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Abstract

We introduce a framework for constructing a quantum error correcting code from
any classical error correcting code. This includes CSS codes [CS96, Ste96b] and goes
beyond the stabilizer formalism [Got96] to allow quantum codes to be constructed
from classical codes that are not necessarily linear or self-orthogonal (Fig. 1). We
give an algorithm that explicitly constructs quantum codes with linear distance and
constant rate from classical codes with a linear distance and rate. As illustrations for
small size codes, we obtain Steane’s 7−qubit code [Ste96a] uniquely from Hamming’s
[7,4,3] code [MS77], and obtain other error detecting quantum codes from other explicit
classical codes of length 4 and 6. Motivated by quantum LDPC codes [BBA+15] and the
use of physics to protect quantum information, we introduce a new 2-local frustration
free quantum spin chain Hamiltonian whose ground space we analytically characterize
completely. By mapping classical codewords to basis states of the ground space, we
utilize our framework to demonstrate that the ground space contains explicit quantum
codes with linear distance. This side-steps the Bravyi-Terhal no-go theorem [BT09]
because our work allows for more general quantum codes beyond the stabilizer and/or
linear codes. We hesitate to call this an example of subspace quantum LDPC code with
linear distance.
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Figure 1: Comparison of the codes attainable within this work with Calderbank-Shor-
Steane (CSS) [CS96, Ste96b], quantum stabilizer [Got96, CRSS97], and codeword-stabilized
(CWS) [CSSZ08] codes. Inclusion of stabilizers and CWS is not strict as our codewords are
supported on disjoint sets.

2.4.4 C as a nonlinear cyclic code . . . . . . . . . . . . . . . . . . . . . 17
2.4.5 Permutation-invariant quantum codes . . . . . . . . . . . . . . . 18
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3.1 Why introduce a Hamiltonian? . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Local Hamiltonian and its ground space . . . . . . . . . . . . . . . . . . 21
3.3 Constructing good quantum codes in the ground space . . . . . . . . . . 25

3.3.1 A ground subspace Steane code that corrects a single error . . . 27
3.3.2 A ground subspace code on eight spins that corrects a single error 29
3.3.3 A ground subspace code that detects a single error . . . . . . . 29

1 Overview

Error correction is a necessary part of any reliable computation. On one hand, one can
protect against errors by designing error correcting codes that allow for reliable recovery of
the encoded information. On the other hand, nature herself provides innate resources for
the protection and correction of information. These beg the questions:
1. Since quantum computers generalize classical computers, to what extent can one import
the remarkable discoveries in classical coding [MS77] to the quantum realm?
2. Since the bulk of matter often resides in its ground state, are there physical quantum
systems (e.g., 2-local Hamiltonians) whose ground states can sustain good quantum codes?

In this paper we address both of these questions in two parts:
Part 1 introduces a framework that takes any classical code and algorithmically constructs
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Figure 2: The encoding of one logical qubit from two disjoint subsets of a classical code C.

an explicit quantum code. The challenge in designing quantum codes is to not only correct
the bit-flip errors, but also to correct phase-flip errors. We construct quantum codes with
asymmetric distances given by dX and dZ for the bit-flip and phase-flip errors respectively.
Similar to CSS codes, the logical codewords that are supported on codewords of length n
are labeled by a classical code C. In the simplest case, we encode a logical qubit as follows

|0L〉 =
∑
c∈C0

α(0)
c |c〉, |1L〉 =

∑
c∈C1

α(1)
c |c〉, (1)

where C0 and C1 are disjoint subsets of C, and each c is a product state. A priori, the
subsets C0 and C1 and the coefficients are not known. By mapping the Knill-Laflamme
(KL) quantum error correction criteria [KL97] to a linear algebra problem, we construct
an explicit algorithm that can determine these unknowns. To design a quantum code that
encodes more than one logical qubit, we provide a recursive algorithm. This algorithm finds
the disjoint subsets of C and enforces the KL criteria by solving for feasible solutions of a
linear program. The algorithm outputs the logical states:

|jL〉 =
∑
c∈Cj

α(j)
c |c〉, j ∈ {0, 1, . . . ,M − 1}, (2)

where M ≤ qc n with 0 < c < 1 resulting in quantum codes with constant rates. We prove
(see Theorem 1):

Theorem. Take a classical code C of length n on a q-ary alphabet with the distance of dX .
Let Vq(r) be the Hamming ball of radius r. If |C| ≥ 2Vq(dZ − 1), then Alg. 1 and Alg. 2 in
the paper explicitly derive 2 ≤M ≤ qc n, with 0 < c < 1 quantum logical states in (2) with a
bit- and phase-flip distances of dX and dZ respectively. The overall distance is min(dX , dZ).

Our algorithm has a recursive structure. When the inequality in the theorem is sat-
isfied, the algorithm always constructs two logical codewords. The third and subsequent
logical codewords are found recursively by determining the feasibility of a sequence of linear
programs.

This recursive algorithm succeeds with high probability and almost surely over random
codes. In the rare case that the set of linear constraints have rows that are all non-zero
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and are of the same sign, the recursion becomes infeasible and algorithm halts. We find
that even if this happens we can always construct Approximate Quantum Error Correcting
Codes (AQECC) [LNCY97] with linear distance and constant expected rate, provided that
the underlying classical code has these parameters. The trade-off is between the expected
number of logical states and the approximation error as given by Eq. (25).

In addition to giving asymptotic results, this formalism works equally well to construct
finite size codes. To illustrate, we show examples of quantum codes that can be constructed
from classic codes in the classical literature. Among the various, we find that the Steane
code is the unique solution of our formalism when the input is Hamming’s [7,4,3] code. The
formalism introduced here is shown in relation to other known formalism in Fig. 1.

Part 2 focuses on the physics of information. Since topological models of quantum com-
putation, it has been recognized that quantum codes may naturally appear in the ground
space of physical systems [Kit03]. Most physical are 2-local interactions, and many have
investigated the encoding of quantum codes in their ground spaces.

The most celebrated example is Kitaev’s toric code that resides in the ground space of
a 4-local Hamiltonian, which is an effective Hamiltonian of a perturbed 2-local Hamilto-
nian [Kit06]. Kitaev’s toric code is an example of topological order and paved the way for
the topological model of quantum computation. The compass model [DBM05] is 2-local on
a lattice, and has recently been proposed as a candidate to encode quantum codes in the
eigenbasis of the Hamiltonian [LMN+19]. However, the performance of these quantum codes
are not well understood and have mainly been numerically investigated. The advantage of
our work over the aforementioned works is that we construct a 2-local Hamiltonian, whose
quantum error correcting properties we analytically prove.

In a nice recent result, Brandao et al. [BaCimcbuB19] gave a non-constructive proof of
the existence, with high probability, of AQECCs within the low-energy sector for a multitude
of translation invariant quantum spin chains including ferromagnetic Heisenberg model and
spin-1 Motzkin spin chain [BaCimcbuB19]. The challenges that remained were that the codes
were not explicit, the quantum error correction criteria was only approximately satisfied
(hence AQECCs), errors had to be on consecutive set of spins, and the codes were in a low-
energy sector of the local Hamiltonian (i.e., not the ground space). Moreover, the distance
of the code grows logarithmically with the number of spins.

Our work overcomes these challenges. We construct explicit codes with linear distance
that encode one logical qubit (we could have easily encoded a qudit as well). We write down
a new and explicit 2-local quantum integer spin-s chain parent Hamiltonian, Hn, on n qudits.
We analytically prove that its ground space can be spanned by product states. By mapping
these product states to classical codewords, we reduce the problem of finding quantum codes
in the ground space of our Hamiltonian to that of finding classical codes that must obey some
constraints that are induced by the Hamiltonian. The classical coding problem becomes that
of finding q−ary codes with forbidden sub-strings. By leveraging on existing constructions
of binary codes, we construct candidate classical codes for our algorithm to run. See Fig. 3
for a comparison.
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Properties: Brandao et al (PRL 2018) This work

QECC Approximate  with ! = O $%&/( Exact

Distance d ) = Ω(log($)) ) = Θ($)
Rate Vanishes Vanishes

Error restriction Consecutive spins None

Code space Low-energy eigenstates Exact ground state

Translation invariance required? Yes No

Figure 3: Comparison of the explicit codes constructed here with previous work of Brandao
et al [BaCimcbuB19]

The Hamiltonian and its ground space
Let us consider a spin chain of length n with open boundary conditions and the local

Hilbert space dimension of 2s+1, where s ≥ 1 is a positive integer. We take a representation
in which |j〉 denotes the sz = j state of a spin-s particle, such that Ŝz|j〉 = j |j〉 where
j ∈ {0,±1,±2, · · · ,±s}.

