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The analysis of complex physical systems hinges on the ability to extract the relevant degrees
of freedom from among the many others. Though much hope is placed in machine learning, it
also brings challenges, chief of which is interpretability. It is often unclear what relation, if any,
the architecture- and training-dependent learned “relevant” features bear to standard objects of
physical theory. Here we report on theoretical results which may help to systematically address this
issue: we establish equivalence between the information-theoretic notion of relevance defined in the
Information Bottleneck (IB) formalism of compression theory, and the field-theoretic relevance of
the Renormalization Group. We show analytically that for statistical physical systems described by
a field theory the “relevant” degrees of freedom found using IB compression indeed correspond to
operators with the lowest scaling dimensions. We confirm our field theoretic predictions numerically.
We study dependence of the IB solutions on the physical symmetries of the data. Our findings
provide a dictionary connecting two distinct theoretical toolboxes, and an example of constructively

incorporating physical interpretability in applications of deep learning in physics.

The study of theoretical models is an essential part of
physics. For sufficiently complex systems, however, es-
tablishing what the correct degrees of freedom are, and
building a model in their terms, is a challenge in itself.
The process is driven by experimental or numerical ob-
servations, but in practice physical intuition and prior
knowledge are crucial to constructing a sufficiently sim-
ple model capturing the “essence” of the phenomenon,
rather than abundance of raw data [1]. Still, data itself
should contain sufficient information for this task, and a
tantalizing prospect is to perform it in an unbiased, auto-
matic fashion using modern computational methods, par-
ticularly deep learning (DL) [2]. A fundamental obstacle
to this is the mismatch between the concepts of physics,
largely formulated in the language of field theory, and
the theory and engineering practice of DL, all but ensur-
ing questions of interpretability [3]. To bridge this divide
a framework is required capable of expressing, and al-
lowing for practical computation, of quantities on both
sides. Information theory, deeply connected to physics
and computer science [4-6] is a natural candidate.

In its classical formulation information theory was in-
tentionally agnostic to the contents of the information,
focusing on its efficient transmission [7]. Though often
only part of the information is pertinent to the problem,
defining a formal notion of “relevance” in sufficient gen-
erality has proven difficult [8]. This was addressed in the
seminal Information Bottleneck (IB) paper [9]: relevant
information in a random variable was defined by corre-
lations, or sharing information, with an auxiliary “rele-
vance” variable, providing an implicit filter (an example
of such correlated pairs are full frequency decomposition
of a recorded speeches, and their written transcripts).
Compressing data to preserve the relevant part most ef-
ficiently was cast as a Lagrangian problem, for which
efficient DL methods have recently been introduced [10].

In physics, however, there already exists a fundamental
and a priori independent notion of relevance, based on

the properties of the operators under scale transforma-
tions embodied in the celebrated renormalization group
(RG) flow[11-13]. RG relevance is the most precise def-
inition we possess of what it means for an observable to
determine macroscopic physical properties of the system:;
it directly connects to the powerful formalism of confor-
mal field theories (CFT)[14-17], which revolutionized the
understanding of critical phenomena [18-20].

Here we show that these two notions, belonging to en-
tirely different theoretical frameworks, are in fact equiva-
lent in physical systems, i.e. the information about long-
range properties “relevant” in the information-theoretic
sense is formally determined by the most “relevant” oper-
ators in the sense of RG. Information loss in the context
of RG has been attracting interest since the observation
of irreversibility of its flow [21-29]; we introduce a formal
connection to compression theory which is constructive,
quantitative, and computable. This allows us to verify our
predictions numerically. We prove that using the IB ap-
proach the most relevant operators can be extracted from
the data, along with information about physical symme-
tries. This result is thus not only of theoretical, but also
of practical importance. It provides a route towards au-
tomating theoretical tasks e.g deriving Ginzburg-Landau
effective descriptions, and detecting symmetries hidden
or emergent, in a controlled and by construction inter-
pretable way, using the toolbox of statistics and machine
learning. To wit, while we focus on theoretical foun-
dations, in a parallel work these results and recent DL
advances [30, 31] are leveraged to construct an efficient
algorithm, the real-space mutual information neural esti-
mator (RSMI-NE)|[32], extracting the physically most rel-
evant degrees of freedom from much larger inputs, along
the way characterizing spatial correlations, phase transi-
tions and order parameters. We show here that RSMI is
a limit of the IB problem, providing a theoretical under-
pinning for this promising numerical method.

Below we briefly review IB theory and its relation to
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FIG. 1: Left: The general outline of the IB scheme,
and in the physical setup of RSMI RG [33, 34]: an
optimal encoder extracting information about
“relevance” variable E contained in V' is constructed.
Right: IB curves depicting relevant information
I(H; E) retained by solutions to the IB equations
(encoders), as a function of the tradeoff 8 (see Eq.1).
At critical values of 8 phase transitions occur: new
solutions, with compressed variable H of increased
cardinality (i.e. tracking additional features) appear,
while the old ones become unstable minima of L;g.

the RSMI approach to real-space RG in the context of
statistical mechanical systems described by a CFT. We
then present the main result: an analytical solution to
the IB equations at strong compression which provides an
explicit dictionary between IB relevancy, RG-relevancy,
and eigenvectors of the transfer matrix in any dimension.
We compare these predictions with numerics, obtaining
agreement to high precision. In addition we show how
symmetries are manifested in the compressed/coarse-
grained degrees of freedom. Supplemental Materials give
technical details and background information.

Relevant features of any data, physical or not, are
only meaningfully defined relative to the task at hand,
and their identification is complicated by multiple “irrel-
evant” (for the question asked) structures or regularities
which may simultaneously exist in the data. The Infor-
mation Bottleneck provides a rigorous framework for un-
supervised learning of such most relevant features. With
joint probability distribution of “data” V and an auxil-
iary “relevance” variable E as inputs, the IB finds the op-
timal (lossy) compression H of V preserving information
about F (see Fig.1). The correlations with E thus define
what is “relevant” in V, rather than arbitrary measures.
IB can be posed as the following variational problem:

i, Lis[P(HIV)] = min 1(V; H) = BI(H; E), (1)

where the optimization is over conditional probability

distributions P(H|V) describing the encoding of V into
H. The mutual information terms I in L;p quantify to-
tal retained information (i.e. compression rate), and the
relevant information thus preserved, respectively, with
parameter 8 > 0 controlling the tradeoff between them.

The optimal encoder is found either by writing down
a set of coupled IB equations for distributions P(H|V),
P(H), P(E|H) and solving them iteratively (see SM, and
Ref.[35] for algorithms), or more practically, applying ML
variational inference techniques [10]. For the formal anal-
ysis here the IB equations are used; the efficient RSMI-
NE algorithm is based on ML methods [32]. Strikingly,
the optimal encoders undergo a sequence of phase transi-
tions as (3 is varied (see Fig.1). Particularly, the encoder
is trivial (retaining zero information) until a finite value
of B.,1 at which the first IB transition occurs, when the
gain due to retaining some (most) relevant aspect of data
outweighs the penalty for keeping any information at all.
At each subsequent transition the encoder begins to track
another distinct feature. This discontinuous behaviour,
both for discrete [36, 37] and continuous variables [38], is
crucial, allowing to identify such well-defined features.

While the IB may be applied to any data, it is of funda-
mental interest to confront the notion of relevance it gives
rise to, and the features it extracts, with the physical rele-
vance, as defined by RG. The former being determined by
the relevance variable, we need E ensuring the IB retains
precisely the RG-relevant information. An appropriate
definition for real-space RG was postulated in the context
of RSMI [33, 34]: for a random variable V' representing
the marginal distribution of degrees of freedom in an area
to be coarse-grained the variable E (the “environment”),
is the remainder of the system beyond a shell of non-zero
thickness around V' (the “buffer”, see Fig.2). The thick-
ness of the excluded buffer, formally taken to infinity, sets
the length scale separating short-range correlations to be
discarded, from information about long-range properties
of the system. Despite conceptual appeal — the system
itself defines relevance — and partial numerical [33] and
theoretical evidence [34], the validity of this approach
and its relation to RG field-theory formalism were un-
clear. There are also subtle differences between the 1B
and RSMI approaches. We now can resolve these issues.

