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Abstract.

We present and analyze a minimalist model for the vertical transport of people in

a tall building by elevators. We focus on start-of-day operation in which people arrive

at the ground floor of the building at a fixed rate. When an elevator arrives on the

ground floor, passengers enter until the elevator capacity is reached, and then they are

transported to their destination floors. We determine the distribution of times that

each person waits until an elevator arrives, the number of people waiting for elevators,

and transition to synchrony for multiple elevators when the arrival rate of people is

sufficiently large. We validate many of our predictions by event-driven simulations.

1. Introduction

How long until the next elevator arrives? Many of us ponder this question as we wait

in the lobby of a tall building before getting to our destination floor. The impact of

waiting for elevators is increasing because of the continued expansion of cities and high-

rise buildings. In Tokyo, New York, and Hong Kong, for example, there are currently

about 190,000 [1], 84,000 [2], and 69,000 [3] elevators, respectively. In the extraordinarily

vertical city of Hong Kong, their number is increasing at a rate of about 1500 per year [3].

Thus the carrying capabilities of building elevators necessarily represents an important

feature of building design.

Despite the considerable development of electric elevators since their inception

in the 1880s, as well as their increasing importance in contemporary society, our

understanding of the transport properties of elevators is incomplete. There has been

much work from the engineering and operations research perspectives on elevators,

including their control and scheduling in tall buildings (see, e.g., [4–12]). Studies of

this genre typically focus either on simulations of realistic scenarios or on the control

mechanisms for multi-elevator systems. However, such investigations do not provide

insights on the performance of such systems as a function of basic parameters, such as
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the passenger demand, as well as elevator and building characteristics. The physics-

based literature on the dynamics of elevators has been either primarily numerical in

character [13] or invokes analogies to dynamical systems theory [14, 15].

In this work, we present a simple-minded probabilistic approach to treat a demand-

driven elevator system and develop insights about the performance of such a system. We

focus on the start of a workday, in which people enter a building lobby at a given rate

and want to get to their destination floors. This scenario is sufficiently simple that some

analytical results can be obtained, yet this case still reflects realistic aspects of elevator

operation. Within a minimal model to be defined in the next section, we determine the

distribution of times that one has to wait for an elevator and its dependence on the

arrival rate of individuals, the number of elevators, and the capacity of each elevator.

We validate many of our predictions by event-driven simulations. We also examine

the conditions under which multiple elevators tend to synchronize. This latter property

bears some resemblance to the clustering phenomenon that occurs in subways and along

bus routes [16], where many full vehicles arrive in quick succession at a subway station

or a bus stop, followed by a long period with no vehicles arriving.

In the next section, we outline our model. In Sec. 3, we treat the dynamics in

the simplifying case of a single infinite-capacity elevator. We derive the time of a single

elevator cycle and its distribution, as well as the distribution of the number of passengers

in the elevator. We then turn to the case of a single finite-capacity elevator in Sec. 4,

where we first discuss the condition for a steady state, and then present basic dynamical

properties, such as the “clearing” time—the time interval between events where all

waiting passengers are accommodated in the elevator that is currently loading—and

the clearing probability, as well as the occupancy distributions in the lobby and in the

elevator. In Sec. 5, we treat the realistic situation of many finite-capacity elevators.

We determine the steady-state condition and then investigate how synchronization can

occur. Some concluding remarks are given in Sec. 6

2. Model

Our model is based on the following assumptions (Fig. 1):

(i) Start-of-day operation: the building is initially unoccupied, and individuals arrive

at the ground floor lobby according to a Poisson process at rate λ.

(ii) When an elevator reaches the lobby, it is filled on a first-come/first-serve basis until

either all passengers are accommodated or the elevator reaches its capacity C.

(iii) The building has F floors and k identical elevators that can access all floors.

(iv) Each person has a distinct destination floor that is uniformly distributed in [1, F ].

(v) The time for an elevator to travel one floor is τe.

