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A quantum system subject to continuous measurement and post-selection evolves according to a
non-Hermitian Hamiltonian. We show that, as one increases the rate of post-selection, this non-
Hermitian Hamiltonian can undergo a spectral phase transition. On one side of this phase transition
(for weak post-selection) an initially mixed density matrix remains mixed at all times, and an ini-
tially unentangled state develops volume-law entanglement; on the other side, an arbitrary initial
state approaches a unique pure state with low entanglement. We identify this transition with an
exceptional point in the spectrum of the non-Hermitian Hamiltonian, at which PT symmetry is
spontaneously broken. We characterize the transition as well as the nontrivial steady state that
emerges at late times in the mixed phase using exact diagonalization and an approximate, analyti-
cally tractable mean-field theory; these methods yield consistent conclusions.

I. INTRODUCTION

The dynamics of open quantum systems is a central
theme in various branches of contemporary many-body
physics [1–4]. In many circumstances, the environment
to which an open system is coupled can be modeled as
Markovian. When a system is coupled to a Markovian en-
vironment, one can equivalently regard it as undergoing
repeated weak measurements at each instant, with each
measurement involving a new measuring apparatus. The
system and the measuring apparatuses are collectively in
a pure state. For each set of measurement outcomes,
the system itself is in a pure state, but if one traces
over measurement outcomes the system is in a mixed
state that evolves according to a Lindblad master equa-
tion [5, 6]. A set of measurement outcomes is called a
“quantum trajectory” [7]. Recent work, motivated by
quantum circuits, has explored the properties of wave-
functions associated with typical individual trajectories.
Unexpectedly, these single trajectories undergo a phase
transition in their entanglement properties as the rate of
measurements is increased [8–32]: for sufficiently weak
or sparse measurements, the bipartite entanglement of
the system along a typical trajectory grows to become
a volume law (as it does under purely unitary dynam-
ics); for strong or dense measurements, a typical trajec-
tory has area-law entangled wavefunctions. This “mea-
surement phase transition” has also been interpreted in
terms of the ability of the dynamics to hide information
in nonlocal correlations that the measurements do not
probe [12, 13, 15]. This transition is, however, invisible
in the trajectory-averaged evolution of the density matrix
under the master equation.

The measurement transition seems to occur for a broad
class of models, but its character depends on the pre-
cise ensemble of trajectories. The most studied version
of this transition involves weighting trajectories by their
probability of occurring, i.e., by the Born probabilities
of the measurement outcomes. An alternative ensemble

is to fix a particular measurement outcome and post-
select on it: i.e., to keep only runs with a particular
(and thus generally atypical) measurement history; this
has been called the “forced measurement phase transi-
tion” [31] (see also [33–35]). In experimental settings,
post-selection might be more practical than sampling
over all measurement outcomes (e.g., if measurements
are done by fluorescence imaging, outcomes where a par-
ticle is observed cause heating, which contaminates the
subsequent dynamics). For random circuits, there is
once again an entanglement transition in this ensemble,
though it is believed to fall into a different universal-
ity class than that in the Born-rule ensemble [31]. The
work so far on both of these measurement transitions has
focused on problems in which there is some irreducible
temporal randomness, either in the dynamics itself or
in the measurement outcomes. This temporal random-
ness makes it unnatural to address measurement phase
transitions from the spectral perspective that has proved
fruitful for understanding quantum chaos, many-body lo-
calization, and related phenomena in closed quantum sys-
tems [36, 37].