The local Hamiltonian whose ground space contains the quantum code is Hn = HJ
n +Hs

n,
where HJ

n = J
∑n

k=1 (|0〉〈0|)k. The Hamiltonian Hs
n, is defined by

Hs
n =

n−1∑
k=1

{
s∑

m=−s

Pm
k,k+1 +

s∑
m=1

Qm
k,k+1

}
, (3)

and the local terms are projectors acting on two neighboring spins k, k + 1 are

Pm = |0↔ m〉〈0↔ m| , Qm = |00↔ ±m〉〈00↔ ±m| , (4)

where |0 ↔ m〉 ≡ 1√
2

[|0,m〉 − |m, 0〉], |00 ↔ ±m〉 ≡ 1√
2

[|0, 0〉 − |m,−m〉], and we denoted

by |j, k〉 the spin state |szk = j, szk+1 = k〉. We will be mostly interested in s > 1.
Since Hs

n is free of the sign problem (i.e., stoquastic), the local projectors define an
effective Markov chain, which have the following correspondence:

Local Projector Local moves Interpretation

Pm 0m←→ m0 Spin transport: local exchange of spin m with 0
Qm 00←→ m,−m Spin interaction: local creation/annihilation of m,−m

We prove that the ground state degeneracy is exponentially large in the number of spins:

dim(ker(Hs
n)) =

(
−2 + rn+1

+ + rn+1
−
)

2(s− 1)
≈ rn+1

+

2(s− 1)
, n� 1
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where r± ≡ (1 ±
√

1− 1/s), and ker(M) the kernel of the operator M . Let us denote
by Entq : [0, 1] → [0, 1] the q-ary entropy function defined by Entq(x) = −x logq x − (1 −
x) logq(1− x) + x logq(q − 1). Our main theorem is (this is Theorem 2 in the paper):

Theorem. Let 0 < τ ≤ 1/2 be a real and positive constant. There exist quantum codes in
ker(Hn) that encode one logical qubit and have the distance of 2τn whenever

Ent2(2τ) + Ent2s+1(2τ) log2(2s+ 1) + o(1) ≤ 1.

Second, there are explicit quantum codes which encode one logical qubit with a distance of
2τn whenever

1/2− τ/0.11 ≥ log2(2s+ 1)Ent2s+1(2τ).

Remark. We call the constructions given by optimizing (51) and (52) as the Gilbert-
Varshamov (GV) [MS77, Chpt. 1] and Justesen construct [MS77, Chpt. 10, Thm. 11] re-
spectively. The GV construct arises from choosing a random C, while the Justesen construct
uses the classical Justesen code to define C.

This side-steps the Bravyi-Terhal no-go theorem [BT09] because our work allows for more
general quantum codes beyond the stabilizer and/or linear codes. This model may be called
an example of subspace quantum LDPC codes with linear distance.

This work could pave the way for constructing the first Quantum LDPC codes with linear
distance in the ground space of translation invariant local spin chains. We note that had we
used all of the ground space to construct the codes, this Hamiltonian could have made the
case for the first example of topological order in one-dimension, which has been conjectured
to be impossible. The practical advantage of our work is that such explicit Hamiltonians
are easily constructed in the laboratory in the near term, especially in atomic or ion trap
architectures. Lastly, the Hamiltonian is a generalization of the highly entangled colored
Motzkin spin chain [MS16], which may be of independent interest.

1.1 Discussions and open problems

This paper provides a rigorous framework for the systematic construction of a quantum
codes from any classical code. We illustrate the theory through a series of examples and
proved that new quantum codes with linear distance and constant rate can be constructed
using this work. Our formalism encapsulates the CSS formalism, and has an intersection
with stabilizer and codeword-stabilized (CWS) formalisms (see subsection 2.4.4). However,
there are codes inside the stabilizer and CWS that our formalism does not capture. For
example, the five-qubit code is not covered by our formalism because its logical codewords
cannot be written as superpositions over disjoint computational bases. Alg. 2 can construct
logical states beyond a logical qubit. The relation of our work to the previous is faithfully
depicted in the Venn diagram (Fig. 1) shows.

An open problem is whether starting from a classical linear, self-orthogonal, and binary
code, do we always get a CSS code? Another open problem would be to find an alternative
way of getting at our logical qudit construction by directly using the (high-dimensional)
kernel of the matrix A. It would also be interesting to see an extension of our formalism to
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encompass all stabilizer codes, and indeed, any arbitrary quantum code. With the exception
of permutation invariant codes (subsection 2.4.5), most of the analysis herein takes the
classical codewords and uses them to define a product basis over which the logical quantum
states are defined. The extension of our results to include non-product basis for the logical
codewords calls for further investigation.

Motivated by the physical implementation of quantum error correcting codes, we gave
a local, frustration-free, Hamiltonians whose ground space has a quantum code with linear
distance as a subspace. The model we have is translation-invariant but that is not essential
and can easily be relaxed. A major open problem has been to construct ’good’ quantum
LDPC (QLDPC) codes, where ’good’ means that the quantum code must have a linear
distance. To the best of our knowledge, there is no unique definition for QLDPC codes
besides that they should be in the ground space of local Hamiltonians. To this end, one may
call our work a ’good’ subspace QLDPC code. However, it would have been more satisfactory
if the code is all of the ground space. It is our hope that this work might help in eventually
realizing a good QLDPC code.

Another interesting problem is to find a Hamiltonian whose ground space is quantum code
with a macroscopic distance, and the local and global ground states satisfy a consistency
criterion as defined in [BH11]. This would then serve as the first example of topological
quantum order in one-dimension. We would have found it easy to prove a gap above the
degenerate ground space of the local Hamiltonian herein; however, since the code occupies
a subspace of the ground space one would need to prove a ’local gap’ lower bound. This
means that in order to move from a subspace of the ground space to another subspace an
operator with a large support needs to be applied.

2 Part 1: Explicit quantum codes from classical codes

2.1 Constructing a logical qubit with linear distance

In this section, we want to design q-ary quantum codes with bit-flip distance of dX and a
phase-flip distance of dZ using a q-ary classical code C ⊂ {0, 1 . . . , q − 1}n as an input. The
minimum distance of the quantum code is then d = min(dX , dZ).

To correct errors on q-ary quantum codes, we consider errors in the generalized Pauli
basis. Let us denote by ω the primitive root of unity ω ≡ exp(2πi/q). The Z and X type
Pauli matrices are respectively given by

Z =

q−1∑
j=0

ωj |j〉〈j| , X =
∑
j∈Zq

|j〉〈j + 1| . (5)

And any Pauli operator is equivalent to XaZb up to a phase for some a, b = 0, . . . , q − 1.
We consider the set Pauli operators on n qudits Pn = {XaZb : a, b = 0, . . . , q − 1}⊗n that
span the space of linear operators on n qudits. Given any Pauli in Pn that has the form
P = Xa1Zb1 ⊗ · · · ⊗ XanZbn , we denote wtX(P ) = wt(a) and wtZ(P ) = wt(b), where
a = (a1, . . . , an), b = (b1, . . . , bn), and wt(·) denotes the Hamming weight of the vector. It
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is easy to see that for any non-negative integer r ≤ n, we have
∑r

w=0 |Zw| = Vq(r), where

Vq(r) =
r∑

w=0

(
n

w

)
(q − 1)w

denotes the volume of the q-ary Hamming ball of radius r.
For the KL criteria to hold for a quantum code with logical codewords |0L〉 and |1L〉 on

n qubits with a bit-flip distance of dX and a phase-flip distance of dZ , it suffices to require
that for all generalized Pauli matrices P such that wtX(P ) ≤ dX − 1 and wtZ(P ) ≤ dZ − 1,
these hold:

〈0L|P |0L〉 = 〈1L|P |1L〉 (6)

〈0L|P |1L〉 = 0 . (7)

Eqs. (6) and (7) are the non-deformation and orthogonality conditions respectively. If we
demand that

1. dist(C) ≥ dX : the minimum distance of C is at least dX

2. Supp(0L) ∩ Supp(1L) = ∅ : (the logical codewords |0L〉 and |1L〉 are supported on
distinct codewords in C),

then the orthogonality condition (Eq. (7)) trivially holds. To verify the non-deformation
condition (Eq. (6)), we note that 〈0L|P |0L〉 = 〈1L|P |1L〉 = 0 whenever P is not diagonal.
Hence the only non-trivial cases to be verified are the diagonal generalized Pauli operators,
where the set of diagonal Pauli operators of weight w is

Zw = {Zz1 ⊗ · · · ⊗ Zzn : wt(z) = w} . (8)

In general, for any diagonal Pauli operator P , the expectations 〈0L|P |0L〉 and 〈1L|P |1L〉
are complex numbers. This is in contrast to the case where P are Kraus operators of the
amplitude damping channel, in which all such expectations are real, or when P are diagonal
operators and q = 2. For Eq. (6) to hold, the following has to hold for all Paulis P with a
weight at most d− 1:

Re (〈0L|P |0L〉)− Re (〈1L|P |1L〉) = 0

Im (〈0L|P |0L〉)− Im (〈1L|P |1L〉) = 0 ,

The quantum code we define depends on a “balanced” real non-zero column vector x =
(x1, x2, . . . , xm)T in the sense that

m∑
i=1

xi = 0.

Let x+
k = max{xk, 0}, x−k = min{−xk, 0}, and x = x+

1 + · · ·+x+
m. We can decompose the vec-

tor x into its positive and negative components x = x+−x− where x+ = (x+
1 , . . . , x

+
m)T and

x− = (x−1 , . . . , x
−
m)T respectively. We also have x = ‖x+‖1 = ‖x−‖1 = ‖x‖1 /2. For example,
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using this notation x = (1, 2,−1,−1,−1)T gives x+ = (1, 2, 0, 0, 0)T and x− = (0, 0, 1, 1, 1)T ,
and x = 3.

In our construction of quantum codes using the classical code C, we only consider logical
codewords that are linear combinations over labels in C with only real coefficients. Hence,
we define the two logical codewords of our quantum code as

|0L〉 =
1√
x

(√
x+

1 |c1〉+ · · ·+
√
x+
m|cm〉

)
, (9)

|1L〉 =
1√
x

(√
x−1 |c1〉+ · · ·+

√
x−m|cm〉

)
. (10)

Since that x+
j x
−
j = 0 for all j ∈ [m], the logical states |0L〉 and |1L〉 have disjoint supports.

