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Using a cluster extension of the dynamical mean-field theory (CDMFT) we map out the magnetic
phase diagram of the anisotropic square lattice Hubbard model with nearest-neighbor intrachain
t and interchain t⊥ hopping amplitudes at half-filling. A fixed value of the next-nearest-neighbor
hopping t′ = −t⊥/2 removes the nesting property of the Fermi surface and stabilizes a paramagnetic
metal phase in the weak-coupling regime. In the isotropic and moderately anisotropic regions, a
growing spin entropy in the metal phase is quenched out at a critical interaction strength by the
onset of long-range antiferromagnetic (AF) order of preformed local moments. It gives rise to
a first-order metal-insulator transition consistent with the Mott-Heisenberg picture. In contrast, a
strongly anisotropic regime t⊥/t . 0.3 displays a quantum critical behavior related to the continuous
transition between an AF metal phase and the AF insulator. Hence, within the present framework
of CDMFT, the opening of the charge gap is magnetically driven as advocated in the Slater picture.
We also discuss how the lattice-anisotropy-induced evolution of the electronic structure on a metallic
side of the phase diagram is tied to the emergence of quantum criticality.

I. INTRODUCTION

The Hubbard model at half-filling and finite dop-
ing has been a subject of numerous theoretical stud-
ies driven by its ability to account for a variety of col-
lective behaviors in strongly correlated quantum sys-
tems such as a metal-insulator transition (MIT) [1, 2],
antiferromagnetism with its precursors and competi-
tors [3], dimensional crossover from the one-dimensional
(1D) Tomonaga-Luttinger liquid physics to a higher-
dimensional situation [4], pseudogap behavior in the
single-particle spectral function [5], and high-Tc super-
conductivity [6]. Even though the MIT is simply a con-
sequence of the energy competition between Coulomb in-
teractions which tend to localize electrons and the kinetic
energy term which favors electron itineracy, its actual
form is situation dependent with microscopic details of
the electronic structure playing a leading role [7]. Ac-
cordingly, different mechanisms of the MIT have been
proposed to explain the formation of an insulating phase.

In the Mott-Hubbard picture of a correlation-driven
MIT, a strong on-site Coulomb repulsion U splits the
half-filled conduction band to open a gap in the elec-
tronic excitations between the resultant lower and upper
Hubbard bands [8, 9]. Thus, the Mott-Hubbard MIT is
driven solely by local electron correlations and does not
involve any spontaneous symmetry breaking. Valuable
insight into fundamental aspects of the Mott-Hubbard
MIT has come from the dynamical mean-field theory
(DMFT) [10]. Although DMFT neglects nonlocal cor-
relation effects and thus becomes exact only in the limit

of infinite dimensions [11, 12], it is able to capture the
formation of local moments and resultant high-frequency
features in the single-particle spectrum — lower and up-
per Hubbard sidebands. In addition, DMFT predicts
the first-order MIT line due to the coexistence regime
of the metallic and insulating solutions at low temper-
ature. The first-order MIT line terminates at a critical
end point (Tc, Uc) similar to an ordinary liquid-gas tran-
sition. Consequently, one expects that the Mott critical
end point belongs to the Ising universality class [13–15]
with the double occupancy playing the role of a scalar
order parameter of the transition. Subsequent studies
based on quantum cluster techniques [16] revealed that
the inclusion of short-range correlations on top of the
local dynamics does not change the order of the Mott-
Hubbard MIT which remains first order [17, 18].

Another issue when it comes to address the microscopic
description of the MIT comes from the spin degrees of
freedom which typically mask the Mott-Hubbard MIT by
driving a magnetic instability of the metallic phase. This
is for example known to happen in the Hubbard model
on a two-dimensional (2D) square lattice at half-filling
— due to the perfect nesting of the Fermi surface, the
zero-temperature ground state displays long-range (AF)
order for an arbitrary small on-site repulsion U . Essen-
tially this type of localization is accounted for already
at the single-particle level within a Slater formalism [19]:
the onset of the antiferromagnetism leads to a doubling of
the unit cell size which opens up an exponentially small
gap ∆ ∝ t exp(−2π

√
t/U) even for small but nonzero U

at the Fermi level [20]. Increasing U reduces the double
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occupancy and the Slater antiferromagnet progressively
evolves into a Mott-Heisenberg insulator [2] with an AF
gap of order of U as verified within a variety of theoret-
ical approaches [21–35]. In this regime, local moments
form already on the temperature scale T ∼ U and thus
the AF insulator at T = 0 is accounted for by a spin-1/2
Heisenberg model of localized spins with the superex-
change constant J = 4t2/U .

A prominent exception of the Mott insulator without
any broken-symmetry-induced folding of the Brillouin
zone down to T = 0 is found in the 1D Hubbard model
at half-filling [36]. The essential difference in nature
between 1D and higher-dimensional situations makes
the studies of dimensional-crossover-driven phenomena
very interesting [37–45]. Moreover, a combined effect of
strong spatial anisotropy and geometrical frustration af-
fects the strength of quantum fluctuations which in turn
reduce the amplitude of broken-symmetry order parame-
ters. This leaves a window for quantum critical behaviors
and the emergence of novel ground states with anoma-
lous single-particle spectra in their neighborhood [46–53].
Our previous works in this domain [54, 55] have estab-
lished intriguing issues such as the unusual topology of
the Fermi surface with dynamically generated pockets
and fingerprints of Mott quantum criticality. Since the
calculations in Refs. [54, 55] were carried out in the para-
magnetic (PM) phase of the model, where by construc-
tion no long-range order is possible, it is conceivable that
the onset of long-range order underlies the Mott tran-
sition. Thus, our aim is to revisit the phase diagram
by adapting a cluster extension of DMFT (CDMFT) to
handle standard Néel-type AF order [56].

Strictly speaking, long-range magnetic order on a 2D
lattice with short-range interactions is destroyed by long-
wavelength fluctuations in the order parameter at any
finite temperature [57]. However, at sufficiently low tem-
perature, TDMFT

N , captured relatively well already by a
single-site DMFT [58], the correlation length grows expo-
nentially with inverse temperature. This length scale de-
fines an energy and time scale related to the fluctuations
that are responsible for the destruction of the long-range
order. Any experiment that is not able to resolve this
energy or time scale will effectively perceive long-range
order. Hence even at finite temperature, the fact that the
correlation length diverges exponentially as a function of
temperature has a very clear experimental signature ob-
served in quantum simulations with ultracold atoms in
optical lattices [59–62].

On the basis of CDMFT calculations, it was conceived
in Ref. [63] that the position of maximum of TDMFT

N (U)
on the 2D square lattice is controlled by the critical end
point (Tc, Uc) of the MIT in the normal phase when
the AF instability is artificially suppressed. Assuming
that this (in general hidden) Mott-Hubbard MIT indeed
marks the qualitative change in the microscopic mech-
anism behind the stability of AF order, an intriguing
question arises: can one expect a profound influence on
the underlying physics of the AF phase when the critical

end point Tc of the Mott-Hubbard MIT is driven down to
zero upon increasing the degree of lattice anisotropy as
in Ref. [55]? Most importantly, does this Mott quantum
criticality affect the nature of the transition between a
PM metal and the AF insulator? With this question in
mind we proceed to discuss our findings.