To this end consider a statistical mechanical system
on a cylinder; the subsystem to be coarse-grained V,
the buffer, and the relevance variable E are its subsec-
tions as per Fig.2. We assume the system is governed
by short-range interactions, and use the classic transfer-
matrix (TM) method [39-41]: the partition function can
be written as Z = (BC|T L= |BC), where is Lo, the sys-
tem length, and the entries of 7 are matrix elements of
the exponentiated Hamiltonian between configurations of
degrees of freedom on elementary slices of the cylinder
(in a lattice system; in continuum they are taken be-
tween subsequent slices of the states in the discretised
path integral picture). We use braket notation for such
configurations, in particular |BC) are boundary condi-
tions at the cylinder ends. The unique advantage of the
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FIG. 2: The transfer matrix (TM) setup used. For a
system on a cylinder the IB equations can be solved in
terms of TM eigenvectors, which are related to the CFT
data in the limit of large circumference L.

TM approach is that, on the one hand, all distributions
entering the IB equations can be cast as matrix elements
and partial traces of powers of T, and on the other hand
the eigenvalues \; and eigenvectors |i) of T have a di-
rect relation to the operator content of the CFT describ-
ing the system [42-44]. Specifically, A\;/A\g = e~ T8 in
the limit of large cylinder circumference L, where A; are
the total scaling dimensions of the CFT primaries (de-
termining the RG scaling dimensions, and so the critical
exponents) in ascending order. TM thus serves as a theo-
retical dictionary helping to establish a quantitative map
between the field- and information-theoretic objects.

To be concrete, consider the IB equations for the opti-
mal encoder P(h|v) at fixed tradeoff 5 (see SM and [9]):

P(h|v) X P(h)eﬁ > P(elv) log(P(e|h)) (2>
Plelh) = plelo)p(v|h),

where e, h, v are configurations of E, H and V. Observe
first that the distribution P(X) of any cylindrical section
X of the system (e.g. V or E) can be written using 7

P(X) = (0|0x)(0xr|T|z2){x2|T ... T|0xr)(0xR|0)

Here z; are successive slices of X; the configurations of
the boundary slices are denoted as Jxg/ and [0) =
TLe=|BC) is the CFT vacuum, on which 7 acts as an
identity. We used the eigendecomposition 7 = |0)(0] +
S, e T AVE AN (A ], with |A;) = ¢, |0) created by pri-
mary fields ¢, with conformal dimension A;. All dis-
tributions in Eqgs.2 can be written analogously as func-
tions of T, using the eigendecomposition and Bayes’ law,
phrasing the IB equations fully in TM terms.

Egs.2 are highly non-linear and coupled. Remarkably
though, the only interdependence of the conditional prob-
abilities in the large buffer limit is, as shown in SM, via:

r= A0adOVn) -, _ OFLoal0) )
YT Ove) T R

i.e. the matrix elements of the CFT primary fields of
lowest scaling dimensions. In particular, we prove that:

P(hlv) = P(hlry) o P(h)e? o, ()

with e = (A1 /Ao)LE.

Eq.4 is one of our key results: the optimal IB encoder
depends on V only via r,, i.e. the matrix element of the
most relevant operator in the sense of RG (the depen-
dence on the variance of r. can be absorbed into rescal-
ing of 8, and in (r,), v-dependence is averaged over).
The solution changes from one system (CFT) to another
through the values of r, and (r,)n. This is the mathe-
matical statement of the equivalence of the IB and RG
relevance. In other words, the “features” the IB, and
consequently the RSMI, extract are not arbitrary, but
correspond to physically most relevant operators.

Though Eq.4 is implicit, as (r,), depends on P(h|v),
it can be analytically solved around the first IB transi-
tion, i.e. for § = fB.1 +t. Below S.1 no information
is retained: the encoder is independent of V' and triv-
ial: P(h|r,) = 1/|H|, with |H| the cardinality of the
coarse-grained variable. Equiprobability of h reflects a
structural symmetry of the encoder under permutations
of h labels. Any nontrivial encoder must break it, in-
troducing dependence of some h on V' to preserve infor-
mation: [.1 marks the first such breaking (in fact all
IB transitions reflect successive breaking of permutation
symmetry). Above 8.1, following Refs.[36, 37|, the en-
coder can be perturbatively expanded around the trivial
solution (see SM for detailed discussion). In particular,
comparing to the expansion of Eq.4 in ¢ yields:

50—11 = €% + o(e?) Lo, 6_4”A1LTB + o(€?). (5)
Here o(€?), containing powers of € greater than two, re-
flects the contribution of operators of subleading rele-
vance. As e decays exponentially in Lp/L, maintaining
Lp > L suppresses these corrections exponentially.

Equation 5 is an analytical prediction for the IB phase
transition, signaling emergence of nontrivial solutions to
the IB equations (see Fig.1 and Fig.4 in SM), in terms of
field-theoretic quantities characterizing the physical sys-
tem. In SM, utilizing the structure of the Hessian of L,
we also derive this solution explicitly (see also Fig.3).

The prediction is generic and verifiable: we can input
the probability distribution of the system to the IB equa-
tions, and find the solutions for changing § numerically,
as in a compression problem [35]. On the other hand
we can use the CFT description and either compute r,,
(ry)r and e analytically, or by a numerical transfer ma-
trix diagonalization, and compare. In Fig.3c numerical
IB solutions are plotted as a function of § in the case
of critical 2D Ising model. The value CIE at which non-
trivial encoders appear matches the predicted 3. ; to high
accuracy. The feature the IB extracts is indeed the most
relevant local operator, i.e. the magnetization (see SM).

The validity of this picture is not limited to lattice
models. In fact, for the continuum Gaussian field theory
the entire IB curve can be computed analytically, includ-
ing all the IB phase transitions [45], using Gaussian In-
formation Bottleneck results [38] and Green’s functions.

As mentioned, the RSMI algorithm [33, 34] is closely
related to the IB. Specifically, it also maximizes the rel-
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FIG. 3: Comparison of theory with numerics. For the
critical 2D Ising system, the analytical prediction (solid
red) for the optimal compression Pg(h|v) (see Eq.4, and
Eq.C6 in SM) is confronted with encoders obtained by
numerically solving IB Eqgs.2 on the probability
distribution of the system (blue dots). For clarity we
use a cylinder of three sites’ circumference, V' and F as
in Fig.2. The variable H is a spin, whose probability to
take value 1 we plot as a function of the tradeoff 3 (see
Eq.1). The encoder is completely random and
independent of V' below 3. matching the prediction
Eq.5, and above is determined by the magnetization on
the edge, in excellent agreement with the theory.

evant information I(H; E), however contains no tradeoff
B, but instead a fixed cardinality |H|. Intuitively, the IB
extracts as meany features as 3 allows, adding them as
grows, while the RSMI from the outset optimizes exactly
|H| best features. RSMI is thus a 8 — oo limit of IB
under the constraint of fixed |H|. In practice |H| is also
bounded in IB, however this affects solutions only at
large enough for |H| features to have already been used.

The quantitative connection between compression- and
field-theoretic formalisms thus established opens the ex-
citing possibility of applying distinct theoretical and nu-
merical methods of either area to its counterpart. We
discuss such avenues in the conclusions, here, however,
we immediately demonstrate one interesting example.