We next clarify the connection between x and the non-deformation conditions by con-
structing a real matrix A that enforces these conditions. Roughly speaking, this matrix has
rows labeled by diagonal Pauli errors of weight at most dZ − 1 and columns labeled by the
states |c1〉, . . . , |cm〉. While the ordering of the rows of A is unimportant, we will collect the
rows in groups corresponding to the weights of P . The matrix A is defined by

A =
∑
P∈Z0

m∑
k=1

|P 〉〈k|+
d−1∑
w=1

∑
P∈Zw

m∑
k=1

{Re (〈ck|P |ck〉) |P, 0〉〈k|+ Im (〈ck|P |ck〉) |P, 1〉〈k|} .

(11)
In matrix representation A is a wide rectangular matrix and writes

A =


1 · · · 1
a2,1 · · · a2,m

... · · · ...
a2Vq(2t)−1,1 · · · a2Vq(2t)−1,m

 ≡


−aT1−
−aT2−

...
−aT2Vq(2t)−1−

 (12)

where ar = (ar,1, . . . , ar,m)T are column vectors. The reason for introducing the matrix A is
that the non-deformation condition for correcting t errors using the vector x is enforced by
the constraint (see Fig.4)

Ax = 0 .

Lemma 1. Let x be a non-zero real vector such that Ax = 0. Let |0L〉 and |1L〉 be logical
codewords that depend on x as in Eqs. (9) and (10). Then 〈0L|P |0L〉 = 〈1L|P |1L〉 for any
diagonal Pauli of weight at most dZ − 1.

Proof. Recall that x = x+
1 +· · ·+x+

m. Since each |ck〉 is a product state, we have 〈cj|P |ck〉 = 0
for all distinct j and k, and for all diagonal Pauli of weight at most dZ − 1. We can use the
definitions of logical codewords (Eqs. (9) and (10)) to write

x (〈0L|P |0L〉 − 〈1L|P |1L〉) =
m∑
k=1

x+
k 〈ck|P |ck〉 −

m∑
k=1

x−k 〈ck|P |ck〉

=
m∑
k=1

xk〈ck|P |ck〉

9
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Figure 4: Illustration of solution of Ax = 0 via Lemma 1.

where on the second line we used xk = x+
k − x

−
k . Using Eq. (11) we see that 〈ck|P |ck〉 =

〈P, 0|A|k〉+ i〈P, 1|A|k〉. Therefore

x (〈0L|P |0L〉 − 〈1L|P |1L〉) =
m∑
k=1

xk (〈P, 0|A|k〉+ i〈P, 1|A|k〉)

=
m∑
k=1

(〈P, 0|Axk|k〉+ i〈P, 1|Axk|k〉)

= 〈P, 0|Ax + i〈P, 1|Ax ,

because x =
∑m

k=1 xk|k〉. Since the first row ofA is all ones, Ax = 0 implies 〈0L|0L〉 = 〈1L|1L〉.
Moreover, in the above, P is an arbitrary diagonal Pauli of weight at most dZ − 1, and the
requirement Ax = 0 implies 〈0L|P |0L〉 = 〈1L|P |1L〉 for any diagonal Pauli of weight at most
dZ − 1.

The condition Ax = 0 is satisfied for any x ∈ ker(A). It is then important to understand
the structure of the kernel. Since A is real, any vector in its kernel must be real, which
we then use to design an explicit quantum code that obeys the generalized orthogonality
conditions above. Whenever |C| ≥ 2Vq(dZ − 1), that is the number of codewords in C is
strictly greater than the number of rows in A, by the rank-nullity theorem, A must have a
non-trivial kernel. We thus have the following existence theorem for quantum codes that
reside within the ground space of Hn.

Lemma 2. (Existence) Let C have a minimum distance at least dX . If |C| ≥ 2Vq(dZ − 1),
then Alg. 1 constructs a quantum code with one logical qubit and with a bit-flip and phase-flip
distance of dX and dZ respectively. Moreover, this quantum code can be constructed from
any nonzero x ∈ ker(A).

This lemma shows that we can derive the logical codewords of our quantum code from a
classical code, and only requires C to have a minimum distance of dX and for |C| to be at
least twice the size of the q-ary Hamming ball of radius dZ − 1.
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We proceed to derive a more explicit expression for the entries of the matrix A in Eqs. (11)
and (12). We will show that these entries are elements of a finite-sized set given by

{cos(2πk/q) , sin(2πk/q) : k = 0, . . . , q − 1} . (13)

For any classical string c = (c1, . . . , cn)T ∈ C with ci = 0, 1, . . . , q − 1, the quantum state is
|c〉 = |c1, c2, . . . , cn〉, and when P = Zz1 ⊗ · · · ⊗ Zzn , we have

〈c|P |c〉 =
n∏
j=1

〈cj|Zzj |cj〉 =
n∏
j=1

〈cj|
∑
k∈Σc

(ωk)zj |k〉〈k|cj〉 =
n∏
j=1

ωzjcj = ωzT c (14)

= cos

(
2π zTc

q

)
+ i sin

(
2π zTc

q

)
. (15)

The first row of A is all ones, and all other entries are given by

A′ =

dZ−1∑
w=1

∑
wt(z)=w

∑
c∈C

[
cos

(
2π zTc

q

)
|z, 0〉〈c|+ sin

(
2π zTc

q

)
|z, 1〉〈c|

]
. (16)

Since zTc is always an integer, it follows that the entries of A must take values from the set
in (13).

Remark 1. In Eq. (16) finding a solution in the kernel amounts to finding linear combination
of roots of unity that vanish. There is a vast literature on this topic and properties of the
underlying code that controls the values of the integers zTc can in principle be utilized to give
analytic solutions.

Remark 2. When q = 2, all rows in A′ that are labeled by |z, 1〉 are equal to zero, because
the argument of the sine is always an integer multiple of π.

This section is summarized in the following algorithm:

Algorithm 1. Input: A classical code C ⊂ {0, 1, . . . , q − 1}n with m ≡ |C|.

• Form the matrix A defined by Eq.(11).

• Solve Ax = 0 to find x 6= 0. Define x+,x− ≥ 0 such that x = x+ − x− as in Lemma 1

• Let C0 be the set of codewords ck with k ∈ supp(x+). And let C1 be the set of codewords
ck with k ∈ supp(x−).

• For all c ∈ C0, assign α
(0)
c =

√
x+
c , and for all c ∈ C1, assign α

(1)
c =

√
x−c .

Output: A logical quantum bit with codewords |oL〉 and |1L〉 as defined in Eqs. (9) and (10).
The code distances are dX = dist(C) and dZ that satisfies m > 2Vq(dZ − 1)− 1.

11



2.2 Constructing logical states with linear distance and constant
rate

In building a single logical qubit we used any one non-zero solution in the kernel of A to
identify two disjoint subsets C0 and C1. Since the number of rows is 2Vq(dZ − 1)− 1 and the
number of columns by Gilbert-Varshamov bound satisfies m ≥ qn/Vq(dZ − 1), we find that
the ratio of the number of columns to the number of rows is asymptotically exponentially
large

1

n
logq

(
m

# rows

)
≥ 1− 2Entq

(
dZ
n

)
,

dZ
n
∈
[
0,
q − 1

q

]
. (17)

Here we exploit this to derive roughly qn(1−2Entq(dZ/n)) logical quantum states, and hence
obtaining a linear rate r ≈ (1− 2Entq(dZ/n)). Below we think of M ∝ m/(# rows).

We now generalize the construction of two quantum states (a logical qubit) to more
quantum states (a logical qudit). Suppose we identify M subsets {C0, C1, . . . , CM−1} such
that Ci ⊂ C for all i ∈ {0, . . . ,M − 1} and that the subsets are pairwise disjoint Ci ∩Cj = ∅
for all i 6= j. Define the logical qudit as

|0L〉 =
∑
c∈C0

α(0)
c |c〉 , |1L〉 =

∑
c∈C1

α(1)
c |c〉 , . . . , |(M − 1)L〉 =

∑
c∈CM−1

α(M−1)
c |c〉 . (18)

where ,
∑
c∈C0

(
α(0)
c

)2
=
∑
c∈C1

(
α(1)
c

)2
= · · · =

∑
c∈CM−1

(
α(M−1)
c

)2
= 1 : normalization.(19)

Clearly these states are orthonormal. The KL criteria then writes

ΠP Π = cP Π (20)

where Π = |0L〉〈0L| + |1L〉〈1L| + · · · + |(M − 1)L〉〈(M − 1)L| is a projector of (potentially
exponentially large) rank M . The orthogonality and non-deformation conditions now write:

〈iL|P |jL〉 = cP δi,j , i, j ∈ {0, 1, 2, . . . ,M − 1} .

