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Moiré superlattices1–3 have recently emerged as a novel platform where correlated

physics and superconductivity can be studied with unprecedented tunability4–7. Al-

though correlated effects have been observed in several other moiré systems8–20, magic-

angle twisted bilayer graphene (MATBG) remains the only one where robust super-

conductivity has been reproducibly measured5–7. Here we realize a new moiré super-

conductor, mirror symmetric magic-angle twisted trilayer graphene (MATTG)21 with

dramatically richer tunability in electronic structure and superconducting properties.

Hall effect and quantum oscillations measurements as a function of density and electric

field allow us to determine the system’s tunable phase boundaries in the normal state.

Zero magnetic field resistivity measurements then reveal that the existence of super-

conductivity is intimately connected to the broken symmetry phase emerging from

two carriers per moiré unit cell. Strikingly, we find that the superconducting phase

gets suppressed and bounded at the van Hove singularities (vHs) partially surround-

ing the broken-symmetry phase, which is difficult to reconcile with weak-coupling

BCS theory. Moreover, the extensive in situ tunability of our system allows us to

achieve the ultra-strong coupling regime, characterized by a Ginzburg-Landau coher-

ence length reaching the average inter-particle distance and very large TBKT/TF ratios

in excess of 0.1, where TBKT and TF are the Berezinskii–Kosterlitz–Thouless transition

and Fermi temperatures, respectively. These observations suggest that MATTG can

be electrically tuned close to the two-dimensional Bardeen-Cooper-Schrieffer–Bose-

Einstein condensation (BCS-BEC) crossover. Our results establish a new generation

of tunable moiré superconductors with the potential to revolutionize our fundamental

understanding and the applications of strong coupling superconductivity.

When two or more layers of 2D materials are stacked together, a moiré superlattice with a
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reduced electronic bandwidth can arise from a small twist angle or lattice mismatch between the

layers. In such flat band systems, electronic interactions play a dominant role, which has led to

the observation of various correlated and topological phases4–20,22–31. The case of magic-angle

twisted bilayer graphene (MATBG) has attracted particular attention because of the intriguing su-

perconducting phase it hosts5–7. While signatures of superconductivity have also been reported in

other systems, including ABC graphene/hexagonal boron nitride (hBN)30, twisted bilayer-bilayer

graphene9,10,12, twisted WSe2
18, and twisted trilayer graphene systems14,31, definitive evidence of

superconductivity, encompassing the observation of zero resistance, sharply switching V -I char-

acteristics, as well as Josephson phase coherence, has only been reproducibly demonstrated in

MATBG to date.

In this article, we report the realization of ultra-strong coupling superconductivity in a new

magic-angle system, consisting of three adjacent graphene layers sequentially twisted by θ and −θ

(Fig. 1a)21. This new moiré superconductor, namely mirror symmetric magic-angle twisted trilayer

graphene (MATTG), exhibits a rich phase diagram and, in addition, extra electric field tunability.

The latter allows us to explore the interplay between correlated states and superconductivity

beyond MATBG. Figure 1b-c shows the calculated band structures of MATTG without and with

an applied electric displacement field, D (see Methods and Extended Data Figure 1 for discussion

on stacking order). At zero D, MATTG has a set of flat bands, very similar to those of MATBG, as

well as gapless Dirac bands21,32–34 at one of the two corners of the mini Brillouin zone (MBZ), whose

Fermi velocity is close to the monolayer graphene value. The flat bands, which arise from mirror

symmetric hopping from the outer layers onto the center layer, can be mathematically reduced

to MATBG-like bands with an effective twist angle
√

2 ≈ 1.4 times smaller, while hybridization

with the Dirac bands is prohibited by the mirror symmetry21,33,34. This reduction leads to a larger

magic angle in MATTG, θMATTG ∼ 1.6°. When the mirror symmetry is broken by the application

of D, the flat bands can hybridize with the Dirac band, as shown in Fig. 1c. This tunable

hybridization between flat bands and dispersive bands allows us to control the bandwidth and

interaction strength in the flat bands of MATTG by varying D. In addition, the electrons in the

Dirac bands may participate in the correlation-driven phenomena in the flat bands via Coulomb

interactions. We note that these calculations do not take into account high-order and non-local

interlayer coupling terms, which create a more pronounced particle-hole asymmetry than shown

here33–36.

We used the ‘laser-cut & stack’ method37 to fabricate three MATTG devices, all of which

exhibit robust superconductivity (see Methods and Extended Data Figure 2 for device measurement
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schematics). Here we focus on the device with a twist angle θ = 1.57± 0.02°, i.e. particularly close

to θMATTG (see Extended Data Figure 4 for superconductivity in other devices). The high device

quality is evident from the quantum oscillations, which appear starting from 0.1 T (Fig. 1d). The

coexistence of Dirac bands and flat bands in MATTG can be directly observed in the transport

data under perpendicular magnetic field B, as shown in Fig. 1d-e. Resistive states at integer fillings

of the superlattice, ν = 4n/ns = +1,±2,+3,±4 appear as vertical features, regardless of D, where

n is the carrier density and ns = 8θ2/(
√

3a2) is the superlattice density (a = 0.246 nm is the

graphene lattice constant). The sharpness of these features suggests that the top and bottom twist

angles are almost identical (with opposite signs). We note that, while it is hard to achieve exactly

identical top and bottom angles, quantum oscillations in our device are clearly consistent with a

mirror-symmetric MATTG configuration (see Methods and Extended Data Figure 1), and a minor

difference in the two twist angles is unlikely to qualitatively affect the role of mirror symmetry.

