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We demonstrate that the one-dimensional helical Majorana edges of two-dimensional time-reversal
symmetric topological superconductors (class DIII) can become gapless and insulating by a combi-
nation of random edge velocity and interaction. Such a gapless insulating edge breaks time-reversal
symmetry inhomogeneously, and the local symmetry broken regions can be regarded as static mass
potentials or dynamical Ising spins. In both limits, we find that such gapless insulating Majorana
edges are generically exponentially localized and trap Majorana zero modes. Interestingly, for a
statistically time-reversal symmetric edge (symmetry is broken locally, but the symmetry breaking
order parameter is zero on average), the low-energy theory can be mapped to a Dyson model at
zero energy, manifesting a diverging density of states and exhibiting marginal localization (i.e., a
diverging localization length). Although the ballistic edge state transport is absent, the localized
Majorana zero modes reflect the nontrivial topology in the bulk. Experimental signatures are also
discussed.

I. INTRODUCTION

Topological insulators (TIs) and topological supercon-
ductors (TSCs) [1–6] possess nontrivial bulk winding
numbers and host gapless conducting surfaces (or edges)
that cannot be localized by disorder. Such delocalized
surface states are anomalous and impossible to be real-
ized in the bulk systems. In the presence of interaction,
the clean TIs and TSCs can also allow for gapped surfaces
[5] provided that the material boundaries either exhibit
topological order or break the symmetry spontaneously.
In particular, the avoidance of Anderson localization in
the gapless surfaces is the hallmark of the topological
protection and has opened up new possibilities to build
novel topological electronic devices [7].

The experimental characterizations of the TIs and
TSCs mainly rely on the surface state properties [1, 2,
4, 8]. Therefore, it is important to understand the fate of
TI/TSC boundaries with both interaction and disorder,
even under somewhat extreme conditions [9–24]. For ex-
ample, the delocalized surface states might be unstable to
weak disorder and weak interaction [11, 13, 14]. Surpris-
ingly, gapless insulating symmetry broken edges [18] or
surfaces [23, 24] can even be realized due to the interplay
of disorder and interaction, leading to localization. How-
ever, these localized boundaries of topological insulators
are still anomalous and exhibit novel properties that can
be viewed as a “remnant of topology.” This possibility of
hosting localized boundaries in TIs and TSCs is impor-
tant to the experimental characterization. In particular,
the puzzling experimental results in InAs/GaSb [25, 26]
may be explained by time-reversal broken localized edge
states [18] of two-dimensional (2D) TIs [27–29].

∗ yzchou@umd.edu

The occurrence of the localized edges [18] in 2D time-
reversal TIs can be understood by the inhomogeneous
symmetry breaking mechanism. Since the single-particle
backscattering is prohibited by time-reversal symmetry,
the leading backscattering in the one-dimensional (1D)
edge is due to the umklapp interaction. In the clean limit,
the umklapp interaction is generically irrelevant unless
the chemical potential is finely tuned. In the presence of
disorder, umklapp interaction can become commensurate
locally and enable local two-particle backscatterings that
dynamically generate time-reversal breaking mass poten-
tials. The symmetry broken edge realizes localization of
e/2 charges, and the localization is nonmonotonic in the
disorder strength [18]. In addition, the localized edge pre-
serves the π-flux anomaly of 2D TI [30–32], realizing an
anomalous localization [24]. The above mentioned novel
phenomena arise through the interplay of topology, dis-
order, and interaction. One cannot find an analog in the
clean systems or in the noninteracting systems [33].