Symmetries are crucial in analytical understanding of
physical systems, and in RG in particular [46]. They
have a direct relation to order parameters, and often ef-
fectively determine the long range properties. One thus
expects IB and RSMI to reflect the relevant symmetries
of the model. Let s be an element of such symmetry
group S acting on configurations of V and E as a per-
mutation, denoted by multiplication, leaving the system
invariant: P(e,v) = P(se,sv). We expect the optimal
encoder Pg(h|v) to maintain it:

P(e,v) = P(se, sv) = Pg(h|v) = Pg(¢sh|sv), (6)

so that the coarse-grained system is invariant under a
representation ¢s of S, potentially trivial. We show this
indeed holds true in IB, as long as |H| is large enough

to support a representation of an appropriate dimension.
The argument, detailed in SM, is constructive: below 8. 1
the encoder is trivially invariant under all symmetries.
For B = B.1 +t a solution can be built by an explicit
symmetrization procedure, utilizing the knowledge of the
perturbative structure of the encoder and the Hessian of
Lp around the first IB transition [37]. We show this
solution to be optimal. The symmetry of the encoder will
hold for all 8 < . 2 by continuity; numerical experiments
support validity of this picture also more generally.

Note that the symmetry S may not be obvious in the
microscopic formulation of the system [47] or the exper-
imental data, or may even be emergent [48]. Eq. 6 can
then be used as a constructive tool, potentially allowing
to systematically learn S from the symmetries of the en-
tries of the numerically obtained Pg(h|v) (SM, see also
[49]). Moreover, the structure of the IB in the presence
of physical/data symmetries shines light on the question
of constructing RG transformations compatible with the
symmetries of the system.

The results we presented, though requiring some level
of technicality, have clear theoretical interpretations. In
fact, their very point is to formalize concepts and con-
nections which ought to be intuitive, and to give the nec-
essary technology to make those quantitative and com-
putable analytically and numerically. Consequently, nu-
merous directions are now open. On a theoretical front,
application of IB analysis to extract relevant quantities
in the challenging case of disordered and non-equilibrium
systems is extremely promising, given its non-reliance on
the notion of a Hamiltonian. This may require deeper
understanding of the properties of the IB equations, and
their constrained version in the RSMI-NE algorithm. Nu-
merically, given the relation to the transfer matrix, the
possibility of using the IB/RSMI where TM computa-
tions are difficult (e.g. in 3D) is an exciting prospect, as
is applying approximate numerical IB or RSMI to ex-
perimental data. Finally, we hope that the methodology
of using information-theoretical formulations of physical
quantities combined with the ability of deep learning to
optimize them in a controlled fashion [32], can provide
a blueprint for more theoretically interpretable applica-
tions of deep learning in physics.
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Appendix A: The IB Equations

The IB problem Ref.[9], as described in the main text,
is set up as a minimization problem over the class of con-
ditional probability distributions P(h|v) of the following
IB Lagrangian:

Lip[P(H|V)] = I(V:H) - pI(H; E),  (Al)
Somewhat surprisingly (since the terms in £;p are highly
nonlinear) a formal solution can be found by performing

the variation 0L;5/dP(h|v) = 0. As shown in Ref.[9],
the optimal solution can be written as:

") exp (=D [P(ela) P(elh) .

(A2)
where D, is the Kullback-Leibler divergence of the con-

ditional probability distributions:

Pe|v)
P(elh)

Drz[P(elz)|P(e|h)] = ) Pe|v) log( ); (A3)

Z is a normalizing factor and:

P(e|h) = 1 > P(e]v)P(hlv)P(v),  (A4)
P(h)

Note that this is only a formal solution, which is in
fact implicit. It does, however, reveal that the optimal
encoder is one which results in the minimal distortion,
as measured by Dy, of recovery of e when using the
compressed variable h in place of the original v.

The simplest way to find the solutions explicitly is to
convert the self-consistent Eqs.A2 and A4 into an itera-
tive algorithm, which can be shown to converge Ref.[9].
These are the explicit IB equations, whose shortened
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form we write out in the main text as Egs.2:

P(h|v) = P(Zh) exp <—ﬁZP(e|v)log [igi:;”)

P(h) =Y _ P(h|v)P
=Y Pe|v)P(v]h),

where Z = 3, P(h)exp(—8 Y, P(elv) log($tdi3)).

In the short-hand form of the IB equations written in
the main text, Eqgs.2, the equation A6 was not written
out explicitly, and equation A5 was slightly massaged:

o~ B X Plelv) log(5Efi)

b(h)
Zh P(h) B2 P(e‘U)IOg(p(e‘h )
P(h)ef S Plelv)log(P(e|n))

T X, P(h)eP = Plelv) log(Peli)

P(hlv) =

The denominator is h-independent, and the equation was
given up to a proportionality constant in the main text.

The iterative IB algorithm, while useful in the theo-
retical investigations (and also used in the small numer-
ical validation experiment in the appendix below) is not
the only, nor necessarily the best numerical technique to
solve the IB equations. For an overview of other meth-
ods we refer to Ref.[35]. Nevertheless, directly solving
the IB equations for larger input distributions is gener-
ally computationally hard. Recently, an entirely different
approach was developed in the context of deep learning
[10]. Instead of solving the IB equations, the IB La-
grangian, or a bound on it, is taken as a cost function,
and the optimal encoder is parametrised by a deep neu-
ral network and optimized using e.g. stochastic gradient
descent. This allows to exploit the numerical efficiency of
machine learning toolboxes. A similar technique is used
for the optimization of I(H; F) in RSMI-NE [32].

We remark here that while IB is phrased as an ab-
stract compression theory problem, it has found applica-
tions in computational neuroscience, where the question
of what is the fundamentally important information ex-
tracted from say, neuronal activity measurements, is non-
trivial [50-52]. Furthermore, IB has been used in com-
puter science problems, e.g. clustering analyses [53-55],
but also in attempts to quantify relevant or predictive in-
formation in physics, mostly in the context of temporal
correlations in non-equilibrium systems, see e.g [56, 57].

Appendix B: From the transfer matrix to the
reduced IB equation

In this appendix we connect the transfer matrix (TM)
viewpoint to the conditional probabilities used in the
main text, and derive the reduced IB equations.

In any local lattice model on the (hyper-) cylinder the
partition function Z can be written in terms of the trace
of the transfer matrix 7 as Z = tr(T =), where L, is
the length of the system (here with periodic boundary
conditions). For a system described by a conformal field
theory (CFT), the eigenvectors and eigenvalues of T cor-
respond to operators in the CFT [43, 44]. For simplicity
we consider conformal theories which have a single most
relevant operator, and a corresponding microscopic lat-
tice model with finite-range interactions. Assuming the
definitions of IB quantities given in the main text, we
will show that in the large buffer limit: (i) The descrip-
tion of the coarse-graining cell V and environment cell E
can be reduced to only two random variables associated
with certain “weak-expectation-values” r. and r, of most
relevant primary operator on the boundary of these two
regions. (ii) All marginal and conditional probability
distributions relevant for IB can be expressed in terms of
these two random variables. (iii) The resulting IB equa-
tions can be solved close to the first critical value of B, 1,
yielding the optimal encoding which, for 8 = 5.1 + ¢,
amounts to tracking the above weak-expectation-values
of the physically most relevant operator (which are the
extracted “features”, in machine learning parlance).

Consider then a statistical-mechanical system on an
infinite cylinder, with a finite cylindrical coarse-graining
cell V' and environment E (playing the role of the “rel-
evance” variable) to its right, separated by a buffer, as
depicted in Fig.2 in the main text. We assume a micro-
scopic structure, for concreteness we take a square lattice.
The transfer matrix 7, as usual, acts on the elementary
slices of the cylinder, each consisting of a single (peri-
odic) row of lattice sites. We denote by L the number
of sites on the circumference of the cylinder and by Lp
length of the buffer. We further denote by Vg (0EL)
the configuration of degrees of freedom on the right-most
(left-most) slice of sites in V' (E). These can be thought
of as basis vectors of the vector space on which the trans-
fer matrix acts, and so we shall denote them by (0X| or
|0X) = [(0X|]T, depending on whether 7 acts on them
from the left or from the right (X =V or E as applica-
ble).