We first check orthogonality. Since the subsets are pairwise disjoint and futhermore C has
a minimum distance of dX , we have 〈iL|P |jL〉 = 0 for all i 6= j for and all diagonal Paulis.
Moreover, 〈iL|P |jL〉 = 0 if 1 ≤ wtX(P ) ≤ dX − 1, which is inherited from the classical
code’s distance dX . We now turn our attention to the non-deformation condition. As before
it is clear that 〈iL|P |iL〉 = 0 for all i ∈ {0, 1, . . . ,M − 1} and Paulis with 1 ≤ wtX(P ) ≤
dX − 1. This follows from the distance of the code as before. Therefore, it is again sufficient
to prove the non-deformation condition for diagonal Paulis. We need to find the subsets
C1, C2, . . . , CM−1 such that

〈0L|P |0L〉 = 〈1L|P |1L〉 = · · · = 〈(M − 1)L|P |(M − 1)L〉 . (21)

Our method constructs the sets C0, . . . , CM−1 such that they are disjoint and satisfy the
foregoing equation. Unlike the qubit case, our proof technique will not be seeking a solution
in the kernel of A anymore, rather we recursively build the logical quantum states.

Comment: It would be exciting to see an alternative construction that uses the exponen-
tially large kernel of the matrix A.

For every new logical state we need to call the following algorithm once:

12



Algorithm 2. Input: A set of 2Vq(dZ−1) columns of A and a vector b of size 2Vq(dZ − 1)− 1.

• Check that the augmented homogeneous linear system as described in Section 5 of [Din26]
does not have a row that is all of the same sign.

• If no row has non-zero entries of the same sign, apply the algorithm of [Din26] to find
a point in the feasible set, i.e., a solution x ≥ 0. End the algorithm.

• If there is a row that is all of same sign, augment the set of columns by one and repeat.
If all the columns are exhausted, then output fail.

Output: If succeeded, output a solution x ≥ 0 in the feasible set.

If recursively successful, then the algorithm can at least be called m/2Vq(dZ − 1) =
qn(1−2Entq(dZ/n)) times. The success is guaranteed if at any step of recursion no row of all the
same sign is encountered.

We demonstrate the recursive construction of logical quantum states by first building a
qutrit (three logical states). Recall that A has 2Vq(dZ − 1) − 1 rows whose first row is all
ones, we now proceed to find a natural partitioning of the columns of A. To construct a
logical qubit, we use the first 2Vq(dZ − 1) columns of A as follows. Let the matrix A′1 be
defined by the first 2Vq(dz − 1) columns of A. Now solve for the solution x1 in A′1x = 0,
where x1 has 2Vq(dZ − 1) components. This matrix equation certainly has a non-trivial
kernel because it has more columns than rows. Just as in the one logical qubit construction
in Alg. 1 we will find an x = x+ − x− where x+ ≥ 0 and x− ≥ 0,

∑
i x

+
i =

∑
i x
−
i , and

that supp(x+) ∩ supp(x−) = ∅. We build the logical qubit exactly as in Eqs. (9) and (10).
We then rearrange the columns of A′1 according to the supports of x+ and x− and write

the concatenated matrix [A1A2], where A1 has a set of columns labeled by codewords cs such
that s ∈ supp(x+) and A2 has columns labeled by codewords cs such that s ∈ supp(x−).
The new equation being satisfied is

[A1A2]

[
x+
1

−x−
1

]
= 0 ,

where x+
1 ,x

−
1 ≥ 0. To build the third logical state, we select a set of 2Vq(dZ − 1) new

columns out of A and solve

[A2A3]

[
−x−

1

x2

]
= 0 , x2 ≥ 0,

where −x−
1 is treated fixed from the previous step and we solve for a solution x2 ≥ 0. A

solution exists as A3x2 = A2x
−
1 is under-constrained. Although this can be formally thought

of as a linear programming problem, where the objective function is just zero and a point
in the feasible set is sought, we proceed differently and give an explicit algorithm based on
Dines’ Annals of Math (1926) [Din26].

Once x2 ≥ 0 is found this way, we proceed to solve

[A3A4]

[
x2

−x3

]
= 0 , x3≥ 0,
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where now x3 is the unknown. Just as before this amounts to solving A4x3 = −A3x2

where the right-hand side is a known vector. Continuing this way we can build 2 ≤ M ≤
qn(1−2Entq(

dZ
n

)) logical states.
The results of this section prove the following main theorem of part 1 of this work:

Theorem 1. Take a classical code C of length n on a q-ary alphabet with a minimum distance
of dX . If |C| ≥ 2Vq(dZ − 1), then Alg. 1 and multiple calls to Alg. 2 explicitly derives the M
quantum logical states in (18) with bit- and phase-flip distances of dX and dZ respectively.
The overall distance is min(dX , dZ).

When A matrix is wide (under-constrained) Alg. 1 always constructs two logical code-
words (a logical qubit). The third and subsequent logical codewords are found recursively
by calling Alg. 2 multiple times. Alg. 2 succeeds with high probability and almost surely
over random codes. In the rare case that the set of linear constraints have rows that are
all non-zero and are of the same sign, the recursion becomes infeasible and algorithm halts.
As shown in [Din26] this is the only way that the algorithm can fail. We define a random
classical code as one whose codewords have entries over Σ = {0, 1, 2, . . . , q − 1} such that
each entry is independently and randomly drawn from the uniform distribution over Σ.

Lemma 3. M quantum logical states can be constructed as long as in each step of the
recursion, no row other than the first has entries that are all non-zero and with the same
sign. When C is a random classical code, then with high probability, Alg. 2 succeeds in
providing a quantum code with constant rate.

Proof. The first part of the Lemma follows from the proof of Dines [Din26] applied to every
step of the recursion. To prove the second part, first recall that at each step we are solving
a linear system with ρ ≡ 2Vq(dZ − 1) columns and ρ− 1 rows. To find positive solutions of
this linear system, we employ Dines algorithm which is itself recursive. Hence we will prove
that at every step of Dines recursive algorithm, it fails with low probability. We prove this
by induction, first starting with the base case.

Recall that ω ≡ exp(2πi/q). For every diagonal P of weight at least one, 〈c|P |c〉 is
a random variable that takes the values {1, ω, . . . ωq−1} with a uniform probability. From
Eq. (15) we know that each 〈c|P |c〉 is equal to a ωj for some j ∈ {0, 1, . . . , q − 1}. That is,
Re(〈c|P |c〉) and Im(〈c|P |c〉) are random variables that take values in [−1, 1]. Since the code
words are random and uniformly distributed over the symbols, by symmetry the probability
of an entry having a positive (or negative) sign is a half when q is even and is at most 2/3
when q is odd. Moreover the entries are independent. Hence the probability that a given
row has all the same sign is (3/2)−ρ+1. And by a union bound, the probability that any of
the ρ− 1 rows have entries whose all entries have the same sign is O(ρ (3/2)−ρ).

Now we prove the induction step. We take q to be even for now, which ensure that aij
are symmetric random variables with mean zero. Note that Dines algorithm takes a matrix
with matrix elements aij, and constructs a new matrix ar,ij = a1iarj − a1jari. In the new
matrix, the indices i and j belong to disjoint sets I and J . The number of columns in the
new matrix is |I||J |. For the induction hypothesis, we assume that the matrix elements
aij are identical and symmetric random variables with zero mean, which are furthermore
independent with respect to the column index j. We will show that ar,ij will then also be
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a symmetric random variable with zero mean and also furthermore be independent with
respect to the new column indices ij.

We now show that the ar,ij has zero mean. For that we see E(ar,ij) = E(a1iarj)−E(a1jari)
because the expectation is linear. Next the independence of i and j imply that E(a1iarj) =
E(a1i)E(arj) and E(a1jari) = E(a1j)E(ari). Substituting this shows that E(ar,ij) = 0 because
aij are independent random variables with mean zero.

We now note that the random variables ar,ij are independent with respect to the column
labels ij. This follows readily from the independence of aij with respect to j. For instance,
treat i to be fixed and consider ar,ij and ar,ij′ for j 6= j′.

We next show that the random variables ar,ij are symmetric. For this, we use the fact
that the product of non-degenerate symmetric random variables is a symmetric random
variable [HW85].

In the base case, we have shown that aij satisfies the induction hypothesis with high
probability. We have just shown that ar,ij is symmetric, independent, and has zero mean
with respect to ij. This proves that its entries have equal probability of being positive or
negative.

It remains to bound the probabilities of failure of our algorithm under our recursion and
Dines recursion. With high probability, the product |I||J | is going to be greater than the
number of columns in aij. As shrinking the number of columns will only be due to at most
one entry of a different sign, this happens with very low probability. The probability of this
happening is at most 2ρ(1/2)ρ−1 for large ρ. The probability of a single row with all the
same sign is at most 2(1/2)ρ. Hence the total probability of a given row being pathological
is at most 2(1/2)ρ + 2ρ(1/2)ρ−1 = O(ρ(1/2)ρ). The probability of a matrix at any step
of Dines recursion to have a pathological row is therefore at most O(ρ2(1/2)ρ)). Since our
algorithm has O(m/ρ) steps, our algorithm’s failure probability is at most O(mρ(1/2)ρ).
Since m2−ρ is at most (2n2−2cn) for some constant c ∈ [0, 1], our algorithm will succeed with
overwhelming probability. Although this proof is specialized for the case where q is even, a
similar argument will work for q odd.

In the next section, We find that even if this happens we can always construct Ap-
proximate Quantum Error Correcting Codes (AQECC) [LNCY97] with linear distance and
constant rate, provided that, the underlying classical code also has a linear distance and a
sufficiently large rate.

2.3 AQECCs with designed rates

In the unlikely case, where building logical quantum states using Alg. 2 of the previous section
fails, we can always build an AQECC as we now show. We introduce an algorithm that
produces a quantum code with M logical codewords satisfying the KL criteria approximately.
Here M can be strictly larger than 2 at the expense of an approximation error, which is equal
to the infidelity of quantum code.