The gapless insulating boundary is not particular to
the 2D TIs. The same phenomenology can exist in three-
dimensional (3D) TIs of class CII [34, 35] and in the 3D
topological crystalline insulators (TCIs) [36]. In both the
systems, the surface states form domains due to the inho-
mogeneous symmetry breaking (TIs) or disorder (TCIs).
With a statistical symmetry (symmetry is broken locally,
but the symmetry breaking order parameter is zero on av-
erage), the domain walls percolate and the surface can be
described by a disordered network model, realizing sta-
tistical topological insulators [37, 38]. The CII TI surface
with a statistical particle-hole symmetry realizes a topo-
logical helical network [23], so does the TCI surface [36].
In the presence of interaction, the helical network can be
localized by the interaction within the domain wall, sim-
ilar to the localization on 2D TI edges [18]. Remarkably,
the helical network can also be localized by the interac-
tion at the network junctions and exhibit a clogged state

ar
X

iv
:2

01
2.

01
43

9v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  9

 F
eb

 2
02

1

mailto:yzchou@umd.edu


2

that is particular to the network model [23].

The localized edges and surfaces of TIs can also be
extended to the systems without charge U(1) symmetry,
e.g., TSCs. In this work, we show that the helical Majo-
rana edge state, as realized in 2D time-reversal TSC of
class DIII [1, 4, 39, 40], can become gapless and insulating
due to an interplay of disorder and interaction. Such a
glassy Majorana edge breaks time-reversal symmetry in-
homogeneously and traps localized Majorana zero modes
(MZMs). We show this via a mean field approxima-
tion and a mapping to random Ising model. Intrigu-
ing, the glassy Majorana edge with a statistically time-
reversal symmetry can be mapped to a Dyson model at
zero energy, featuring diverging density of states and a
marginal localization (i.e., localization length diverges at
zero energy). Our work establishes the first example of
Dyson singularity on the boundary of a topological sys-
tem. Both the mechanism of the inhomogeneous symme-
try breaking and the remnant signatures of topology are
the primary focuses of this work.

II. MODEL

The edge state of a 2D time-reversal symmetric TSC
(of class DIII) [1, 4, 39, 40] is described by counter propa-
gating Majorana fermions that form Kramers pairs. The
clean noninteracting helical Majorana edge Hamiltonian
is given by

Ĥ0 = v0

∫
dx [γR (−i∂xγR)− γL (−i∂xγL)] , (1)

where v0 is the velocity and γR (γL) is the right (left)
mover Majorana fermion field. The Majorana descrip-
tion is a consequence of the particle-hole symmetry. The
edge state also satisfies time-reversal symmetry (T 2 =
−1) with the time-reversal operation implemented by
T : γR → γL, γL → −γR, and i→ −i.

In the absence of interaction, the edge state is bal-
listic and avoids the Anderson localization as the elas-
tic backscattering γRγL is forbidden by the time-reversal
symmetry. Different from the helical Luttinger liquid,
the chemical potential is pinned to zero because of the
particle-hole symmetry. Therefore, the leading bilinear
perturbation is in the form of “velocity disorder.” This
velocity disorder is similar to the effect of random Rashba
spin orbit coupling in a helical Luttinger liquid [41]. The
leading disorder effect can be characterized by

Ĥdis =

∫
dx δv(x) [γR (−i∂xγR)− γL (−i∂xγL)] , (2)

where δv(x) encodes the velocity fluctuation. The local
velocity is given by v(x) = v0 +δv(x). The velocity disor-
der alone cannot modify the ballistic nature of the helical
Majorana edge state, i.e., avoidance of Anderson local-

ization 1. Microscopically, the velocity vanishes when the
bulk gap closes. Therefore, we require that v(x) > 0 since
a well-defined bulk gap is considered.

The leading nontrivial interaction is at the quartic or-
der and is analogous to a two-particle backscattering in
helical Luttinger liquid [9, 10]. The interaction Hamilto-
nian is given by

Ĥint = U

∫
dx : γR(x)γR(x+ α)γL(x+ α)γL(x) :, (3)

where U encodes the interaction strength, α is the ultra-
violet length scale, and : O : denotes the normal ordering
of an operator O. Formally, one needs to perform the fol-
lowing expansion γR/L(x+ α) ≈ γR/L(x) + α∂xγR/L(x),
and the interaction in Eq. (3) becomes to

Ĥint ≈ Uα2

∫
dx : γR(x) [∂xγR(x)] [∂xγL(x)] γL(x) : .