The present work aims to fill this gap by studying sys-
tems in which the time evolution and the measurement
outcomes are fixed: therefore, there is a well-defined non-
unitary evolution operator that we can study the spectral
properties of. Specifically, we consider a chaotic Ising
chain subject to continuous weak measurements of the
Pauli operator σy on every site. We post-select on the
outcome where the weak measurements do not show the
spin being in the state |+y〉. This post-selected dynamics
is described by a non-Hermitian Hamiltonian that (apart
from a trivial constant) has purely real entries; this non-
Hermitian Hamiltonian undergoes a spectral transition.
When the measurements are strong, each eigenvalue of
the non-Hermitian Hamiltonian has a distinct imaginary
part (decay rate), and at late times any initial state
gets projected onto the longest-lived eigenstate, which
is area-law entangled. However, when the measurements
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are weaker than a certain threshold, all the eigenvalues
of the non-Hermitian Hamiltonian have the same decay
rate: thus, for example, an initially mixed state remains
mixed to arbitrarily late times. (This property is also
a defining feature of the volume-law phase in the entan-
glement transitions studied so far.) Further, an initial
product state develops volume-law entanglement, which
takes anomalously long to reach its saturated value. Be-
cause the Hamiltonian is non-Hermitian, an analogue of
this post-selection transition is sharply defined even for
few-level systems, and simply corresponds to an excep-
tional point [38] in the spectrum, at which two real eigen-
values merge and then split in the imaginary direction.
Unexpectedly, this exceptional point occurs at a nonzero
value of dissipation even in the thermodynamic limit, so
the mixed phase seems to exist as a true phase in this
model. We present numerical evidence for this, and also
develop a mean-field theory of the transition that we ex-
pect to be valid in high enough dimensions—though it
works better than one might expect even in one dimen-
sion (Fig. 1). We then explore the dynamics and the
spectral properties of the mixed phase. The eigenstates
of the non-Hermitian Hamiltonian retain volume-law en-
tanglement throughout the mixed phase, but increasingly
violate the eigenstate thermalization hypothesis [39]. A
crucial feature of the mixed phase is that even though
the eigenvalues of the time-evolution operator are (up to
a trivial overall offset) real, the eigenstates are not mu-
tually orthogonal. As the measurement rate increases,
these eigenstates get increasingly nonorthogonal, and ef-
fectively occupy a much lower-dimensional space, in a
way that we will make more precise below. This non-
orthogonality is responsible for the partial purification of
initially fully mixed states.

This work is organized as follows. In Sec. II we intro-
duce background on entanglement and purification tran-
sitions as well as non-Hermitian quantum mechanics. In
Sec. III we discuss a toy example: the purification tran-
sition for a single qubit. In Sec. IV we extend this to
develop a mean-field approximation for the purification
transition. In Sec. V we present numerical evidence from
one-dimensional spin chains on the dynamics of initially
pure and mixed states across this transition. In Sec. VI
we discuss the spectral statistics and eigenvectors of the
non-Hermitian Hamiltonian in the mixed phase. Finally
we close with a discussion of the implications of our find-
ings.

II. BACKGROUND

A. Quantum channels and trajectories

A quantum channel, or completely positive trace pre-
serving map [5, 40], is a linear map that takes each phys-
ical density matrix ρ to another physical density matrix
M(ρ). In general, a quantum channel can be expressed
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FIG. 1. Upper panel: Phase diagram of purification rate
vs. measurement strength γ and interaction strength J .
The dashed line is the mean-field prediction, which is in
good agreement with the numerical data (color map) on one-
dimensional spin chains, except at large J . Lower panel: size-
dependence of the gap opening for J = 0.95.

in terms of a set of Kraus operators Ki,

M(ρ) =

k∑
i=1

KiρK
†
i , (1)

such that
∑
iK
†
iKi = 1. (This condition is trivially sat-

isfied, for example, when Ki are projectors onto mea-
surement outcomes.) One can regard Kraus operators
as the operators in the system that couple to the exter-
nal environment (e.g., the measuring apparatus). Marko-
vian time evolution consists of the repeated application of
quantum channels, and one can expand the final density
matrix in terms of Kraus operators as

ρ(t) =
∑

i1,i2...in
Kin . . .Ki1ρ0K

†
i1
. . .K†in . (2)

Each sequence {Kin} appearing in this sum is called
a “quantum trajectory.” When the initial density ma-
trix is a pure state |ψ〉〈ψ|, each individual quantum
trajectory gives rise to a particular pure state (which
would result if one observed precisely that set of mea-
surement outcomes). In the expression above, if we take
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the initial state to be pure, a particular trajectory has
weight ‖Kin . . .Ki1 |ψ〉‖2; for projective measurements
this yields the Born probability of the set of measure-
ment outcomes indexed by the Kraus operators along
that trajectory.