The rest of the paper is organized as follows. In Sec. II
we introduce the model, specify our implementation and
technical details of the broken-spin-symmetry CDMFT
algorithm, and define observables of interest. Our main
results are discussed in Sec. III. We begin by presenting
the anticipated finite-temperature phase diagram in the
plane of interaction strength U and hopping anisotropy
t⊥/t. Next, we elucidate the evolution of critical tem-
perature and interaction strength (Tc, Uc) terminating
the first-order MIT upon varying the degree of lattice
anisotropy. Subsequently, we turn our attention to the
corresponding evolution of the electronic structure in the
PM metal phase. Finally, we examine the reconstruction
of low-energy quasiparticle excitations on going through
the itinerant AF transition identified in the quasi-1D re-
gion of the phase diagram. We summarize our results
and point out possible future directions in Sec. IV.

II. MODEL, METHOD, AND OBSERVABLES

To handle numerically crucial physical ingredients at
play we use here CDMFT. Specifically, the 2 × 2 clus-
ter is a minimal unit cell which allows one to capture
the 1D umklapp scattering process opening a gap in the
half-filled band [36, 64–66] and at the same time to treat
short-range x- and y-axis AF spin fluctuations on an
equal footing.

Our aim is to extend previous CDMFT studies of the
influence of strong AF correlations on the nature of the
MIT in the 2D Hubbard model [63, 67, 68] to the quasi-
1D case. To this end, we consider the square lattice Hub-
bard model with an anisotropic hopping at half-filling,

H = −
∑
ijijij,σ

tijijijc
†
iiiσcjjjσ + U

∑
iii

niii↑niii↓ − µ
∑
iii,σ

niiiσ, (1)

with a local Coulomb repulsion U , chemical potential
µ, and electron hopping amplitudes: tijijij = t on the in-
trachain bonds, tijijij = t⊥ on the interchain bonds, and
tijijij = t′ = −t⊥/2 between next-nearest-neighbor sites on
two adjacent chains. Thus, the energy dispersion for the
non-interacting case reads

εk = −2t cos kx − 2t⊥ cos ky − 4t′ cos kx cos ky − µ. (2)

A finite value of t′ breaks the perfect nesting property
of the Fermi surface εk = −εk+Q. It also introduces a
magnetically frustrating interaction. Both effects are ex-
pected to suppress the weak-coupling tendency towards
the onset of low-temperature symmetry-broken states.
Moreover, one could hope to find a region in the phase
diagram where the impact of the next-nearest-neighbor
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hopping t′ is strong enough to push the magnetic tran-
sition temperature below the critical end point temper-
ature Tc thus exposing the Mott-Hubbard MIT [69, 70].
A downside of the lifted perfect nesting condition is that
one has to adjust the chemical potential µ as a function
of t⊥, U , and T to keep the required condition of a half-
filled band.

In CDMFT the original interacting lattice is mapped
onto a cluster quantum impurity problem embedded
in a self-consistent electronic bath. A predefined unit
cell of volume given by the cluster size allows easily to
study spin-symmetry-broken phases with a commensu-
rate wavevector such as simple Néel AF order. To imple-
ment the CDMFT method, we decompose the lattice into
Nu supercells with Nc atoms each. As a result, the non-
interacting Green’s function GGG0(KKK, iωm) and the spin-
dependent self-energy ΣΣΣσ(KKK, iωm) correspond to Nc×Nc
matrices with wavevectors KKK that span the reduced Bril-
louin zone of a supercell. In analogy to the DMFT
approach, the CDMFT approximation neglects the KKK
dependency of the self-energy, ΣΣΣσ(KKK, iωm) ≡ ΣΣΣσ(iωm).
The latter is extracted by solving the effective cluster
model: given the initial bath Green’s function GGG0,σ(iωm),
we use a cluster impurity solver to obtain the corre-
sponding cluster Green’s function GGGσ(iωm) and hence
— via the Dyson equation — the cluster self-energy
ΣΣΣσ(iωm) = GGG−10,σ(iωm) − GGG−1σ (iωm). The self-consistent
loop is closed by requiring that the cluster Green’s func-
tion GGGσ(iωm) matches the lattice Green’s function of the
original model formulated in the cluster-site basis:

GGGσ(iωm) =
1

GGG−10,σ(iωm)−ΣΣΣσ(iωm)

=
1

Nu

∑
KKK

1

GGG−10 (KKK, iωm)−ΣΣΣσ(iωm)
. (3)

This allows us to compute a new bath Green’s function
GGG0,σ(iωm) which is fed back to the impurity solver and
the procedure is repeated till convergence is reached.

While our preliminary results for the 2D case were ob-
tained using the quantum Monte Carlo (QMC) method
of Hirsch and Fye as cluster solver [71], we found it ad-
vantageous to switch to the continuous-time QMC (CT-
QMC) algorithm [72]. In particular we opted for its weak-
coupling implementation based on a stochastic series ex-
pansion for the partition function in the interaction rep-
resentation [73, 74]. It allowed us to reach temperatures
as low as T = t/100 necessary to pin down the evolu-
tion of Tc in the quasi-1D region. In addition, the CT-
QMC algorithm provides the possibility of Monte Carlo
measurements directly on the Matsubara-frequency ωm
axis. Thus one avoids the cumbersome transformation
from imaginary time to Matsubara frequencies necessary
when the Hirsch-Fye solver is used instead. Note that
the next-nearest-neighbor hopping t′ in Eq. (2) breaks
the particle-hole symmetry of the Hamiltonian and thus
introduces the negative sign problem in the QMC sim-
ulations. Results of the average sign in our studies are

shown in Appendix A.
To determine the domain of stability of the AF phase,

in the actual simulation we explicitly break the SU(2)
spin symmetry by introducing a small staggered mag-
netic field through the initial guess for the bath Green’s
function GGG0,σ(iωm). Hence, if the parameters of a simula-
tion correspond to the regime with a thermodynamically
stable AF phase, in the course of the CDMFT iterative
process one converges to the solution with a finite stag-
gered magnetization

m =
1

Nc

∑
iii

(−1)iii〈niii↑ − niii↓〉. (4)

We remark that allowing for a broken-spin-symmetry
electronic bath substantially simplifies studies of other-
wise a very intricate — in a generic nonrelativistic case
— problem of a metal at the spin-density-wave quan-
tum critical point involving coupling of gapless long-
wavelength Goldstone modes to a Fermi sea [75–80].

Further insight into the underlying physics in differ-
ent parts of the diagram is obtained from the following
observables:

(i) Double occupancy

D =
1

Nc

∑
iii

〈niii↑niii↓〉. (5)

(ii) Lattice Green’s functions gσ(kkk, iωm) in the original
Brillouin zone with kkk ∈ [−π, π]. For consistency with our
previous studies [54, 55], we extract it by periodizing the
Green’s function in the cluster-site basis:

gσ(kkk, iωm) =
1

Nc

Nc∑
µ,ν=1

eikkk(aaaµ−aaaν)

×
[

1

GGG−10 (KKK, iωm)−ΣΣΣσ(iωm)

]
µ,ν

, (6)

where aaaµ, aaaν label cluster sites. It is however fair to re-
mark that there are other periodization schemes such as
the cumulant periodization which yield a faster conver-
gence against the cluster size to the thermodynamic limit,
an issue that becomes crucial in the proper description
of doped 2D Mott insulators [81, 82]. Given that we
are interested here in spectral properties of a moderately
correlated metallic phase stabilized by strong magnetic
frustration, one might still hope that the applied Green’s
function periodization scheme reproduces the qualitative
features of the thermodynamic solution.

(iii) Momentum-resolved spectral function at the Fermi
level Akkk(ω = 0). We estimate it from the behavior
of lattice Green’s function at large imaginary time τ
which gives the integrated spectral intensity in a fre-
quency window of width T around the Fermi level [83]
Akkk(ω = 0) ∝ lim

β→∞
βg(kkk, τ = β/2) where β = 1/T and

g(kkk, τ = β/2) =
1

β

∑
ωm,σ

e−iωm(τ=β/2)gσ(kkk, iωm). (7)
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We use g(kkk, τ = β/2) to analyze the evolution of the
Fermi surface across the phase diagram.