(4)

This interaction is irrelevant in the renormalization group
analysis, suggesting that the helical Majorana edge state
is stable against infinitesimal |U |. However, a sufficiently
large |U |/v0 can open up a gap and break the time-
reversal symmetry spontaneously [42].

The interacting disordered helical Majorana edge is de-
scribed by Ĥ = Ĥ0 + Ĥdis + Ĥint [Eqs. (1), (2), and (3)].
The main focus of this work is the time-reversal sym-
metry broken glassy Majorana edge which is realized by
the interplay of strong disorder fluctuation in v(x) and a
strong interaction |U |. We note that a well-defined bulk
gap is always assumed, i.e., disorder or interaction can-
not induce a bulk phase transition. In the next section,
we discuss the mechanism of inhomogeneous symmetry
breaking and analyze the edge state properties in detail.

III. MASS GENERATION DUE TO SYMMETRY
BREAKING

Due to the topological protection, the primary source
of backscattering is the interaction in a helical Majo-
rana edge. The clean interacting edge is characterized
by Ĥ0 + Ĥint [Eqs. (1) and (3)]. Infinitesimal |U | cannot
induce instability of the helical Majorana edge. How-
ever, for a sufficiently large |U |/v0, the edge state be-
comes gapped, and the time-reversal symmetry is broken
spontaneously. The occurrence of a gap can be described
by a time-reversal breaking mass term that is generated
dynamically. At the level of mean field approximation,

1 This can be seen via a position-depedent rescaling such that
γ̃R(x) ≡

√
v(x)/v0γR(x) and γ̃L(x) ≡

√
v(x)/v0γL(x). The

Hamiltonian Ĥ0 + Ĥdis becomes a “clean” Hamiltonian with a
velocity v0 in terms of γ̃R and γ̃L. Therefore, the helical Majo-
rana edge with velocity disorder remains ballistic.
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FIG. 1. Velocity fluctuation and local symmetry breaking.
The green curve indicates the velocity profile v(x). When
v(x) < vc ≡ |U |/Ξc (marked by the blue dashed line), local
time-reversal symmetry breaking can take place. The mean-
field-like masses are realized locally in the red regions. The
mass order parameter is fluctuating inside the yellow region
because the size of the yellow region is too small. No symme-
try breaking happens in the white regions. See the main text
for a detailed discussion.

the interaction-driven mass term is given by

ĤM = 2M

∫
dx (iγRγL) , (5)

where M is the real-valued mass order parameter. No-
tice that the i in the above expression is crucial to the
hermitian property.

The four-fermion interaction in Eq. (3) can be viewed
as a “mass square” interaction upto the normal ordering
and the point splitting. The value of M can be derived
by self-consistent calculations [42], but the value of M
depends on the regularization scheme2. These complica-
tions are not relevant for us. All that matters is that the
mass order parameter becomes nonzero, M 6= 0, as long
as |U |/v0 > Ξc, where Ξc > 0 is the critical threshold of
the dimensionless parameter. The sign of M is arbitrary.
We note that the mass order parameter is dynamical,
i.e., it can fluctuate. To establish a static mean-field-like
order, the edge length L must be much larger than the
coherence length v0/|M |. Under the static mass assump-
tion, the dispersion of the massive Majorana edge state
is given by E(k) = ±

√
(v0k)2 +M2, with an energy gap

2|M |.
The main purpose of this section is to analyze the sym-

metry broken pattern in the helical Majorana edge with
a velocity disorder. We first discuss the condition of real-
izing the local symmetry breaking. With the mean field
approximation, we then map the symmetry broken Majo-
rana edge to a Dirac fermion with a random mass. Such
an edge state is gapless and insulating, and the mass do-
main walls trap MZMs.