(vi) Each elevator stop requires a time τs per entering and exiting person that is

independent of the elevator occupancy.
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Figure 1. Cartoon of single-elevator transport during start-of-day operation where

passengers arrive at rate λ: (a) Passengers (circles) just after entering the elevator;

the numbers indicate destination floors. (b) A passenger leaves the elevator at her/his

destination (11th) floor. (c) After the last passenger leaves, the elevator returns to the

ground floor.

While most of these features of the model accord with everyday experience, various

approximations have been made and other relevant attributes have been neglected.

These include: (a) In some tall buildings, some elevators only stop at a subset of all

floors. This restriction vaguely resembles staging in a multistage rocket [17, 18], a

device that leads to greater efficiency. (b) The time to enter and exit an elevator is not

constant, but is clearly an increasing function of its occupancy. (c) Most skyscrapers

have a smaller floor area in the higher stories, so the distribution of destination floors

is not uniform. (d) Travel between different building floors or from an upper floor back

to the lobby is not treated. Incorporating all these features would be more realistic,

but such a generalization would greatly complicate theoretical modeling. For both

parsimony and tractability, we only include the elements (i)–(vi) listed above. Another

desirable feature of this minimalist model is that it can be simulated with great efficiency

by an event-driven approach (see Appendix A for details).

3. Single Infinite-Capacity Elevator

We first investigate the idealized case of a building with a single unlimited-capacity

elevator. While patently unrealistic, this situation provides the starting point for

treating finite-capacity elevators and multi-elevator buildings. With a single infinite-

capacity elevator, a steady state is eventually achieved in which the average time for the

elevator to complete a single cycle, i.e., return to the ground floor, equals the average

number of people who arrive in the lobby during a cycle. Note that the infinite-capacity

case is equivalent to the individual arrival rate λ being sufficiently small that a finite

elevator capacity is never reached. We now determine basic features of this steady state.

3.1. The cycle time

A single cycle of an elevator involves the following steps (Figs. 1 & 2):
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(i) The elevator arrives on the ground (lobby) floor.

(ii) Waiting passengers in the lobby enter the elevator.

(iii) The elevator delivers each passenger to her/his destination floor in ascending order

and passengers with this destination floor exit.

(iv) When the elevator empties, it returns to the ground floor and a cycle begins anew.

2 3 4 time

height

1

H(t)

N(t)

Figure 2. Schematic time dependence of the number of passengers, N(T ), in the

lobby (blue) and the elevator height, H(t) (red). Four elevator cycles are indicated.

We first determine the time for a single elevator cycle when N passengers have entered

the elevator. This cycle time is obviously an increasing function of N , and two factors

contribute to thisN dependence. First, the total time that the elevator is stopped to pick

up and discharge passengers in a single cycle in 2Nτs. Second, for increasingN , it is more

likely that the elevator goes to a higher floor to discharge the last passenger with the

highest destination floor. For N � 1 passengers, we use extreme-value statistics [19, 20]

to find that the expected highest destination floor among N � 1 passengers is given by

Fmax = F
N

N + 1
.

Consequently, the expected time for the elevator to complete a single cycle is

T (N) = 2Fmax τe + 2Nτs = 2Fτe
N

N + 1
+ 2Nτs . (1)

To obtain a rough estimate of the cycle time, we use that τe = 1 sec, τs = 2.5 sec, and

F = 100 floors; these are representative numbers for elevators in a tall building [21]. The

cycle time is then T (N) = 200N/(N+1) + 5N . For N = 20 passengers, which is typical

for a high-capacity elevator, the expected time for one elevator cycle is T (20) ≈ 290 sec

≈ 5 min. Henceforth, we fix τe = 1 for simplicity, so that τs becomes the ratio of the

single-passenger entrance/exit time to the single-floor travel time.