At zero D, we find an extra set of quantum oscillations that emanates from the charge neutrality

point (Fig. 1d), which vanishes when a moderate D is applied (Fig. 1e). These observations are

consistent with a coexisting dispersive band tunable by D, as predicted by the calculations shown in

Fig. 1b-c. We further confirm the Dirac character of the dispersive band by measuring its quantum

Hall sequence, as shown in Fig. 1f. The Hall conductivity near ν = +4 (where the dispersive band

contribution dominates) exhibits a sequence of plateaus at σxy/(
e2

h ) = 2, 6, 10, 14, . . . accompanied

by drops in longitudinal resistance Rxx, exactly reproducing the monolayer graphene sequence. We

note that the trajectories of these quantum oscillations in the (ν,B) map are highly sensitive to the

coexisting flat bands. By tracking the Dirac Landau levels, we estimate the chemical potential µ

in the flat bands as a function of ν (see Methods for detail). As shown in Fig. 1g, we find ‘pinning’

of the chemical potential near each integer ν, indicating a cascade of phase transitions similar to

observations in MATBG37–39. From the chemical potential we estimate the many-body bandwidth

of the flat bands to be around 100 meV (40 meV on the hole side and 60 meV on the electron side),

relatively large compared to the 40 meV∼60 meV many-body bandwidth in MATBG37,39,40. This

many-body bandwidth includes the Coulomb interaction, which is in principle larger in MATTG

than in MATBG due to the smaller unit cell.

When MATTG is doped near ν = ±2, we find robust superconducting phases. Figure 1h-

i shows the superconducting domes in the hole-doped (near ν = −2) and electron-doped (near

ν = +2) sides at finite D. The displacement field is chosen to optimize the superconducting

Tc. We find strong superconductivity with a T 50%
c (see Methods) of ∼ 2.9 K and ∼ 1.4 K for the

regions ν = −2 − δ and ν = +2 + δ, respectively, where δ < 1 is a positive number, and weaker
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FIG. 1: Electronic structure and robust superconductivity in mirror symmetric magic-angle twisted trilayer
graphene (MATTG). (a) MATTG consists of three graphene monolayers stacked in a symmetric arrangement
(by rotating with angles θ and −θ sequentially between the layers). (b-c) Calculated band structure of
MATTG at (b) zero and (c) finite perpendicular electric displacement field D/ε0 = 0.2 V nm−1 for valley K
(bands for valley K ′ can be obtained by time-reversal symmetry), showing flat bands and Dirac bands near
the charge neutrality point. The colour represents the mirror symmetry character of the eigenstates, which
varies from purple (symmetric) to orange (anti-symmetric, see Methods). Finite D lifts the mirror symmetry
and hybridizes the flat and Dirac bands. (d-e) Magnetotransport data (derivative of Hall resistance Rxy
over B) of MATTG at D/ε0 = 0 V nm−1 and D/ε0 = 0.54 V nm−1, respectively. At D = 0, we observe extra
Landau levels demonstrating the presence of coexisting Dirac bands, which are lifted by the displacement
field. (f) Rxx and Hall conductivity σxy as a function of inverse magnetic field 1/B, at ν . 4 as marked
by the purple arrow above (d). The quantization of σxy at 2, 6, 10, . . . e2/h indicates the presence of the
massless Dirac bands. (g) Estimated chemical potential as a function of ν extracted from the evolution
of Dirac band Landau levels (see Methods), showing a pinning behaviour at all integer fillings. (h-i) Rxx
versus T and ν showing the superconducting regions near ν = −2 and ν = +2, at D/ε0 = −0.44 V nm−1

and D/ε0 = 0.74 V nm−1, respectively. (j) Vxx-I curves as a function of temperature at optimal doping
in the −2 − δ dome. The top-left inset shows a fit of Rxx − T data with the Halperin-Nelson formula41

R ∝ exp[−b/(T − TBKT)1/2], which gives TBKT = 2.25 K. The bottom-right inset shows the Vxx-I curves
in log-log scale, and the dashed line denotes where its slope is approximately 3 (Vxx ∝ I3), indicating
TBKT ≈ 2.1 K. (k-m) Critical current versus magnetic field at (k) ν = −2.4, D/ε = −0.44 V nm−1, and (m)
ν = +2.22, D/ε = −0.44 V nm−1. In (k), the critical current shows a long tail up to 400 mT, while (m)

shows a clear Josephson interference pattern.
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superconductivity with T 50%
c < 1 K for the ν = −2 + δ and ν = +2 − δ regions. Figure 1j shows

the voltage-current (Vxx− I) characteristics in the ν = −2− δ dome as a function of T , exhibiting

a clear Berezinskii–Kosterlitz–Thouless (BKT) transition behaviour, from which we extracted the

BKT transition temperature TBKT ∼ 2.1 K. Alternatively, we can extract the BKT temperature

from the Halperin-Nelson fit41 of Rxx versus T near the superconducting transition (Fig. 1j top left

inset), which gives a consistent value of TBKT ∼ 2.25 K. The Vxx−I curve at the lowest temperature

shows a zero resistance plateau up to a critical current of Ic ∼ 600 nA, above which the system

switches sharply to a resistive state. The sharp transitions and associated hysteresis (see Extended

Data Figure 3) are characteristic of robust superconducting behaviour, which cannot be accounted

for by alternative mechanisms, such as Joule heating42. To further confirm the superconductivity,

we measure the critical current in the ν = +2 + δ dome, near its boundary with the resistive

feature, as a function of perpendicular magnetic field B, and find a clear Fraunhofer-like oscillation

pattern (Fig. 1m). This pattern can be explained by the interference between superconducting

percolation paths separated by normal regions due to charge inhomogeneity, and constitutes a

direct demonstration of the superconducting Josephson phase coherence in MATTG. On the other

hand, the magnetic field dependence of the critical current at the optimal-doping density, near

ν = −2− δ, does not show a visible oscillatory behaviour, likely due to the lack of normal islands

in this strongly superconducting regime (Fig. 1k). Instead, we find a long superconducting ‘tail’

that remains up to 400 mT, suggesting a high critical magnetic field Bc2 at this density.