The continuum limit of a quantum channel is the Lind-
blad master equation [5, 6],

ρ̇ = −i[H, ρ] +

m∑
i=1

γi

[
OiρO

†
i −

1

2
(O†iOiρ+ ρO†iOi)

]
.

(3)
Here, the Oi are conventionally referred to as jump op-
erators. This is a special limit of a quantum channel in
which k − 1 of the Kraus operators are proportional to
Oi, and account for the system interacting with its envi-
ronment, while the last Kraus operator—which gives rise
to the last two terms in the master equation—depletes
the norm of the state in the event that it did not get
measured [41].

In Lindblad time evolution there is therefore a special
trajectory along which the detectors never record any-
thing. Unraveling along this special trajectory gives rise
to time evolution that is described by an effective non-

Hermitian Hamiltonian, Heff = H + iγ2
∑m
i=1O

†
iOi. This

work is concerned with dynamics under this special tra-
jectory, which can be accessed by post-selection. (Note
that there has been some prior work on this topic, al-
though mostly for free-fermion models [33, 35].)

B. Entanglement and purification transitions

Entanglement transitions have mostly been discussed
in the context of qubits (or generally qudits) subject to
spatio-temporally random unitary gates and single-site
measurements. Variants in which the unitary gates are
not random (but the measurement outcomes remain ran-
dom), or in which unitary evolution is traded off for
multiple-site measurements, have also been considered,
but do not seem to change the properties of the transi-
tion. Most papers on the entanglement transition have
considered an ensemble of states in which the probabil-
ity that a particular trajectory occurs is simply its Born
probability. However, a recent work also introduced the
case of “forced measurements” in which one post-selects
on a particular measurement outcome: this is closer in
spirit to the problem we are considering here [31]. In
that work, the forced measurement transition was con-
sidered in temporally random circuits; here, we eliminate
the temporal randomness.

The entanglement transition is diagnosed by the entan-
glement properties of an initial pure state that is evolved
to very late times. In the absence of measurements, one
expects this state to evolve to a nearly random state with
volume-law entanglement entropy for any spatial region.
When measurements are present at some subcritical rate
p < pc (where pc depends on the precise model) the late-
time wavefunction is volume-law entangled. However,

for p > pc, measurements “disentangle” the quantum
state so its bipartite entanglement settles to an area law.
That a stable volume-law phase exists at all is counter-
intuitive; one way of understanding it is that the time
evolution hides the quantum information present in the
initial state in nonlocal correlations that are not affected
by the measurement [15].

A useful alternative way of thinking about these en-
tanglement transitions is as purification transitions [12].
According to this perspective, one evolves an initially
fully mixed state under a trajectory T , leading to an
(un-normalized) density matrix ρ ∝ TT †. In the limit
of frequent measurements, each measurement lowers the
rank of the density matrix, which loses rank at a fixed
rate and becomes a pure state on a timescale that is
sublinear in system size. In the opposite limit, measure-
ments cannot successfully extract quantum information
from the system, so the mixed state remains mixed out
to exponentially long times in system size. Thus, if one
takes the thermodynamic limit and measures the purity
of the density matrix at a time t ∝ Lα, (α > 1 in one di-
mensional models), one finds a sharp transition between
mixed and pure phases. In the models studied so far,
the purification and entanglement transitions coincide;
we will find that this is also the case here.

C. PT symmetry

Hermitian matrices have real spectra, but the converse
is false: a broader class of matrices, called PT-symmetric
matrices [38, 42–44], share this property. A simple 2× 2
example is the matrix

M0 ≡
(

0 1 + b
1− b 0

)
, (4)

where b is real. The characteristic equation of this ma-
trix is λ2 = 1 − b2, so when |b| < 1 the eigenvalues are
both real. The eigenvalues collide when b = 1, leading
to an “exceptional point.” (In this simple example the
PT symmetry is just the fact that the matrix is purely
real, so its eigenvalues must come in complex conjugate
pairs, and therefore have to collide before they can wan-
der into the complex plane. However, the phenomenon
has more general manifestations as well.) When b > 1
both eigenvalues are pure imaginary.