3.2. The steady state

In a single cycle of duration T , λT new passengers typically arrive after the elevator

leaves before is returns. The steady-state occupancy of an elevator, Nss, is determined
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by equating λT (N) in Eq. (1) with N . This gives

λ

[
2F
( Nss

Nss + 1

)
+ 2Nssτs

]
= Nss ,

from which

Nss =
2λF

1− 2λτs
− 1 . (2)

A basic consequence of this simple calculation is the existence of a critical arrival rate

λc = 1/2τs. When the arrival rate exceeds λc, progressively more passengers will be

waiting for the elevator after each successive cycle and no steady state is possible.
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(N

) T(N)

N/λ

Figure 3. Dependence of the elevator cycle time T (N) in Eq. (1) on N for τe = 1 sec,

τs = 2.5 sec and F = 100 floors. A steady state arises when T (N) intersects the

line N/λ, which occurs for λ < λc = 1/5 for these parameters. In this example

λ = 0.07 < λc

It may be surprising at first sight that the critical arrival rate does not depend on

the building height. This independence occurs because of the infinite elevator capacity

and because the travel time, 2NF/(N + 1), becomes a constant contribution to the

total cycle time for large N , which becomes negligible for N → ∞. Consequently, the

dependence on building height disappears. As a numerical example, for F = 100 and

τs = 2.5, Nss = 200λ/(1 − 5λ) − 1. For a steady-state elevator occupancy of Nss = 20,

λ = 21/305 ≈ 0.07 (the intersection point in Fig. 3). Thus this single-elevator system is

not close to its transport limit of λc = 1/5 when Nss = 20. Since all waiting passengers

can fit on the elevator, the longest that any passenger has to wait is one complete cycle;

this occurs when the next passenger arrives just after the elevator has departed.

3.3. Cycle and occupancy distributions

To compute the distribution of cycle times, we use Eq. (1) to write the maximum floor

reached by the elevator in terms of N and the cycle time: Fmax = 1
2
(T − 2Nτs). When

the distribution of destination floors is uniformly distributed in [1, F ], the probability

that the maximum floor reached by an elevator with N passengers is [19, 20]

M(Fmax) =
N

F

[
Fmax

F

]N−1

. (3)

5



Since we are considering tall buildings, the assumption F � 1 is implicit.

We now use M(Fmax) dFmax = P (T ) dT , with P (T ) defined as the cycle-time

distribution, to eliminate Fmax in favor of T to determine P (T ). To compute the

distribution of times for the ith cycle, Pi(T ), we must sum over the possible values

of N in a given cycle. This leads to

Pi(T ) =

T/2τs∑
N=1

N

2F

[ 1
2
(T −Nτs)

F

]N−1

Qi(N) , (4a)

where Qi(N) is the probability that the elevator has N passengers in the ith cycle. The

upper limit on the sum corresponds to all occupants of the elevator having the smallest

possible destination floor. Equivalently, this limit corresponds to the maximum number

of passengers that can be accommodated for a given cycle time.

Because new passengers arrive at rate λ, the probability Qi(N) is given by the

Poisson distribution that is integrated over all possible values of the previous cycle

time:

Qi(N) =

∫
dT e−λT

(λT )N

N !
Pi−1(T ) . (4b)

That is, the number of passengers waiting for the ith cycle of the elevator depends on

the (i − 1)st cycle time. In turn, the parameters in the (i − 1)st cycle depend on the

parameters in the (i − 2)nd cycle. Thus the distributions Pi(T ) and Qi(N) have to be

determined iteratively.

300 350 400 450 500 550
T

10 4

10 3

10 2

10 1

P(
T)

iteration 0
iteration 1
iteration 3
Gaussian
simulation

(a)

20 40 60 80
N

10 4

10 3

10 2

10 1

100

Q
(N

)

iteration 0
iteration 1
iteration 3
Gaussian
simulation

(b)

Figure 4. (a) The cycle time distribution P (T ) (binned to eliminate artificial spikes)

and (b) the occupancy distribution Q(N) for the case of arrival rate λ = λc/2, with

τs = 2.5 for all passengers. For rapid convergence, the initial condition is chosen to be

the steady-state occupancy, N0 = Nss = 39.

To illustrate this iterative approach, suppose that initially there are N0 passengers

waiting for the elevator. Then the probability distribution for the time of this zeroth
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cycle is

P0(T ) =
N0

2F

[ 1
2
(T −N0τs)

F

]N0−1

.

Correspondingly, the probability that N passengers waiting for the elevator at the start

of the first cycle is

Q1(N) =

∫
dT e−λT

(λT )N

N !

