, @2,00) | | = Gy Giyiy O(1 — 222) (2.14)

[ (tx1,00) 5 ey (t,22,00) | = [, (8 21,00) 5 47, (8, w,40) ], = O (2.15)

In order to construct the quantum fields satisfying the equation of motion (2.3), the equal

time anticommutatots (2.14)-(2.15) and the boundary conditions (2.12)-(2.13), we introduce
two CAR algebras A, and By generated by

{ai(k), aX(k) : k>0,i=1,2},  {b(k), bi(k) : k>0,i=1,2}, (2.16)

7

which satisfy the canonical anti-commutation relation (CAR) and anti-commute each other.

In the vector phase, the components of the field can be decomposed as [23]

2
* dk : .
M(z +t,0) = /0 o [ai(k‘) e R 1N " SbE (k) e‘k(:’:“)} (2.17)
j=1
% qk [ <& : .
Aoz —t,4) = /0 o [ > S a;(k) e 4 b (k) e_lk(w_t)] (2.18)
j=1
whereas in the axial phase the decomposition reads
©dk [ o . .
arti) = [ [ by (k) S ) L gt (k) eikla+) ] (2.19)
0 -
7=1
©dk [ . .
o=t = [T E s meet rime o] @a)
j=1



The two-point functions of these fields in the Fock representation of the CAR algebras A4
and B4 provide the basic ingredients to study the modular Hamiltonians.

In the vector phase, one finds the following two-point vacuum expectation values

(A (1 +t1,01) Al (22 + ta,i2)) = diy4iy C(t12 + T12) (2.21)
(Aa(x1 — t1,11) A5(x2 — ta,i2)) = iy C(t12 — T12) (2.22)
(Ar(z1 + t1,01) Ns(w2 — ta,d2)) = SV}, Clt1z + Z12) (2.23)
(Aa(z1 — t1,11) AJ (22 + ta,i2)) = Sg)zz C(t12 — Z12) (2.24)
where
cey-—1+ -1 [P.V.l + ims(g)} £ 0 (2.25)
2mi(§ —ie)  2mi 1
and
t1g =t — t9 T1o = T1 — T9 To1 =21 + 2. (2.26)
In the axial phase, a similar analysis leads to
(X7 (z1 4+ t1,11) x1(z2 + ta,i2)) = iyiy Ct12 + 712) (2.27)
(x2(x1 — t1,11) X3(v2 — t2,42)) = diyi, C(t12 — 212) (2.28)
(X3 (1 +t1,i1) X5 (w2 — ta,da)) = S\, Otz + T12) (2.29)
(X2(x1 — t1,i1) X1 (w2 — b2, i2)) = S{ C(t1a — T12) (2.30)

In order to discuss both the phases in a unified way, let us introduce the doublets

W(t,x,i) = <w1(:r+t z)) At 1) = (A1(a:+t z)) x(t,x,i):<XT($+t7?)>

Yo(x —t,1) Aoz —t,1) xa(x —t,17)
(2.31)
and set the unifying notation
At z,1) S™ vector phase
P(t,x,i) = S= (2.32)
x(t,x,17) S® axial phase.

In this notation the boundary conditions (2.12) and (2.13) at = 0 can be written as follows
2
i) = Sijta(—t, 7). (2.33)
j=1

The 2 x 2 matrix S represents the unitary scattering matrix characterising the defect [23].
In this respect, [S11|> and [Szz|? describe the reflection probabilities from the defect, whereas
IS12|? and [Sa1|? give the transmission probabilities between the two edges. The relative
quantum scattering data are generated by the operators {a}(k), b} (k), a;(k), bj(k)}, which
create and annihilate asymptotic particles with momentum £ in the i-th edge.

By using the correlators (2.21)-(2.24) and (2.27)-(2.30), one finds the following result for
the density-density correlation function

<jt(t17x17ll)jt(t27x277/2)> < ¢ ¢ (t]_,.fC]_,’l:]_) :¢*¢:(t27$2)i2)> (234)
= 0410y [ C(t12 + 12)* + Clt12 — 712)? | + [Siyin [*[ C(t12 + Z12)? + Clt12 — Z12)? ]

7



which nicely illustrates the impact of the S-matrix on the physical observables in the system.

The two extreme cases correspond to full reflection and full transmission, defined respec-

1 1
S1ref = < 0) Stran = (0 > (235)
01 10

In the case of full transmission, the components 1, of the Dirac field on the whole line z € R

tively by

can be written in terms of the coordinates introduced in (2.1) as

P1(x+t,1)
Q/)2(_':U - ta

T —t, x>0
2 Pye(x —t) = { Yoz —t1) ” (2.36)

line t) =
oo ) { P1(—z +t,2) x<0.

We find it convenient to collect the two-point correlation functions at equal time t; =t =0

into the following 4 x 4 matrix

Gr (e DU 1) @)U 0) W@ D 02) W) 5(.2)
(ala Ui 1) e V3 D) (e DUT2) (el D00 2) |
a2 Vi) @D U3.1) @D 02) W(.2)v5(.2)
a2 V{0, 1) (Wl D U30.1)) (ol D (,2)) (Wl 2) 5(0.2)

By using (2.21)-(2.24), (2.27)-(2.30) and the convention (2.32), we find that this correlation

matrix can be written as

C(z—vy) S11C(z +v) 0 S12C(x + y)

Cly:5) = S1C(—z—y) Cl-z+y) Sp0(-z-y) 0 C (23w)
0 So1 C(z + 1) Cz—vy) Saoo C(x + y)
S5, C(—z —y) 0 S5, C(—z—y) C(-z+y)

This matrix, which is the basic input in the derivation of the modular Hamiltonian, can be
simplified by diagonalising S. This is achieved by introducing a new basis of auxiliary fields.