MATTG exhibits a rich phase diagram as a function of ν, D, T , and B. In particular, the

prominent D dependence allows us to correlate the evolution of the superconducting phase bound-

aries with normal-state magnetotransport features, which can provide important insight into the

nature of the superconductivity. Figure 2a shows the longitudinal resistance Rxx as a function of ν

and D. Various resisitive features can be seen, especially at ν = 0,+1,±2,+3,±4, some of which

have substantial D dependence. In addition, there are zero resistance regions, shown in bright blue,

denoting superconductivity. These superconducting regions are most prominent between |ν| = 2

and |ν| = 3, though they can also extend into neighbouring regions. The extending regions at small

D could be due to the interplay with the Dirac band. Figure 2b shows the normalized Hall density

νH = 4nH/ns, where nH = −
(
e
dRxy

dB

)−1
, and Rxy is the Hall resistance. Both data in Fig. 2a and

2b are measured at T = 70 mK (see Extended Data Figure 9 for line cuts at different temperatures

and D). In MATTG, the Hall density exhibits three main types of behaviour characterized by

a different dependence on ν: ‘gap/Dirac’, ‘reset’, and ‘vHs’ (van Hove singularity), as illustrated

in Fig. 2d-f. The trajectories of these features are summarized in Fig. 2c, along with the phase
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FIG. 2: MATTG phase diagrams. (a) Longitudinal resistance Rxx = Vxx/I at B = 0 T and (b)
normalized Hall density νH = 4nH/ns at B = ±1.5 T, versus the moiré filling factor ν = 4n/ns and

electric displacement field D, where the Hall density nH = −
(
e
dRxy

dB

)−1
and ns is the superlattice

density. Data are taken at T = 70 mK. Superconductivity is represented by bright blue regions
in (a). In the Hall density shown in (b), we find three types of features which are schematically
sketched in (c) and denoted by ‘gap/Dirac’ (red), ‘reset’ (yellow), and ‘vHs’ (dark blue). The
blue regions in (c) denote the superconducting phase as determined in (a). The branches near
ν = −2 + δ at large D and the regions at small D, all denoted by light blue, correspond to very
weak superconductivity. The behaviours of νH versus ν for each of these features are shown in
(d-f). (d) At a ‘gap/Dirac’ feature, νH changes linearly with ν while crossing zero. (e) At a ‘reset’
feature, νH rapidly drops to zero but without changing sign (here shown for ν > 0). (f) At a ‘vHs’
feature, νH diverges and changes sign at a van Hove singularity. (g-h) Plots of (g) Rxx and BKT
transition temperature TBKT, and (h) effective mass m∗ as function of ν, taken at the displacement
field indicated by the yellow dashed line in (a-b) (D/ε0 = 0.64 V nm−1). TBKT approaches zero
and m∗ shows a peak around the vHs, which is represented by the pink region. me is the electron
mass. The dashed guidelines in (h) correspond to a logarithmic divergence in the DOS at the vHs.
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boundaries of superconductivity. The first type, ‘gap/Dirac’, denotes a continuous zero crossing

of νH as ν is increased (Fig. 2d). This behaviour indicates that the Fermi level crosses a gap or

Dirac-like point. The second type is a ‘reset’ to zero, i.e. νH drops/rises suddenly close to zero but

it does not change sign, and it starts rising/dropping again in the same direction as it was before

the ‘reset’ (see Fig. 2e for electron side). This is a behaviour typically observed across certain in-

teger filling factors in MATBG4,5, and it also occurs in MATTG near zero and small displacement

fields. These ‘resets’ are associated with the Coulomb-induced phase transitions recently reported

in MATBG using various experimental techniques37–39. Both types of features occur only close to

integer fillings ν = 0,±1,±2, . . .. In contrast, the third type of feature exhibits a divergent νH with

a zero-crossing (Fig. 2f), which is associated with saddle-points on the Fermi surface known as van

Hove singularities (vHs). At a vHs, νH ceases to represent the number of carriers in the system,

as the electrons no longer follow a closed semi-classical orbit. In 2D, the DOS at a vHs diverges,

as routinely observed in scanning tunneling experiments. In general, there is no restriction on the

density at which a vHs occurs, and we find that experimentally they evolve and can merge with the

other two types of features as D is varied. [We note that there are some small regions, right before

ν = +1 and ν = +2, in some D range, where there are signatures of a more complex behaviour in

νH , with possible vHs very close to the ‘reset’.]

Remarkably, we find that superconductivity emanating from ν = ±2 is consistently suppressed

upon reaching vHs, i.e. the superconductivity is ‘bounded’ by the vHs contours, as well as at the

‘resets’ near ν = ±3. Fig. 2g shows a Rxx versus ν linecut at D/ε0 = 0.64 V nm−1 (yellow dashed

line in Fig. 2a), and on the same plot TBKT versus ν. As it can be seen, TBKT falls to 0 K, and

Rxx begins rising, as the vHs around ν = −2.9 (denoted by pink shade) is reached. To further

confirm the occurrence of the vHs, we investigate the effective mass m∗ versus ν, measured through

quantum oscillations, at the same D (see Methods and Extended Data Figure 7 for extraction).

It exhibits a divergent trend near the vHs, as expected in a 2D system. We note that the Hall

density signature of the vHs bounding the ν = −2 + δ superconducting dome appearing at high

|D|, which has a relatively low Tc, requires a smaller magnetic field of B = 0.1 ∼ 0.3 T to reveal it

(see Extended Data Figure 5).