2 In Ref. [42], the self-consistent calculations were performed with
both a continuum model and a lattice model. The value of M
depends on which model is used. In addition, there are certain
qualitative difference: A first-order jump in mass was obtained
in the continuum model, while a continuous phase transition was
found in the lattice model approach.

A. Local symmetry breaking

The disordered interacting edge state is described by
Ĥ0 + Ĥdis + Ĥint [Eqs. (1), (2), and (3)]. As discussed
previously, the condition of symmetry breaking is deter-
mined by the interaction-to-velocity ratio, |U |/v0. In the
disordered case, v(x) = v0 + δv(x) is a positive-definite
random function in space. Even with a uniform interac-
tion strength U , this dimensionless parameter |U |/v(x)
fluctuates in space such that an inhomogeneous symme-
try breaking might occur.

To gain intuitive understandings, we first assume that
the velocity is slowly varying in space as illustrated in
Fig. 1. In such a limit, we can further approximate the
system by multiple regions in which the velocity is es-
sentially constant. For a given region label by j, we
can define the region size and the velocity by Lj and
vj respectively. When |U |/vj > Ξc, spontaneous sym-
metry breaking occurs, and a mass order parameter Mj

(determined by self-consistent calculations [42]) is gen-
erated dynamically. A mean-field-like order is realized
when the region size is much larger than the correla-
tion length, Lj � vj/Mj . In such a situation, Mj can
be viewed as a quenched mass potential (red regions in
Fig. 1). The sign of Mj is arbitrary as there is no ex-
plicit time-reversal breaking perturbation. In the op-
posite limit (Lj < vj/Mj), the mass order parameter
is not frozen but fluctuating (yellow region in Fig. 1).
The fluctuating mass order parameter can be viewed as
a fluctuating Ising spin, which we focus on in Sec. IV.
The ground state is determined by the helical Majorana
fermions scattering off the mass potentials and the fluc-
tuating Ising spins.

Similar analysis also applies for a smooth disorder case,
characterized by δv(x) = 0 and

δv(x) δv(y) = w2 exp

(
−|x− y|

2

2R2

)
. (6)

where O denotes the disorder average of O, w > 0 en-
codes the strength of velocity fluctuation, and R is the
correlation length of the disorder potential. To fulfill the
positive-definite condition of the velocity, we further re-
quire that v(x) = v0+δv(x) > 0. The symmetry breaking
pattern is controlled by both w and R. We first define
the critical velocity vc = |U |/Ξc. For w > v0− vc, we ex-
pect local symmetry breaking to prevail. For w < v− vc,
the local symmetry breaking happens only in certain rare
regions. In addition, the local symmetry broken regions
are of order size R. To develop mean-field-like massive
regions, a sufficiently large R or a sufficiently large w is
necessary. For R → 0 (corresponding to the uncorre-
lated case), the mean-field-like massive regions are rare,
and most of the symmetry broken regions are fluctuating.



4

B. Bound states

The helical Majorana fermions can be reflected by the
local symmetry broken regions. We first assume that
the dynamically generated mass potential is completely
frozen. The mass potential is position-dependent and
described by

Ĥ ′M = 2

∫
dxM(x) [iγR(x)γL(x)] , (7)

where M(x) is the real-value mass parameter.

Since the mass order parameter can be positive and
negative, it is interesting to study the bound states sand-
wiched by masses with the same signs or with the op-
posite signs. We considered a helical massless Majo-
rana edge of length L confined by two massive regions,
x < 0 and x > L, with constant masses M1 and M2,
respectively. We further assume a constant velocity v
in the massless region for simplicity. We focus on the
low-energy bound state spectrum, i.e. |E| < |M1|/2
and |E| < |M2|/2. For M1M2 > 0, the momentum
quantization corresponds to ei2kL = −1, and the bound
state energy is given by E = v|k| = vπ

2L (2n + 1) where
n is an integer. The bound state can exist only if
E < min(|M1|/2, |M2|/2) corresponding to a sufficiently
large L. Otherwise, two regions with M1 and M2 are
merged into one massive region. On the other hand,
for M1M2 < 0, the momentum quantization corresponds
to ei2kL = 1, and the bound state energy is given by
E = vπ

L n with an integer n. The zero-energy state
(n = 0) is insensitive to the size L. In the limit L → 0,
the bound region is reduced to a zero-dimensional mass
domain wall, and the zero-energy state becomes a MZM
[42, 43]. All the low-energy bound state energy levels do
not depend on the |M1| and |M2| as long as the mass
regions are sufficiently wide.