2.2 Auxiliary fields basis

In order to deal with the correlation matrix (2.37), we find it convenient to introduce the
unitary matrix ¢ that diagonalises S, namely

. eioq 0 .
usu =< . > Uu* =1. (2.39)
0 e*2

The unitary matrix U leads to define the auxiliary fields [44]

- 1;1(.% —|—t,i)
tx,i) = ~ 2.40
Y(t, z, i) <¢2(x_t7i)> (2.40)
where
2
Uil +ti) =D Ui (z+t,5) o(x —t,1) Zu”@ 7). (2.41)

=1



We stress that Jl (r +t,4) and 1;2(56 — t,7) have unusual localisation: they are given by a
superposition of the local fields i1 (z+t, j) and ¥o(xz —t, j) respectively, computed at the same
time ¢ and distance z from the defect but in different edges j € {1,2}. However, the auxiliary
fields provide a convenient basis to deal with the boundary conditions (2.33) at = = 0, which
take the following simple diagonal form

Y1 (t, i) = e o(—t,7) ie{1,2}. (2.42)

Furthermore, the auxiliary fields obey the canonical equal-time relations (2.14) and (2.15).
This feature is essential in the derivation of the modular flow in Sec.5. The physical observ-
ables and the corresponding correlation functions (see e.g. (2.34)) will be always expressed in
terms of the physical doublet ¥ (¢, x,1).

In the auxiliary field basis, the matrix of correlation functions reads

(W1 (@, 1) 05 (v, 1) (@i, ) d5(y, 1) (@i, 1) 65 (4,2) (@il 1) $5(y,2)
<~2(x7 1) Jf(yal» <7Z2($71)"Z;(y7 1)> <QZ2($7 1) QZT(ya 2)) <"Z2($71) J;(%Q» (2'43)

(1 (2,2) 65 (1, 1)) (@1(2,2) 85y, 1) (@1(2,2) %5 (1,2)  (W1(2,2) $5(y,2))

(a(w,2) V7 (y, 1)) (a(w,2) 05y, 1))  (Pa(,2) 05 (y,2))  (Pa(,2) $5(y,2))

A peculiar feature of this basis is that the correlation matrix becomes block-diagonal
E(a:,y; a1, az) = C(z,y;01) @ C(z,y; a2) (2.44)
where .
C(z —vy) e*C(z +vy)

Cx,y;a) = ) . 2.45
(=3;0) (e_w‘C(—x—y) C(—xz+vy) ) ( )

This correlation matrix has been employed in [26] to determine the modular Hamiltonian of
an interval in the half-line.

Using (2.39) one finds that the matrices C(z, y;S) and C(z, y; o1, arp) are unitarily equivalent

U 0 U2 0

~ 0 Uz 0 U
UC(z,y;S)U* = C(z,y; a1, v2) U= (2.46)
U 0 U O

0 U 0 U

where U is unitary because U is unitary.

The equivalence (2.46) and the block-diagonal form (2.44) of C(z,y; 1, o) in terms of
(2.45) imply that the auxiliary field basis allows to study the system with a defect on the
line by combining two independent half-line problems with the boundary conditions (2.42).
Indeed, the auxiliary fields 1;,,1 (z,41) and 1Zr2 (z,i2) fully decouple for i; # ia. Accordingly,
these fields have vanishing transmission probability in agreement with the diagonal form of
the associated scattering matrix corresponding to (2.42). As mentioned above, once the two
independent half-line problems have been solved, their solutions must be combined to restore



the local field (¢, z,i)-picture, which codifies the physical reflection-transmission properties

of the defect defined by the original scattering matrix S.

Our strategy in the following consists in first employing the results of [26] to write the
modular Hamiltonians, the modular flows and the correlation functions for the auxiliary fields
J(t, x,1), then inverting (2.41) to recover from them the corresponding quantities in the basis
given by the physical fields ¥ (¢, x, ).

We remark that the above setting has a natural generalisation to a space with the geometry
of a star graph {(az,z) cx>0,1=1, ,n} with n edges [50]. In that case, the defect is
described by a n X n unitary scattering matrix and provides a physical model of a quantum
wire junction [51].

3 Modular Hamiltonians

In this section we derive the modular Hamiltonians of the subregion A, given by the union
of two disjoint equal intervals at the same distance from the defect (see Fig. 1), by employing
the results of [26].

In the coordinates (2.1), the union of the two red segments in Fig. 1 reads
Ay ={(z,i):0<a<z<b,i=1,2}. (3.1)
By introducing A = [a, b], the modular Hamiltonian is the following quadratic operator [12—14]

KA = /A/A :U*(0, ) log(CA(g;’y;S)—l —H4)\If(0,y): dz dy W(0,2) = (1[)(0,$, 1))

(0, x,2)
(3.2)
where Cy4 is the restriction of (2.38) to A, the normal product in the CAR algebras A} and
B+ has been denoted by : --- :, Iy is the 4 x 4 identity matrix and ¥ has four components

defined through (2.31).

By employing the basis of auxiliary fields defined in (2.40) and (2.41), together with (2.46),
we find that the modular Hamiltonian (3.2) can be written in terms of the auxiliary fields as
follows

2
K =30 [ [ 507 0u00) HaCw.0) (0.9 dady. (3.3)
i=1
The kernel ﬁA(x,y, i) is the 2 x 2 matrix
ﬁA(:’Uay’i) EIOg(CA(fE,y, ai)il _]12) xuyeA (S {172} (34)

where C4 is the reduced correlation functions matrix obtained by restricting (2.45) to the
interval A.

The results of [26] imply that
_ loc bi-loc
Ky, = + KA o (3.5)

sym Asym

where Kjf{;fym is a local operator, while Kfjf:y"rf] is a sum of bi-local operators.

10



The local term in (3.5) reads

2 b " 2 b
Ba=2my / Buoe(®) Tioe(0,z,0) dz = 27y / Broe () Ty (0, 2, 1) da (3.6)
i=1va i=1va

where
B2 — 22) (22 — 2
Broc(x) = (Q(b_ a))((ab+:c2§ (3.7)
and
Toelty2,0) = o o (0uB) B =01 (0an) ) (o, 0)— ((0a03) Fo— 05 (0a2) ) (o= t,): . (3.5)

The last expression in (3.6) is written in terms of the physical basis; indeed, from (2.41) we

have
2 » 2
ZTloc(tﬂ/’;i) == ZTtt(t,fII,i) (39)
=1 =1

where Ty (¢, z,4) is the normal ordered version of the energy density (2.5), namely

i

Ty(t,z,i) = 5

[(@e) =07 @) ) (ot 8) — ((053) 205 (0u2) ) (w—1,3)]: . (3.10)

As for the bi-local term in (3.5), from the results of [26] for the auxiliary fields we find

2 b . 2 b
K}X;;ci; = 27T Z / ﬁbi-loc (‘T) Tbi—loc(oa .T7 537 l) d$ = 27T Z / /Bbi—loc (IIZ’) ,—Tbi-loc(07 $, ‘%7 Z) d(L’
i=17a i=17a

(3.11)
where the weight function reads
ab((b? — 22) (2% — a?)