The observation that superconductivity vanishes right at the vHs is highly unusual. In BCS

superconductors, the order parameter and related quantities (Tc, Ic, etc.) are generally positively

correlated with the DOS of the parent state at the Fermi level. This trend is directly seen in the

weak-coupling BCS theory formula for Tc ∼ exp(−1/λN) (where N is the DOS at the Fermi level),

regardless of whether the coupling λ originates from electron-phonon coupling, spin fluctuations, or
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other mechanisms. In particular, a divergent DOS at a vHs has in fact been predicted to induce or

enhance superconducting order in various systems, including monolayer graphene43, cuprates44, and

ruthenates45. Our observation of the opposite trend therefore indicates that the superconductivity

in MATTG is unlikely to be consistent with conventional weak coupling BCS theory. We emphasize

that this clear demonstration of a separation between strength of superconductivity and Fermi

surface topology is accessible only in MATTG at large |D|, where a vHs can be tuned near the

vicinity of the superconducting region. This does not occur at small |D| in MATTG, and this

tunability is absent in MATBG. We further discuss the possible origin of this behaviour later in

the paper.

The wide tunability of the MATTG system allows us to investigate in detail the coupling

strength of the superconducting state by measuring the Ginzburg-Landau coherence length ξGL

as a function of various parameters. We first obtain a map of TBKT in the entire phase space

of ν and D to understand the evolution of the superconductivity, as shown in Fig. 3a. We find

that TBKT varies dramatically with ν and D, in all four superconducting dome regions. The

zero-temperature superconducting coherence length ξGL(0) can be determined by measuring the

critical temperatures Tc at different perpendicular magnetic fields B and fitting the data using the

Ginzburg-Landau relation Tc/Tc0 = 1− [(2πξ2GL)/Φ0]B⊥, where Φ0 = h/2e is the superconducting

flux quantum and Tc0 is the mean-field critical temperature at zero magnetic field (slightly higher

than TBKT , see Methods and Extended Data Figure 6 for details of extraction). We perform this

analysis as a function of either ν or D, while the other parameter is kept fixed at the optimal

point, and the extracted ξGL values are overlaid on the corresponding TBKT plots in Fig. 3b-c.

Note that in the presence of charge and/or twist angle disorder, both of these values should be

interpreted as spatial averages of the corresponding local quantities. We find that MATTG has

an extremely short coherence length, reaching down to ξGL(0) ∼ 12 nm near the optimal point,

which is comparable to the interparticle distance. For an order of magnitude comparison, in Fig.

3b-c we show the expected mean interparticle distance dparticle = |n∗|−1/2, where n∗ = ||ν|−2|ns/4

is the carrier density counting from ν = −2 (as suggested by both quantum oscillations and Hall

density measurements, see Fig. 4 and Extended Data Figure 5). In the ‘underdoped’ region of the

superconducting dome (−2.4 < ν < −2.15), we find that the coherence length is in fact bounded

by the interparticle distance.

These observations constitute a first indication that MATTG is a superconductor that can be

tuned close to the BCS-BEC crossover. The saturation of ξGL at the interparticle distance suggests

that a large fraction of the available carriers are condensed into Cooper pairs, i.e. nsf/n
∗ . 1,
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show the expected interparticle distance dparticle = |n∗|−1/2 for the carrier density n∗, which starts
counting from ν = −2, n∗ = ||ν| − 2|ns/4. The Ginzburg-Landau coherence length approaches the
interparticle distance around the optimal point in the phase diagram where TBKT is the highest.
The background colour plot shows Rxx versus T and ν. (d-e) Effective mass, m∗ in units of
the electron mass, me (upper panel) and the TBKT/TF ratio (lower panel) as a function of ν or

D (same line cuts as in (b-c)). The Fermi temperature is calculated from TF = π~2n∗

m∗kB
. Around

optimal doping and displacement field, TBKT/TF approaches the blue dashed line, which represents
the upper bound of TBKT/TF in the BCS-BEC crossover in 2D, whose value is 0.125.

where nsf is the superfluid density, in contrast to conventional superconductors where only a tiny

fraction of electrons are condensed. This difference can be captured in the framework of the BCS-

BEC crossover, as the system is tuned from the weak coupling regime (Tc/TF � 0.1, where TF is the

Fermi temperature) to the strong coupling regime (Tc/TF & 0.1). To estimate how close MATTG

near its optimal doping is to the BCS-BEC crossover, we measure the ratio TBKT/TF as a function

of ν and D, as shown in Fig. 3d-e. The Fermi temperature TF is given by TF = π~2n∗/(m∗kB),

where kB is the Boltzmann constant and m∗ is the measured effective mass. As true long-range

order does not exist in two dimensions, in both the BCS and BEC limits the superfluid undergoes

a BKT transition at TBKT ∝ nsf/m
∗46. We can therefore use the ratio TBKT/TF to quantify
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FIG. 4: Connection between superconductivity and carriers emerging from the |ν| = 2 phase. (a-b) Landau
fan diagrams (Rxx versus ν and B, upper panel) and their Landau level designations (lower panel) in the
hole-doped side (ν < 0) for large D (D/ε0 = −0.64 V nm−1), and small D (D/ε0 = 0 V nm−1), respectively
(see Extended Data Figure 8 for intermediate D). (f-g) Landau fan diagrams and designations in the
electron-doped side (ν > 0) at (f) D/ε0 = −0.77 V nm−1 and (g) D/ε0 = 0 V nm−1 (see Extended Data
Figure 8 for an intermediate D). The inset in (f) shows the derivative dRxx/dB of the zoom-in region
denoted by the pink dashed rectangle in the upper panel. These Landau fans indicate that at small D,
the carriers are always hole-like (electron-like) on the −4 < ν < 0 (0 < ν < 4) side, and ‘resets’ occur
at ν = +1,±2,±3, similar to previous studies in MATBG. On the other hand, at large D, carriers with
opposite polarity (i.e. electron-like at −4 < ν < 0 or hole-like at 0 < ν < 4) dominate near ν & −4,−2
(ν . +2,+4). The vHs are responsible for the transitions between carriers with different polarities. These
behaviours of the carrier types and numbers are schematically summarized in (c-e), with superconducting
regions denoted by purple shades. We find that superconductivity is only found in the regions where the
carriers originate from the ν = ±2 states, i.e. when the Landau fan at that density converges towards
ν = ±2. The high ν part in (c) and (f) is limited by the maximum gate value we can apply before leakage,
but the trend of the carrier dynamics can be deduced from the Hall density map in Fig. 2b. [We note the

at small D, there are slight shifts in ν, which may be attributed to the interplay with the Dirac band.]