N0

F

[ 1
2
(T −N0τs)

F

]N0−1

.

Using Eqs. (4), we iterate to give the distributions of N and T in successive elevator

cycles. Numerically, this iteration quickly converges to a steady state (Fig. 4). By

making the assumption of a steady state, we may write closed equations for the

distributions P and Q by dropping the subscript and eliminating Q in the equation

for P (and vice versa). We thereby find the implicit solutions:

P (T ) =

∫ T/2τs

0

dx
x

2F

[ 1
2
(T − xτs)

F

]x−1 ∫ ∞
0

dy e−λy
(λy)x

x!
P (y) ,

Q(N) =

∫ ∞
0

dy e−λy
∫ T/2τs

0

dx
x

2F

[ 1
2
(T − xτs)

F

]x−1
(λy)x

x!
Q(x) .

(5)

In our numerical solutions, we found it simpler, however, to iterate Eqs. (4) to find the

steady-state distributions, the results of which are shown in Fig. 4.

In terms of the cycle time distribution, we can now determine the more relevant

distribution of times that an individual has to wait before an elevator arrives. Since

an individual arrives equiprobably during an elevator cycle, her/his waiting time is

uniformly distributed in the range [0, T ] for a given elevator cycle time T . We now

average this uniform distribution over all cycle times of duration t or larger to obtain

the individual waiting time distribution, which we define as W(t):

W(t) =

∫ ∞
t

P (T )

T
dT . (6)

For the peaked and close-to-Gaussian cycle time distribution in Fig. 4(a), the waiting

time distribution resembles the Fermi-Dirac distribution at low temperatures—nearly

constant for small times and then rapidly cut off beyond the average cycle time.

3.4. Fluctuations

As shown in previous section, the cycle time and occupancy distributions quickly

converge to steady-state forms with well-localized peaks. We can determine the widths

of these two distributions by using the mean values Tss and Nss from Sec. 3.2, exploiting

the Poissonian nature of the distribution for N , and also making use the law of total

variance [22].
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We denote E(x) = 〈x〉 as the mean value of the variable x and Var(x) = 〈x2〉−〈x〉2
as its variance. Because the distribution of N is Poissonian with mean value λT for a

given value of the travel time T , Var(N |T ) = λT . The law of total variance states that

Var(N) = E
(
Var(N |T )

)
+ Var

(
E(N |T )

)
[22]. For the elevator system, this gives

Var(N) = E
(
Var(N |T )

)
+ Var

(
E(N |T )

)
= λE(T ) + Var(λT )

= Nss + λ2Var(T ) . (7)

Since the elevator cycle time equals T = 2Fmax + 2Nτs for a given value of N , the

law of total variance for T now leads to

Var(T ) = E
(
Var(T |N)

)
+ Var

(
E(T |N)

)
= E

(
Var(2Fmax) + 2Nτs

)
+ Var(2Fmax + 2Nτs)

= 4E
(
Var(Fmax)

)
+ 4τ 2

s Var(N) .

We now use the distribution (3) for Fmax to compute the Var(Fmax) and obtain

Var(Fmax) = NF 2/
[
(N + 1)2(N + 2)

]
−→
N→∞

(F/N)2 .

Thus

Var(T ) = 4 (F/Nss)
2 + 4τ 2

s Var(N) . (8)

Substituting (8) in (7) and also using (8) itself, we finally have

Var(T ) = 4

(
F

Nss

)2

+ 4τ 2
s

[
λTss + λ2Var(T )

]
=

4(F/Nss)
2 + 4τ 2

sNss

1− 4τ 2
s λ

2
,

Var(N) = Nss +
4λ2(F/Nss)

2 + 4λ2τ 2
sNss

1− 4τ 2
s λ

2
.

(9)

We now numerically estimate Var(T ) and Var(N) and compare with Fig. 4. In this

figure, λ = λc/2, which leads to Nss = 39. The cycle time from (1) then is T (39) = 390.