It is well known [43, 44] that the eigenvalues \; and
eigenvectors |i) of the transfer matrix have a direct rela-
tion to the CFT’s ogerator content. Namely, for a square
lattice, A\;/Xo = e~ T 2¢, where A; is the total (i.e. sum
of the holomorphlc and antiholomorphic) scaling dimen-
sion. We shall from now on normalize so that \g = 1
in the limit of large circumference L. Here we consider
the case where Ay > A; > 0, and we take the buffer to
be much larger than ratio A;/L. We will see below that
in this limit, the relevant degrees of freedom, or in other
words the relevant random variables, in V and E are:

_ (110VR)  (0[¢a,|0VR)
T 00VR) T {0]0VR) (B1)
_(0BLl1) _ (9EL|6a,10)
¢ (0E.L|0) (0E.|0)



where on both right-hand-sides we used the operator
state correspondence relating the action of a primary op-
erator ¢a, on the identity state |0) with the state 7).

In a quantum mechanical setting such operator expec-
tation values as those appearing on the r.h.s. go under
the name weak-values. In cases where the primary oper-
ator turns out to be diagonal in the transfer matrix basis,
the (0|0Vg) and (OEL|0) factors cancel and r, /. simply
becomes the diagonal elements of that operator. As an
example, for the Ising model 7, is the overall magneti-
zation on V. We note by passing that for a compact
boson ¢ € [0, R), 7,/ would be the two leading electric
vertex operators [45] associated with the zero transverse-
momentum component of ¢(x).

The conditional probabilities of the system.
Consider, for concreteness, the conditional probability
P(vle), which enters the IB equations. We assume
an infinite cylinder to the left of V and right of E,
and work in the limit of large buffer Lg. With sim-
ple transfer matrix manipulations (using TM represen-
tation of probability distributions similar to the one be-
low Eq.2 in the main text, and the eigendecompostion
T = 10)(0] + >, e~ 2™2/L|A;)(A]), it can be written as:

P(ole) = 5 (010V2) Prrecc (V) [{0Val1) (110E) AL

+ (OVRI0) (OIOEL)NE® | +0 ((A2/2)"?)  (B2)

Here 0V}, denotes the configuration on the left bound-
ary of V, Prreepc(V) is the probability of the sub-
system V with free boundary conditions, which is re-
lated to the marginal probability of the sub-system V'
via P(v) = N=H0|0VL)(OVR|0) Ptreenc(V), and N is the
normalization factor. In what follows we will drop the
exponentially suppressed terms of order O (()\2 / )\O)LB).
Explicitly written, Ptreepc (V) is given by:

Pf’reeBC(V) o <6VL|T|$2><$2‘T .. T\E)VR) (B3)

That is, it is simply the cumulative action of the trans-
fer matrix on the slices of V. Note that the term in the
square brackets in Eq.B2 comes from the action of the
transfer matrix along the buffer, starting from the right
boundary of V and ending at the left boundary of E.
Taking out a factor of P(V) and absorbing all normal-
ization factors to a factor IV, one obtains:

P(vle) = N7'P(v) |1+

(OVR]0)(0]0EL) \ o

= N'PW)[1+erery], (B4)

(OVir|1) (10 L) (A)]

where € = (A1 /Ao)"”. The normalization N is given by:

1

T (e )

with:

(ro) =Y _ P)ry =Y _P(OVg)r,

O
(1|0VR)
(0]0VR)

= "(0]0VR)(OVR|0) = (10)=0 (B6)

OVr

The summation is over all configurations of dVg. Fol-
lowing this we find that (r,) = (r.) = 0 and therefore
N = 1. Thus, as advertised, V depends on E only
through r. i.e. P(vle) = P(v|r.), and the same holds
for P(elv). One can also show that the variances of r.,
obey (r?) = (r2) = 1.

The IB equation. We wish to solve the IB equation
for the optimal encoder P(h|v) given by [9]:

P(h|v) o P(h)eP X Pelv) log(P(elh)) (B7)
P(e|h) = P(e|v)P(v|h)

Here, as before, e,h and v denote configurations of
FE, H,V respectively, and the symbol oc means up to an
h-independent normalization factor. In order to find the
solution we next establish, generalizing the computations
above, that the conditional probabilities P(v|e), P(e|v)
and the “decoder” P(e|h) depend on each other only
through r, and r..

The reduced IB equation. The IB equation B7
for the encoder is difficult to solve, since it involves a
summation over the entire configuration space of F and,
furthermore, it is coupled to the equation for the decoder
which involves a summation over all configurations of V.
It is therefore highly beneficial to reduce these equation
to ones involving only the configuration space of r. and
ry. To this end we first note that the dependence of the
encoder on V in the IB equation only appears through
P(e|v), and therefore can be replaced by r,. Similarly
we find:

P(hlr) o P(h)e? Ze Felreos(Zu Plelr)P6'0) - (Bg)

Next we rewrite P(e|r,) = P(e)[1 + er,r.] and expand
to first order in € to obtain the reduced IB equation:
P(hlr,) o< P(h)eP<rmetrn — p(p)eferetradn (Bg)
where (r, )y, is the expectation value of r, given h, based
on the joint probability P(h,v,e) = P(v,e)P(h|v).
Equation B9 is the key results of this section. It shows
that the optimal encoder depends on V only through r,
and in the above specific exponential manner. It changes
for one CFT to another through possible values of r,
and the conditional expectation value (r,);. As a sanity
check one finds that P(h|r,) = const. is always a solution.
At small enough g it is the only one, above the IB phase
transitions it is an unstable, suboptimal one (see below).
Observe that Eq.B9, though simplified, is still an implicit
equation, as the quantities in the exponent depend on the



left-hand side. It can, however, be solved explicitly in the
vicinity of the first phase transition (which corresponds
to the encoder beginning to track the first, most relevant,
feature of the data).

Appendix C: Solving the reduced IB equation

Following [37] we consider the encoder at § = 8.1 + ¢
where 3., marks the first breaking of the permutation
symmetry of the encoder. We discuss symmetries in more
detail below, here note only that below 3.1 the trivial
constant encoder is fully insensitive to re-labelling, or
permuting, of the variables h, and without loss of gen-
erality can be written as P(h|v) = P(h|r,) = 1/|H|. In
order to learn any information whatsoever, this symme-
try has to be broken. At ¢ small enough, (r,)s tends to
zero, and we can therefore expand:

1
P(hlry) = 75 +tbr, (h)
|H|

> br,(h) =0,

h

(C1)

where the second equation ensures proper normalization
of the conditional probability. Plugging the above into
the left-hand side of Eq.B9 and expanding the right-hand
side in t we get, to lowest order:

[H|™ + by, (h) =

|H|™' + Be’try »  P()ruby,, (h)

(C2)

Examining the above one finds that a b(h),, which is
constant in r, is always a solution, for any 8. This simply
implies that any P(h|r,) = P(h) is a solution to the IB
equation for all 3. Moreover, such solutions are globally
optimal before the first phase transition. This is a special
case of a more general phenomenon: when some symbols
h share exactly the same dependence on V, there is a
manifold of equivalent solutions reflecting the freedom to
re-distribute probabilities between these symbols h, in
particular to assume them maximally symmetric.

In order to construct an explicit closed-form solution
and to later verify it numerically, let us proceed by focus-
ing on |[H| = 2. Thus the compressed variable has two
states and can be thought of as a single spin degree of
freedom: h = £1. The above equations now become:

[36 Ty Z P(v
> by, (h) =0.

h

oy, (h) (C3)

The first equation, with a fixed h, when viewed as linear
equation on the vector space spanned by the values of r,

and equipped with an inner product weighted by P(v),
has two solutions: the aforementioned constant-r, vector
is a solution for any 8. The vector b,, = r, is a solution
for Be> = 1. This can be arranged into a solution for
both h by taking b, (h) = r,h. The 8 at which this soft
perturbation to the uniform encoder appears, marks the
first critical 8:

bt = &+ o)

(C4)
where through o(€?) we re-introduced possible corrections
coming from (A,~1/\o)’2, all scaling as higher powers of
€. These corrections exhibit a faster exponential decay as
a function of Lp/L and are hence negligible for Lg/L >
1. Keeping this ratio fixed and taking L. — oo, one can
use the fact that:

/\1/)\0 —27rA1/L

(C5)
where A; is the CFT scaling dimension associated with
the leading primary operator. We stress though, that
all the results of this section apply to any L (provided
Lg > L) and do not rely on having a CFT, apart from
the association between the transfer matrix eigenvalues
An and the scaling dimensions A,, in the large L limit,
which is important for interpretation.