; = 3.12
Brioc () 2(b—a)z(ab+ x2)? (312)

and b

a

r=— 3.13
p= 2 (3.13)

with the bi-local operator defined as

Ty (t, 2, 7,) = % {ei“i |G+ i) (e — 40) + i@+ L)o@ — i) (3.14)
— e Py — 40) r (@ + 1,0) + D3z — 40) %@”’i)}}‘

The bi-local term Kfjf:y‘; has been expressed in (3.11) also in terms of the physical fields by
employing (2.41), which give

2 2
Zfbi—loc(taxa‘%ai) — ZTbifloc(tal'a:i‘ai) (315)
=1 =1

11



where we have introduced

.2
Tbi-loc(taxai',i) = % {[w;(f—kt,Z)Swwg(x—t,j)+¢T($+t,l)§z] wQ('i'_taj)] (316)
=1

J

- [@(5 _t7i) S;kj ¢1($+t7j) —I—’(/);(I - tvi)S;(j ¢1(9~0+t,3)}}

We remark that, differently from the local term Kjg;ym, in the bi-local term KXI;IC] the left
and right movers 11 and 1o are mixed through the scattering matrix S.

In the modular Hamiltonian of A, on the line R without defect [11, 15, 52], which cor-
responds to the limiting case of full transmission, the left-right mixing is absent and the
counterpart of K X:;f} depends only on two conjugate points, whose standard coordinates in R
are ¢ and —Z. Instead, in our case, the occurrence of the defect implies that, in the standard
coordinate on R, the bi-local term (3.11) involves two conjugate points for any given x: they
are  and —Z which can be interpreted respectively as the reflected conjugate point (it also
occurs for an interval in the half-line [26]) and as the transmitted conjugate point. These
points play a distinguished role in the modular evolution described in Sec. 5.

We find it worth comparing the modular Hamiltonians K 4, in the two inequivalent phases.
While the local term T,..(¢,z,7) has the same form when expressed in terms of the fields A
and x given by (2.31), crucial differences occur between the bi-local terms in the vector and
in the axial phase. Indeed, by using (2.32) and (2.31) in (3.16), in the vector phase we have

2
Ty (2, 3,0) = 5 ) { | NG+ 0SS (e — 15) + M@+ 1) S he(@ — 1)) (317)
j=1

= M@ = ) SN (4 4,9) + Xl — 60 SN (@ + 4,)]: }

while in the axial phase the bi-local operator reads

. 2
; ~ . 1 - . a . . a ~ .
T&’_‘{i(t,x,x,z) = 5 Z{[Xl(x—{_tvl) ng)XQ(x_ta])_FXQ(l’_tvl) SEJ)XI(:E_FL])] (3]‘8)
7j=1

=[x~ LS N+ 1)+ xjle — )8 1)}

In the two inequivalent phase, the bi-local contribution has a different structure which respects
their symmetry content. Indeed, the bi-local operator (3.18) preserves the U, (1) symmetry,
but breaks down U,(1); while the opposite holds for the bi-local operator (3.19).

In the special cases of full reflection or full transmission, by employing (2.35) and (2.36)
into the above expressions, one recovers respectively either the modular Hamiltonian of an
interval on the half-line [26] or modular Hamiltonian of two disjoint equal intervals on the
line [11].

12



4 Entanglement entropies

(n)

The entanglement entropies S A" with n > 1 are obtained from the moments of the reduced

density matrix Tr, p”j for integers n > 2. These moments provide the Rényi entropies 51(4") in
a straightforward way and the entanglement entropy S through an analytic continuation of

the integer parameter n to real values as follows

(4.1)

n 1 n . n n
5 = —— log[Ty, pl] Sa=lim S = — 9, (T, p%)],_, -

-n n—1

For the massless Dirac field, the entanglement entropies can be computed from the two-
point correlators restricted to the subsystem A as explained in [13, 14].

By employing the basis of the auxiliary fields, we can compute the entanglement entropies
SXL) for the bipartition of the line shown in Fig. 1, when the entire system is in its ground
state. Since in the basis of the auxiliary fields the contributions corresponding to the two
edges decouple, 51(4”) are obtained by summing these two contributions, which are equal. The
final result is twice the entanglement entropies of the bipartition given by an interval in the

half-line, found in [26], namely

g _ n+1 log[Q\/ab(b—a)

Aom = T3 (a+b)e

} +0(e) (4.2)

where € > 0 is the ultraviolet cutoff and a > e.

The entanglement entropies of the bipartition of the line where the subsystem is an interval
with the defect at its center, i.e. A = {(x,7) : 0 < & < a, ¢ = 1,2}, which corresponds to
the bipartition shown in Fig. 1 in the limiting case where ¢ = 0, can be studied in a similar
way, by employing the results obtained in [26] for the interval adjacent to the boundary of
the half-line. Thus, for the entanglement entropies S(()Z) of an interval with the defect at its

center we find
S(n) _n+ 1
0a ™ 6p

Combining (4.2) and (4.3), we can construct the following ultraviolet finite quantity

(log(a/e) + log 2) +O(e) . (4.3)

s+ S5 — s

my _n+l loe 4T b
Asym 3n Og

= b—a) + O(e) . (4.4)

We remark that both the entanglement entropies (4.2) for the two disjoint equal intervals
A,m and (4.3) for the interval with the defect in its center are independent of the scattering
matrix S. This is due to the symmetry of these bipartition. The independence of the scattering
matrix for the entanglement entropies of an interval with the defect in its center has been also
observed for the non-relativistic fermion in [47]. Instead, it is known that the entanglement
entropies of bipartition which are not symmetric w.r.t. the position of the defect on the line
depend on the parameters characterising the defect [43-45].