C. Dirac fermion with a random mass

Within the mean field approximation, the glassy Ma-
jorana edge can be described by

ĤMF =

∫
dx v(x) [γR (−i∂xγR)− γL (−i∂xγL)]

+ 2

∫
dx [iγR(x)γL(x)]M(x), (8)

where M(x) encodes the position-dependent real-valued
mass potential. To simplify the problem, we perform a
rescaling such that γ̃R(x) ≡

√
v(x)/v0γR(x) and γ̃L(x) ≡√

v(x)/v0γL(x). This rescaling does not affect the local-
ization property but eliminates the randomness in the

velocity. Equation (8) is expressed by

Ĥ ′MF =

∫
dx v0 [γ̃R (−i∂xγ̃R)− γ̃L (−i∂xγ̃L)]

+ 2

∫
dx [iγ̃R(x)γ̃L(x)]m(x), (9)

=

∫
dxΦT [−iσz∂x +m(x)σy] Φ (10)

where m(x) = v0M(x)/v(x) is the rescaled mass po-
tential, ΦT = [γ̃R, γ̃L] is a two component Majorana
fermion field, and σz (σy) is the z (y) component Pauli
matrix. Equation (10) describes a 1D Dirac equation
with a random mass (see [44–46] and references therein),
which is the low-energy theory of several models exhibit-
ing Dyson singularity such as the random transverse field
Ising model [47–49] and the random XY model [50]. This
suggests that the glassy Majorana edge state can also
realize the Dyson singularity, manifesting a diverging
density of state and a marginal localization at E = 0.
Note that we focus only on the zero-energy wavefunctions
which are associated to our original Majorana theory.

To understand the localization properties, we investi-
gate the eigenstate of Eq. (10). For a given realization
of disorder, the (two-fold degenerate) zero-energy wave-
functions can be obtained analytically [45] as follows:

Φ0,±(x) =

[
1
±1

]
e∓

∫ x
∞ dym(y)/v0 , (11)

where Φ0,±(x) is the zero-energy wavefunction without
normalization. The logarithm of the Φo,±(x) can be
viewed as a 1D random walk [45] – a particle “moves”
m(x)dx/v0 at “time” x with a “time step” dx. The
properties of the wavefunctions can be understood in-
tuitively by this analogy to 1D random walk. We review
the main results [45] in the following. The zero-energy
states are exponentially localized generically as long as
m0 ≡ m(x) 6= 0 [45], and this is associated with sponta-
neous breaking of the protecting time reversal symmetry.
The localization length is inversely proportional to |m0|.
When m0 = 0 (“time-reversal symmetry on average”), a
Dyson singularity develops at E = 0, featuring a diverg-
ing density of states as well as a diverging localization
length. We note that the zero-energy wavefunction given
by Eq. (11) is nodeless and multifractal [45]. Such a
zero-energy wavefunction realizes a random singlet state
[51], demonstrating rarefied peaks with arbitrary peak-
to-peak separations in a single wavefunction. The ran-
dom singlet state gives rise to a stretched exponential

behavior in the typical conductance, Gtyp ∝ e−C
√
L

[45, 47, 49, 50, 52] where L is the length of the edge and
C is a constant depending on the fluctuation of the ran-
dom mass potential. We note that this is different from
the case in the localized TI edge [18], where exponen-
tial localization is expected generically. It corresponds
instead to what was referred to in [53, 54] as “marginal
localization.”
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FIG. 2. The spin configuration of the random 1/r interacting
Ising model given by Eq. (13). We use blue and red colors
to mark the up spins and down spins respectively. (a) When
|mj | = m0 for all j, the ground state is a Neél order. (b) When
|mj | is random, the ground state is more complicated. As
illustrated, the rare huge spin (second from the right) screen
the nearby spins. Local Neél order is still expected away from
such a rare region.