Suppose C1, . . . , CM/2 are disjoint subsets of the classical code C whose minimum distance
is dX . Hence each Cj, j ∈ [M/2] inherits the distance dX , where we take M to be even for
simplicity. Suppose that for every j ∈ [M/2], it holds that

|Cj| ≥ 2Vq(dZ − 1) . (22)

15



For each classical code Cj, we use Alg. 1 to construct a corresponding matrix Aj from which
we derive logical codewords |(2j)L〉, |(2j−1)L〉 that satisfy the KL criteria for quantum codes
with a bit-flip and phase-flip distance of dX and dZ respectively.

It is clear from our construction that for every diagonal Pauli P of weight at most dZ−1,

〈(2j)L|P |(2j)L〉 = 〈(2j − 1)L|P |(2j − 1)L〉 = γj,P (23)

where γj,P is a complex number of norm at most one. Now for each j ∈ [M/2], let Γj = (γj,P )
be a row vector of length Vq(dZ − 1) with components that correspond to diagonal Paulis
of weight at most dZ − 1. Then it follows that each Γj lies in a |Vq(dZ − 1)|-dimensional
complex unit ball corresponding to a hyper-cube of length two centered at the origin with
respect to the infinity norm.

Suppose maxj,k∈[M/2] ‖Γj − Γk‖∞ = δ. Then because of Eq. (23) we have

max
j,k=1,...,M

max
P
|〈jL|P |jL〉 − 〈kL|P |kL〉| = δ. (24)

It remains to find a suitable upper bound for δ. To relate the error δ in satisfying the non-
deformation to the size of the code |C| and the number of logical qubits we can construct,
we rely on the following fact.

Fact. Consider the complex hyper-cube of side length two in N dimensions. Let x be the
number of points distributed randomly inside it. Then there exists a ball of radius δ in the
infinity norm that contains at least x(δ/2)N points in expectation.

The number of points inside the unit hyper-cube is x = b|C|/(2Vq(dZ − 1))c. The radius
of the ball is δ. The dimension of the hyper-cube is Vq(dZ − 1). Hence from the above fact,
we have that the expected number of logical codeword pairs is EM = 2x(δ/2)N which writes

EM ≥ 2

⌊
|C|

2Vq(dZ − 1)

⌋(
δ

2

)Vq(dZ−1)

. (25)

The infidelity ε defined by one minus the worst case entanglement fidelity of the quantum
code can be upper bounded as shown in [Ouy14], to be

ε ≤ O
(
δ V 4

q (dZ − 1)
)
, (26)

when the noisy quantum channel introduces bit-flip and phase-flip weights at most dX − 1
and dZ − 1 uniformly at random.

2.4 Illustrations

In this section we illustrate our framework through a series of examples. It is noteworthy
that the first example is a one-to-one correspondence between the celebrated classical and
quantum results of Hamming’s and Steane’s respectively.
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2.4.1 C as a [7,4,3] Hamming code gives the Steane code

In classical coding theory, we use the notation (n,m, d) to denote a binary code with code-
words of length n that has m codewords, a distance of d. We use [n, log2m, d] to denote a
binary code with codewords of length n that has m codewords, a distance of d, and is fur-
thermore a linear code. Consider the case when C is generated from the codewords 1000110,
0100101, 0010011, and 0001111. This classical code is the celebrated [7,4,3] Hamming code,
and has been used previously by Steane to obtain the [[7,1,3]] Steane code. Applying our
framework to C, we get the unique solution

|0L〉 =
1√
8

(|0, 0, 0, 0, 0, 0, 0〉+ |0, 0, 0, 1, 1, 1, 1〉+ |0, 1, 1, 0, 1, 1, 0〉+ |0, 1, 1, 1, 0, 0, 1〉

+|1, 0, 1, 0, 1, 0, 1〉+ |1, 0, 1, 1, 0, 1, 0〉+ |1, 1, 0, 0, 0, 1, 1〉+ |1, 1, 0, 1, 1, 0, 0〉) (27)

|1L〉 =
1√
8

(|0, 0, 1, 0, 0, 1, 1〉+ |0, 0, 1, 1, 1, 0, 0〉+ |0, 1, 0, 0, 1, 0, 1〉+ |0, 1, 0, 1, 0, 1, 0〉

+|1, 0, 0, 0, 1, 1, 0〉+ |1, 0, 0, 1, 0, 0, 1〉+ |1, 1, 1, 0, 0, 0, 0〉+ |1, 1, 1, 1, 1, 1, 1〉) . (28)

This is in fact equivalent to the Steane code.

2.4.2 C as a [6,3,3] code

The set of all three-bit strings comprises of 000, 001, 010, 011, 100, 101, 110, and 111.
Now append each string with another three-bit string so that C = [6, 3, 3] comprises of the
codewords 000000, 001110, 010101, 011011, 100011, 101101, 110110, and 111000. When the
designed minimum distance of the quantum code is 3, our algorithm finds no quantum code.
However if the designed distance is reduced to 2, then we derive the following error detecting
quantum code

|0L〉 =
1

2
(|0, 0, 0, 0, 0, 0〉+ |0, 1, 1, 0, 1, 1〉+ |1, 0, 1, 1, 0, 1〉+ |1, 1, 0, 1, 1, 0〉) (29)

|1L〉 =
1

2
(|0, 0, 1, 1, 1, 0〉+ |0, 1, 0, 1, 0, 1〉+ |1, 0, 0, 0, 1, 1〉+ |1, 1, 1, 0, 0, 0〉) (30)

2.4.3 C as a [4,2,2] code.

When the designed minimum distance of our quantum code is 2, we find no quantum code
when our algorithm uses the classical code C = [4, 2, 2] with codewords 0000, 1010, 1101,
and 0111.

2.4.4 C as a nonlinear cyclic code

Now consider the nonlinear (4,8,2) code with codewords that are cyclic permutations of 0001
and 1110. The corresponding kernel of the matrix A has dimension 3, and one solution to
this gives an error detecting quantum code with logical codewords

|0L〉 =
1√
2

(|0, 0, 0, 1〉+ |1, 1, 1, 0〉) (31)

|1L〉 =
1√
2

(|0, 0, 1, 0〉+ |1, 1, 0, 1〉). (32)
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In fact, we can also have the additional logical codewords

|2L〉 =
1√
2

(|0, 1, 0, 0〉+ |1, 0, 1, 1〉) (33)

|3L〉 =
1√
2

(|1, 0, 0, 0〉+ |0, 1, 1, 1〉). (34)

This gives a quantum code of dimension 4 and a minimum distance of 2. This quantum
code is also an example of a CWS code. This is because for every j = 0, 1, 2, 3, there is a
Pauli operator that takes the stabilizer state 1√

2
(|0, 0, 0, 0〉 + |1, 1, 1, 1〉) to |jL〉. Since this

quantum code is CWS, quantum error correction can proceed using formalism developed for
CWS codes [CSSZ08]. This quantum code also has some other attractive properties. First,
by inducing cyclic shifts in the underlying qubits, we can move from one logical codeword to
another. Second, this quantum code is stabilized by X⊗4 and is affected uniformly by Z⊗4.
Together, his implies that the quantum code is invariant under transversal X and Y and Z
operations.

2.4.5 Permutation-invariant quantum codes

Our quantum code construction formalism can also extend to quantum codes with logical
codewords that are supported on non-product basis states. One example of such codes
are permutation-invariant quantum codes, which are invariant under any permutation of
the underlying particles. Permutation-invariant quantum codes have been explicitly con-
structed using a variety of different techniques [Rus00, PR04, Ouy14, OF16, Ouy17, OC19].
Recently, permutation-invariant quantum codes have been consider for applications such as
for quantum storage [Ouy19], or for robust quantum metrology [OSM19], and they can also
be prepared in physically realistic scenarios [WWG+19].

When permutation-invariant quantum codes are constructed on n qubits, they must be
superpositions over Dicke states

|Dn
w〉 =

1√(
n
w

) ∑
x1,...,xN∈{0,1}
x1+···+xn=w

|x1〉 ⊗ · · · ⊗ |xn〉. (35)

Here w is the weight of the Dicke state, and counts the Hamming weights of its constituent
computation basis states’ labels. The Dicke states for qubit states are labeled by only their
weights, of which there are only n+ 1 possibilities. For our quantum code construction, we
can choose the logical states to be supported on |Dn

w1
〉, . . . , |Dnwm〉 where wj+1−wj ≥ d for

any j = 1, . . . ,m− 1, and d is the desired minimum distance of the quantum code.
When a quantum code is permutation-invariant, we only need to consider equivalence

classes of Pauli operators up to a permutation. Since because for Dicke states, 〈Dn
w|P |Dn

w〉
are not necessarily zero even when the Pauli P is non-diagonal [OSM19], we need to count
the number of all Paulis of weight at most d−1 up to a permutation. The number of unique
qubit-Paulis up to a permutation having a weight of at most w is equal to the number of
ways to order a w-tuple in {1, 2, 3}w in a non-decreasing sequence, and this number is just(
n+w−1

w

)
. Hence to total number of Paulis that we need to consider for the non-deformation

conditions is at most
∑d−1

w=0 3w.
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Now we consider a variation of the A-matrix from Alg. 1 with the matrix elements

〈Dn
wj
|P |Dn

wj
〉, (36)

where P labels the rows and j labels the columns.
From this, we can get permutation-invariant quantum codes with a minimum distance of

d whenever

(bn/dc+ 1) ≥ 1 +
d−1∑
w=0

3w. (37)

For instance, when d = 3 this inequality becomes

bn/3c ≥ (1 + 13), (38)

and this formalism show that we can get gives permutation-invariant codes with a distance
of d = 3 when n ≥ 42. This bound is however loose, because there are permutation-invariant
quantum codes with d = 3 on 9 qubits [Rus00, Ouy14], and even on 7 qubits [PR04]. This
suggests that rather than using loose bounds on the nullity of the A matrix in Alg. 1, we
need to exploit additional structure about the kernel of A to realize the full potential of our
formalism.