The impurity entanglement entropies for the spatial configuration that we are considering

)

Y
of the same bipartition on the line without the defect [40]. In our case, by using (4.2), one finds

are ultraviolet finite quantities obtained by subtracting SXZ . and the entanglement entropies

13



that the impurity entanglement entropies vanish. This is due both to the symmetric choice
of the bipartition and to the nature of the defect, which is scale invariant in our analysis.
Examples where the impurity entanglement entropies are non trivial have been studied e.g.
in [40, 42-47].

5 Modular flows

In the following analysis we fix the time variable ¢ = 0 in (2.31) and consider the modular
evolutions of the fields v, (x,7) generated by the modular Hamiltonians introduced in Sec. 3.

The modular flow generated by K4 for the components of the massless Dira field is

defined as

sym

G(roayi) = e K g (2,0) 7 Kamm e A re{l2)  (5.)

and it can be determined by solving the initial value problem

id¢r(T, x,1)

o = [KAsym ,wr(T,SL',’L')]i (1 =0,2,1) = Yp(x,1) (5.2)

This modular flow can be obtained by first finding the modular flow of the auxiliary fields
introduced in Sec. 2.2, which is given by the solution of

DD (R Gered)] B =0m) =de) (63)

dr
and then writing the result in the physical basis.

The commutator in (5.3) can be computed by employing the expression of the modular
Hamiltonians in terms of the auxiliary fields and the fact that the equal-time canonical anti-
commutation relations hold for the auxiliary fields. By introducing

om0 (5050)

after some algebra we find

$<§$;2>‘”ﬂ3““@3@“m;m@5> = 69

The 4 x 4 block diagonal matrix within the square brackets in the r.h.s. is expressed in terms
of the 2 x 2 matrix

B _ plog 3
B(x,i) = < _ia_“’“(x) T ”B‘”““’f(x)> (5.6)
€ Z5bi710c (x) - Bloc (:L‘)
where By,.(y) is the following differential operator
1
Bucl) = Bucl6) 8y + 5 0y (v) 6.7

and the weight functions f,,.(y) and By;..(y) are given by (3.7) and (3.12) respectively.

14



At this point we recognise that the equations in (5.5) for the auxiliary fields are two in-
dependent copies labelled by ¢ € {1,2} of the modular flow equations for an interval on the
half-line studied in [26]. By employing the results of [26], we find that the modular flow for
the auxiliary fields with = € (a,b) reads

D (7,2, 0) = [P(g;:v) ((ab+x£) die,) — 2 e (e — ) %52@1’/5’@'))} ‘

£ £=¢(r.z) (5.8)
_ . ~ . ab . - ; |
where
o e (€)
e = \/m(x) (ab+22)(ab+ &) Y
and

(b _ a) (627r7+w(x) _ 1) + \/(b _ a)2(627r7+w(a:) _ 1)2 4 4ab (627r7+w(a:) 4 1)2

§(r,z) = 2 (1+ 2 iu) (5.10)

with ( N )
r+0)(r—a

=1 —] . 5.11

ole) = os | (=] >4y

The function &(7,z) describes the modular evolution of any point x € A and satisfies
ab ~
£E0,z) =x &(r,z) € (a,b and E(—7,2) = =£(r,x). 5.12
(0,2) (1,2) € (a,b) ()g(T,x)() (5.12)

This guarantees that the solution (5.8) fulfils the initial condition 1,.(0, z, i) = b, (z, i), where
¥, (x,4) provide the assigned initial configuration for the auxiliary fields on the line.

Combining the solution (5.8) for the auxiliary fields with (2.39), (2.40) and (2.41), we obtain
the modular flow of the physical fields

r s 2 ]
i(r2,0) = | P(& ) ((ab +2E) tr(€,0) - “;(5 —2) 3]sy w2<ab/57j>>
! j=1 Hle=¢(ra)
- 9 -
: = He=g(-r.)
(5.13)

which is one of the main results of this paper. Considering e.g. the first expression in (5.13),
we observe that the modular evolution of (7, x,7) is determined not only by the modular
evolution of the initial data for ¢n(z,%) along ({(7,z),4), but also by the modular evolution
of the initial data for 15 (z, i) along the two conjugate trajectories (£(7,z),1) and (£(7,x),2).
From the second expression in (5.13), we have that a similar consideration holds for (7, z,1),
with &(7,x) replaced by £(—7, ). This is a consequence of the fact that the scattering matrix

S, which occurs explicitly in the flow, allows both reflection and transmission.

In Fig. 2 we show the modular evolution of the arguments of the fields mixed by the modular
flow (5.13), for four different choices of the initial point in A, at 7 = 0. When = # /ab,
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Figure 2: Modular evolutions of the arguments of the fields mixed by the modular flow in the
r.h.s’s of (5.13), for a point (z,4) (solid lines) and its conjugate points (Z,7) (dashed lines)
and (Z,j # i) (dashed-dotted lines), at 7 = 0. The blue and the red curves correspond to the
first and to the second equation in (5.13) respectively. The vertical dotted lines identify the
point v/ab in the two edges. Top panels: i = 1 with either z < v/ab (left) or = > v/ab (right).
Bottom panels: i = 2 with either 2 < vab (left) or z > v/ab (right).

three distinct curves occur and the ones in the same edge intersect at either |7p| or —|mg|,
where 277y = |w(vab) — w(zx)| = |w(z)| because w(vab) = 0.
For full reflection or full transmission, from (2.35) and (2.36), the sum in the r.h.s. of (5.13)

involves only one term and, accordingly, we recover the modular flow of the massless Dirac

field either for an interval on the half-line [26] or for A, on the whole line [11] respectively.