(iv) Density of states at the Fermi level N(ω = 0) =
1
N

∑
kkk Akkk(ω = 0) ∝ lim

β→∞
βg0(τ = β/2) where

g0(τ = β/2) =
1

βN

∑
kkk,ωm,σ

e−iωm(τ=β/2)gσ(kkk, iωm). (8)

(v) Momentum-resolved spectral function A(kkk, ω) =
− 1
π Img(kkk, ω). We have used the stochastic MaxEnt

implementation [84, 85] of the Algorithms for Lattice
Fermions (ALF) library [86] to rotate the imaginary-time
Green’s function g(kkk, τ) to the real-frequency axis.

III. NUMERICAL RESULTS

A. Magnetic phase diagram

Our CDMFT results are summarized in the (U, t⊥)
phase diagram shown in Fig. 1. It was mapped out
at a fixed temperature T = t/40. On the one hand,
a strong magnetic frustration introduced by the next-
nearest-neighbor hopping t′ = −t⊥/2 stabilizes in the
weak-coupling region a PM metal phase which as shown
in Fig. 1(a) extends to a fairly large interaction Uc/t =
5.17 in the 2D limit. In this case, one finds a strong
reduction of the double occupancy D at Uc indicative of
the local moment 〈S2

z 〉 = 1−2D formation, see Fig. 1(b).
On the other hand, we find that the Mott-Hubbard tran-
sition is preempted by AF order. Indeed, the U↑ line in
Fig. 1 corresponds to the transition at a given t⊥ from a
PM metal phase to the AF insulator with increasing U
while the U↓ line to the transition from the AF insulator
to the PM metal phase with decreasing U . Examples of
such a hysteresis cycle observed in the raw data of the
staggered magnetization m and double occupancy D are
shown in Appendix B. Collecting the results for differ-
ent values of t⊥ lead us to the hysteretic region indicated
as the blue shaded area in Fig. 1. This hysteresis and
jumps in both m [Fig. 1(a)] and D [Fig. 1(b)] resolved
for the moderately anisotropic region 0.5 ≤ t⊥/t ≤ 1
clearly imply a first-order AF transition concurrent with
the MIT. This contrasts with a static mean-field approxi-
mation where depending on the specific form of the band
structure tuned by the magnitude of t′, both the first or-
der and continuous transition between a PM metal and
the AF insulator can be reproduced [21, 87]. In particu-
lar, within Hartree-Fock theory of the isotropic 2D Hub-
bard model one finds only a continuous transition for the
particular choice t′ = −t/2 used here. In Sec. III C 1 we
provide evidence that the first-order character of the MIT
is actually a consequence of dominant local temporal fluc-
tuations going beyond the mean-field approximation.

The situation in the strongly anisotropic part of the
phase diagram is more subtle and requires more atten-
tion. In particular, a weak staggered magnetization in

U
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FIG. 1. Finite-temperature CDMFT phase diagram at T =
t/40 of the anisotropic 2D Hubbard model Eq. (1) at half-
filling encompassing paramagnetic (PM) and antiferromag-
netic (AF) phases. The blue shaded area between the U↑
(U↓) lines corresponding to a simulation with increasing (de-
creasing) the interaction strength U (see Appendix B for il-
lustrative raw data), respectively, shows a coexistence region
and implies a first-order metal-insulator transition (MIT).
For interchain couplings t⊥/t . 0.4, a continuous AF tran-
sition (AFT) (dashed line) enables the onset of an AF metal
phase which eventually undergoes a second-order MIT (dot-
ted line) to the AF insulator. Color-coded circles display
the behavior of: (a) staggered magnetization m; (b) double
occupancy D, and (c) density of states at the Fermi level
N(ω = 0) ∝ lim

β→∞
βg0(τ = β/2).
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FIG. 2. Temperature dependence of the: (a) and (b) staggered magnetization m; (c) and (d) double occupancy D, and (e)
and (f) density of states at the Fermi level N(ω = 0) ∝ lim

β→∞
βg0(τ = β/2) obtained on decreasing U for t⊥/t = 0.4 (top) and

t⊥/t = 0.38 (bottom) in the proximity to Tc ' t/40.

the vicinity of the AF transition (AFT) (dashed line in
Fig. 1) accompanied by a relatively large double occu-
pancy on the AF side are both suggestive of the itinerant
magnetism.

In order to identify the character of the transition for
t⊥/t = 0.4, we examine in Fig. 2 the behavior of the
staggered magnetization m [Fig. 2(a)], double occupancy
D [Fig. 2(c)], and density of states at the Fermi level
N(ω = 0) [Fig. 2(e)] upon decreasing U for various tem-
peratures. One finds that the smooth increase of m at
the highest T = t/20 gets steeper at lower temperatures
and is replaced by a small discontinuity at T = t/40.
The latter is accompanied by a jump seen both in D and
N(ω = 0). This implies a first-order phase transition
with a critical end point Tc ' 1/40 even though a slow
convergence of the CDMFT self-consistency loop makes
it hard to firmly assess the existence and range of the
hysteresis at temperatures a little bit below Tc.

In contrast, simulations with a slightly smaller t⊥/t =
0.38 yield a continuous onset of magnetism at T = t/40
and lower T = t/50 is required to resolve the disconti-
nuity in all the three observables, see Figs. 2(b), 2(d),
and 2(f). This result together with a shrinkage of the
hysteretic region seen in Fig. 1 is suggestive of a system-
atic reduction of critical end point Tc as a function of the
growing lattice anisotropy. We analyze this issue in more
detail in Sec. III B.

A continuous nature of the AF transition identified in
the strongly anisotropic part of the phase diagram paves
the way to an intermediate AF metal phase. Indeed,

as shown in Fig. 1(c) there is a narrow region in the
vicinity of the AF transition with small but finite N(ω =
0). Upon further increase of the interaction strength, a
crossover from the AF metal to the AF insulator occurs
once the staggered magnetic moment is sufficient to fully
gap out hole and electron Fermi pockets of the AF metal
phase.

Thus, in analogy with earlier studies restricted to PM
solutions [54, 55], the continuous nature of the MIT stems
from a smooth vanishing of the volume of Fermi pockets
at the critical interaction. However, unlike in Ref. [55],
where a dynamically generated breakup of the Fermi sur-
face was the consequence of remnant 1D umklapp scat-
tering, electron and hole Fermi pockets form here due to
the doubling of the unit cell driven by AF order. As we
discuss in Sec. III C 4, it results in a different topology of
the Fermi surface in the vicinity of the MIT.

Finally, let us point out another important conse-
quence of varying the ratio between inter- and intrachain
hopping amplitudes — the existence of a certain critical
point where the non-interacting 2D closed Fermi surface
undergoes a topological change into an open surface. For
the specific choice t′ = −t⊥/2 used in our studies, this
is known to happen at t⊥/t ' 0.62 [44]. As we demon-
strate in Sec. III C 3, this topological (Lifshitz) transition
is accompanied by a van Hove singularity in the single-
particle density of states crossing the Fermi level. From
a weak-coupling point of view, a large density of states
might lead to divergent non-interacting susceptibilities
in both particle-hole and particle-particle channels sig-
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FIG. 3. Temperature dependence of the staggered magnetization m (top) and double occupancy D (bottom) obtained on
decreasing U in the case of: (a) and (b) weak anisotropy t⊥/t = 0.8; (c) and (d) moderate anisotropy t⊥/t = 0.5, and (e) and
(f) strong anisotropy t⊥/t = 0.3.

naling enhanced ordering tendencies. Nevertheless, w
find that phase diagram boundaries are insensitive to the
van Hove singularity passing smoothly across the region
0.6 ≤ t⊥/t ≤ 0.7 with enhanced N(ω = 0), see Fig. 1(c).
Together with a reduced double occupancy, this is yet
another indication that the AF instability in this part of
the phase diagram is not of a weak-coupling origin but
instead it should be considered as driven by the ordering
tendency of preformed local moments.