2.5 Optimality

If we take the metrric of optimality to be maximization of the distance d for fixed length n
and number of encoded qubits k, then our construction is not optimum. This is because the
five-qubit code is the unique [[5,1,3]] code, and our framework does not encompass it.

We demonstrate examples of optimal quantum codes using our framework which use the
Hamming code and a nonlinear cyclic code in Sec. 2.4.1 and Sec. 2.4.3 respectively.

However, let us additionally impose the constraint (C1) that logical codewords must be
supported on disjoint subsets of computational basis states. (C1) is satisfied by all CSS
codes. Our framework generalizes CSS codes, but does not encompass all quantum codes.
For example many stabilizer codes are not captured by our framework. Then our framework
can give optimal quantum codes with (C1). For construction of a logical qubit, we can
impose a second constraint, (C2), which is that the quantum code must be supported on a
fixed classical code C, in addition to satisfying (C1). Then as long as the A-matrix from
Alg. 1 has a kernel of dimension one, then the construction is optimal with respect to (C2).

We can also define a notion of optimality for our quantum codes that encode more than
a logical qubit. Given a fixed classical code C, if the number of logical codewords in our
derived quantum codeword using Alg. 1 and Alg. 2 is equal to the dimension of the nullspace
of the A-matrix in Alg. 1 plus on, then we say that our quantum code is optimal. For
instance, we find that the Steane code is an optimal construction, and also find an optimal
construction using the nonlinear cyclic code that encodes four logical codewords.
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3 Part 2: Linear distance codes in ground space of

local Hamiltonians

3.1 Why introduce a Hamiltonian?

Theoretical

This model is of theoretical interest because it allows for the encoding of linear distance
codes in its ground space. Encoding quantum information in the ground space of physical
Hamiltonians has a long history dating back to Kitaev’s toric code [Kit03]. A motivation
for our work was the nice work of Brandao et al. [BaCimcbuB19] where existence of codes
in low energy eigenstates of local translation invariant spin chains were found. In this work
we came up with explicit and exact constructions and overcome some of the limitations of
that work. These were detailed in the introduction and will be elaborated on below.

It is our hope that this line of work will prove useful in constructing QLDPC codes with
linear distance, which despite recent progress [TZ13, CDZ13, BH14, KT20, EKZ20, HHO20]
has been a long standing open problem.

Applied and engineering

Finding new quantum codes can help hasten the dream of fault-tolerant quantum computa-
tion. Our method is distinct from other widely used methods to construct quantum codes
from classical codes, such as for CSS codes, stabilizer codes, and codeword-stabilized codes.
A key feature of our code construction is that we can take as input a general classical code,
and demand that the quantum code we construct must be supported on the computational
basis vectors that are labelled by these classical codewords. The non-trivial solution of the
nullspace then gives us the amplitudes over with the logical zero and logical one of our
quantum code will assume.

Our proposal to engineer a two-local Hamiltonian to stabilize quantum information is
in line with the ideas utilizing quantum control techniques to suppress the noise before
employing quantum error correction. We differ from traditional approaches in quantum
control procedures where one typically applies dynamical decoupling pulses to create an
essentially a trivial identity Hamiltonian that acts on the system when no quantum gates
are performed. In this situation, however, local errors are not energetically penalized. In
contrast, one might envision that quantum control methods can engineer a Hamiltonian
that energetically penalizes the dominant noise rates that occur in a quantum system before
introducing quantum error correction [ML14].

In many practical physical systems, noise is biased and can be dominated by bit-flip
or phase-flip type errors. We consider a base noise model that is dominated by bit-flip
type errors. On a spin-system, we expect our Hamiltonian to energetically penalize bit-flip
errors. This would allow our engineered Hamiltonian to greatly suppress the noise rates of
the dominant (bit-flip) type of errors. The remaining errors can then be cleaned up using
our quantum code with a linear distance. The advantage of engineering our Hamiltonian, as
compared to, for instance, the surface code Hamiltonian, is that the Hamiltonian terms that
we require are two-local, whereas the surface code requires many-body interactions, which
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is challenging to realize in practice.
The Hamiltonian we will introduce has the form Hn =

∑n−1
k=1 Hk,k+1; see Eq.(40). Its

ground space has a strict subspace that is the quantum code. We could make the model
sums of commuting local terms by considering a new Hamiltonian that skips all (say) even
interactions and write H ′n =

∑
k oddHk,k+1. The ground space of H ′n contains the ground

space of Hn and therefore also includes the quantum code. One could continue this way
and eventually get a Hamiltonian that is trivial (i.e., no interaction) H ′′ = I for which any
quantum code is in the “ground space”. The price one pays following this crooked path is
that Nature will help less and less in suppressing the rate at which errors appear.

Since our quantum code does not occupy the entire subspace of our designed 2-local
Hamiltonian, one might call it a subspace quantum LDPC code. The fact that we only use a
fraction of the ground space of our Hamiltonian indeed leads to our quantum code imposing
no energy penalty on phase errors. However, in a noise model where phase errors are rare,
this is not a problem, as we can clean up the few phase errors using subsequent quantum
error correction.

3.2 Local Hamiltonian and its ground space

Let us consider a spin chain of length n with open boundary conditions and the local Hilbert
space dimension of 2s + 1, where s ≥ 1 is a positive integer. We take a representation in
which |j〉 denotes the sz = j state of a spin-s particle:

Ŝz|j〉 = j |j〉, j ∈ Σ .

The local Hamiltonian whose ground space will be shown to contain a nontrivial quantum
error correcting code is

Hn = HJ
n +Hs

n (39)

where HJ
n = J

∑n
k=1 (|0〉〈0|)k. Recall that the Hamiltonian Hs

n, is defined by

Hs
n =

n−1∑
k=1

{
s∑

m=−s

Pm
k,k+1 +

s∑
m=1

Qm
k,k+1

}
, (40)

and the local terms are projectors acting on two neighboring spins k, k + 1 defined by

Pm = |0↔ m〉〈0↔ m| , Qm = |00↔ ±m〉〈00↔ ±m|; (41)

where

|0↔ m〉 ≡ 1√
2

[|0,m〉 − |m, 0〉] (42)

|00↔ ±m〉 ≡ 1√
2

[|0, 0〉 − |m,−m〉] , (43)

and we denoted by |j, k〉 the spin state |szk = j, szk+1 = k〉. There are 3s local projectors as
P 0
k,k+1 automatically vanishes. See Fig. 5.
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Figure 5: The new local integer spin-s Hamiltonian Hn.

In the simplest form s = 1, and we have

H1
n =

1

2

n−1∑
k=1

{|0↔ 1〉〈0↔ 1| + |0↔ −1〉〈0↔ −1| + |00↔ ±1〉〈00↔ ±1|} ,

where |1↔ 0〉 ∝ |0, 1〉−|1, 0〉, |−1↔ 0〉 ∝ |0,−1〉−|−1, 0〉, and |±1↔ 00〉 ∝ |0, 0〉−|1,−1〉.
Below we will be mostly interested in s > 1.

Lemma 4. Suppose H1 ≥ 0 and H2 ≥ 0, and H1 + H2 is a frustration free (FF) Hamilto-
nian with zero energy ground state. Then the ground space of H1 + H2 coincides with the
intersection of the ground spaces of H1 and H2.

Proof. Any state in the intersection of the kernels of H1 and H2 automatically vanishes
on H1 + H2. Conversely, a state |ψ〉 that is in the kernel of the sum H1 + H2 obeys
〈ψ|(H1 +H2)|ψ〉 = 0. Since each summand is a positive operator, so is their sum, and
for |ψ〉 to be a zero energy ground state of H1 + H2 it has to vanish on each summand
〈ψ|Hi|ψ〉 = 0 for i = 1, 2. Therefore |ψ〉 is a FF ground state of each Hi as well.

It is clear that
spec(HJ

n ) = J{0, 1, 2, . . . , n} (44)

whose gap we denote by ∆(HJ
n ) = J . The kernel of HJ

n is the span of all product states |t〉
of weight n, where t ∈ Σn

∗ ; note that the letter 0 is excluded in these strings.
We will obtain the ground space of Hn by taking the intersection of the ground space of

HJ
n with Hs

n. We proceed to analytically derive the ground space of Hs
n after preliminary

definitions. From now we assume that m is a positive integer unless stated otherwise.
Since Hs

n is free of the sign problem (i.e., stoquastic), the local projectors define an
effective Markov chain, which have the following correspondence:

Local Projector Local moves Interpretation

Pm 0m←→ m0 Spin transport: local exchange of spin m with 0
Qm 00←→ m,−m Spin interaction: local creation/annihilation of m,−m

22



We say two strings t, z are equivalent, denoted by t ∼ z if z can be reached from t
by applying a sequence of the local moves defined in the table. We define a set of equiv-
alence classes as follows. Let k denote the number of nonzero letters in a product state
(Eq. (45)). Using a consecutive set of the local moves stated above, we can take any state
. . .m0 . . . 0(−m) · · · → . . . 0 . . . 0m(−m)0 . . . 0 · · · → . . . 0000 . . . . We then move all the
zeros to the rightmost end and ensure that all strings are of the form

cx1,...,xk = x1 . . . xk 0 . . . 0︸ ︷︷ ︸
n−k

(45)

where xi ∈ Σ∗. By assumption the string x1 . . . xk cannot be further reduced and n − k is
the maximum number of zeros. Then it follows that if xi = m then it must not have to
its immediate right an xi+1 = −m for otherwise the annihilation rule (m,−m)→ 00 would
further reduce it.