the superfluid fraction nsf/n
∗ in both regimes. In the BCS-BEC crossover in two-dimensions,

TBKT/TF has an upper bound of 0.12547,48. Remarkably, our experimentally extracted TBKT/TF

indeed reaches values in excess of 0.1, with maximum values close to 0.125. This indicates that

the superconductivity in MATTG is likely of strong coupling nature, and possibly close to the

BCS-BEC crossover. For comparison with other strong 2D superconductors, the TBKT/TF ratio

is ∼ 0.05 (Tc/TF ∼ 0.08) in MATBG5, and Tc/TF ∼ 0.04 in LixHfNCl49. Another strong 2D

superconductor is monolayer FeSe grown on STO, for which very high Tc/TF ratios, of order ∼ 0.1,

have been reported50, though transport data show substantially broad R − T transitions, which

may indicate a lower TBKT/TF ratio50.

To gain further insight into the MATTG superconducting phase diagram, we analyze the type
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of carriers involved in the superconductivity via quantum oscillations measurements. Figures 4a-b

show the quantum oscillations in the −4 < ν < 0 range, at large and small displacement field,

respectively. The corresponding data for electrons, i.e. in the 0 < ν < +4 range, are shown in Fig.

4f-g. At small D (including zero) there is a ‘reset’ at |ν| = 2, both for holes and electrons, which

is manifested as an outward facing (away from ν = 0) Landau fan originating at |ν| = 2 (Fig. 4b

and g). These Landau fans end near |ν| = 3, where new outward Landau fans start, consistent

with the ‘resets’ occurring there (Fig. 2b-c), which indicates phase transitions to a different broken

symmetry phase ground state37–39. At these small D values, the superconductivity is restricted

to the regions between |ν| = 2 and |ν| = 3 (Fig. 2a-c), which envisages an intimate connection

between the many-body ground state occurring beyond the phase transition at |ν| = 2 and the

superconductivity occurring upon further doping carriers there. This behaviour is summarized in

Fig. 4e, with superconductivity represented by purple triangles.

At large D, the phase diagram changes substantially, as it was shown in Fig. 2, where super-

conductivity is now bounded by vHs in some regions, and extra superconducting branches appear,

particularly strong and noticeable for ν = +2 − δ (Fig. 3a). These features are correlated with

changes in the quantum oscillations. In particular, we find inward-facing (towards charge neutral-

ity) Landau fans starting to develop at |ν| = 2 (Fig. 4a,f), which meet the fans from ν = 0 (hole

side) or ν = +1 (electron side) at vHs. This indicates that the states that result from the removal

of electrons (holes) from ν = +2 (ν = −2) remain adiabatically connected to the ground state

at |ν| = 2, until the vHs is reached. This is different from the small D case, where the system

immediately goes through a phase transitions across the ‘resets’. Another change at large D is that

the ‘resets’ near |ν| = 3 are no longer present, and the outward-going Landau fans from |ν| = 2

directly meet the inward-going fans from |ν| = 4 at vHs (for the electron side this is deduced from

the Hall density shown in Fig. 2b). The data at intermediate D are shown in Extended Data

Figure 8, and illustrated in Fig. 4d, which shows the evolution between small D and large D, and

exhibits a hybridization of the features described above. The evolution between the ‘reset’-type

features and ‘vHs’-type features might be related to a change in the bandwidth and band topology

as the Dirac bands start to hybridize with the flat bands (see Fig. 1b-c). As one possibility, it has

been suggested that the positions of the vHs in the single-particle flat bands help determine the

occurrence of a flavour symmetry breaking phase transition, as well as the filling factor at which

they occur36. When a symmetry breaking occurs right at integer fillings, it appears as a ‘reset’;

when it occurs slightly before the integer fillings, it appears as a ‘vHs’ feature in Hall density at the

phase transition, followed by a ‘gap/Dirac’ feature at the integer filling36. While these calculations
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were made in the context of MATBG, in principle they can be directly applied to MATTG as well,

with the added knob of displacement field that could tune the positions of the single-particle vHs.

At such large D, we find the superconductivity to be still bounded within the regions where the

carriers are connected to the |ν| = 2 ground state, as summarized in Fig. 4c-d. These observations

indicate that the many-body ground state emerging from the broken-symmetry phase transition at

|ν| = 2 plays an essential role in forming robust superconductivity, since superconductivity appears

as carriers are added to or subtracted from that state, and it vanishes when the normal state of

the system changes to a different phase, either through a ‘reset’ to the |ν| = 3 broken-symmetry

phase (at small D) or through a vHs to ν = 0, ν = +1, or |ν| = 4 phases at high D.