To obey normalization of P(h|v), this r,-linear vec-
tor has to be added with opposite signs to form P(h =
+1|r,). Examining Eq.B9 together with the assump-
tion that P(h) is constant leads to the following solution
ansatz:

eh’m(t)ru

Plh=+Ir) = 5 S

(C6)

where m(t < 0) = 0 and m(t > 0) > 0. To determine
m(t) we plug the above encoder into Eq.B9:

hm(t)r, €BE2T” (ro)n

1
(O)ry) 2 cosh(Be2ry|(ry)n])

where we have used P(h) = const. and the fact that
(ro)n = h|(ry)n|. Clearly, if both numerators are equal,
than the denominators would agree as well. Thus, we
compare the logarithm of both numerators and obtain:

e
2 cosh(m

(C7)

hm(t)r, = B2y, (ry)n. (C8)

The average on the right-hand side is evaluated with

P(ry|h) = P(ry)P(hlr,)/P(h) and yields (r,), =
h|{(ry)n=1| and therefore:

m(t) = Be*|(ro)n|

An expansion of the right-hand side in m(¢) up to third
order yields:

(C9)



P(ry)ry [1+ m(r, + m2(0)r,? + dmd ()]

10

T

= €2 ZP(T;)T; [1 +m(t)r) +

1+ %mQ(t)r’%

1
—-m

(C10)

1 1
Q(t)r'i + 6m3(t)r'i} {1 —=m

= 56 [mle)r2) + (0 (1rd) = 308 | + O

We thus finally obtain:

(56 ~ Chmiy =0
3(5 — ﬁc)

(r*) Be

We have thus an explicit analytical (and closed-form)
solution for the encoder and the critical f.; in terms
of CFT quantities which can be computed in the trans-
fer matrix formalism, in terms of TM eigenvalues and
eigenvectors (either analytically, or, as is common, by
numerical TM diagonalisation).

We compare this theoretical prediction for the be-
haviour of the IB solutions to the ones obtained numeri-
cally (i.e. by feeding Monte Carlo samples of the system
to the IB solver as the input probability distribution, as
we would do with any other data, physical or not, in a
generic compression problem). As seen in Fig.3 in the
main text, when presented with the data for the 2D crit-
ical Ising model on a cylinder, the analytical solution is
in excellent agreement with numerics. The IB encoder
P(h|v) does indeed depend on OV only, and it assigns
the value of the coarse-grained spin A based on the mag-
netization of the configuration of spins in dV, that is
it depends on the physically most relevant operator, in
exactly the predicted fashion.

m(t) = (C11)

Appendix D: IB and the physical symmetries

Here we derive several results regarding IB in the pres-
ence of physical (or model) symmetries in the data, some
of which were mentioned in the main text. Along the
way we also briefly review the necessary results on the
internal (or structural) symmetries in IB. In this, and in
the formal tools we use we follow Refs.[36, 37].

Phase transitions in IB refer to values of § where
some non-analyticity appears in L;p as a function of 3.
These transitions often come from breaking of IB struc-
tural/intrinsic symmetries although, in principle, other
transitions (e.g saddle-nodes [37]) are possible where the
structural symmetries remain the same. The IB struc-
tural symmetries consist of permuting the classes, or ele-
ments, of H as well as re-weighing the conditional proba-

(

bilities: taking P(h|v) — P(h|v)(1+ ;) while maintain-
ing the normalization constraint ), P(h|v)(1+ ap) =1
for all v and the value of relevant information pre-
served. This large continuous freedom requires some
form of “gauge” fixing. We adopt the natural prescrip-
tion of [36, 37], and work with encoders P(h|v) which
are as uniform as possible in H. Namely, we always
re-weigh them so that for any symbols h,h’ for which
P(hlv) = cP(h'|v) Yv with ¢ € R4, the conditional
probabilities are shifted to be identical. For example,
this means that for 8 < .1 the encoder is completely
symmetric: P(h|v) = 1/|H]|.

The above gauge freedom can be understood with a
simple example: consider compressing information into a
code with exactly three symbols hq 2 3, with the code as-
signing them based on the inputs v. Imagine a code which
never assigns the symbol h3 to any input, and another
one, in which, given an input v which should be mapped
to hg by the previous code we instead randomly assign
ho or hg with probability ps + p3 = 1. Exactly the same
information can be retrieved from both of these codes,
for any ps, which represents the “gauge freedom”. Given
the possibility of using |H| symbols, we use all of them,
but only a few are used nontrivially (that is P(h|v) ac-
tually depends on v), the rest appear entirely randomly
and independent of the inputs, with equal probability,
and thus carry no information whatsoever. They can
be thought of as being “unresolved”, as their probability
does not depend on any feature of the data. The advan-
tage of this formulation over simply removing unresolved
symbols from the formalism, is that in IB phase transi-
tions new symbols become “resolved”, that is the encoder
starts using them nontrivially to track some additional
feature of the data, and in this process their conditional
probability distribution acquires dependence on v, break-
ing the symmetry of permuting all unresolved symbols.

Given the above re-weighing choice, IB transitions, un-
less fine-tuned, appear as they do in physics via first or
second order symmetry-breaking transitions, where it is
the permutation symmetry that is being broken at the
point of transition. In IB terminology these are called
subcritical and supercritical pitchfork bifurcations [36],
respectively. Provided |H]| is taken to be 2|V| — 1 or
more, first order transitions are also excluded [58].

Despite the efforts to classify structural transitions, the
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FIG. 4: IB and the physical symmetries: the physical system, e.g an Ising model, is invariant under a
symmetry. The orbits of the group action are depicted with arrows connecting the symmetry related configurations
in V (here: by global Zs spin-flip). Right: Before the first IB transition the trivial encoder maps every v € V'
equally likely to both h € H. This is consistent with a trivial action of the Z3 symmetry on H. All symbols & are
thus equivalent and connected by the action of the structural permutation symmetry (dashed line in H). Left:
After the transition, distinct elements v would be preferentially mapped to particular symbols h. Elements v which
are related by the physical (here: Ising) symmetry are mapped to h in a manner which generates a non-trivial action
of the symmetry on H. Since the symbols h € H become inequivalent, the structural IB symmetry is broken.

question of how well physical /model symmetries present
in the data are reflected or preserved in the IB transitions
has, to the best of our knowledge, not been explained.
Given fundamental role of symmetries in physics, this is
an important point. Below we detail two contributions
we make towards clarifying this issue.

Assuming that (a) 8 < B2, (b) |H]| is large enough
such that taking |H| — |H|+ 1 does not lead to a bet-
ter IB solution (we are not constrained by a small code
alphabet), (c) the first IB transition is second order (im-
plied by [58]), and (d) this transition cannot be split into
two separate transitions using a perturbation to P(v,e)
respecting the physical symmetry (i.e. no fine-tuning),
we show that the following holds true:

P(e,v) = P(se,sv) = Pg(hlv) = Pg(¢sh|sv)  (DI1)
Here the element s of the symmetry group S acts by
permutation on the configurations of the system (with
the action denoted by multiplication), and invariance
under this symmetry is expressed by equality of their
probabilities; ¢, is a subgroup of the permutation group
on H which obeys ¢ ¢y = ¢sg (i.e. it is a permuta-
tion representation of the symmetry S, possibly a trivial
one). Eq.D1 states that under the assumptions stipu-
lated above, the optimal IB encoder carries a represen-
tation of the physical symmetry (thus ensuring that the
coarse-grained probability P(h) also does). Fig.4 shows
a schematic picture of the symmetry action on V and H,
before and after the first IB transtion.

We also consider the case of small |H|, such that IB is
constrained from finding an optimal solution. We con-
struct an example with a Z; physical symmetry and
|H| = 2, where Eq.D1 is violated, implying that that
encoder breaks the physical symmetry.