Lemma 5. Any string t ∈ Σn is equivalent to one and only one cx1,...,xk (Eq. (45)).

Proof. By applying the local moves in the table above to any string t, one can make sure that
there are no substrings m(−m) or m0 · · · 0(−m) for any m ∈ [s], where [s] = {1, 2, . . . , s}.
Now suppose we apply these moves to t as much as possible to bring it as close as possible
to the state of all zeros. Then if t contains a single m, then the first non-zero letter to its
right cannot be −m. Similarly if t contains at least one −m then the first non-zero letter
to its left must not be m. By applying 0(−m) → (−m)0 and 0m → m0 we move all the
zeros to the right to obtain a string of the form given by Eq. (45). To prove that the set
of all strings equivalent to cx1,...,xk is indeed an equivalence class, we need to prove that the
classes are distinct. It is clear that any string is equivalent to itself (reflexive). If x ∼ y
and y ∼ cx1,...,xk then x ∼ cx1,...,xk (transitive). Lastly if x ∼ y, then y ∼ x because of the
reversibility of the local moves (symmetric). Therefore indeed the set of strings equivalent
to cx1,...,xk form an equivalence class and it is an elementary fact that equivalence classes are
distinct and partition the state space (i.e., the set of all strings) into disjoint subsets.

Lemma 6. The uniform superposition of all strings in an equivalence class (i.e., equivalent
to the irreducible string in Eq. (45)) is a (frustration free) zero energy ground state of Hs

n.

Proof. The Hamiltonian Hs
n in Eq. (40) is a sum of local projectors (Eq. (41)). If a ground

state ψ vanishes on each local projector, then for any m ∈ [s] it must obey 〈ψ|0m〉 = 〈ψ|m0〉,
〈ψ|0(−m)〉 = 〈ψ|(−m)0〉 and 〈ψ|00〉 = 〈ψ|m(−m)〉. It follows that ψ has the same amplitude
on a pair of equivalent strings s ∼ t, which means 〈ψ|s〉 = 〈ψ|t〉. It follows that the ground
subspace of Hs

n is frustration free and is spanned by the pairwise orthogonal states

|cxk
〉 ∝

∑
s∼cxk

|s〉 (46)

where to simplify the notation, we denoted xk = (x1, . . . , xk). Clearly each distinct xk results
in a distinct ground state |cxk

〉.

The ground states can be highly entangled. However, among the many ground states
there is a substantial subset that are all product states, i.e., k = n. We will use these to
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construct quantum error correcting codes. Before doing so let us answer: How many product
state ground states are there?

Let Tn be the set of all allowed 2s-ary strings t = t1t2 . . . tn of length n defined by

Tn ≡ {t ∈ Σn
∗ | if tj = m,m ∈ [s], then tj+1 6= −m} . (47)

Let |Tn| be the size of this set. Since T0 = ∅ and T1 = Σ∗, we have that |T0| = 1 and
|T1| = 2s.

Lemma 7. |Tn+2| = 2s|Tn+1| − s|Tn| , with |T0| = 1 and |T1| = 2s. We have

|Tn| =
sn

2
√

1− 1/s

{(
1 +

√
1− 1/s

)n+1

−
(

1−
√

1− 1/s
)n+1

}
. (48)

Asymptotically it holds that

|Tn| ≈
1 +

√
1− 1/s

2
√

1− 1/s

[
s(1 +

√
1− 1/s)

]n
; n� 1 . (49)

Proof. We prove this by induction, any t ∈ Tn is t = t1 . . . tn, where tj ∈ Σ∗. Since t1 can
be either a m or −m for some m ∈ [s], t is either t = (−m)t′, where the string t′ ∈ Tn−1

or t = mt′ where t′ denotes the subset of strings in Tn−1 that do not start with the letter
−m, i.e., t′1 6= −m. The number of strings t = (−m)t′ with t′ ∈ Tn−1 is clearly s|Tn−1|.
Now the set of all string t = mt′ with t′1 6= −m coincides with the set that excludes the
strings t = m(−m)t′′ where t′′ ∈ Tn−2. Since m takes on s different values, we have that the
number of strings t = mt′ with t′1 6= (−m) is s (|Tn−1| − |Tn−2|).

The total size of the set is then |Tn| = 2s|Tn−1| − s|Tn−2|, which is a linear recursion of
second order with initial conditions |T0| = 1 and |T1| = 2s. Shifting the indices to reflect
|T0| and |T2| as the starting values, we have

|Tn+2| = 2s|Tn+1| − s|Tn|.

The solution is elementary and of the form |Tn| = Arn++Brn− , where the two roots r± are r± =

s(1±
√

1− 1/s) and A =
1+
√

1−1/s

2
√

1−1/s
, B =

−1+
√

1−1/s

2
√

1−1/s
are obtained from the initial conditions

|T0| = 1 and |T1| = 2s. This proves Eq. (48) and the observation (1−
√

1− 1/s) < 1 proves
the asymptotic formula Eq. (49).

Comment: In the limit we have lims→1 |Tn| = n + 1, which is the number of distinct
product ground states |(−)1 . . . (−)p(+)p+1 . . . (+)n〉 where p ∈ {0, 1, . . . , n} with p = 0
corresponding to |+ + · · ·+〉.

Corollary 1. The dimension of the Kernel of Hs
n is

∑n
k=0 |Tk| =

(−2+rn+1
+ +rn+1

− )
2(s−1)

, where

r± ≡ s(1±
√

1− 1/s). Asymptotically we have dim(ker(Hs
n)) ≈ rn+1

+ /[2(s− 1)].

Proof. The total number of equivalent classes is the dimension of the Kernel. For each
k ∈ [n] there are |Tk| equivalent classes and we have

dim(ker(Hs
n)) =

n∑
k=0

|Tk| =
rn+1

+ + rn+1
− − 2

2(s− 1)
.
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Remark 3. The fraction of product state ground states is a constant independent of n

|Tn|∑n
k=0 |Tk|

=

√
s− 1

s

[
1− (r−/r+)n+1

1 + (r−/r+)n+1 − 2r−n−1
+

]
≈
√
s− 1

s
, s > 1 ;

whereas for s = 1, lims→1 dim(ker(Hs
n)) = 1

2
(n+ 1)(n+ 2) and the fraction vanishes with the

system’s size as 2/(n+ 2) ≈ 2/n.
We now return to the ground space of Hn.

Lemma 8. Ground space of H = Hs
n + HJ

n with J > 0 coincides with the span of the
equivalent classes |cxn〉, which are all product states. The ground space dimension is |Tn|.

Proof. The set of FF ground states of Hs
n is given by Eq. (46) in Lemma 6. The kernel of

J
∑n

k=1(|0〉〈0|)k is the span of all product states of weight n, i.e., states |t〉 where t ∈ Σn
∗ .

By Lemma 4 the intersection of the two is |cxn〉, which we recall are the product states of
the irreducible strings of weight n and there are |Tn| of them (Eqs. (48) and (49)).

3.3 Constructing good quantum codes in the ground space

In this section we construct quantum codes that are supported on a selected subset of
computational basis states that lie within the kernel of our 2-local Hamiltonian. We show
that these quantum codes that encode a single logical qubit can have a linear distance.

Recall that the standard local spin states are |j〉, with j ∈ Σ = {−s, . . . ,+s}. We
also define the non-zero alphabet Σ∗ ≡ {−s, . . . ,−1,+1, . . . , s}. Clearly |Σ| = 2s + 1 and
|Σ∗| = 2s. Define the generalized (non-Hermitian) Pauli operators in terms of these basis
states as

X =
∑
j∈Σc

|j〉〈j + 1| , Z =
∑
j∈Σc

ωj|j〉〈j| ,

where ω = exp(2πi/(2s+ 1)) is a root of unity, and by Σc, we mean the set Σ with the cyclic
property that s+ 1 = −s and −s− 1 = +s. We denote by Xk and Zk the generalized Pauli
operators that act on the kth spin (qudit) and act trivially on the rest.