We find it worth reporting the explicit expressions of the modular flows in the two phases.
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By using (2.31) and (2.32) in (5.13), in the vector phase we have

r 2
(T @, i) = P(é;w)((abJra:ﬁ) (1) — Z Sy Aa(ab/é, ]))]
L §=¢(72)

No(7,2,1) = | P(& w) <(ab+ &) Ma(€,i) — ZSM* A ab/&j))

= £=¢(—7,2)
(5.14)
while the modular flow in the axial phase reads
_ ) -
X1(77m7i) = P(f,(li)((abﬁ-(lff) X1(§72) Z ab/§ j a)*)
o Jj=1 - f:E(T,Q?)
xo(r,x,i) = | P(& ) <(a b+ &) xa(&,0) — Z Se" xa ab/&i))
- J=1 J1¢=¢(-72)
(5.15)

Each modular flow preserves the symmetry characterising its modular Hamiltonian. Indeed,
in the vector phase, the modular flow (5.14) preserves the U, (1) symmetry and breaks the U, (1)
symmetry, while, in the axial phase, the modular flow (5.15) preserves the U, (1) symmetry
and breaks the U, (1) symmetry.

6 Correlation functions along the modular flows

The modular evolutions (5.14) and (5.15) provide the corresponding correlation functions in
the corresponding phase, which describe the quantum fluctuations along the modular evolution
parameterised by 7.

The initial data involved in (5.14) and (5.15) are expressed via (2.17)-(2.20) in terms of
the generators of the CAR algebras A, and B;. Adopting the Fock representation for these
algebras, one derives the correlation functions in the presence of the defect in closed and
explicit form. Similar calculations have been done for the massless Dirac field in the ground
state, when the subsystem is the union of disjoint intervals in the line [15, 19] or an interval
in the half-line [26].

Interestingly, all the correlation functions along the modular flow can be written through

the distribution @) )
w(z) _ jw(y 1
W(rzy) = S

(6.1)

271'1(.%‘ _ y) ew(@)+nT _ pw(y)—7mT _ g
where w(z) is the function defined in (5.11). In the limit ¢ — 0, the expression in (6.1)

satisfies

where the overline denotes the complex conjugation.
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In the vector phase, the non-vanishing two-point functions take the form

(A1 (71, 21,01) Al (T2, 22,12)) = (A](T1,21,11) M (72, 2, 42)) = 5.6 W (T12; 21, 22) (6.3)
(Aa(T1, 21, 11) A5(T2, 22, 102)) = (A5(T1,21,11) Na(T2, T2, i2)) = iyiy W (T12; T2, 21) (6.4)
(A1(T1,21,41) A5 (T2, 22, 02)) = (Aa(T2, T2, 92) Af (11, 21,11)) :SE‘SQ W (T12; 21, —22) (6.5)
(AT(T1,21,01) Aa(T2, T2, 02)) = (A5(T2, 2, 42) A1 (71, 21,11)) = Si:)z: W (195 1, —22) (6.6)

with
TI9o=T1 — Ty. (6.7)

Using the first identity in (6.2), one verifies that the correlation functions (6.3)-(6.6) satisfy
the Kubo-Martin-Schwinger (KMS) condition

<)\r1(7'1,:171))\:2(7'2+T+i,ﬂ?2)> = </\:2(T2+T,:L’2) )\7’1(7'17371)) (68)
(AL (T1,21) Ay (72 + 7+ 1,22) ) = ( Ay (72 + 7, 22) AL (T1,21) )

where 71,79 € {1,2}. The validity of (6.8) and (6.9) is a crucial feature of the modular group
(see Theorem 1.2 in chapter VIII of [2]), hence it also provides a valuable consistency check
of our results.

Besides the KMS conditions, the correlation functions (6.3)-(6.6) satisfy also the modular
equations of motion following from (5.2). An illustrative example is

2
1 NN . X ‘
gan - Bloc(xl):| (M (71, 21,41) AN[(T2, 22, 12)) = — Britc(Z1) ZS (X (11,21, J) Al (T2, 22, 12))
7j=1
(6.10)
with z1 # z9. From (6.3) and (6.5), we have that (6.10) is equivalent to
1 -
52 0= Bo) | W) + B Wiri—,0) = 0 (6.11)

whose validity in the limit ¢ — 0 follows directly from the definition (6.1).

The correlation functions (6.3)-(6.6) in the vector phase have a direct physical application
to the electric an helical transport across the defect. Indeed, they lead to the density-density

correlators
(Je(11, 21, 01) Je (T2, X2, 02)) = (ky(T1, 21, 11) Ky (T2, T2, 12)) (6.12)
= 0iyiy [W(712;171,$2)2 + W (125 w2, 71) } + |85, ? {W(Tm; x1, —x2) + W(T12; —331,332)2}
and to the current-current correlators
(Jo(T1,21,11) Ju (T2, T2, 02)) = (ke(11, 21, 01) ke (T2, T2, 12)) (6.13)

= 0iyiy [W(ﬁz;iﬂl,fﬁz)Q + W(T12; 22, 71) } S, 2 [W(Tu; x1, —12)° + W (T2 —581,372)2}

1172

which depend explicitly on the reflection and transmission probabilities |S£:ZQ 2. In agreement

with conservation of the U, (1) symmetry in the vector phase, the correlator (6.13) satisfies
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the Kirchhoff law at the defect in 1 = 0; indeed

2

Z<jz(7'1,0,i1)jx(7'2,l‘2,i2)> = (6.14)

i1=1

|
&Mw

@
=
Il

i

[( ivis — ISY ) W (71250, 22) + 84,5 W (712 22, 0) — [SE |2 W (712; 0, —22)

1172 1112

((51'”'2 — |S(V) 2) |:W(7’12; O,$2) + W(le;.l‘g, O)] =0

1172

|
&Mw

@
=
Il

i

where we have employed the unitarity of S® and the identity
W(r;z,0) = W(r;0,—z). (6.15)

Notice that, instead, the helical current violates the Kirchhoff law in the vector phase

2 2
Z<k$(T1,0,i1) kx(TQ,xQ,i2)> = Z ( i19 + ‘SE:;Q 2) [W(Tlg;o,wg) + W(T12;932,0)] 7é 0.

i1=1 i1=1

(6.16)
Thus, helicity is not conserved across the defect, in agreement with the breaking of the U, (1)
symmetry in this phase.