Our experiments point towards a strong-coupling mechanism for superconductivity that is

deeply tied to the ground state at ν = ±2, and where the maximum Tc is mostly determined

by the carrier density rather than the precise structure of the density of states. At the same time,

we also note that the presence of vHs can affect the phase transitions which underlie the symme-

try broken phases. These observations should be taken into consideration in the development of

theoretical models for moiré superconductors with ultra-strong coupling strength. A noteworthy

question is: what makes MATBG and MATTG robust superconductors? One possibility is that

they both have certain symmetry properties, in particular approximate C2 rotational symmetry, as

recently suggested51. Interestingly, this symmetry is absent in other graphene-based moiré systems,

such as ABC trilayer graphene/hBN, twisted bilayer-bilayer graphene, and non-mirror-symmetric

twisted trilayer graphene. We hope future investigations on other C2-symmetric moiré systems will

determine if this symmetry is indispensable for the formation of strong coupling superconductivity

in moiré flat bands.

I. METHODS

1. Sample Fabrication

Our samples consist of three sheets of monolayer graphene, with twist angles θ and −θ for the

top/middle and middle/bottom interfaces, respectively, which are then sandwiched between two

hBN flakes 30 nm∼80 nm thick. We first exfoliate the hBN and graphene flakes on SiO2/Si sub-

strates, and analyze these flakes with optical microscopy. The multilayer stack is fabricated using

a dry pick-up technique, where a layer of poly(bisphenol A carbonate)(PC)/polydimethylsiloxane

(PDMS) on a glass slide is used to pick up the flakes sequentially using a micro-positioning stage.
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To ensure the angle alignment between the graphene layers and to reduce strain, they are in situ

cut from a single monolayer graphene flake using a focused laser beam37. The hBN flakes are picked

up while heating the stage to 90 °C, while the graphene layers are picked up at room temperature.

The resulting structure is released on the prepared hBN on Pd/Au stack at 175 °C. We define

the Hall-bar geometry with electron beam lithography and reactive ion etching. The top gate and

electrical contacts are thermally evaporated using Cr/Au. Schematics and optical picture of the

finished devices are shown in Extended Data Fig. 2.

2. Measurement Setup

Transport data are measured in a dilution refrigerator with a base electronic temperature of

∼70 mK. Current through the sample and the four-probe voltage are first amplified by 1× 107 V/A

and 1000 , respectively, using current and voltage pre-amplifiers, and then measured with SR-830

lock-in amplifiers, synchronized at the same frequency between 1 Hz∼20 Hz. Current excitation

of 1 nA or voltage excitation of 50 µV to 100 µV is used for resistance measurements. For dc bias

measurements, we use a BabyDAC passing through a 10 MΩ resistor to provide the dc bias current,

and measure the dc voltage by Keysight 34461A digital multimeter connected to the voltage pre-

amplifier.

3. Band Structure Calculation

The band structures shown in Fig. 1b-c are calculated using the continuum model for twisted

bilayer graphene2,3, extended with a third layer on the top with the same twist angle as the

bottommost layer. For simplicity, we neglect the direct coupling from topmost and bottommost

layers, and we use off-diagonal and diagonal interlayer hopping parameters w = 0.1 eV and w′ =

0.08 eV respectively, the latter value empirically accounting for a small relaxation of the lattice.

The colour of the curves in Fig. 1b-c represents the mirror symmetry character of the eigenstates,

which we evaluate by projecting the wavefunction of the eigenstate in the topmost layer onto the

bottommost layer and calculating its inner product with the wavefunction in the bottommost

layer. This evaluates to 1 for a mirror symmetric eigenstate (coloured as orange) and -1 for a

mirror antisymmetric eigenstate (coloured as purple), and between -1 and 1 for a non-symmetric

state.

The effect of displacement field is taken into account by imposing an interlayer potential differ-
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ence ∆V = d ·D/ε0, where d ∼ 0.3 nm is the interlayer distance. We note that due to the screening

by the outer layers, the actual electric field between the layers will be less than the externally

applied field. While we can qualitatively capture the effect of the external displacement field in

this calculation, a self-consistent treatment is required to accurately solve such a problem, which

is beyond the scope of this mostly experimental paper.

4. Stacking Alignment

Twisted trilayer graphene (TTG) has an extra shift degree of freedom compared to twisted

bilayer graphene (TBG). While the topmost and bottom-most layers are not twisted with respect

to each other, their relative stacking order can have a significant effect on the single-particle band

structure. Among the configurations, the ones with A-tw-A stacking and A-tw-B stacking (‘tw’

denotes the middle twisted layer) have the highest symmetry, as shown in Extended Data Figure

1a-b. In particular, only A-tw-A stacking possesses a mirror symmetry and it was shown to have the

lowest configuration energy among all possible stacking orders for a given twist angle33. Extended

Data Figure 1c-f show the calculated band structures of the A-tw-A and A-tw-B configurations at

zero and finite displacement fields. Furthermore, Extended Data Figure 1g-j show the calculated

Landau level spectrum of the corresponding cases near charge neutrality52. In these calculations, we

also included a small C3-symmetry breaking term53 to reproduce the 4-fold Landau level degeneracy

observed in experiments (β = −0.01 following the conventions of Zhang et al.53). We find that

in the case of A-tw-A stacking, the Landau level sequence near charge neutrality is ±2,±6,±10

regardless of whether a displacement field is applied, while in the case of A-tw-B stacking the

application of a displacement field leads to a complicated evolution of the Landau level that no

longer follows the same sequence. The displacement field also induces a global bandgap in the

A-tw-B configuration, while keeping A-tw-A gapless.

From our experimental observations, our MATTG samples are more likely to possess A-tw-A

stacking than other configurations, for the following reasons. Firstly, unlike MATBG, we do not

find an insulating state at ν = ±4 at any displacement field, suggesting that the system does

not have a global energy gap. Secondly, as shown in Extended Data Figure 1k-m, the strongest

Landau level sequence near the charge neutrality point is always ±2,±6,±10,±14, . . . with or

without displacement fields. Both of these findings are in agreement with the A-tw-A stacking

case, as discussed above.
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5. Chemical Potential Estimate

As the coexisting flat bands and Dirac bands share the same chemical potential, we can utilize

the transport features of the Dirac bands as shown in Fig. 1d to determine the n-µ relationship in

the flat bands. Specifically, at a finite magnetic field B and in the absence of D, we assume that

the flat bands host a charge density nf and the Dirac bands host a charge density nd, such that

n = nf + nd.