B. Critical end point Tc

In this section we provide a detail analysis of the crit-
ical end point (Uc, Tc) terminating the first-order MIT
as a function of t⊥. Identifying (Uc, Tc) for a given t⊥
requires numerous simulations at a variety of tempera-
tures and as a function of U . We reduced this numerical
effort by identifying first a crude estimate of the critical
end point from simulations on a rough grid of temper-
atures. Next, we pinpointed (Uc, Tc) to a better degree
of accuracy by performing additional simulations on an
appropriately refined grid restricted to the vicinity of the
critical end point.

Figure 3 collects the resultant data for the AF order
parameter m and the double occupancy D for three rep-
resentative values of t⊥ corresponding to different parts
of the phase diagram. They range from t⊥/t = 0.8
[Figs. 3(a) and 3(b)] through t⊥/t = 0.5 [Figs. 3(c) and
3(d)] to t⊥/t = 0.3 [Figs. 3(e) and 3(f)]. As apparent,

for both t⊥/t = 0.8 and t⊥/t = 0.5 one finds a temper-
ature range where the continuous behavior of m(U) and
D(U) changes into a discontinuous jump. In contrast,
for t⊥/t = 0.3 we observe the persistence of a smooth
behavior down to our lowest temperature T = t/100.

This motivated us to repeat the above analysis for
other values of t⊥ with the aim of elucidating the evolu-
tion of Tc as a function of the interchain hopping. For
each t⊥ we define Tc as a midpoint between the temper-
ature at which D(U) develops a singular behavior and
the adjacent lower T where D(U) displays a clear jump.
A striking outcome of this elaborate analysis is a nearly
linear dependence of Tc versus t⊥, see Fig. 4. A linear fit
to the data points in the 0.3 6 t⊥/t 6 0.8 range yields
an estimate of a critical hopping tc⊥/t = 0.31 ± 0.03 at
which the MIT ceases to be first order, see Fig. 4(b).

This result can be rationalized by invoking a basic
concept behind the DMFT algorithm [10]. It describes
the formation of renormalized quasiparticles as a self-
consistent Kondo screening of local moments by the elec-
tronic bath. In the case of a single-site DMFT, this
screening involves only local spin-flip processes while in
CDMFT also nonlocal spin-flips contribute. In addi-
tion, Kondo screening competes with the AF superex-
change interaction between local moments. Given a
substantial reduction of the double occupancy down to
D = 0.1348(4) in the PM metal on the verge of the
MIT in Fig. 1(b), indicative of well formed local mo-
ments 〈S2

z 〉 = 1 − 2D, this competition is expected to
be particularly strong in the isotropic 2D limit. In this
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FIG. 4. (a) CDMFT estimate of the critical temperature and
interaction strength (Tc, Uc) terminating the first-order MIT
extracted from the vanishing of the double occupancy jump;
for t⊥/t = 0.3 we could not see resolve any signature of the
discontinuous behavior down to our lowest temperature T =
t/100. (b) Linear fit to the data points in the 0.3 6 t⊥/t 6 0.8
range which gives tc⊥/t = 0.31± 0.03.

limit we understand the Mott transition as a consequence
of the jump to small concentration of doubly occupied
sites (doublons) and empty sites (holons) triggered by
the strong attraction of the doublon and holon scaled
by U , which also drives the first-order transition due to
the holon-doublon binding as described by the DMFT
approximation. Magnetism is just a consequence of the
zero doublon and holon state that is thermodynamically
unstable to magnetic ordering. In this sense magnetism
rides on the MIT. This is very different from the MIT
in semimetals (i.e. Hubbard model on a Honeycomb lat-
tice) where the charge gap is a reflection of the magnetic
ordering as in the case of Slater insulator [88, 89].

Upon growing lattice anisotropy, the observed increase
in D on the metallic side of the MIT indicates that the
system crosses over to a weak-coupling regime. This di-
minishes the impact of local moments on the nature of
the MIT and reduces continuously the magnitude of a

FIG. 5. Evolution of the Fermi surface cuts across two quad-
rants of the Brillouin zone with increasing U at t⊥/t = 0.8
in the PM phase at T = t/40. The dashed black line shows
the non-interacting Fermi surface. The second Fermi surface
segment in the Brillouin zone corresponds to a mirror image
about the y-axis.

jump in D, and thus Tc, down to zero.

C. Electronic properties

As discussed in Sec. III A, lattice anisotropy controls
the behavior of the doubly occupancy and hence the de-
gree of localization in the metallic phase. This shall have
a strong impact on electronic properties of the metal. Be-
low we systematically analyze the evolution of both Fermi
surface and momentum-resolved single-particle spectra
A(kkk, ω). It allows us to reveal dynamical effects arising
from quantum fluctuations and to identify the underlying
physics in different parts of the phase diagram.

1. Quasi-2D region: local moment formation

We begin with a weakly anisotropic case with t⊥/t =
0.8. Figure 5 displays the evolution of the Fermi surface
segment across two quadrants of the Brillouin zone with



8

-5

-3

-1

 1

 3

 5

 7

ω
/t

k

t
⊥

/t = 0.8  U/t=1  T=t/40

(0,0) (π,0) (π,π) (0,0) (0,π) (π,π)

 2

 0.01

 0.1

 1
A(k,ω)(a)

-5

-3

-1

 1

 3

 5

 7

ω
/t

k

t
⊥

/t = 0.8  U/t=2  T=t/40

(0,0) (π,0) (π,π) (0,0) (0,π) (π,π)

 2

 0.01

 0.1

 1
A(k,ω)(b)

-5

-3

-1

 1

 3

 5

 7

ω
/t

k

t
⊥

/t = 0.8  U/t=3  T=t/40

(0,0) (π,0) (π,π) (0,0) (0,π) (π,π)

 2

 0.01

 0.1

 1
A(k,ω)(c)

-5

-3

-1

 1

 3

 5

 7

(0,0) (π,0) (π,π) (0,0) (0,π) (π,π)

ω
/t

k

t⊥ /t = 0.8  U/t=4.15  T=t/40

 2

 0.01

 0.1

 1
A(k,ω)(d)

FIG. 6. Single-particle spectrum A(kkk, ω) with increasing U at t⊥/t = 0.8 in the PM phase at T = t/40. The solid white
line shows the free dispersion. Dashed blue (green) line with weaker (steeper) slope in (d) denotes the Fermi velocity for the
interacting (free) case, respectively.

increasing U in the PM phase at constant temperature
T = t/40. The dynamical contribution to the self-energy
in CDMFT yields a finite lifetime of quasiparticles. As a
result, one finds a relatively sharp Fermi surface only for
the smallest value U/t = 1, see Fig. 5(a), while dynamical
effects become already discernible at U/t = 2 as Fermi
surface blurring, see Fig. 5(b). As shown in Figs. 5(c)
and 5(d), further increase of the interaction strength U
induces substantial transfer of spectral weight from the
Fermi level to finite-frequency parts of the single-particle
spectrum indicative of a correlated metal.