The mapping to a quenched random mass Dirac equa-
tion is not fully justified, because going beyond the mean
field approximation, the mass potential can fluctuate,
and the results obtained based on static mass profile need
to be scrutinized. In particular, the random singlet wave-
functions and the stretched exponential correlation for
the statistical time-reversal symmetric glassy Majorana
edges might not be valid anymore. It is thus important
to consider the fluctuations of the mass potential, which
we turn to next.

IV. EFFECTIVE RANDOM ISING MODEL

When we move beyond the mean field, we allow for the
fact that the mass order parameter can fluctuate. Fluc-
tuations will be weak in the limit of large disorder cor-
relation length R [in Eq. (6)], but conversely in the limit
R → 0 strong fluctuations are guaranteed. To study the
fluctuation, we map the local mass potentials to dynam-
ical Ising spins in the following manner. First of all, we
assume there are N symmetry broken impurity regions.
These symmetry broken impurities are marked by a set
of positions {x1, x2, . . . , xN} with the impurity mass or-
der parameters {m1,m2, . . . ,mN} respectively. We order
the positions such that x1 < x2 < .. < xN . The cou-
pling between the Majorana fermion and the local mass
is an Ising coupling [given by the second line of Eq. (10)].
Treating the Ising coupling perturbatively, one can derive
an effective RKKY interaction mediated by the Majorana
fermions [55]. For two impurities located at x1 and x2,
the effective interaction is given by [55]

Ĥ
(2)
eff,I =

|m1m2|
4πv0|x1 − x2|

τz1 τ
z
2 , (12)

where τzj = ±1 is the Ising variable keeping track of
the sign of mj . This effective spin-spin interaction is
antiferromagnetic and decays with 1/r. The absence of

the oscillation is due to the particle-hole symmetry (i.e.,
kF = 0). For N impurities, the interacting Ising Hamil-
tonian is as follows:

Heff,I =
∑
j<j′

|mjmj′ |
4πv0|xj − xj′ |

τzj τ
z
j′ . (13)

When all the mass impurities have the same amplitude
(|mj | = m0 for j = 1, . . . , N), the ground state is a Neél
state [Fig. 2(a)]. In general, a huge mass impurity can
“screen” spins beyond nearest neighbor, but the Neél like
order is still expected locally [Fig. 2(b)]. We can also view
this problem as a 1D Coulomb glass system [56] except
that the charges of the particles can be arbitrary in our
case.

The 1/r spin-spin interaction is classical, i.e., the Ising
spins cannot be flipped. Our goal is to explore the sta-
bility of the classical spin configuration in the presence
of quantum mechanical fluctuation (spin flipping). Thus,
we undertake a phenomenological approach rather than
an explicit microscopic derivation. To incorporate the
fluctuations, we consider a phenomenological transverse
field term as follows:

Heff,h = −
∑
j

hjτ
x
j , (14)

where hj encodes the degree of fluctuation of the impurity
j and τxj is the x-component of the Pauli matrix flipping
the jth spin. Importantly, the larger the |mj |, the smaller
the |hj |. We assume that the sign of hj is arbitrary.