1. IB and symmetries near (.1

For 8 < .1, following our choice of gauge, P(hlv) =
1/|H|. Thus P(h|v) = P(h|sv) and hence Eq. (D1) holds
with ry = id being the trivial representation.

To study B8 > f.1 we follow the approach of Refs.[36,
37]. The main idea is to study the stability of the minima
of the IB Lagrangian L;p, which correspond to the so-
lutions for the optimal encoder Pg(h|v). To this end the
functional £(P, A, 3) = Lig(P,B) + >, A(>2, P(hlv) —
1) is introduced, with A, the Lagrange multipliers for
the constraint enforcing normalization of the conditional
probabilities P. The stable local solutions are such for
which all of the eigenvalues of the Hessian Ap \L(P, A, 5)
have negative real parts. Here P is a vector of conditional
probabilities P(h|v) of dimension |H|-|V], and A is a vec-
tor of A, of dimension |V|; we differentiate (twice) with
respect to all of the components.

The strategy then is to consider the Hessian at g =
Be,1, analyze its kernel and how the physical symmetry
manifests itself on the space spanned by the eigenvectors
corresponding to eigenvalue(s) crossing from positive to
negative at § = .1 (the crossing eigenvalues). Following
[37], we split these crossing eigenvalues into groups be-
longing to each element of H and show that these smaller
groups generate irreducible representations of the physi-
cal symmetry, provided the transition is not fine-tuned.
We then explicitly construct a globally optimal encoder
at § Z fBe,1 which obeys D1. Having shown that the sym-
metry remains unbroken just after 3., and given that
LB obeys that symmetry, by continuity we establish our
claim for all 8 < fB¢ 2.

We first note that the IB Lagrangian has the property
that it splits into a sum of different contributions from
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FIG. 5: The structure of the Hessian A, xL(p, A, 5)

distinct A, namely:

Y |2 P(hlo)p(v) log(P(h|v) — (1 — B)P(h) log(P(h))

h

—B8_ P(h|v)P(v]e)P(e)log(y_ P(h|v)P(v]e)) | =
EZLh
h

(D2)

where Ly, implicitly defined above, contains only a sin-
gle h. It is also symmetric under P(hlv) — P(h|sv),
assuming the Lh.s. of Eq. DI1. The interdependence
between P(h|v) with different h enters solely through
the normalization requirement ), P(h|v) = 1, which
can be maintained by adding a Lagrange multiplier term
>onDwAu[P(hlv) —1]. The Hessian with respect to
(w.r.t.) P(h|v) and A, has a special structure [37]. Below
Be, it consists of |H| equal block matrices B of size |V| on
the diagonal, along with identity matrices of size |V| on
the last column and row, related to the Lagrange multi-
plier ensuring the normalization (see Fig.5). The matrix
B is simply the Hessian of Lj, w.r.t. P(hlv) around the
trivial encoder (which is independent of h). Generically,
for higher 8, only the blocks B} corresponding to unre-
solved symbols h are identical, their equality being the
consequence of the permutation symmetry of these sym-
bols.

An IB phase transition where new stable solutions ap-
pear, and which is second order, necessitates a non-empty
set of eigenvalues of the Hessian (the aforementioned
crossing eigenvalues) changing from positive to negative
— at the transition the kernel of the Hessian changes. We
now argue that their existence also implies the existence
of a smaller set of crossing eigenvalues within each block
B. Let us consider an eigenvector w of the Hessian, cor-
responding to a small eigenvalue € of order O(B.1 — B)
(possibly one of many such eigenvectors). Utilising the
knowledge of the structure of the full Hessian (see Fig.5)
we write it in block from as w = [w(hy), ..., w(hg|),n]*
The eigenvalue equation corresponds to a set of |H| + 1
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vector equations:
Bw(h) +n = ew(h)

Z w(h) = en

h

(D3)

Summing the first line over all h we find By = (—|H|e "1+
€)n, which at small enough |e|, and for a bounded B, has
only the solution n = 0. Consequently, we find that for
any h we have Bw(h) = ew(h), i.e. the subblocks of cross-
ing eigenvectors of the full Hessian define eigenvectors
for the individual blocks, which have vanishing eigenval-
ues (i.e. which belong to their kernels). In general there
may exist multiple distinct crossing eigenvectors of the
full Hessian, and consequently of the blocks. We denote
them by w;.

To proceed, note that in the IB formalism the cardi-
nality of the alphabet H is not restricted. We therefore
wish to factor out the dependence of the IB Lagrangian
on |H|. Close to the first phase transition the encoder
can be written as a perturbation of the trivial (maximally
symmetric) one [37]:

P(hfo) = [H|™ [1+ Y cihwin] (DY)

= H7 143 @(hwia)]

where w; ,,, viewed as vectors in the v indices for fixed h,
are the crossing eigenvectors. Plugging the above r.h.s.
into Eq.D2, and using log(|H|™![...]) = log(|H|™!) +
log([...]), one finds that all the terms proportional to
log(|H|™!) in Ly, vanish. In the remaining terms |H|~?
enters explicitly, but only as an overall scaling factor.
Note that Eq.C1 is a special case of the above. With
this simplification, near the first transition |H|Lp, can be
written as:

Ly = [H|Ly = =AY &(h)é;(h) + AL[E (), ..., én (h)]
1 (D5)

where AL is cubic or above in & (h) (consistent with sec-
ond order transitions).

We proceed by analyzing the potential minima of all
the terms Ly. At € < 0, all Lj, have a single minimum
at ¢;(h) = 0,Lp = 0 and thus the encoder is uniform
and trivial by Eq.D4. For a second order permutation-
symmetry-breaking transitions (supercritical pitchfork
transition, in the terminology of Ref.[37]), at € £ 0 the
rescaled Lagrangian Ly, develops N > 0 global minima
(H-minima) of Ly, where Lj, = Ly, < 0, which will later
be used to construct the global minima of £;5. Each of
these H-minima is defined by some ¢é;(h) # 0. We label
the coefficients corresponding to these distinct minima
by ¢;" (h) with n € {1,..., N}, which implicitly depends
on €. Note that around .1 the set of H-minima (or
equivalently the coefficients) are the same for different h
and Ly, because we perturb around the fully symmetric
solution.



Next we claim that any encoder which uses only the
H-minima, namely one defined as P(hlv) = |H| 1 +
S, & (h)w;, ), which is properly normalized, is glob-
ally optimal among all choices of coefficients ¢;(h) as well
as sizes of | H| which yield a normalized probability distri-
bution. Indeed, min(L;p) = |H|~ ZheH Lonin = Limin.
Next due to Lyyin bemg |H | 1ndependent one has that
Lomin < |H'|~1 Y ohen Ly, since Ly, > Lumin.

We have thus shown that at the transitions, a set of
H-minima appear in each L; which, if composed in a
way that obeys normalization, result in a globally op-
timal encoder. Next we discuss how the symmetry S
acts on the H-minima. This will be used to construct a
normalized and symmetric encoder which uses only the
H-minima. Given an underlying symmetry S, whose ele-
ments s act as permutations of elements v of V', one finds
that the blocks B obey the symmetry via B, .+ = By, sv’-
Hence the crossing eigenvectors within each H block w; ,
viewed as vectors in the space spanned by elements v,
transform as some real representation of the symme-
try, namely wj 5o = D_; sijwj,o (With Y7, sij856 = i)
It can then easily be shown that ¢;(h) transforms as
s-¢(h) =, sjicj(h) and that s € S acting on the n-th
H-minimum cO "(h) leads to an H-minimum, say "™ (h),
and so we erte that s(n) = m. Consequently, we have
a group action of the symmetry on the set of different
H-minima. We note in passing that this action will later
determine ¢s.

Let us next assume that s;; for all s € S form an irre-
ducible representation on the crossing eigenvectors (i.e.
those with eigenvalue €). Notably, this is also the generic
case, as one does not expect to find degenerate sets of
eigenvalues beyond what is implied by symmetry. If the
latter does happen it implies the transition can be split
into two nearby transition using a symmetry respecting
perturbation to P(v,e).