A few additional comments are in order:

(i) It is known that in small cluster the effects of pe-
riodic boundary conditions are particularly strong which
typically results in some artificial features in the single-
particle spectra. For example, in Fig. 5(d) there is a
noticeable depletion of weight at kx = π/2. However, as
we show later, its position is t⊥ independent and pinned
to kx = π/2, and thus we consider it merely as a spurious
feature of the 2× 2 cluster.

(ii) Since the 2 × 2 CDMFT captures short-range AF
spin fluctuations, the imaginary part of the self-energy
can acquire a strong momentum dependence. If that is
the case, the disappearance of the Fermi surface starts
near the so-called hot spots, i.e., regions with an en-
hanced quasiparticle scattering rate. This gives rise to a

pseudogap in the single-particle spectrum that precedes
the Mott-Hubbard MIT [17, 90–97]. One could argue
that the absence of momentum selective opening of the
charge gap up to U/t = 4.15, see Fig. 5(d), where the
system is on the verge of the transition to the AF insu-
lator, is simply because the critical interaction strength
is smaller when AF spin order is allowed. However, we
believe that it is the consequence of a large next-nearest-
neighbor hopping |t′| = t⊥/2 used in the present studies
which brings about a strong frustration of the AF spin
correlations. Because of the first-order nature of the tran-
sition, the transition takes place before an appreciable
momentum dependence manifested by the momentum
differentiation gets started when U is increased. This
conclusion is supported by previous studies of the 2D
half-filled Hubbard model within the eight-site dynami-
cal cluster approximation which reported the suppression
of momentum-space differentiation as the magnitude of
t′ increases [98].

(iii) Dynamical correlations can also renormalize the
Fermi surface topology via the real part of the self-
energy [99]. Nevertheless, the inspection of Fig. 5 in-
dicates that increasing U does not modify noticeably the
Fermi surface shape such that it continues to follow the
non-interacting one. Furthermore, anisotropic hopping
amplitudes t⊥ 6= t breaks the fourfold rotational (C4)
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symmetry. This can lead to a surprisingly large direc-
tional anisotropy in the spectral intensity reflecting a
large dynamically generated anisotropy in the self-energy
close to the Mott-Hubbard MIT [100]. We do not observe
here such anomalies possibly due to a combined effect of
a relatively small critical interaction sufficient to trigger
the transition from a PM metal to the AF insulator and
a strong magnetic frustration.

In order to gain further insight into the onset of a
correlated metal, we plot in Fig. 6 the corresponding
momentum-resolved single-particle spectra A(kkk, ω). On
the one hand, the spectral function in a weak-coupling
regime U/t = 1 follows essentially the non-interacting
dispersion shown as the solid white line in Fig. 6(a).
On the other hand, qualitative changes in the spectrum
produced by dynamical correlations are already found at
U/t = 2: apart from the overall broadening, weak renor-
malization effects near the kkk = (0, 0) momentum become
visible as a reduced bandwidth of the coherent quasipar-
ticle dispersion with respect to the non-interacting one,
see Fig. 6(b). As shown in Figs. 6(c) and 6(d), further
increase in U leads to the transfer of the zero-frequency
spectral weight into higher-frequency regions as already
anticipated in Fig. 5. As a result, one observes the forma-
tion of the incoherent lower and upper Hubbard bands:
the former appears predominantly in the region of Bril-
louin zone around the kkk = (0, 0) momentum while the lat-
ter emerges as kkk moves towards the (π, π) point. At the
same time, the flattening of the quasiparticle dispersion
near the Fermi level signals an increased effective mass
of the quasiparticles and thus growing localization ten-
dency. To quantify this effect we have plotted in Fig. 6(d)
the Fermi velocity for the non-interacting and interacting
cases. We see a reduction of approximately 30% around
(π, 0) and 40% around (π/2, π/2) momenta.

2. Quasi-2D region: thermal melting of local moments

A jump in the double occupancy across the MIT im-
plies its first-order nature. It is thus natural to expect
that the physical mechanism that underlies the opening
of the charge gap, i.e., the local moment formation, is
robust in temperature.

We confirm this in Fig. 7 by examining the temper-
ature evolution of A(kkk, ω) for a fixed t⊥/t = 0.8 and
at the corresponding critical interaction U . Uc in the
PM phase. Indeed, one finds the persistence of the co-
herent quasiparticle band near the Fermi level coexist-
ing with incoherent high-frequency parts of the spectrum
up to T = t/10, see Fig. 7(a). This is in accordance
with a sizeable double-occupancy jump at this temper-
ature illustrated in Fig. 3(b). Indeed, in the strongly
correlated metal with U/t � 1, the high-energy scale
∼ U determines spectral properties already in the high-
temperature regime T ' U . It leads to the formation of
incoherent high-energy features (which are precursive of
the lower and upper Hubbard bands in the Mott insula-
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FIG. 7. Evolution of the spectral function A(kkk, ω) with in-
creasing temperature T at t⊥/t = 0.8 and at the critical in-
teraction U . Uc in the PM phase.

tor) in addition to the quasiparticle peak at the Fermi
level. In the DMFT picture of the first-order metal-
insulator transition below Tc, spectral weight is trans-
ferred from the zero-frequency quasiparticle peak to (al-
ready preformed) high-frequency features and the tran-
sition is signaled by a jump in double occupancy.

At even higher T = t/7.6 [Fig. 7(b)], i.e., the highest T
at which one observes a jump in the double occupancy, a
remnant quasiparticle band is still resolved in a narrow
frequency window near the Fermi level. Finally, at our
highest T = t/6.7 [Fig. 7(c)] the low-frequency quasipar-
ticle band is washed out but the high-frequency features
continue to be visible. At this temperature T > Tc, we
could only detect a smooth transition from the PM to AF
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FIG. 8. Spectral function A(kkk, ω) at the critical interaction
U . Uc in the PM phase at T = t/40 in the moderately
anisotropic region: (a) t⊥/t = 0.7 and (b) t⊥/t = 0.6.

phase, see Figs. 3(a) and 3(b). That is in accord with our
line of arguing that the incoherent high-frequency fea-
tures should stay intact across the critical end point Tc
since they start to form already at higher temperature
' U .

3. Moderate anisotropy: Fermi-surface topology change

The presence of saddle points of energy dispersion
yields a van Hove singularity in the single-particle density
of states. Typically the access to study the behavior of
a system near a van Hove singularity is achieved by the
fine tuning of the electron density such that the Fermi
surface approaches the singularity. Here we provide ev-
idence that the lattice anisotropy is yet another control
parameter that allows one to drive the van Hove singu-
larity to cross the Fermi level.

We illustrate it in Fig. 8 which shows A(kkk, ω) at the
critical interaction U . Uc in the PM phase at T = t/40:
a saddle-point region at kkk = (π, 0) located below the
Fermi level at t⊥/t = 0.7, see Fig. 8(a), crosses the
Fermi level upon increasing the lattice anisotropy such
that at t⊥/t = 0.6 it is found above the Fermi energy,
see Fig. 8(b). The flat dispersion crossing the Fermi level
contributes low-energy states and gives rise to the en-

FIG. 9. Topological (Lifshitz) transition of the Fermi surface:
at t⊥/t = 0.7 (a) the Fermi surface is closed around the Bril-
louin zone corner at kkk = (π, π) while at t⊥/t = 0.6 (b) one
finds an open quasi-1D Fermi surface. In both panels, the
value of U corresponds to the critical interaction U . Uc in
the PM phase at T = t/40 while the dashed black line shows
the non-interacting Fermi surface.

hanced density of states N(ω = 0) found in Fig. 1(c)
in the range 0.6 ≤ t⊥/t ≤ 0.7. One can also notice
in Fig. 8(b) that the incoherent spectral weight at high
negative frequency occupies a narrow energy range and
its maximum moves towards the non-interacting disper-
sion. Moreover, at the same t⊥ where the saddle-point
region at kkk = (π, 0) crosses the Fermi level, the system
undergoes a Lifshitz transition whereby the Fermi sur-
face topology changes from a closed to an open one, see
Fig. 9. Thus we confirm a one-to-one correspondence be-
tween this type of Lifshitz transition and the van Hove
singularity crossing the Fermi level [101].