The Hamiltonian Heff,I +Heff,h given by Eqs. (13) and
(14) describes an interacting 1/r antiferromagnetic Ising
chain with a random transverse field. We argue that,
since the short range Ising chain is stable to a weak trans-
verse field (at zero temperature), and the long range cou-
pling should only make the order more stable, accord-
ingly the classical Ising configuration should be stable.
To gain further insights, we view the transverse Ising
model as a 1D 1/r hopping model with disorder, where
Heff,I is the 1/r hopping, and Heff,h acts like a quenched
disorder. The rate of finding a resonance is proportional
to
∫
dr/r ∼ logL (L being the system size), which is

logarithmic divergent at large distances. Therefore, a
resonant hopping process is always guaranteed as long as
the system is sufficiently large. This situation is the same
as the the 1/r3 hopping problem in the three dimensions.
Since the 3D 1/r3 hopping model is critically delocalized
[57], we expect that the 1D 1/r hopping model is also crit-
ically delocalized. However, the 1/r term in our model is
not the hopping, but rather the Ising interaction. The re-
sults in Ref. [57] suggest that Heff,h is unlikely to destroy
the ordered state set by Heff,I . Therefore, we conclude
that the ground state of the random Ising model is es-
sentially classical and can be approximated by a static
spin configuration.

In the low-energy limit, the helical Majorana fermions
scatter off the asymptotic static Ising spins and become
insulating. We expect that the predictions based on the
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mean field approximation remain valid in this situation -
exponential localization takes place for generic Ising spin
configurations, and the Dyson physics (marginal local-

ization) arises when
∑N
j=1mj = 0.

V. DISCUSSION

We study a dirty interacting helical Majorana edge
state as realized on the boundary of 2D time-reversal
TSC of class DIII. We show that the inhomogeneous
time-reversal symmetry breaking can happen due to
a combination of random velocity and strong interac-
tion. The regions with time-reversal broken order can
be treated as a static mass order (mean field approxima-
tion) or an Ising spin (fluctuating limit). In both limits,
we expect that the edge state becomes gapless and in-
sulating. Since the mass domain walls trap MZMs, and
the localized edge can be thought as a localization of
MZMs. We also point out that a stretched exponential
transport behavior can occur for an edge with a statis-
tically time-reversal symmetry, i.e. the conductance G
scales with systems size L as G ∼ exp(−C

√
L), with this

unusual behavior originating from a Dyson singularity in
the density of states and localization length.

It is interesting to compare the glassy Majorana edge
to the localized state as realized on 2D TI edges [18].
Under time-reversal symmetry breaking, the helical Ma-
jorana edge acquire one type of mass term, while there
are two types of masses in the helical Luttinger liquid.
This difference is intrinsic to the U(1) charge conserva-
tion. The domain walls of the Ising mass trap MZMs
in the helical Majorana edges. On the other hand, the
domain walls of each type of masses trap half charges
(Jackiw-Rebbi soliton [58]) in the helical Luttinger liq-
uid. The localization properties are also intriguing. The
glassy Majorana edge is generically exponentially local-
ized except that random singlet states can take place for a
statistical time-reversal symmetry (i.e., the mass or Ising
spin is averaged out to be zero). In a localized TI edge,

nonmonotonic localization is expected, i.e., the localiza-
tion length is the shortest for an intermediate disorder
strength [18]. Both the glassy Majorana edges and the
localized TI edges are examples of the non-Fermi glass
[59] - localized states not adiabatically related to Ander-
son localization.

Finally, we discuss possible experimental characteriza-
tions of the gapless insulating helical Majorana edges.
Since the Majorana fermions do not carry a charge but
carry heat, the thermal transport is necessary to detect
the insulating behavior. In addition, the regions with
time-reversal breaking orders and the MZMs trapped
by the domain walls can be detected by in situ mea-
surements, such as a scanning tunneling microscope [60]
(for MZMs) and SQUID [61, 62] (for local time-reversal
breaking order). We also would like to point out that
our theory can apply to the “sewing of Majorana edges”
in the novel setup for detecting the Kitaev spin liquid
electrically [42]. Our work establishes that the glassy
Majorana edge states can arise from a 2D time-reversal
symmetric TSC bulk. The unconventional localization is
enabled by the interplay of topology, disorder, and inter-
action.
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