Recall that ker(Hn) is spanned by certain product states of weight n. We denote the
basis of ker(Hn) by Tn where

Tn = {|t〉 : t ∈ Tn}

and Tn is defined in Eq. (47).
The quantum code that we construct will be a two-dimensional subspace of Tn. In

general, the logical codewords can be supported on an exponential number of basis states
in Tn. However, we select a subset of computational basis states labels C ⊂ Tn such that
the minimum Hamming distance of C is at least 2t + 1, where t is the designed maximum
number of correctable errors. The set of labels C has the interpretation as a classical code,
and we denote its distance by dist(C):

dist(C) ≡ min {dist(t, t′) | t, t′ ∈ Tn , t 6= t′} ,

and
dist(t, t′) = |{t′i 6= ti : i ∈ [n]}|
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is the usual Hamming distance between codewords t, t′ ∈ Σn
∗ . The logical codewords of our

quantum code will be supported only on the set of basis sets labeled by the classical code C.
Since the basis are product states, finding the subset C with the desired distance can

be seen as a problem in classical coding theory. For example, when s = 2 one can map the
elements of Tn to Fn4 and use the properties of quartenary codes over Fn4 to derive a classical
code with the prescribed distance. For instance, one can apply the mapping

ϕ(1) = 0 , ϕ(−1) = 1 , ϕ(2) = a , ϕ(−2) = b , (50)

where F4 = {0, 1, a, b}, b = a + 1 and a3 − 1 = 0, and for every t = t1 . . . tn ∈ Tn, define
ϕ(t1 . . . tn) = (ϕ(t1), . . . , ϕ(tn)).

Our strategy is to construct a code C over Fn4 that has a guaranteed minimum distance
and delete all codewords in it that have the forbidden substrings (01) and (ab) to obtain a
code C ′. Then we let C = ϕ−1(C ′), which will be the strings that define the computational
(product) basis states.

The quantum code in the ground space of our Hamlitonian, Hn, with an interaction graph
given by a line-graph may be called a subspace QLDPC codes. Here, we prove that there are
quantum codes within ker(Hn) that have linear distance in n. We leverage on the existence
of good binary codes. The relative distance of a code is the ratio of its distance to its length.
Good binary codes are defined as binary codes with positive relative distance. To use the
results from binary codes, we define a map β from the binary symbols 0 and 1 to 2 and 1
respectively. It is then easy to see that given any binary code C, β(C) is guaranteed to be
a feasible subset of Tn, and hence we may use β(C) to construct our quantum code.

Our main theorem is:

Theorem 2. Let 0 < τ ≤ 1/2 be a real and positive constant. There exist quantum codes in
ker(Hn) that encode one logical qubit and have the distance of 2τn whenever

Ent2(2τ) + Ent2s+1(2τ) log2(2s+ 1) + o(1) ≤ 1. (51)

Second, there are explicit quantum codes which encode one logical qubit with a distance of
2τn whenever

1/2− τ/0.11 ≥ log2(2s+ 1)Ent2s+1(2τ). (52)

Remark 4. We call the constructions given by optimizing (51) and (52) as the Gilbert-
Varshamov (GV) [MS77, Chpt. 1] and Justesen construct [MS77, Chpt. 10, Thm. 11] re-
spectively. The GV construct arises from choosing a random C, while the Justesen construct
uses the classical Justesen code to define C.

Proof. To prove the first result, we use random coding arguments. Namely, we turn our
attention to random binary codes. By the Gilbert-Varshamov bound [MS77, Chapter 1], we
know that such binary codes are almost surely good binary codes. Moreover we know that
for any positive integer t, there exists a classical binary code C that corrects 2t + 1 errors
where

|C| ≥ 2n/V2(2t). (53)

26



Using Lemma 2, by setting C = β(C), this implies that if

2n/V2(2t) ≥ 2V2s+1(2t), (54)

then there exists some quantum code encoding a single qubit in ker(Hn) that also corrects
t = τn errors. Since the inequality (54) is equivalent to the (51), the first result of our
theorem follows.

The second result follows from using Justesen’s concatenated construction, which gives
binary codes of with asymptotically linear distance and positive rate [MS77][Chapter 10,
Theorem 11]. More specifically, a binary Justesen code CJustesen is a concatenated code, with
a Reed-Solomon outer code on the finite field of dimension 2m as the outer code, and distinct
inner codes each encoding m bits into 2m bits. When CJustesen has a length of n, the length
of the Reed-Solomon outer code is n/(2m). Each inner code is a binary code and has rate
1, and is a distinct mapping from F2m to F2m

2 . The relative distance δ = d/n of this family
of Justesen codes is given by

δ ≥ 0.110(1− 2 log2 |CJustesen|/n) + o(1). (55)

Rearranging this inequality and using τ = δ/2, we get

log2 |CJustesen| ≥ n(1/2− τ/0.11 + o(1)). (56)

Hence the number of codewords of a Justesen code with distance 2t+ 1 is asymptotically at
least 2n(1/2−9.1τ+o(1)). Now we set C = β(CJustesen), and use Lemma 2 to find that a quantum
code in the ground space of ker(Hn) that corrects asymptotically τn errors exists whenever
τ < (2s)/(2s+ 1) and the inequality (52) holds.

We plot the attainable values of τ for different values of spins in Fig. 6.

In the next two sections we illustrate explicit quantum codes on 8 and 6 qudits respec-
tively. These quantum code were obtained from punctured variants of the classical ternary
Golay code, where by punctured we mean that the first three symbols of the code were
ignored for the 8 qudit code, and five symbols were ignored for the 6 qudit code.

3.3.1 A ground subspace Steane code that corrects a single error

By slightly modifying the 7-qubit Steane code, we can embed it in the ground space of H7.
Namely, on the set of computational basis vectors, we can apply the map |0〉 → |1〉 and
|1〉 → |2〉. This also corresponds to the quantum code with logical codewords

|0L〉 =
1√
8

(|1, 1, 1, 1, 1, 1, 1〉+ |1, 1, 1, 2, 2, 2, 2〉+ |1, 2, 2, 1, 2, 2, 1〉+ |1, 2, 2, 2, 1, 1, 2〉

+|2, 1, 2, 1, 2, 1, 2〉+ |2, 1, 2, 2, 1, 2, 1〉+ |2, 2, 1, 1, 1, 2, 2〉+ |2, 2, 1, 2, 2, 1, 1〉) (57)

|1L〉 =
1√
8

(|1, 1, 2, 1, 1, 2, 2〉+ |1, 1, 2, 2, 2, 1, 1〉+ |1, 2, 1, 1, 2, 1, 2〉+ |1, 2, 1, 2, 1, 2, 1〉

+|2, 1, 1, 1, 2, 2, 1〉+ |2, 1, 1, 2, 1, 1, 2〉+ |2, 2, 2, 1, 1, 1, 1〉+ |2, 2, 2, 2, 2, 2, 2〉) . (58)

Using the KL criteria, we can verify that this quantum code corrects any single error.
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Figure 6: The vertical axis is a lower bound on the size of the kernel of the A matrix
in log-scale. The horizontal axis is τ = t/n, where t denotes the number of correctable
errors for our quantum code in the ground space of ker(Hn). The length n is taken to be
asymptotically large. This demonstrates that there are linear distance quantum codes in the
ground space of the frustration-free 2-local Hamiltonian Hn.
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Figure 7: The vertical axis is τ = t/n, where t denotes the number of correctable errors for
our quantum code in the ground space of ker(Hn). The horizontal axis is the spin number
our spin-chain.
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3.3.2 A ground subspace code on eight spins that corrects a single error

Here, we give an example of a quantum code that lies in the kernel of Hs
n for n = 8 and

s = 2. This quantum code encodes a single logical qubit, corrects an arbitrary one-qubit
error, and has logical codewords

|0L〉 = (|φ0〉|θ0〉+ |φ1〉|θ1〉+ |φ2〉|θ2〉+ |φ3〉|θ3〉+ |φ4〉|θ4〉+ |φ5〉|θ5〉)/
√

6

|1L〉 = (|φ1〉|θ4〉+ |φ0〉|θ3〉+ |φ3〉|θ0〉+ |φ2〉|θ5〉+ |φ5〉|θ2〉+ |φ4〉|θ1〉)/
√

6, (59)

where

|φ0〉 = |1, 1, 1,−2〉,
|φ1〉 = |1,−2,−1,−1〉,
|φ2〉 = |−1,−2,−2,−1〉,
|φ3〉 = |−1,−1, 1, 1〉,
|φ4〉 = |2,−1,−1, 1〉,
|φ5〉 = |2, 1,−2,−2〉, (60)

and

|θ0〉 = |−2, 2, 2, 1〉,
|θ1〉 = |1,−2,−2,−2〉,
|θ2〉 = |−1, 2, 2, 1〉,
|θ3〉 = |−2,−2,−2,−2〉,
|θ4〉 = |1, 2, 2, 1〉,
|θ5〉 = |−1,−2,−2,−2〉. (61)

The KL criteria for correcting a single error using this quantum code are satisfied. Also it
easy to see that this code is not a CWS code, and hence gives an example of a quantum
code that falls outside of the CWS, stabilizer and CSS quantum coding formalisms.

Next we point out that the quantum code in (59) has a concatenated structure. The
logical codewords of the outer code, given in (59) are simply maximally entangled states on
two six-level systems.

From the structure of the inner codes, it is clear that to perform a logical bit-flip on our
quantum code, it suffices to induce the transition |−2,−2,−2〉 ↔ |2, 2, 1〉 on the last three
spins. Performing other logical computation operations is significantly more complicated
and we leave this for future work.

3.3.3 A ground subspace code that detects a single error

We also construct an error detecting quantum code (distance equal to 2) on six spins with
s = 2 using the logical operators

|0L〉 =
|1, 1, 2, 1,−2, 1〉 + | − 2, 1,−2,−2, 2, 2〉√

2
(62)

|1L〉 =
|1, 1,−2,−2, 2, 1〉 + | − 2, 1, 2, 1,−2, 2〉√

2
. (63)
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Such a construction is not unique, and we have many other error detecting codes on six
spins.
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