Although PT-symmetric non-Hermitian matrices have
real spectra, they lack other features of Hermitian matri-
ces, notably the orthogonality of eigenvectors. In the
present example, some algebra yields that the (stan-
dard) inner product between two eigenvectors is simply
|b|. When b = 1 − ε, the eigenvectors take the form

|±〉 ≈ (1,±
√
ε/2). At the exceptional point b = 1 the

eigenvectors become parallel, so the matrix ceases to be
diagonalizable. For small ε > 0, the two eigenvectors
are linearly independent and thus span the entire space.
However, the expression for a generic vector in this ba-
sis (for example (0, 1) = 1/

√
ε(|+〉 − |−〉)) involves large



4

coefficients and approximate cancellations. The matrix
that implements the basis transformation becomes singu-
lar at the exceptional point, and is ill-conditioned near
it.

Exceptional points are a “phase transition” of sorts,
but unlike conventional thermal or quantum phase transi-
tions, it does not directly involve a thermodynamic limit.
(Physically, of course, systems that are described by non-
Hermitian Hamiltonians implicitly involve a classical en-
vironment, so there is no rule against such phase transi-
tions.)

III. PURIFICATION OF A TWO-LEVEL
SYSTEM

We now consider the simplest purification problem,
which is that of a two-level system. Consider a Lind-
blad master equation with a single jump operator pro-
portional to (1 + σy), i.e., a weak measurement in the y
basis. The corresponding non-Hermitian Hamiltonian is
Heff = H0 + ib(1+σy). We choose our coordinate system
so that H0 = σx. It follows that Heff = M0 + ib where
M0 is defined in the toy example (4) above.

We consider the dynamics of initially mixed states
evolving under this non-Hermitian Hamiltonian, T =
exp(−iHefft). For any matrix one can write T = PDP−1,
where the columns of P are eigenvectors of Heff , and D
is a diagonal matrix with entries e−iλkt where λk are
the eigenvalues of Heff . We write this expression out in
general, using a coordinate system derived from some ref-
erence orthonormal basis (e.g., the computational basis):

ρ ∝ [(P †)−1]ije
iλ∗

j t(P †)jkPkle
−iλlt(P−1)lm. (5)

Eq. (5) supports two kinds of behavior, which are illus-
trated with respect to the toy model. For |b| > 1, the

eigenvalues are λ± = −i(b ±
√
b2 − 1). Time evolution

therefore causes the two eigenvectors to decay at differ-
ent rates; at late times, T is (again up to normaliza-
tion) a projector onto the slowest-decaying eigenvector.
In this regime any initial state eventually morphs into
the slowest-decaying eigenvector. However, for |b| < 1,
the eigenvalues decay at the same rate—λ± = −ib ±√

1− b2—so a mixed state remains mixed. The phase
factors in Eq. (5) oscillate, and if one averages over these
oscillations (by going into an appropriate “diagonal en-
semble” [37]) one finds the time-averaged density matrix

ρss ∝ [(P †)−1]ij(P
†)jkPkj(P

−1)jm. (6)

Defining the steady-state purity as Π ≡ Tr(ρ2
ss)/(Trρss)

2,
a straightforward if tedious calculation yields

Π =
1

2
(1 + b2). (7)

Putting this together with the |b| > 1 regime, the steady-
state purity in this case is a continuous function of b, with
a cusp at the exceptional point.
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FIG. 2. Dynamics of the state |−〉 ≡ (0, 1) under non-
Hermitian dynamics near the exceptional point. The x axis
is time rescaled by the eigenvalue difference ∆ of the TLS
Hamiltonian (4); the y axis is the probability of measuring
the time-dependent state to be in the state |−〉. The three
curves are for ∆ = 0.1, 0.02, 0.004 respectively; the revivals
get narrower as one approaches the exceptional point.