Using τs = 2.5 and F = 100, we obtain Var(T ) ≈ 1335 and Var(N) ≈ 53. Consequently,

the waiting time between successive arrivals of the elevator will typically be in the range

390 sec ± 36 sec, while the number of passengers in the elevator will be 39 ± 7. These

numbers are in accord with the simulated distributions in Fig. 4. Thus fluctuations in

the cycle time and occupancy are substantial, but do not dominate the steady-state

behavior.

4. Single Finite-Capacity Elevator

We now turn to the slightly more realistic case of a single elevator with a finite capacity

C. This discussion serves as a starting point to treat multiple identical elevators.
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4.1. The steady state

For a single elevator in the steady state, the average number of passengers waiting when

the elevator arrives at the ground floor must be less than or equal to C. At the stability

limit, the elevator should be filled to capacity. Thus a steady state should arise whenever

λT (C) ≤ C, where T (C) is the cycle time for an elevator filled to capacity and λ is

again the passenger arrival rate. Using Eq. (1) for T (C), we have

λ ≤ λc =
1

2τs + 2F/(C + 1)
. (10)

For an elevator of capacity C = 20 and using τs = 2.5 sec, F = 100, the steady-

state criterion gives λ ≤ 0.0689. Thus, for a single elevator, the critical arrival rate is

reduced by nearly a factor of 3 compared to an infinite-capacity elevator, where λc = 1/5

(Sec. 3.2). A critical rate of λc ≈ 0.07 corresponds to an unrealistically small arrival rate

of approximately 1 passenger every 15 seconds. Clearly, and as we all have experienced,

many elevators are needed to service a tall office building, as will be discussed in Sec. 5

4.2. The clearing time

A basic characteristic of single-elevator dynamics is the “clearing” time, defined as the

time interval between the successive events where the lobby is emptied when the elevator

leaves the ground floor (Fig. 5). When the elevator takes on passengers, the number of

waiting passengers N(t) suddenly decreases by C, if the number of waiting passengers

exceeds the elevator capacity, or by N(t), otherwise. For the example shown in the

figure, there is a transient buildup of waiting passengers who have to wait more than

one cycle, under the first come/first serve assumption, before boarding an elevator.

Eventually, the situation arises in the sixth cycle where N(t) < C, at which point the

lobby is cleared when the elevator leaves.

clearing time

C
C

C
C

C

t

W
5

N(t)

T T T T T1 2 3 4 5

+

<C

λΤλΤ _

Figure 5. Schematic illustration of the time dependence of the number of people N(t)

waiting on the ground floor over six elevator cycles, with clearing occurring at the sixth

cycle. The number of new passengers accumulated in each cycle is λT ±
√
λT , while

at most C passengers are removed in each cycle.

To determine the clearing time, we appeal to an equivalence between the buildup

and removal of passengers in the lobby and a random walk process. Consider first the
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case where the arrival rate equals its critical value, for which λcT = C. Thus the

buildup of passengers in the lobby during one elevator cycle and the removal of waiting

passengers when an elevator is loaded are, on average, equal. Let Wn denote the number

of people still waiting in the lobby after the nth cycle. Note that whenever the lobby is

not cleared, the elevator will be at its capacity of C passengers. Therefore, the cycle time

is almost a constant and is narrowly distributed about the value T = 2Fτe
C
C+1

+ 2Cτs.

For simplicity, in this and in the following subsection only, we define T as the cycle time

of a full elevator, in which the maximum floor reached by the elevator is deterministic

and equal to its average value of C/(C + 1).

For λ = λc, Wn equiprobably increases or decreases by an amount of typical

magnitude
√
λT (Fig. 5). That is, Wn undergoes an unbiased random walk of step

size
√
λT , subject to an absorbing boundary condition whenever Wn = 0. This latter

condition corresponds to the lobby being cleared. Consequently, by the connection to the

one-dimensional first-passage process, we know that the average clearing time is infinite

and its distribution asymptotically decays as n−3/2 [23], as illustrated in Fig. 6(a).
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Figure 6. Simulation results for: (a) the clearing time probability for various λ values,

and (b) the average clearing time versus 1/v with λ between 0.9λc and 0.98λc, for a

single elevator with capacity 50.