Under finite B, the Dirac bands are quantized into fourfold degenerate Landau levels labeled

by index N = 0,±1,±2, . . .. In transport data, if we designate the centers of Rxx peaks (see e.g.

Fig. 1f) as the center of N -th Landau level (not the Landau level gaps), nd and µd follow

nd =
4NB

φ0
, (1)

µd = vF
√

2e~NBsgn(N), (2)

where φ0 = h/e is the flux quantum and the factor 4 accounts for spin and valley degeneracies.

sgn(N) is the sign of N . We use a Fermi velocity vF = 1× 106 m s−1 for this estimation. Since nd

and µd are only functions of NB, they are known once we determine the Landau level index N ,

which is evident from the Hall conductivity in the gaps between them σxy = 4(N ± 1
2)e2/h (see

Fig. 1f). Therefore, along the trajectory of N -th Landau level in a n-B map, we can determine

the nf -µf relationship for the flat bands as

nf = n− 4NB

φ0
, (3)

µf = vF
√

2e~NBsgn(N). (4)

We performed this extraction for |N | = 1, 2, 3, 4 and the results are consistent, as shown in Fig. 1f.

6. Hall Density Analysis

The Hall density in Fig. 2b is calculated from Rxy measured and anti-symmetrized at B =

±1.5 T. The reason for choosing this magnetic field is to fully suppress the superconductivity at

ν = −2− δ, which has a relatively high critical magnetic field approaching 1 T because of the short

Ginzburg-Landau coherence length. Extended Data Fig. 5a-c show representative linecuts in the

maps of Rxx, Rxy and Hall density νH , with the Hall features (‘gap/Dirac’, ‘reset’, or ‘vHs’) and

superconducting regions annotated. While all major superconducting domes are bounded by the
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Hall features, we notice a few exceptions of weak superconductivity not bounded. For example, at

zero displacement field (Extended Data Fig. 5c), there is a weak signature of superconductivity

beyond the reset around ν = −3.2, which has a small but nonzero resistance. These regions need

further investigation for full understanding.

The weak superconducting region at ν = −2 + δ at large D is also seemingly not bounded by

a vHs in the main Hall density plot taken at B = ±1.5 T (see Fig. 2a-b). However we find that

signatures of vHs boundary can be identified if we measure the Hall density using a smaller B,

as shown in Extended Data Fig. 5d. By comparing to Rxx data shown in Extended Data Fig.

5e, we can see that although not perfect, there is a clear correlation between the vHs and the

superconductivity boundary. Furthermore, the Landau fans at finite D (Fig. 4a and Extended

Data Figure 8a) show signatures of inward going fan at ν = −2 + δ, supporting the existence of

carriers from ν = −2. However, the inward fan as well as the superconductivity in this region

appears to be extremely fragile, which might be related to why the vHs boundary is invisible when

measured at higher B.

7. Tc and Coherence Length Analysis

The mean-field Tc is extracted by first fitting the high-temperature part of the data to a straight

line r(T ) = AT+B, and then find the intersection of Rxx(T ) with p·r(T ), where p is the percentage

of normal resistance (we use 50 % unless otherwise specified).

We extract the Ginzburg-Landau coherence length from the B-dependence of Tc. As shown

in Extended Data Figure 6, the mean-field Tc at different B is extracted at different percentages

p=30 %, 40 %, and 50 % of the normal resistance fit (shown as dashed lines). The insets show

the extracted Tc using different thresholds. The Ginzburg-Landau coherence length ξGL is then

obtained from a linear fit of Tc versus B, the x-intercept of which is equal to Φ0/(2πξ
2
GL). The

different thresholds yield slightly different but consistent coherence length, which we plot as the

data points (40 %) and errorbars (50 %, 30 %) in Fig. 3b-c.

8. Effective Mass Analysis

Effective mass of MATTG is extraced from the T -dependent quantum oscillations in a per-

pendicular magnetic field using the standard Lifshitz-Kosevich formula54. Extended Data Fig-

ure 7a-b show representative quantum oscillations at ν = −2.86 and ν = −2.5, respectively,
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(D/ε0 = −0.44 V nm−1). Starting from raw resistance data Rxx, we first remove a smooth poly-

nomial background in B−1 and obtain ∆R. We then select the most prominent peak/valley in

∆R, and evaluate its change from the valley to the peak as a function of temperature, δR(T ). We

notice that in some curves, such as those shown in Extended Data Figure 7a-b, the high-field part

of the oscillation are either split (Extended Data Figure 7a) or have a higher periodicity (Extended

Data Figure 7b) than the fundamental frequency that corresponds to the carrier density, which we

attribute to broken-symmetry states. We avoid using those peaks for extracting effective mass, as

they tend to overestimate the effective mass m∗ and underestimate TF . δR(T ) is subsequently fit

with the Lifshitz-Kosevich formula

δR(T ) = b
aT

sinh(aT )
. (5)

where a, b are fitting parameters. The effective mass m∗ is then extracted from

m∗ =
~eB

2π2kB
a, (6)

where B is the average of the peak and valley positions. The fit is shown in the insets of Extended

Data Figure 7a-b, from which we obtainm∗/me = 1.25±0.13 andm∗/me = 0.95±0.03, respectively.

Since TBKT at these two points are 1.11 K and 2.09 K, respectively, the TBKT/TF ratio is 0.041 ±

0.004 and 0.100± 0.003, respectively.