Consider first the case where the representation s;; is
trivial. Here much of the machinery we developed is not
needed since any encoder just after the transition, in par-
ticular the globally optimal one, would depend on v via
w; o, and since the latter is invariant under the symmetry,
Eq.D1 is obeyed with a trivial ¢ equal to the identity
permutation (id).

We thus turn to the case of a non-trivial irreducible
representation. Here we take |H| = N, associate each
h with a specific nj, and henceforth drop the distinction
between n and h, writing & (h) as shorthand for & (h).
We further split the action of S on the H-minima into
orbits O, each orbit understood as a set of h values cor-
responding to a set of H-minima. We claim that within
each orbit Y, . é(h) = 0 for all i. Indeed, due to the
orbit being closed under any s € S we have :

Y Ahwiy =Y H(s(h)wiy (D6)
heO,i heO,i
= Z 6O(h)wz sv
heO,i
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thus if the L.h.s. is not zero, the r.h.s. implies we have
found a vector w; in the set of crossing eigenvalues, which
is invariant under the action of any s. This would lead
to a contradiction, as the representation was assumed to
be irreducible and nontrivial.

Finally, we write our globally optimal, normalized, and
symmetric encoder just after 3. :

1+Zc w“,

where the dependence on 3 enters implicitly via ¢?(h). It
can be verified that it obeys Eq. (D1) with ¢, being the
action of S on the H-minima: s(h) = h'. Furthermore, it
is normalized since:

ZP hlo)=1+[HT'Y YN &

O heO i

P(hlv) = [H|~ (D7)

wi,/v =1 (DS)

Lastly, as this encoder uses only H-minima it is globally
optimal.

Had we taken |H| < N such a solution would not be
possible, and in such circumstance IB can potentially
break physical symmetries. We provide such an example
below (though at high 3). Note though, that it is always
possible to increase |H| until it no longer improves £,
thereby avoiding these constrained settings.

We conjecture that IB, unless constrained or tuned in
an adversarial fashion, respects physical/model symme-
tries for all values of 3. In particular we have never en-
countered a numerical example where this does not hold
for large enough |H|. Notably, for unrestricted |H| there
is no obvious competition between learning an optimal
encoder and maintaining the symmetry which could en-
courage such physical/model symmetry breaking.

2. Potential breaking of the physical symmetry in
constrained IB at large (8

The results of the previous section imply that for large
enough H the encoder would carry a representation of
the physical symmetry. Given the fact that in practical
implementations the size of alphabet H would often be
fixed, and the symmetry group may possibly not be fully
known, it is interesting to ask what happens in the case
|H| < N.

The question is whether, given possible sizes of permu-
tation representations of the symmetry and some fixed
|H| < N, more information is necessarily retained when
the encoder generates the action of one of those repre-
sentation on H, or not. To make intuitive why breaking
the symmetry could be favorable, consider the following
example. Let n; > |H| > 1 be the size of the small-
est nontrivial permutation representation of the physical
symmetry, i.e. we are given more symbols than needed to
“fit” the action of the trivial representation on H (which
maps everything to one symbol), and not enough to fit
a nontrivial one. It seems natural that not using the
available H symbols in the encoder is wasteful.



Here we provide an explicit example where Eq.D1 is
violated at |H| < N in the limit 8 — co. Such exam-
ples are easier to construct if |H| is incompatible with
the dimension of any irreducible representation of S, as
mentioned above. Here, however, we give a less trivial
example with a Z; symmetry and |H| = 2, which intu-
itively at least could fit a two-dimensional representation
of the symmetry.

For § — oo, the IB Lagrangian simplifies to maxi-
mizing I(H; E). Intuitively, in this limit the solution
should always be a deterministic encoder (i.e. one for
which P(hlv) € {0,1}) and defines a bona fide function
f v — h. This in fact follows from convex optimization
arguments, as shown in [35]. Next we write the mutual
information as difference of entropies:

I(H;E) = S(E) — S(E|H), (D9)

where:
S(E|H) = Zh P(h)S(E|h) (D10)
S(E|h) = Z P(e|h)log(P(e|h)). (D11)

Note that due to the deterministic nature of P(h|v):
P(v[h) = P(hlv)P(v)/P(h) P(0)ds(w),n-

Therefore:

=P(h)"

(D12)

= Z P(e|v)P(v|h

P(v
= Z Pgh;P(ev)E
v| f(v)=h

PlelV(h)),

where by V(h) we denoted the pre-image of h under map-
ping f. By the above equations we thus seek to group the
elements v into h-clusters, such that the entropy of E av-
eraged over the different clusters is minimized. Formally,
we minimize:

ZP S(E|h) =
:—ZP Zpen/ ) log(
_ZS E|V (h))P(h)

Let now V, E = {0, 1,

P(e[V(h)))

(D13)

2,3},H ={0,1}, S = Z, and let

P(efo) = P(0le) = 5 Fews + o 1yta + G sl
where % denotes the modulo operation, and let P(v) =
P(e) = 1/4 for all e,v. We want to find the two dis-
joint sets Vi and Va2 (which are mapped to distinct h)
which minimize S(E|V1)P(h = 0) + S(E|V2)P(h = 1),
i.e. equation D13. Up to an action of Z; there are only
two distinct partitions of V' which are maintained by the
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action of the only nontrivial subgroup of Zy, i.e. Zs, and
thus which could be compatible with an encoder produc-
ing the action of Zy on H: Vi = {0,2},V5 = {1,3} and
Vi ={0,1}, Vo = {2,3}. For these two partitions of V'
we have that:

S(EV1)P(h =0) + S(E|Va)P(h = 1) =

= LIS(EIVA) + S(B|Vs)]

We compare these to the following non-symmetric choice
i = {0},Va = {1,2,3}. All together these ex-
haust all symmetry-distinct choices of the sets. For
the first symmetric choice, one has P(e|V}) being equal
to e drawn uniformly from {0,0,1,2,2,3} leading to
S(E|Vij) = 1.3296. For Vi of the second symmetric
choice, we get e drawn from {0, 1,1, 2,2, 3} leading to the
same value of S(E|V;/;). For V; of the non-symmetric
choice, we get e drawn uniformly from {0, 1,2} leading
to an entropy S(E|{0}) = 1.0986. Last for V5 of the
non-symmetric choice, we get e drawn uniformly from
{0,0,1,1,2,2,3,3,3} leading to S(E|{1,2,3}) = 1.3689.
As 1.3296 > 0.25-1.0986 + 0.75 - 1.3689 = 1.3013 we find
that the non-symmetric choice is optimal.

While the 8 — oo example can be evaluated on the
back of an envelope, we verified numerically that for this
example distribution the symmetry breaking holds for
all the way down to the first IB phase transition. Inter-
estingly, taking a larger alphabet |H| > 2 improves the
IB Lagrangian value L£;p of the best encoder at 3 > . 1,
until at |H| > 4, i.e. at |[H| > N it reaches its optimal
value and remains unchanged by further increasing |H]|.

The lessons we take from the above example are that
(a) for H of insufficient size, smaller than the size of
the (relevant) symmetry group, the symmetry can be
broken by the encoder and (b) in order to ensure this
does not happen one should choose the minimal |H| at
which, for a fixed 8 > f3. 1, the value of the IB Lagrangian
L15(Ps(h|v)) reaches its optimal value. Recall also that
Be,1 can be obtained in a model-agnostic way by studying
the kernel of the B block of the Hessian.

Appendix E: Extracting symmetries from a
numerically obtained encoder

Here we discuss the possibility of using the symmetry-
maintaining properties of the optimal encoder, viz. Eq.D1
to extract the physically relevant symmetries from the
data.