In the realistic case of λ <∼ λc, the average number of passengers waiting in the lobby

will typically decreases by C −λT ≡ v in each cycle. We are primarily interested in the

case where this systematic decrease is smaller than the random-walk step size,
√
λT .

The opposite limit is wasteful from a practical viewpoint, because it would correspond

to a large excess of elevator capacity. Thus we treat the limit where the bias v is small

but negative during the start of the day rush. In this case Wn undergoes a weakly biased

random walk, again with a typical step size of
√
λT . Now the distribution of clearing

times will have the same n−3/2 tail as in the critical case, but with a exponential cutoff

due to the bias, which leads to the average clearing time scaling as 1/v [23]. This latter

behavior is illustrated in Fig. 6(b).
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4.3. The clearing probability

In addition to the clearing time, another useful indicator of the efficiency of the elevator

system is the clearing probability P, which we define as the probability that the lobby is

cleared of all waiting passengers when the elevator leaves. We compute this probability

in the current cycle in terms of the state of the system in the previous cycle. There are

two cases that need to be considered: either the lobby was (a) cleared or (b) not cleared

in the previous cycle. For case (a), we further require that the number of newly arriving

passengers before the elevator next arrives does not exceed the elevator capacity C. In

case (b), the number W of remaining waiting passengers from last cycle plus the number

of newly arriving passengers cannot exceed C. Under the assumption of a steady state,

we have

P = PQ(C|cleared) + (1−P)
∑
W

R(W )Q(C −W |not cleared) . (11)

Here Q(X|·) =
∑X

N Q(N |·) in the cumulative conditional probability that the number of

new arriving passengers is X or less, given that last cycle is either cleared or not cleared.

The first term in (11) gives the contribution due to case (a) and the second term accounts

for case (b). In this second term, R(W ) is the probability that W passengers remain in

the lobby after the elevator leaves, given that the lobby was not cleared in the previous

cycle. Subsequently C −W or fewer new passengers can arrive before the elevator next

arrives so that the lobby will be cleared in the current cycle.

We now determine the factors in (11). We compute the stationary distribution

R(W ) from the biased random-walk description of Sec. 4.2 for the number of people

waiting in the lobby. For this random walk, the step size is δx =
√
λT and the

bias is v = C − λT . Since the unit of time in this random walk process is one

elevator cycle, the single-step time is δt = 1, from which the diffusion constant is

D = δx2/(2δt) = λT/2. The stationary probability distribution of this biased random

walk, subject to a absorbing boundary condition at W = 0, is (see, e.g., [24])

R(W ) =
v

D
e−vW/D = 2(λc/λ− 1)e−2(λc/λ−1)W ,

with v/D = (C − λT )/(λT/2) = 2(λc/λ− 1).

We also replace the steady-state occupancy distribution Q(N) by the infinite-

capacity expression in Eq. (5). We further approximate Q(N) by a Gaussian distribution

with mean Nss and variance Var(N) given in Eq. (9); this form compares well with our

simulation results in Fig. 4. Thus the summation in (11) represents the cumulative of

the convolution of an exponential and Gaussian distribution. This operation gives rise

to the exponentially modified Gaussian distribution [25]. Thus we have∑
W

R(W )Q(C −W |not cleared) = Ψ(u, 0, v)− e−u+v2/2+log[Ψ(u,v2,v)] ,

where the right-hand side is the cumulative of the exponentially modified Gaussian

distribution [25], and Ψ(u, 0, v) is the cumulative Gaussian distribution itself, with

11
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Figure 7. Comparison of the theoretical and simulation results for the clearing

probability P for a single elevator with capacity 50.

arguments u = 2(λc/λ − 1)(C − λT ), mean value 0, and standard deviation v =

2
√
λT (λc/λ− 1).

Thus, Eq. (11), which determines the clearing probability P becomes

P = P Ψ(C,Nss,
√

Var(Nss)) + (1−P)
{

Ψ(u, 0, v)− e−u+v2/2+log[Ψ(u,v2,v)]
}
, (12)

from which P can be immediately obtained. The resulting prediction for P closely

matches our simulations shown in Fig. 7.
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Figure 8. The distributions of (a) the number passengers still waiting in lobby,

QL(N), and (b) the number of passengers transported by elevator, QE(N). Both

cases correspond to a single elevator with capacity C = 50.