4. Quasi-1D region: itinerant antiferromagnetism

The vanishing critical end point Tc identified in
Sec. III B suggests that local temporal fluctuations are
not anymore the primary mechanism driving the local-
ization on a strongly anisotropic lattice. Namely, a well
established hallmark of DMFT is that by taking into ac-
count local temporal fluctuations, it reproduces a three-
peak spectrum (lower Hubbard band, quasiparticle peak,
upper Hubbard band) of a strongly correlated metal. At
the critical U , the metal-insulator transition is signaled
then by the disappearance of the quasiparticle peak and
the transition is found in DMFT to be first order be-
low the critical end point Tc. The vanishing Tc is the
quasi-1D region indicates that there must be a different
mechanism of localization at play, otherwise the tran-
sition would continue to be of first order. Indeed, as
we discuss below, we find there a continuous splitting
of the quasiparticle band in the single-particle spectrum
(which closely resembles, as we show in Fig. 10, that of
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FIG. 10. Spectral function A(kkk, ω) at the critical interac-
tion U . Uc in the PM phase at T = t/40 in the strongly
anisotropic region with: (a) t⊥/t = 0.4 and (b) t⊥/t = 0.3.
For comparison, panel (c) shows A(kkk, ω) for t⊥/t = 0.3 at our
lowest T = t/100.

the free electrons) due to doubling of the unit cell in the
AF phase.

First of all, let us recall a relatively large double
occupancy on the PM side of the phase diagram in
Fig. 1(b), ranging from D = 0.1795(2) at t⊥/t = 0.4
to D = 0.1978(1) at t⊥/t = 0.2 on the verge of the
magnetic transition. This has a direct impact on the
resultant kkk-resolved spectral function. As apparent in
Fig. 10(a), already at t⊥/t = 0.4, the position of the
intensity maximum for a given momentum kkk matches
rather well the non-interacting dispersion. Meanwhile,
it is only at high frequency where A(kkk, ω) displays some

broadening which can be considered as remnants of the
two Hubbard bands. The same observation holds true
for A(kkk, ω) at t⊥/t = 0.3. To exclude the possibility
that a close resemblance between the CDMFT and non-
interacting spectra at T = t/40 results merely from dom-
inant thermal effects, we display in Fig. 10(c) A(kkk, ω) at
t⊥/t = 0.3 at our lowest temperature T = t/100. The
absence of any emerging correlation-driven effects in the
spectrum, which continues to follow the non-interacting
dispersion relation, confirms the irrelevance of a local
moment physics and provides further support in favor
of quantum critical behavior below a critical anisotropy
tc⊥/t = 0.31± 0.03 as established in Fig. 4(b).

In the above statement we make use of the fact that
the double occupancy D is a measure of the correlation
strength: in the non-interacting limit U = 0, D takes its
uncorrelated value 1/4. As U grows, D decreases until
it is fully suppressed which corresponds to the spin-1/2
Heisenberg limit. The single-particle spectral function in
the PM phase depends then on whether the numerical
approach captures the aforementioned reduction of dou-
ble occupancy. At the static mean-field level, local mo-
ments cannot be generated without breaking the SU(2)
spin symmetry as double occupancy continues to keep
the uncorrelated value 1/4. Consequently, spectral func-
tion in the PM phase is identical to the non-interacting
one. In contrast, the DMFT approximation accounts for
local electronic correlations which systematically reduce
the double occupancy even before the magnetic transi-
tion takes place. That is reflected in the redistribution of
spectral weight and leads to the onset of high-energy fea-
tures coexisting with the low-energy quasiparticle band
as we illustrate it in Fig. 6 for t⊥/t = 0.8. However, for
small t⊥/t = 0.3, we observe that the reduction of dou-
ble occupancy is much weaker. It matches the absence
of the extra high-energy features in the corresponding
spectral function in Figs. 10(b) and 10(c). As such it is
essentially accounted for by a non-interacting dispersion.
Hence, the PM phase in this range of t⊥/t does not fea-
ture well formed local moments and can be described by
weak-coupling approaches.

Another signature of a reduced quasiparticle scattering
off local moments at t⊥/t = 0.4 is substantially restored
coherence of low-energy quasiparticle excitations. In-
deed, the resultant distinct Fermi surface found for both
t⊥/t = 0.38 [Fig. 11(a)] and t⊥/t = 0.4 [Fig. 12(a)] con-
trasts sharply with that found at t⊥/t = 0.8 where a clear
loss of spectral weight is apparent, cf. Fig. 5(d). How-
ever, a precise physical mechanism of the magnetic phase
transition for t⊥/t = 0.38 differs at T = t/40 from that
for t⊥/t = 0.4. We discuss now both cases separately.

In accordance with a continuous nature of the tran-
sition at t⊥/t = 0.38, one observes in the AF phase a
smooth disappearance of the Fermi surface near ”hot”
regions, see Fig. 11(b). A more detailed inspection of the
low-frequency part of A(kkk, ω) on the AF side of transition
shows the backfolding of the quasiparticle dispersion due
to the broken translation symmetry and the resultant de-
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FIG. 11. Single-particle properties in the proximity of mag-
netic transition for t⊥/t = 0.38 at T = t/40. Fermi sur-
face cuts on the: (a) PM and (b) AF side of the transition.
In (b) the measured value of the staggered magnetization
m = 0.0749(6). As a consequence of relatively weak magnetic
order, the whole Fermi surface arc continues to exist on the
AF side with a partial suppression of the spectral weight at
the hot spots in the AF phase. (c)-(e) Low-energy part of the
spectral function A(kkk, ω) along (0, 0)→ (π, 0), (0, 0)→ (π, π),
and (0, π)→ (π, π) paths in the AF metal at U/t = 2.28 and
(f)-(h) at U/t = 2.3 with the magnetization m = 0.1419(4).
Red, white, and green arrows in (b) indicate the actual mo-
mentum range shown in panels (c) and (f), (d) and (g), (e)
and (h), respectively, while the dashed yellow line shows the
AF Brillouin zone.

pletion of spectral weight just below (above) the Fermi
level in Figs. 11(c) and 11(e) [Fig. 11(d)], respectively.
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FIG. 12. Single-particle properties in the proximity of mag-
netic transition for t⊥/t = 0.4 at T = t/40: Fermi surface
cuts on the: (a) PM and (b) AF side of the transition.
In (b) the measured value of the staggered magnetization
m = 0.1275(8). Due to strong AF order, the Fermi surface
arc breaks into disconnected pockets. (c)-(e) Low-energy part
of A(kkk, ω) along the Brillouin zone paths as in Fig. 11 in the
AF metal at U/t = 2.365 and (f)-(h) in the AF insulator at
U/t = 2.6.