Let us examine the situation where P(v, €) possesses an
unknown symmetry s € S, such that P(sv, se) = P(v,e),
and an unknown action ¢ on the h variables. The sym-
metry may be unknown since it involves a complicated
combination of microscopic degrees of freedom, or be-
cause S is part of a much larger symmetry group from
which we wish to sift out the most relevant subgroup.
In addition, even if S is known, its action on h would
depend on how it combines the relevant variables and



may potentially need to be extracted numerically. We
discuss how both S, ¢, and their actions on v and h,
respectively, can in principle be identified.

As an instructive example, consider the Ising model
used in the main text. We deliberately split, however,
each Ising spin o; into to product of two auxiliary spins
0; = T;1Ti2. The energy of the system remains the same
(in terms of the original spins). By construction, this
model has a huge amount of spurious symmetry: an ex-
tra Z; symmetry per each site 4, given by I; 11, o (where
I; . is a spin-flip operator for the variable 7). This
symmetry does not flip the Ising spin o; and so bears
no influence on the long-range properties of the system,
— the physical Ising symmetry is artificially obscured in
the model phrased in 7 microscopic variables.

Assume now we are given the solution to the IB prob-
lem Pg(h|7) with h = %1 for 5 > f. 1, which depends on
the Ising magnetization on the boundary ) sy,. Ti17i2
(as per arguments in the main text and in the appendices
above). Since for this encoder:

Ps(h|t) = Pg(h|L;11;2 - T) (E1)

it generates a trivial representation of all the extra Zs
symmetries. Since it couples to the physical magnetiza-
tion, however, it generates a faithful Z5 representation
of the “hidden” Ising symmetry (which we can choose as
s = ey i), namely P(h|T) = P(—h|sT). We would
like to provide a prescription for identifying the relevant
symmetry S and its action on h.

The first step is to obtain an estimate of the Pg(h) =
>, Ps(h|v)P(v), by numerically sampling v. Using the
results on the general structure of the optimal encoder,
it suffices to take v € OVir. The symmetry of the en-
coder P(h|v) = P(¢sh|sv) implies the symmetry in the
coarse-grained variables: Pg(h) = Pg(¢sh). This allows
to group the equiprobable elements h into sets, whose el-
ements are potentially related by an action of ¢, for some
s € S. These sets, forming a partition of H, are puta-
tive orbits of ¢s. In the above example the set simply
contains both A = +1.

Consider now configurations vy € 0Vg for which
P(+1|vy) is non-zero (generally this yields all configu-
rations) and similarly so for v_. Next reconstruct the
action of the symmetry element s on V by demanding
that: 1. s maps the set of all v to the set of all v_,
2. P(+1Jvy) = P(—1|svy), 3. s applies the same onsite
permutation across all sites (i.e. s is spatially homoge-
neous). Notably, committing to such homogeneous s is
allowed provided we focus on global symmetries. Conve-
niently, it also makes the space of potential permutations
much smaller, in the sense that it is independent of the
number of sites. Following this s can be found using a
brute force scan.

In our example, provided B is finite, the set of all
vy is simply OVr and s1 = [icqvy Lin, s2 = Wicovy Lio-
It is then easy to infer from the symmetry requirement
P(hlz) = P(¢sh|sx) that s; (and s2) have a Z; action
on H whereas s;so has a trivial action. We have thus
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exemplified how to identify qualitative information from
the numerically obtained encoder: the size of the rep-
resentation of the relevant symmetry was deduced from
the number of equally probable symbols A, and its action
on v was given by the above permutations s obeying the
symmetry constraints. Using the action on v, ¢, acting
on H can also be deduced.

Had we considered a larger set of symmetric h € H’s
(say |H| = 3, h = {a,b,c}, P(h) = 1/3), we would have
similarly looked for a set of v, obeying P(alv,) # 0, and
homogeneous permutations s mapping v, to vy (or v),
obeying P(alv,) = P(blsvs) (or P(alvy) = P(c|svg)).
This procedure can in principle be generalized to groups
of arbitrary size, we leave however the question of how
to do it efficiently to future investigations.

Observe also that focusing on v € 9V rather than all
of V in the above procedure comes at no loss of generality,
since as we seek a spatially homogeneous action of the
symmetry, the symmetry action on Vg implies its action
of V. Thus no information is lost and computational
resources, related to matching v; and v_ are used more
efficiently. Had we considered v € V, then, from the
perspective of the encoder coupling to the edge 9V, the
freedom of flipping 7 € V/9V behaves as a symmetry
(with a trivial representation on H). However examining
the probability p(v) = >, p(v, e) would reveal that it is
not a true physical symmetry of V.

Appendix F: Numerical Experiments

To validate our prediction of the the critical temper-
ature (.1 and the dependence of the optimal encoder
after the IB phase transition on physical quantities we
performed a numerical experiment. The test system was
the 2D Ising model at criticality. The system was put on
a cylinder of three sites’ circumference, and the transfer
matrix eigenvectors and eigenvalues were obtained by ex-
act diagonalisation to obtain the numerical value of 5.1
from Eq.C4 and the encoder from Eqs.C6 and C10.

This was compared with the numerical solutions to the
IB equations presented with the probability distribution
of the model configurations. To obtain these solutions
we used the simple Tterative IB Algorithm (iIB)[59]. The
input variables of the iIB algorithm are: P(E,V), cardi-
nality |H]|, tradeoff /3, the initial guess for P(H|V'), and
€, which is a convergence parameter. The outputs are
P(H|V), P(E|H) and P(H).

For a given set of input variables, the iIB algorithm
iterates between the three IB Eqs.A5-A7. On every iter-
ation the first IB equation updates the encoder P(H|V)
from the previous iteration. Then, P(E|H) and P(H) are
updated according to the remaining equations. The iter-
ations stop when the update on P(H|V') becomes negligi-
ble, i.e. if after n iterations JS[P,(H|V)|P,—1(H|V)] <
€, where JS is the Jensen-Shannon divergence.

To produce Fig.3 of the main-text, we applied the iIB
algorithm on a range of 8 values. Starting from S = 0



and a maximally symmetric trivial encoder, we increased
B up to maximal value greater than f.;, determined
through the numerical analysis of the Hessian (see be-
low). For every f3, in order to prevent the algorithm
from getting stuck in a non-optimal local minimum of
the Lagrangian, a small random noise was added to the
initial guess P(H|V') (the outcome of the optimization
for the previous value of §). The iIB algorithm was then
applied on the inputs until convergence. The same steps
were then repeated for the next value of 5.

For this small test system the input P(E,V’) distri-
bution was calculated explicitly, using the transfer ma-
trix method. We used a setup where |V| = 2 x 3,|E| =
1x3,Lgp =9 and L = 3. We set the convergence param-
eter to be € = le—14, and the random noise added to the
encoder was of the order of le—6.

Just above 3.1 the iIB algorithm tends to stay around
the saddle point given by the trivial uniform P(H|V).
This behavior continues until at some higher value of 3
the algorithm converges to the optimal solution of the
IB equations through a discontinuity in the IB curve.
To fix such numerical artifacts, after each discontinuity
we applied the algorithm again, this time by scanning
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backwards. We initialized the backward scan using the
parameters and variables from the forward scan at a
value located after the discontinuity point.

To make sure that our backward scan yielded the opti-
mal solution, we compared its IB Lagrangian values with
those of the forward scan solution, confirming the former
were indeed smaller or equal. Another indication of the
instability of the forward scan iIB solution just after 8. ;
was that the eigenvalue of the Hessian which crossed 0
at B.1 stayed negative after 3. ., where the equivalent
eigenvalue at the backward scan was positive.

Finally, we obtain the value of the 146.33999 < ﬁgf <
146.34999, which agrees with the (., = 146.34458 from
the analytical formula Eq.C4, and the encoder in Fig.3.

We emphasize again, that the analytical results on the
IB transition we derived do not require the limit of large
cylinder circumference L, as long as Lp is sufficiently
larger than L. The prediction is for the IB transition in
terms of the transfer matrix eigenvalues and eigenvectors,
regardless of the circumference. This is the prediction we
verify numerically. In the limit of L — oo the extracted
quantities can additionally be related to the CFT scaling
operators, per the classical results on transfer matrices
and CFTs [44].