In the axial phase, the two-point functions read

(X1 (T, 21,41) X7 (72, 22, 12)) = (X7 (71, 21, 41) X1 (72, B2, 42)) = 5m2 W(Ti2; 71, 22) (6.17)
(Xa(T1, 21, 11) X3(T2, 2, 42)) = (X2(T1, 21, 71) X2(T2, T2, 82)) = Giriy W (T12; 22, 1) (6.18)
(G (1,1, 11) X5(T2, w2, d2)) = (Xa(T2, @2, d2) X1 (71, @1, 01)) = ST W (Ti9; @1, —22)  (6.19)
(1 (71, m1,101) Xa(72, w2, 02)) = (X3(72, 2, i) X} (11, 21, 01)) = i W (T12; 1, —x2) . (6.20)

These correlators satisfy the KMS conditions

(X (71, 01, 01) X7 (T2 + 7 +1,20,42) ) = (X (T2 + T, 22,82) X (T1, 71, 01) ) (6.21)
(Xr (T1, T1,81) Xro (T2 + T +1,22,92) ) = (Xro (T2 + 7,22, 42) Xy (71, Z1, 1) ) (6.22)
(X (T1,21,81) Xy (T2 + T+ 1, 22,02) ) = (X7, (T2 + 7, 22,92) X7, (71, 21, 71) ) (6.23)

where 7,711,179 € {1,2}.
The electric and helical transport can be studied also in the axial phase, as done above for
the vector phase. In this case the helical current satisfies the Kirchhoff law, while the electric

current violates this law, in agreement with the symmetry content of the axial phase.
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7 Special bipartitions

In this section we discuss some limiting regimes of the spatial bipartition shown in Fig. 1

whose the modular Hamiltonians are local operators.

7.1 Two equal intervals at large separation distance

The limiting regime where the equal intervals are at large separation distance can be explored
by first setting b = a + ¢, = a + v with v € [0, ¢] and then sending a — co. In this limit we
have £ = a+ v+ O(1/a), where 0 = { — v.

In this limit, the modular Hamiltonians found in Sec.3 become local because the weight
functions (3.7) and (3.12) simplify respectively to

v(l —v)
1

Boe(x) = Bo(v) + O(1/a?) Buiroe () = O(1/a) Bo(v) (7.1)

where it is worth remarking that Gy(v) with v € [0, ] is the weight function occurring in the
modular Hamiltonian of an interval of length ¢ in the infinite line with the first endpoint in
the origin, when the entire system is in its ground state [5, 7].

In this limit, the function (5.10) occurring in the modular flow becomes

61)62”7
= 1 =——. 2
re) = atCm) + 00/ Cro)= o (72)
By using this result and taking the limit of (5.13), for the modular flow we obtain
1(7, @, 17) [\/8671) Pi(a+¢, i ”C ) (1,2,1) [\/ OuC(T,v) Ya(a+(,i ” ()
(7.3)

where we used that gggf}; = 0u((T,v).

The correlators along the modular flow in the two phases and in this limiting regime can
be written from the expressions in (6.3)-(6.6) and in (6.17)-(6.20), by observing that (6.1) in
this limit becomes

l
2mi [v(€ — yo) €™ — yo({ — v) e~ —ig]

W(rz,y) = (7.4)

7.2 Interval with the defect in its center

The bipartition of the line given by an interval with the defect in its center, when the massless
Dirac field is in its ground state, can be studied by taking the limit a — 0 in all the results
discussed above, whenever it is allowed (this is not the case e.g. for the entanglement entropies
(4.2)).

In this limit, the function (5.11) becomes

w(z) = log <§_+£> 2 €0,b) (7.5)

20



70

- -7

Figure 3: Evolutions of the arguments of the fields along the local modular flows. Left: Interval
of length 2b with the defect in its center (see (7.8) and (7.9)). Right: Two semi-infinite lines
at the same distance a from the defect (see (7.14)).

and the weight functions (3.7) and (3.12) simplify respectively to

b2 — 2 1
Broc(x) — Bo(x) Britoc(z) — 0 Bo(z) = % = o (@) . (7.6)

Thus, in this limit, the modular hamiltonians become a local operator which has the same
form of the modular Hamiltonian of the interval of length 2b on the line centered in the
origin. We remark that, although the scattering matrix S does not appear explicitly in this
local operator, it enters in the definitions of the Dirac field in the energy density (3.10).

The limit a — 0 of the function £(7,z) in (5.10) can be written in terms of w(x) in (7.5) as

2nr jw(x) _ :
E(rz) = b e e 1 p % cosh(7m7) + b sinh(77) ' (77)

e2mrew(z) 4 1 b cosh(n7) + x sinh(77)

The non-local contributions in the modular flow (5.13) vanish when a — 0. However, we
remark that £ = 0 at some point of its modular evolution where |7| = 79 (see Fig.3, left
panel). Taking into account the defect boundary condition (2.33) at this point of the modular
evolution, for the modular flow of the components of the Dirac field we find

m¢l(§?2) T2 —T0
,T,0) = 2 = &(r, 7.8
W) = o S e < ¢=¢&ra) (7.8)
j=1
\/(ﬂ%(fﬂ) T <70
L T,0) = 2 =¢(—7,2). 7.9
OED = e s e S=8na) (79)
j=1

\
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The evolution of the arguments of the fields in the r.h.s.’s are shown in the left panel of Fig. 3.
The splitting of the curve at || = 79, where £ = 0, is due to the fact that the defect allows
both reflection and transmission.

When a — 0, the function W(7;z,y) is (6.1) with w(x) given by (7.5), namely

b

W(r;x,y) = iw[(erb)(b—y) €T —(y+b)(b—x)e ™ — 15] ‘

(7.10)

By employing this expression either in (6.3)-(6.6) or in (6.17)-(6.20), we obtain the correlation
functions along the modular flow when a — 0, either in the vector phase or in the axial phase

respectively.