It is instructive to consider dynamics precisely at
the exceptional point. Here, the Hamiltonian has only
one eigenvector, (1, 0). A generic initial state |ψ〉 =
(cos θ, sin θ) evolves to the (unnormalized) state

|ψ(t)〉 = (cos θ + it sin θ, sin θ). (8)

Thus, any initial state eventually points along the eigen-
vector; the perpendicular components are relatively sup-
pressed as 1/t. Accordingly, any initial state purifies as

1−Π(t) ∼ 1/t4. (9)

That a “critical exponent” can exist for a two-level sys-
tem is one of the peculiarities of non-Hermitian quantum
mechanics. Slightly on the mixed side of the phase tran-
sition, the purity oscillates as in Fig. 2; the decay of the
component transverse to the eigenvector is interrupted
by periodic revivals, set by the period 1/[2

√
2(1− b)].

These become increasingly narrow as one approaches the
exceptional point.

Finally, we find that the expectation value

〈σz〉 ≡ Tr(σzρss)/Trρss = −|b|. (10)

IV. MEAN-FIELD THEORY

The analysis above can directly be extended to a simple
Weiss-type mean-field theory for purification transitions
in high-dimensional systems. Consider a non-Hermitian
Hamiltonian of the form

Heff =
∑
i

[hiσ
z
i + giσ

x
i + iγ(1 + σyi )] +

∑
ij

Jijσ
z
i σ

z
j ,

(11)
which we will explore numerically in what follows. For
now we treat the connectivity Jij as general. One can
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decouple this interaction to get a Hamiltonian for a single
spin subject to a complex field,

heff(〈σz〉) =
(
hi +

∑
j
Jij〈σzj 〉

)
σz + giσ

x + iγ(1 + σy).

(12)
This decoupling is valid in the high-dimensional limit,
and more generally is a reasonable variational estimate
for γ small or large (since in both limits the steady-state
density matrix is unentangled). The mean-field equation
can then be solved self-consistently for 〈σz〉 following the
arguments in the previous section. This yields the self-
consistency condition

〈σzi 〉 = − giγi

g2
i +

(
hi −

∑
j Jij〈σzj 〉

) . (13)

Assuming a translation-invariant state, this reduces to
a cubic equation for 〈σz〉. For a translation-invariant
system, this mean-field theory predicts that the phase
transition occurs when

gγ = g2 + (h− Jz)2, (14)

where z is the coordination number of each site. This
mean-field theory agrees well with numerics even for one-
dimensional spin chains, though there are discrepancies
at interaction strengths J ≈ 1 (Fig. 1).

V. ONE-DIMENSIONAL SPIN CHAINS

We now turn to numerical results on spin chains evolv-
ing under the following non-Hermitian Hamiltonian:

H =
∑
i

[
hiσ

z
i + σxi + iγ(1 + σyi ) + Jσzi σ

z
i+1

]
. (15)

We will explore both the translation-invariant model
and a model with weak randomness in the longitudi-
nal fields hi ∈ [h0 − ε, h0 + ε] where ε ≤ h0/10. We
will further restrict ourselves to h0 = 1.25—it seems that
h0 = 1.25, J = 0.95 gives the cleanest chaotic level statis-
tics in the Hermitian limit, which will be important in the
next section. (We remark that this model has often been
used as a “generic” chaotic model, see e.g. [45].)

The Hamiltonian (15) has a special line at γ = 1.
Along this line, σxi and σyi combine to form the rais-
ing operator σ+

i . Consequently, H is an upper trian-
gular matrix and its eigenvalues are precisely its diag-
onal entries, i.e., they coincide with the eigenvalues of
H ′ = iγL+

∑
i(±hiσzi + Jσzi σ

z
i+1). Since these diagonal

entries are real (up to the overall offset), this solvable line
demonstrably lies in the mixed phase, consistent with our
numerics and mean-field theory.