This depletion should be considered as a precursive fea-
ture of electron and hole pockets that open up at larger
U . Indeed, one finds that the backfolded quasiparticle
band crosses the Fermi level at two momenta — the spec-
tral weight at the second crossing is much weaker than
the original quasiparticle dispersion and causes a faint
”ghost” side of the pockets. In fact, the observed gradual
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FIG. 13. Low-energy part of the spectral function A(kkk, ω) at
t⊥/t = 0.3 and T = t/40 along (0, 0) → (π, 0) (a) and (d),
(0, 0) → (π, π) (b) and (e), and (0, π) → (π, π) (c) and (f)
paths in the Brillouin zone at U/t = 2.2 (top) and U/t = 2.4
(bottom) across the transition from an AF metal to the AF
insulator.

reconstruction of the low-energy quasiparticle dispersion
can be reproduced by a functional form

E±k =
εk + εk+Q

2
±

√(
εk − εk+Q

2

)2

+ ∆2, (9)

where ∆ = Um/2, consistent with that of the mean-field
band structure in the spin-density-wave state. Hence, we
identify the origin of the itinerant antiferromagnetism
as Slater-like with quasiparticle scattering off essentially
static staggered moment whose growing magnitude con-
trols the size of the pockets as U grows, see Figs. 11(f)-
11(h).

In contrast, the magnetic transition at t⊥/t = 0.4 is
weakly first order and significant AF order builds up right
away at the critical interaction. This rapid develop is a
consequence of a remnant local moment physics which
enhances localization effects. This is reflected in discon-
nected Fermi surface segments on the AF side of the mag-
netic transition, see Fig. 12(b), accompanied by a definite
gap between the lower and upper quasiparticle bands il-
lustrated in Figs. 12(c)-12(e). Upon further increasing
U , the bands shift away from the Fermi level, gradually
reducing the size of Fermi pockets in the intermediate AF
metal phase which ultimately brings about the transition
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FIG. 14. Same as in Fig. 13 but for t⊥/t = 0.2 at U/t = 2
(top) and U/t = 2.2 (bottom).

into the AF insulator, see Figs. 12(f)-12(h). Hence, we
find aspects of both local and nonlocal correlation par-
ticipating in the emergence of the insulating phase.

We turn now to the analysis of the low-frequency
part of A(kkk, ω) as a function of U for smaller hoppings
t⊥/t = 0.3 and t⊥/t = 0.2 with the goal of elucidating
the location of the corresponding MITs. In each case,
a continuous loss of metalicity upon increasing U is ac-
companied by the occurrence of more pronounced back-
folded quasiparticle features such that they are visible in
a broader momentum range, see Figs. 13 and 14. Let us
also point out that the identified redistribution of spec-
tral weight restricted to a narrow frequency region on the
scale of the charge gap of the AF insulator is a generic
feature of the magnetic instability in a weakly correlated
metal driven predominately by the Fermi surface. This
contrasts with the strong coupling regime where the on-
set of AF order in the Mott insulator involves the spectral
weight transfer within the two Hubbard bands such that
it accumulates at their lower edges [68, 102]. Hence, the
emergent magnetic ordering modifies the spectral prop-
erties over a broad energy range that is much larger than
the AF charge gap itself.

The resultant MIT phase boundary anticipated from
Figs. 12, 13, and 14 complements the CDMFT phase
diagram shown in Fig. 1. Together with the line indicat-
ing the onset of the staggered magnetization, they both
delimit the domain of stability of itinerant antiferromag-
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netism. It matches qualitatively the region of phase space
with strongly reduced but nevertheless finite N(ω = 0),
see Fig. 1(c).

Let us conclude the discussion of the established AF
metal phase by contrasting its Fermi surface topology
with that obtained in the previous studies in Refs. [54, 55]
restricted to the normal phase of the model Eq. (1). In
this case the destruction of the Fermi surface starts at
momenta kkk = (π/2,±π/2) where the interchain hopping
matrix elements vanish and is driven by the remnant
1D umklapp scattering [47, 51]. The resultant broken
Fermi surface of the compensated metal displays elliptic
electron and hole pockets around the kkk = (π/2, 0) and
(π/2,±π) points, see Fig. 5 of Ref. [55].

IV. SUMMARY AND CONCLUSIONS

Understanding the nature and factors controlling the
degree of electron localization is crucial for exploring
functional applications of quantum materials such as
transition metal oxides. In this work we have made a con-
tribution to this issue by studying the interplay between
electron correlation, frustration, and dimensionality ef-
fects in the anisotropic Hubbard model at half-filling. To
this end, we have adapted CDMFT to handle long-range
AF order. An important outcome from our study is that
the quasi-1D region of the magnetic phase diagram har-
bors an AF metal. Consequently, in the CDMFT sce-
nario one finds a crossover from a local moment physics
of a correlated isotropic 2D metal to the itinerant AF
behavior in the strongly anisotropic case.

It is very interesting that, independently of a specific
implementation of CDMFT, i.e., paramagnetic or bro-
ken spin symmetry, one observes a full suppression of
the critical end point Tc of the MIT upon approaching
the quasi-1D region. In both cases, the emergent quan-
tum criticality can be traced back to a growing relative
importance of spatial versus local fluctuations. Indeed,
strong quasiparticle scattering off local moments along
the whole Fermi surface explains its sudden disappear-
ance and the resultant first-order character of the MIT
in the 2D case. On the contrary, damping of low-energy
quasiparticles in the quasi-1D region begins near ”hot”
regions of the Fermi surface. This leads to the formation
of hole and electron Fermi surface pockets in a resultant
compensated metal which ultimately undergoes a contin-
uous MIT.

Specifically, when the CDMFT loop is constrained
to converge to the PM solution, the MIT is driven by
remnant 1D umklapp scattering and corresponds to the
vanishing of the Fermi pockets driven by their continu-
ous shift away from the Fermi level [54, 55]. Likewise,
when AF spin order is allowed, imperfect nesting of the
model band structure paves the way to the itinerant AF
transition followed by a MIT whose continuous nature
is again the consequence of a smooth disappearance of
Fermi pockets. In the actual simulations we explicitly

broke the translational symmetry of the lattice by allow-
ing for a nonvanishing staggered magnetic moment. The
latter is equivalent to divergence of the static spin sus-
ceptibility at the AF wavevector QQQ = (π, π) measured
on a sufficiently large cluster size capturing correctly the
correlation length scale of spin fluctuations. From this
point of view it becomes clear that introducing the lattice
anisotropy tips the balance between local temporal fluc-
tuations responsible for the Mott-Hubbard physics and
thus—the first-order MIT—and spatial AF spin fluctu-
ations playing a key role in the established continuous
transition from an AF metal to the AF insulator.

The established CDMFT phase diagram with PM, AF
metal, and AF insulator phases bears similarity with that
of the extended Hubbard model featuring at the mean-
field level PM, charge-ordered metal, and charge-order
insulator phases [103, 104]. In the latter case one finds a
tricritical point where all the three phases coexist. This
very special point terminates also the continuous transi-
tion between the PM and charge-ordered metal phases.
In our analysis we were unable to locate such a tricrit-
ical point. Instead as a function of the anisotropy t⊥/t
we find three situations: (i) first-order transition from
a PM metal to the AF insulator; (ii) a crossover region
where the dynamical correlations trigger a weakly first-
order AF transition but they are not strong enough to
fully localize charge carriers, and (iii) continuous tran-
sition between the PM and AF metal phases. Still, an
attempt to induce the tricritical point could be made by
fine tuning of the non-interacting band structure, i.e, the
ratio of t′/t⊥.

Another possible scenario in the strongly anisotropic
limit would be the interaction-driven emergence of the
genuine Mott insulator without any symmetry breaking
characterized as the quantum spin liquid and sandwiched
by the PM metal and the AF insulator. Such an inter-
vening Mott insulating quantum spin liquid phase is be-
yond the scope of the CDMFT approximation. Since the
auxiliary-field quantum Monte Carlo algorithm is hin-
dered in the presence of geometrical frustration by the
negative sign problem [86], a many-variable variational
Monte Carlo method is an appealing option [105] to clar-
ify this point of view.