7.3 Two semi-infinite lines

We find worth considering also the bipartition where the subsystem is made by two semi-
infinite lines at the same distance a > 0 from the defect, which can be obtained by taking
b — +oo in Fig. 1. In this limit, the function (5.11) becomes

w(z) zlog@;Z) z>a (7.11)

and for the weight functions (3.7) and (3.12) one finds

.T2—CL2

2a

Bo(z
Bloc(x> - ﬁo(.%') + O(l/b) /Bbi—loc(m) - Oa(;) + O(l/b) ﬁg(.%‘) (712)
We remark that, despite the fact that the limit of B ..(z) is non vanishing, the modular
Hamiltonian becomes local in the same limit because the fields in the bi-local term (3.11)
vanish, as also discussed in [26]. Indeed, & — oo when b — 400, hence 9;(zZ) — 0 for
Jje{1,2}.
In this limiting regime, the function (5.10) simplifies to
ew@+2mr 4 x cosh(n7) — a sinh(77)

§(re) = —a vz 1 g cosh(m7) — x sinh(77) (7.13)

This expression provides the modular flow of the Dirac field, which can be found by taking
the limit b — 400 of (5.13). The result reads

bilra,i) = [ VO£ i (E)]) da(r.wd) = VO£ Ua(€D)]| (7.14)

§:§(~r,x) é(_ﬂx)

where the first expression holds for 7 < 79 and the second one for 7 > —7y, with 7o = o= |w(x)|.
In the right panel of Fig. 3, we show the evolution of the arguments of the fields in the r.h.s.’s
of (7.14) for a given point which has spatial coordinate (z,1) at 7 = 0.

The correlators along the modular flow in this limiting regime can be written by first taking

the limit b — +o00 of (6.1), that gives

a

Wi(rsz,y) = mi[(z —a)(y+a)e™ — (y—a)(z+a)e ™ —ig]

(7.15)
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and then employing the resulting expression either in (6.3)-(6.6) for the vector phase or in
(6.17)-(6.20) for the axial phase.

Considering the partition A U B of the line where A is the interval with the defect in its
center and B its complement, the local modular Hamiltonians obtained in Sec. 7.2 and in this

subsection can be combined to construct the full modular Hamiltonian
Kap = Ka®1p—-14® Kp (7.16)

where 14 and 1p denote the identity operators on A and B respectively.

8 Modular evolution in the spacetime

The modular evolution and the modular correlation functions of the fields at fixed time t =0
has been considered in Sec.5 and Sec. 6. In the following analysis, we extend these results to
generic values of the physical time t by taking advantage of the fact that, even in the presence
of the defect, in both the phases the Dirac field depends on the light cone coordinates defined
by

(us,i) = (z £ t,17) x>0 ie{1,2}. (8.1)

The canonical anti-commutation relations in the algebras Ay and By imply

[V1(uy, 1), Y1 (v, )y = 05 0(ug —vy)  [Yho(u—,i), Y3(v_,j)]+ = 0 0(u_ —v_)  (8.2)
[V1(ug, i), v3(v-, )]+ =Sijo(uy +v-)  [ho(u—,i), Y7 (v, 5)]+ = S;;6(u- +vy) . (8.3)

In light cone coordinates, the auxiliary fields are introduced as follows

2 2
Ui (ug,i) =Y Usjrpr (ug, j) Yolu,i) =Y Uijtha(u_,j). (8.4)
=1

j=1
Let us consider the spacetime region defined by (see the grey region in Fig. 4)
D =D, UD; D; = {((ut,9), (u—,9)) :a<ux <b}. (8.5)

By applying the results of [26] for the modular Hamiltonians in the spacetime to the aux-
iliary fields {41 (uy,4),¥2(u_,i)} for i = 1,2, we obtain

K — Kloc +KbHOC. (86)

The local term K'™° in this decomposition reads

2 b " 2 b
Kloc =27 Z / ﬂloc (u) CZ1loc (07 u, 7’)7 du = 2m Z / Bloc (U) ,-Ttt(o’ u, Z) du (87)
i=17a =171

where (3.8) and (3.10) have been used. The bi-local term in (8.6) is
2 b - 2 b
KPHee = QTFZ/ Britoc (1) Thiioc (0, u, U, ) du = 2772/ Britoc (1) Thitoc (0, u, 0, 7) du (8.8)
=177 =177
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where the bi-local operators (3.14) and (3.16) have been employed and @+ = ab/u4 is conju-
gate to us. The weight functions f,,.(u) and Sy (uw) are (3.7) and (3.12) respectively.

The modular flow of the auxiliary fields is governed by the following initial value problems

iy (1o uy i ~ . - . .

llmerr): [ K¢ (r,uq,i) ] U1(0,uy, i) = U1 (uy, i) (8.9)

iy (T, u i ~ . _ o .

11/]2((17_) = [ K, ¢o(r,u_,i)]_ Yo(0,u_,1) = o(u_,1) (8.10)
where the initial configurations ¢ (u,4) and ¢ (u_, 7) are related to the initial configurations

of the physical fields through (8.4). The system made by the four partial differential equations
in (8.9) and (8.10) decouples into two independent systems corresponding to i = 1 and i = 2,
each of them made by two partial differential equations. These equations are of the form
analysed and solved in [26]. By employing the solution found in [26], in this case for the

modular flow of the auxiliary fields we find

e ) o)

di(ruy,i) = |P(&uy) ((ab+£m) D1(€,0) —

5:£(T7u+)

1;2(7-7 u—7i) = P(§7 u—) ((ab +§u—) {[;2(571) - aéb eiiai (5 - u—) Jl(ab/gﬂ))]
' TR D)

This solution extends (5.8) to generic ¢ in terms of the light coordinates u4.

The modular flow of the physical fields 1, can be found by inverting (8.4) and employing
the modular flow (8.11) for the auxiliary fields. The result is

_ ) ]
Y1(7,uy, 1) = | P(§uq) ((ab + Eug) i (€,0) — agb(f —uy) ZSij ¢2(ab/§,j)>

L = He=¢(rauy)
w2(77U—7i): P(ia“—)((ab"’_gu )¢2(§7 ) ZS wl ab/é- .7 )

L . 5:5((—87'?27))

This flow has the features highlighted for (5.13). In particular, the modular evolution of
each component in (8.12) is obtained by combining the modular evolutions of the initial data
for three fields whose arguments follow different trajectories in general. The initial points at
7 = 0 of these trajectories are related by conjugation (see (3.13)). Furthermore, the scattering
matrix S characterising the defect explicitly occurs in the mixing described by (8.12).