The phase diagram of the clean model is plotted in
Fig. 1. The extent of the mixed phase is non-monotonic,
with purification happening soonest when J ≈ h0/2.
This matches the mean-field prediction: at J = h0/2,

the applied longitudinal field exactly cancels the self-
generated mean field at the transition. Finite-size effects
across the phase diagram are very weak (lower panel of
Fig. 1). As one would expect from the example of the
two-level system, the purification rate rises linearly away
from the transition.

We now turn to the dynamics of entanglement and pu-
rity in the two phases (Fig. 3). Starting from the max-
imally mixed state, the instantaneous purity Π(t) sat-
urates exponentially to unity in the pure phase, as ex-
pected. In the mixed phase, it undergoes persistent os-
cillations around a mean value that is much larger than
that of a fully mixed state. (One might expect the pu-
rity to be monotonic; while this is true on average, it is
not true in individual trajectories, as also recently ob-
served in Ref. [30]). Both the amplitude and period of
these oscillations grow as γ is increased. If one starts
instead with a random pure product state, the entan-
glement once again saturates to a small, roughly size-
independent value in the pure phase, but grows slowly
in the mixed phase. The time S2 takes to saturate is
surprisingly long; the origin of this long timescale is an
interesting topic for future work.

The slow oscillations in the instantaneous purity make
it hard to extract a saturation value; we instead consider
the time-averaged density matrix ρss [Eq. (6)]. As one
would expect from the dynamics, the purity of ρss in-
creases smoothly with γ. In general, the purity goes as
Πss ∼ 2−cL, where c decreases from unity (in the uni-
tary limit) to some much smaller value (Fig. 4). This
corresponds to the second Rényi entropy of ρss following
a volume law with a continuously varying prefactor, just
as it does in the standard purification transition. Note
that Πss in the clean system evolves non-monotonically
and chaotically with γ. To get a smooth curve, we intro-
duce 1% disorder in the couplings and average over this
disorder (equivalently, one could imagine performing a
moving average over γ). For γ & 0.7, with the amount of
averaging we have performed, the purity shows no clear
trend with system size; in this regime, the transformation
into the eigenbasis is ill-conditioned, leading to potential
numerical instabilities. Finally, we note that the eigen-
value spectrum of ρss exhibits a power-law tail, with an
apparently nonuniversal exponent. The existence of this
tail suggests that different Rényi entropies of ρss will have
distinct volume-law coefficients.

VI. SPECTRAL PROPERTIES

The previous section summarized the evidence that the
non-Hermitian Hamiltonian undergoes a purification and
entanglement transition that shares many features with
the transition seen in random circuits. In the present
context this transition can also be analyzed in terms of
the spectral structure of the time-evolution operator (or
equivalently of the non-Hermitian Hamiltonian). Accord-
ingly we now discuss, in turn, the properties of eigenval-



6

γ

0.3 0.6 0.9 1.2

0 2 4 6 8 10

0.001

0.010

0.100

1

t

Π
(t
)

γ

0.

0.6

1.02

0.1 0.5 1 5 10 50 100
0.0

0.5

1.0

1.5

2.0

2.5

t

S
2
(t
)

L=8, γ=0.6

L=10, γ=0.6

L=8, γ=1.2

L=10,γ=1.2

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

t

S
2
(t
)

FIG. 3. Left panel: Evolution of the purity of an initially maximally mixed state, for various values of γ and for L = 10. The
purity undergoes increasingly slow oscillations. Central panel: evolution of the half-cut second Rényi entropy of a product
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a γ-dependent prefactor.
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ues and eigenvectors.

The eigenvalue statistics is illustrated in Fig. 5. Fol-
lowing now-standard practice [46] we characterize these
via the level-statistics ratio r ≡ min(|λi − λi−1|, |λi+1 −
λi|)/max(|λi−λi−1|, |λi+1−λi|). Recall that in the mixed
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FIG. 5. Level statistics of the non-Hermitian Hamiltonian
throughout the mixed phase. The longitudinal field is subject
to 10% disorder in order to break any spatial symmetries. The
level spacing ratio r shows clear signs of level repulsion both
in its average (upper left) and distribution (lower left), and
the level statistics near the transition are intermediate. The
two red curves are for L = 10, 12 respectively and show good
convergence. Right panel follows the spectral “dynamics” for
a particular disorder realization as γ is increased (i.e., as one
moves to the right along the figure). There are clear signs
of level repulsion (anticrossings), but there also appear to be
some near-crossings that are not symmetry-protected..