Our second important result is evidence that the next-
nearest-neighbor hopping t′ brings about an efficient
mechanism to suppress the AF instability. In partic-
ular, we found that in the isotropic 2D situation with
t′ = −t/2, the PM metal extends to a fairly large inter-
action U/t = 5.17 below which previous CDMFT studies
of the half-filled t-t′-Hubbard model reported a finite d-
wave superconducting order parameter [106]. Since those
studies did not consider long range AF order, it was pos-
sible that the latter prevails and leads to the insulating
behavior at T = 0 instead. Our findings corroborate the
scenario that the frustration of AF spin interactions by fi-
nite t′ shifts the onset of antiferromagnetism to a critical
interaction which is large enough to expose d-wave super-
conductivity [107, 108]. Moreover, given our evidence for
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itinerant antiferromagnetism with Fermi surface pockets,
it would be worth examining, e.g., using the spin fluctua-
tion approach [109], the leading superconducting pairing
instabilities in the spatially anisotropic situation.
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Appendix A: Negative sign problem of the CT-QMC
cluster solver

At half-filling the CT-QMC solver is sign free in the
particle-hole symmetric case. However, a finite value of
the next-nearest-neighbor hopping t′ = −t⊥/2 used in
our studies breaks the particle-hole symmetry and leads
to a negative sign problem. The average sign in CT-QMC
simulations within the 2 × 2 CDMFT framework across
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FIG. 15. Same as in Fig. 1 but with color-coded circles dis-
playing the behavior of the average sign in CT-QMC simula-
tions within the 2× 2 CDMFT at T = t/40.
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FIG. 16. Staggered magnetization m (a) and double occu-
pancy D (b) measured in decreasing (U ↓, solid line) and
increasing (U ↑, dashed line) interaction sweeps at various
temperatures for t⊥/t = 0.8.

the phase diagram at T = t/40 is shown in Fig. 15. As is
apparent, the sign problem is most severe in the isotropic
2D case. However, it becomes milder upon increasing
the lattice anisotropy such that at t⊥/t = 0.3 we did not
observe it around the magnetic transition point down to
our lowest T = t/100. In this case, the limiting factor
comes from the (βNc)

3 scaling of the CT-QMC cluster
solver.

Appendix B: Evidence of hysteretic behavior around
the first-order transition

In this Appendix, we provide numerical evidence for
hysteretic behavior around the transition point in the AF
magnetization m and double occupancy D measured in
decreasing (U↓) and increasing (U↑) interaction sweeps.
As an example, Fig. 16 shows the raw data measured at
t⊥/t = 0.8 at various temperatures. In the U ↓ sweep
corresponding to the AF → PM transition (solid line
in Fig. 16), a converged AF solution at a given U was
used as an input for the next CDMFT simulation with
a slightly smaller U . In the U ↑ sweep corresponding to
the PM → AF transition (dashed line in Fig. 16), we
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FIG. 17. Same as in Fig. 16 but for t⊥/t = 0.38.

initialized the CDMFT loop with a small staggered field;
with increasing number of iterations, the solution evolved
then either into a PM or AF state. Repeating this proce-
dure at gradually larger U allowed us to find the second
branch of the hysteresis loop below the critical end point
Tc. For comparison, we also provide in Fig. 17 the raw
data for t⊥/t = 0.38. In this case, the magnetic transi-
tion at T = t/40 is continuous and one has to use lower
temperatures T . t/66.5 to reveal a narrow hysteretic
behavior.

[1] M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator
transitions, Rev. Mod. Phys. 70, 1039 (1998).

[2] F. Gebhard, The Mott Metal-Insulator Transition
(Springer-Verlag, Berlin, 1997).

[3] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin,
A. E. Antipov, M. I. Katsnelson, A. I. Lichtenstein,
A. N. Rubtsov, and K. Held, Diagrammatic routes to
nonlocal correlations beyond dynamical mean field the-
ory, Rev. Mod. Phys. 90, 025003 (2018).

[4] T. Giamarchi, Theoretical framework for quasi-one di-
mensional systems, Chem. Rev. 104, 5037 (2004).

[5] W. Wu, M. S. Scheurer, S. Chatterjee, S. Sachdev,
A. Georges, and M. Ferrero, Pseudogap and Fermi-
Surface Topology in the Two-Dimensional Hubbard
Model, Phys. Rev. X 8, 021048 (2018).

[6] D. J. Scalapino, A common thread: The pairing inter-
action for unconventional superconductors, Rev. Mod.
Phys. 84, 1383 (2012).

[7] S. Y. Kim, M.-C. Lee, G. Han, M. Kratochvilova,
S. Yun, S. J. Moon, C. Sohn, J.-G. Park, C. Kim,
and T. W. Noh, Spectroscopic Studies on the Metal-
Insulator Transition Mechanism in Correlated Materi-
als, Adv. Mater. 30, 1870318 (2018).

[8] N. F. Mott, The Basis of the Electron Theory of Metals,
with Special Reference to the Transition Metals, Proc.
Phys. Soc., London, Sect. A 62, 416 (1949).

[9] J. Hubbard, Electron correlations in narrow energy
bands, Proc. R. Soc., London, Sect. A 276, 238 (1963).

[10] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozen-
berg, Dynamical mean-field theory of strongly correlated
fermion systems and the limit of infinite dimensions,
Rev. Mod. Phys. 68, 13 (1996).

[11] W. Metzner and D. Vollhardt, Correlated Lattice
Fermions in d = ∞ Dimensions, Phys. Rev. Lett. 62,
324 (1989).

[12] E. Müller-Hartmann, Correlated fermions on a lattice
in high dimensions, Z. Phys. B 74, 507 (1989).

[13] C. Castellani, C. D. Castro, D. Feinberg, and J. Ran-
ninger, New Model Hamiltonian for the Metal-Insulator
Transition, Phys. Rev. Lett. 43, 1957 (1979).

[14] G. Kotliar, E. Lange, and M. J. Rozenberg, Lan-
dau Theory of the Finite Temperature Mott Transition,
Phys. Rev. Lett. 84, 5180 (2000).

[15] S. Papanikolaou, R. M. Fernandes, E. Fradkin, P. W.
Phillips, J. Schmalian, and R. Sknepnek, Universality
of Liquid-Gas Mott Transitions at Finite Temperatures,
Phys. Rev. Lett. 100, 026408 (2008).

[16] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler,
Quantum cluster theories, Rev. Mod. Phys. 77, 1027
(2005).

[17] H. Park, K. Haule, and G. Kotliar, Cluster Dynamical
Mean Field Theory of the Mott Transition, Phys. Rev.
Lett. 101, 186403 (2008).

http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/ 10.1103/RevModPhys.90.025003
http://dx.doi.org/ 10.1021/cr030647c
http://dx.doi.org/ 10.1103/PhysRevX.8.021048
http://dx.doi.org/10.1103/RevModPhys.84.1383
http://dx.doi.org/10.1103/RevModPhys.84.1383
http://dx.doi.org/10.1002/adma.201870318
http://dx.doi.org/10.1088/0370-1298/62/7/303
http://dx.doi.org/10.1088/0370-1298/62/7/303
http://dx.doi.org/ 10.1098/rspa.1963.0204
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/ 10.1103/PhysRevLett.62.324
http://dx.doi.org/ 10.1103/PhysRevLett.62.324
http://dx.doi.org/ 10.1007/BF01311397
http://dx.doi.org/ 10.1103/PhysRevLett.43.1957
http://dx.doi.org/ 10.1103/PhysRevLett.84.5180
http://dx.doi.org/10.1103/PhysRevLett.100.026408
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.101.186403


17

[18] M. Balzer, B. Kyung, D. Sénéchal, A.-M. S. Tremblay,
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