In Fig. 4 we show three sets of conjugated modular trajectories in the spacetime, denoting
them through different colours. The three modular trajectories within each set are indi-
cated by different kind of lines (solid, dashed and dashed-dotted) and their initial points
at 7 = 0 correspond to the markers characterised by the same kind of symbol (circle,
square or triangle). The filled markers indicate the initial points with coordinates Py =
((u4,0,%), (u—0,%)) (in particular, ¢ = 1 in Fig. 4), while the empty markers correspond to the
points obtained from P through the conjugation (3.13), namely ((ab/uy o,1), (ab/u—p,4)) and
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Figure 4: Three sets of conjugated modular trajectories in the spacetime for the modular flow
of the Dirac field in the presence of a defect in the origin (see (8.12)).

((ab/uy0,7), (ab/u—p,7)), with j # i. The green set of modular trajectories is characterised
by the fact that its curves pass through the points ((vab, 1), (vVab,i)) with i € {1,2}. In this
case, the two modular trajectories within the same grey diamond coincide.

In the vector phase, the modular flow of the Dirac field can be found by employing (2.32)
into (8.12). The result reads

M) = [PEuy) [ (ab+eu) M6 — e - uy ZS‘% /e ||
E=¢(Tuq)

No(rou i) = | Peru) [ (ab+ €us) a(e. )~ ZSW e ||
\ e=¢(~ru)
i (8.13)

These fields provide the correlation functions along the modular flow in the vector phase, in
the light cone coordinates. They read

(A (71, u14,01) AT (T2, ugt, i2)) = (AT(T1, u14,01) A1 (72, uat,i2)) = 0iyi, W (T12; U1, U2y ) (8.14)
(Ao (T1,u1—,11) A5 (T2, ug—,12)) = (A5(T1,u1—,11) Ao(T2, uo—,i2)) = 05y, W (T12; ua—, u1—) (8.15)
(A (71, w1y, 01) A5 (T2, ua—, i) = (Aa(T2, ua—,i2) A (11, u14,11)) = Si;i2W(712;U1+,—U2_) (8.16)
(A1(T1, wig, 1) Aa(T2, ug—, i2)) = (N5(T2, ua—, i2) A1 (71, U14,%1)) = Sgi: (T12;u14, —ug—). (8.17)

In the axial phase, expressions analogous to (8.13)-(8.17) can be written.
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9 Conclusions

In this manuscript we have studied some modular Hamiltonians and the corresponding mod-
ular flows for the massless Dirac field on a line in the presence of a defect characterised by a
2 x 2 unitary scattering matrix S. The system is in its ground state and the bipartition of the
line is given by the union of two disjoint equal intervals at the same distance from the defect.
For preventing energy dissipation, the defect which allows for both reflection and transmis-
sion, must satisfy the Kirchhoff rule (2.11). This leads to two inequivalent models, the vector
phase and the axial phase, characterised by the scale invariant boundary conditions (2.12)
and (2.13) respectively, where different symmetries are preserved, as discussed in Sec. 2.1.

By employing a basis of auxiliary fields (see Sec. 2.2) and the results of [26], we have obtained
the modular Hamiltonians (3.5), where the local term is given by (3.6)-(3.10) and the bi-local
term by (3.11)-(3.16). The bi-local operator (3.16) depends explicitly on the scattering matrix
characterising the defect. Furthermore, considering the integrands in the sum of bi-local terms
(3.11), for any point, two other conjugate points are also involved. This feature, which is due
to the fact that both reflection and transmission are allowed by the defect, represents an
important difference with respect to the non-local modular Hamiltonians for the massless
Dirac field available in the literature, where either two or infinitely many conjugate points are
involved [11, 16-18, 26]. The symmetry of the bipartition and the nature of the defect lead
to entanglement entropies that are independent of the scattering matrix (see (4.2)).

The modular flows of the Dirac field generated by these modular Hamiltonians have beed
found. They are given by the solution (5.13), which becomes (5.14) in the vector phase and
(5.15) in the axial phase. These modular flows mix three modular trajectories, as shown
also in Fig.2 and Fig.4. The correlators of the Dirac field along the modular flows have
been written in terms of the function (6.1), where w(z) is given by (5.11). Their explicit
expressions are (6.3)-(6.6) in the vector phase and (6.17)-(6.20) in the axial phase. The
modular flow equations lead to write modular equations of motions for these correlators (see
e.g. (6.10)). We have checked that the current-current correlators satisfy the Kirchhoff law
at the defect (see e.g. (6.14)). In some limiting cases for the spatial bipartition, the modular
Hamiltonians become local. These limits, which have been explored in Sec. 7, correspond to
equal intervals at large separation distance, to a single interval with the defect in its center
or to two semi-infinite lines at the same distance from the defect.

The modular Hamiltonians and the corresponding modular flows found for t = 0 have been
extended in the spacetime to a generic value of the physical time ¢ in Sec.8. The results are
given by (8.6)-(8.8) for the modular Hamiltonians and by (8.12) for the modular flows. In the
vector phase, the explicit expressions for the modular flow of the Dirac field and its correlators
are given in (8.13) and (8.14)-(8.17) respectively.

Various directions can be explored in the future. For instance, it is natural to consider
spatial bipartitions made by an arbitrary number of disjoint intervals in a generic configuration
with respect to the defect, as done in some models on the line without the defect [11, 13, 53—
56]. Some entanglement Hamiltonians in free models on the lattice [12-14, 57, 58] and also
their continuum limits have been studied [48, 59, 60]. It would be interesting to recover also
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the modular Hamiltonians found here through these lattice calculations.

Entanglement quantifiers closely related to the modular Hamiltonians are the corresponding
entanglement spectra [12-14, 61] and entanglement contours for the entanglement entropies
[62, 63]. In 141 conformal field theories, some modular Hamiltonians and their entanglement
spectra have been explored through boundary conformal field theory methods [9, 10, 48, 64—68]
and it is worth trying to employ these techniques also in the presence of defects.

It would be interesting to study modular Hamiltonians for models where the scale invariance
is broken, by the impurity (see e.g. [38, 40, 42-47, 69, 70], where mainly the entanglement
entropies have been studied) or in the bulk e.g. through a mass term [59, 71]. Modular
Hamiltonians in the presence of defects in higher dimensional models [49, 72| and in the
context of the gauge/gravity correspondence [73-82] deserve further studies.
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