phase, all eigenvalues have the same imaginary part so
eigenvalue differences are purely real. For a chaotic real
Hamiltonian, 〈r〉 ≈ 0.53 while for a localized or inte-
grable Hamiltonian, we expect 〈r〉 ≈ 0.39 (Poisson level
statistics). Even for moderately large γ, the r ratio is
very close to its value in the Hermitian limit. Nearer
to the transition, however, level repulsion appears to get
weaker, and the level spacing ratio dips toward the Pois-
son value. This dip does not appear to be a finite-size
effect: the histogram of r appears well converged with re-
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FIG. 6. Upper left: The effective dimension of the space
spanned by the eigenvectors of the non-Hermitian Hamilto-
nian is 2αL; upper panel plots α vs. γ. Upper right: mean
eigenstate entanglement vs. γ; our results are consistent with
a volume law. The lower panel illustrates how eigenstate ther-
malization fails as γ is increased, by plotting the second Rényi
entropy vs. eigenvalue for two different values of γ.

spect to system size. The persistence of level repulsion,
and the origin of the spectral transition, can be seen in
the right panel of Fig. 5: two levels come together and
collide at an exceptional point, after which they wander
into the complex plane. The complicated balance be-
tween level repulsion (which stabilizes the mixed phase)
and level attraction (which eventually kills it) is an in-
teresting topic for future studies.

We now turn to the properties of eigenvectors (Fig. 6).
As noted in the introduction, the crucial feature of eigen-
vectors in the non-Hermitian case is that they are not
mutually orthogonal. Thus, although the set of d eigen-
vectors of a d-dimensional Hilbert space generically spans
it, the eigenvectors “effectively” span a much lower-
dimensional space. The effective dimension of this space
can be estimated by looking at the singular value decom-
position of the matrix P that implements the transfor-
mation from the computational basis to the eigenbasis.
Although P is nominally full-rank, one can approximate
it to high accuracy with a low-rank matrix P ′, by dis-
carding its smaller singular values. An estimate of the
appreciable-sized singular values of P is the inverse par-
ticipation ratio of the (normalized) list of singular values
of P ; this also provides an estimate of the dimension of
the space “effectively” spanned by P (i.e., expressible in
terms of eigenvectors without anomalously large coeffi-
cients). This effective dimension turns out to scale as
2−α(γ)L where α decreases from unity (which is the ex-
act value in the Hermitian limit) to approximately 0.64 at
the transition. So almost all vectors in the Hilbert space

are “difficult” to express in the eigenbasis, viz. they can
be expressed in this basis but with large coefficients that
almost cancel out.

It follows that a generic state, expanded in terms of
the eigenbasis, has very large weight on a small number
of eigenvectors. We now address what these eigenvec-
tors are like. This question is generally more subtle in
the non-Hermitian case, as one must distinguish between
left and right eigenvectors; a full treatment is outside the
scope of this work, but we can bypass some of the obvious
issues by considering the entanglement properties of indi-
vidual eigenvectors. These entanglement properties are
often used as a metric of whether eigenstates are “ther-
mal”. We show how eigenstate entanglement evolves with
γ in the lower panels of Fig. 6: for small γ one has the
standard “thermal” curve with low entanglement at the
spectral edges and high entanglement in the middle of
the spectrum. However, for γ near the transition, the
entanglement structure changes drastically: eigenvectors
at similar eigenvalues have drastically different entangle-
ment entropies, signaling a breakdown of eigenstate ther-
malization. Along the solvable line γ = 1, eigenvectors
are manifestly not thermal, since generic eigenstates fea-
ture some fraction of spins pointing deterministically in
the |+ z〉 direction.