For the effective mass data in Fig. 2h and Fig. 3d-e, we performed the extraction with less points

in temperature, as exemplified in Extended Data Figure 7c-e. We manually select the peak/valley

position (shown as triangles) for each density/displacement field, and the mass is obtained from

the same fit as above, as shown in Extended Data Figure 7f. We have checked that this extraction

is consistent with the extraction using more data points in T for the representative curves shown

(Extended Data Figure 7a-b), which justifies the analysis with coarser data points in T .
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II. EXTENDED DATA FIGURES
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Extended Data Figure 1: Stacking order in MATTG. (a-b) Illustrations of (a) A-tw-A stacking and (b)
A-tw-B stacking, where tw denotes the middle twisted layer (L2, orange) and A/B represents the relative
stacking order between the topmost (L3, green) and bottom-most (L1, blue) layers. (c-f) Continuum-model
band structures of (c-d) A-tw-A stacked and (e-f) A-tw-B stacked MATTG at zero and finite displacement
fields. The twist angle is θ = 1.57° for all plots. (g-j) Calculated Landau level sequence corresponding
to the bands in (c-f). The size of the dots represents the size of the Landau level gaps in the Hofstadter
spectrum. For A-tw-A stacking, the major sequence of filling factors near the charge neutrality is ±2,±6,±10
regardless of the displacement field, while for A-tw-B stacking the Landau levels evolve into a symmetry-
broken sequence that has 0,±8 as the dominant filling factors with largest gaps in a finite displacement
field. An anisotropy term of β = −0.01 is included in all of the above calculations (see Methods). (k-
m) Experimentally measured Landau levels in MATTG near the charge neutrality. We find the strongest
sequence of ±2,±6,±10 at both D = 0 and D/ε0 = 0.77 V nm−1, consistent with the A-tw-A stacking

scenario.
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Extended Data Figure 2: Device schematics and device optical picture. (a) Our device consists of hBN
encapsulated MATTG etched into a Hall bar, Cr/Au contacts on the edge, and top/bottom metallic gates.
For transport measurements, we measure current I, longitudinal voltage Vxx, and transverse voltage Vxy,
while tuning the density ν and displacement field D by applying top gate voltage Vtg and bottom gate

voltage Vbg. (b) Optical picture of devices A and B. Device C is lithographically similar.
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Extended Data Figure 3: Vxx-I curves and critical current Ic in MATTG. (a) Forward (red) and backward
(blue) sweeps of Vxx-I curves for the optimal point ν = −2.4 and D/ε0 = −0.44 V nm−1. Inset shows
clear hysteresis loop in the curve at I = 550 nA∼600 nA. (b) Map of Ic versus ν and D in the major
superconducting regions. (c) Evolution of Ic over D at ν = −2.4, showing that Ic initially increases as finite
D is applied, and quickly decreases beyond local maxima near |D|/ε0 ∼ 0.48 V nm−1. (d) Ic versus D at
ν = +2.26 shows that the maximum Ic occurs near |D|/ε0 ∼ 0.71 V nm−1, after which Ic quickly decreases.
The modulation of superconducting strength in D may be due to changing the band flatness, as well as
the relative interactions with the Dirac electrons. (e)-(g) Vxx-I and dVxx/dI-I curves for certain points in
superconducting domes near (e) ν = −2 + δ, (f) ν = +2 − δ, and (g) ν = +2 + δ, all showing sharp peaks

in dVxx/dI at the critical current.
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Extended Data Figure 4: Robust superconductivity in other MATTG devices. (a) Rxx-T curve, (b) Vxx-I
and dVxx/dI-I curves, and (c) I-B map in device B with a smaller-than-magic angle θ ∼ 1.44°. In this
device, maximum TBKT ∼ 0.73 K. The choice of ν is to display the Fraunhofer-like Josephson intereference,
demonstrating phase coherence. (d-f) Similar plots as (a-c) for device C, with a twist angle θ ∼ 1.4°. Device
C has a maximum TBKT of ∼ 0.68 K. (f) shows a regular B-suppression of Ic with B. Both devices show

sharp peaks in dVxx/dI at their critical currents.
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Extended Data Figure 5: Hall density analysis. (a-c) Linecuts of Rxx, Rxy, and νH (right axis) versus ν
at representative D from high to zero, showing the bounding of major superconducting phase boundaries
within the Hall density features. Vertical pink, yellow, and dark blue bars denote ‘gap/Dirac’, ‘reset’, and
‘vHs’ features, respectively, while the sky blue regions denote superconductivity. Purple dashed lines show
the expected Hall density. (d) Hall density νH extracted from smaller magnetic fields of B=0.1 T∼0.3 T
reveals a vHs boundary close to the weak superconducting phase boundary near ν = −2+ δ, which is absent
in the Hall density shown in (a-c) and Fig. 2b extracted from a higher magnetic field of B=−1.5 T∼1.5 T.
(e) Rxx in the same region as shown in (d), where the superconducting boundary is close to the vHs. All

measurements are performed at the base temperature T ∼ 70 mK.
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Extended Data Figure 7: Quantum oscillations and effective mass analysis. All data shown here are
measured at D/ε0 ∼ −0.44 V nm−1. (a-b) Quantum oscillations at (a) ν = −2.86 and (b) ν = −2.5 at
different T . Gray dashed lines show the peaks used for analysis. Inset shows the fit to Lifshitz-Kosevich
formula for the extraction of effective mass, yielding (a) m∗/me = 1.25± 0.13 and (b) m∗/me = 0.95± 0.03.
(c-d) Quantum oscillations sampled at coarser points in T for the same ν as in (a-b). Extracted effective
mass with these coarser points are (c) m∗/me = 1.2±0.2 and (d) m∗/me = 0.96±0.09, matching the values
from (a-b) within the uncertainty. (e) Quantum oscillations at ν = −2.4 (optimal doping). (f) Lifshitz-
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