VII. DISCUSSION

The central result of this work is that the entanglement
transition in non-Hermitian quantum mechanics can be
understood as a breaking of PT-symmetry in the many-
body spectrum. This PT-symmetry breaking transition
appears to be fundamentally different from the transition
in random circuits—for example, it can happen even for
a two-level system—but the overall phase diagrams are
similar. In both cases, there is a phase in which an ini-
tially mixed density matrix stays mixed (and thus the
system is able to retain quantum information) and an ini-
tial product state acquires volume law entanglement, as
well as a phase where an initially mixed state purifies and
a product state only develops area-law entanglement. To
the resolution we have, the entanglement and purification
transitions happen at the same point in this model, as
they do in random circuits: the spectra evolve smoothly
until they hit the first exceptional point. The existence
of a fixed Hamiltonian and time-evolution operator give
us some new tools to study this phenomenon, such as
the ability to go into a diagonal ensemble and to study
spectral statistics and eigenstate entanglement. Our re-
sults show how eigenstate entanglement both decreases
on average and becomes much more heterogeneous across
eigenstates as one approaches the exceptional point. The
slow growth of entanglement in the volume law phase is
an interesting feature of the dynamics of this model, for
which we lack a simple intuition.

The flow of quantum information under non-Hermitian
time evolution is an interesting question raised by our
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work. In the example of the two-level system near its ex-
ceptional point, we saw that a generic vector expressed
in the eigenbasis has very large coefficients, which are
needed to capture the behavior along the “missing” di-
mensions. Under time evolution, this initial vector de-
phases and is rotated into the space spanned by the eigen-
vectors. However, naively it seems that the quantum
information carried by the late-time state (i.e., its coeffi-
cients) is determined precisely by these coefficients along
the “missing” dimensions. The implications of this obser-
vation for encoding and retrieving quantum information
remain to be understood.

Finally, we remark that from a certain natural perspec-
tive, it is surprising that PT symmetry should survive to
a nonzero value of γ, as empirically it seems to. If one
thinks of the unperturbed Ising model as effectively a ran-
dom matrix, a small anti-Hermitian perturbation would
have matrix elements that are much larger than the level
spacing between adjacent energy eigenvalues. One might
expect that these would immediately give rise to excep-
tional points and destabilize the mixed phase. Evidently

this does not happen, and, indeed, the eigenvalues ex-
hibit a number of avoided level crossings before two of
them eventually collide. It is unclear whether this is a
general property of local PT symmetric Hamiltonians, or
something more specific to the model we have studied
here.

Note added.—While this work was being completed,
Ref. [35] was posted. Both works discuss non-Hermitian
phase transitions but otherwise the models and results
do not overlap.
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R. Gutiérrez-Jáuregui, R. J. Schoelkopf, M. Mirrahimi,
H. J. Carmichael, and M. H. Devoret, Nature 570, 200
(2019).

[42] N. Moiseyev, Non-Hermitian quantum mechanics (Cam-
bridge University Press, 2011).

[43] Y. Takasu, T. Yagami, Y. Ashida, R. Hamazaki,
Y. Kuno, and Y. Takahashi, arXiv preprint
arXiv:2004.05734 (2020).

[44] Y. Ashida, Z. Gong, and M. Ueda, arXiv preprint
arXiv:2006.01837 (2020).

[45] H. Kim and D. A. Huse, Physical review letters 111,
127205 (2013).

[46] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111
(2007).

http://dx.doi.org/10.1103/PhysRevX.4.041001
http://dx.doi.org/10.1103/PhysRevLett.104.160601
http://dx.doi.org/10.1103/PhysRevLett.104.160601
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-031214-014726
http://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1080/00018732.2016.1198134
http://arxiv.org/abs/https://doi.org/10.1080/00018732.2016.1198134
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.75.155111

	Entanglement and purification transitions in non-Hermitian quantum mechanics
	Abstract
	I Introduction
	II Background
	A Quantum channels and trajectories
	B Entanglement and purification transitions
	C PT symmetry

	III Purification of a two-level system
	IV Mean-field theory
	V One-dimensional spin chains
	VI Spectral properties
	VII Discussion
	 Acknowledgments
	 References