For a finite capacity elevator, we can now determine both the number of passengers

waiting in the lobby when the elevator departs and the number carried away by the

elevator. Let QL(N) and QE(N) denote the distributions for these two quantities. If

the lobby is cleared, there will be no passengers waiting, so that

QL(N) = P δ0,N + 2(1−P) (λc/λ− 1)e−2(λc/λ−1)N . (13a)

12



If the lobby is not cleared, there will be necessarily C passengers inside the elevator, so

that

QE(N) = PQ(N |N < C) + (1−P) δC,N , (13b)

where

Q(N |N < C) =


Q(N)

/ C∑
k=0

Q(k) if N < C ,

0 otherwise ,

with Q(N) the occupancy distribution in an infinite elevator system, which we can well

approximate by a Gaussian distribution. Both these predictions match our theoretical

expectations, as shown in Fig. 8.

We can now determine the distribution of times that an individual has to wait

until an elevator arrives. We again need to treat two distinct cases. If an individual is

accommodated within a single cycle, the time (s)he needs to wait will be the same as

that in the infinite capacity limit; that is, W(t) in Eq. (6). If the person needs to wait

for more then a cycle, her/his waiting time depends both on when (s)he arrives and the

number of people already waiting for the elevator. The former attribute determines the

waiting time within a cycle whereas the latter determines how many cycles must elapse

before the person can be accommodated. Since the former time is uniformly distributed

in [0, T ] for a fixed cycle time T , the total waiting time will be uniformly distributed

in [mT, (m + 1)T ], with m a positive integer that is determined by the condition that

the number of people N already waiting in the lobby is in range of [mC, (m + 1)T ].

Equivalently, the number of people remaining in the lobby after an elevator departs

must be in [(m− 1)C,mT ].

Taking into account these two cases, the distribution of waiting times, WC(t), for

an elevator of capacity C, is formally given by

WC(t) = PWW(t) + Θ(t− T ) (1−PW)
1

T

∫ mC

(m−1)C

QL(N) dN . (14a)

Here PW is the probability that an individual waits less than a single cycle time,

Θ(·) denotes the Heaviside step function, m = floor(t/T ), W(t) is the waiting time

distribution (6) for an infinite-capacity elevator, and QL(N) is the distribution of the

number of people waiting in the lobby (given by Eq. (13a)) when the elevator leaves,

and we have integrated QL(N) over the allowable range of N .

To make (14a) explicit, we need PW. Naively, one might anticipate that PW

should be the same as clearing probability P. However, we need to account for another

possibility: even when the lobby is not cleared in the current cycle, if the number N

of stranded passengers from previous cycle is less than C, then C − N out of the C

passengers that are transported by the elevator in the current cycle will wait less than a

13



single cycle. By including the additional term that accounts for this situation, the final

result for PW is

PW = P +

∫ C

1

C −N
C

QL(N) dN = P + (1−P)
2C(λc/λ− 1)− e−2(λc/λ−1)C + 1

2C(1− λc/λ)
,

(14b)

where we have substituted in the expression (13a) for QL(N).
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Figure 9. The distribution of times WC(t) that a passenger waits until being able to

board the elevator for: (a) for a single elevator of capacity C = 50, and (b) for two

elevators of capacity C = 25.

Within each cycle, the waiting time distribution is Fermi-Dirac like, and multiple

copies of these Fermi-Dirac-like distributions constitute the full waiting time distribution

WC(t) (Fig. 9(a)). Qualitatively, WC(t) follows an overall exponential decay with time

with a substructure that consists of these Fermi-Dirac steps. Since the elevator must be

full if the lobby is not cleared, these steps beyond the first are much sharper than the

first one. Figure 9(a) shows a close correspondence between our prediction (14) and the

simulation data.

5. Multiple Finite-Capacity Elevators

Finally, we now turn to the realistic situation of a building that contains k identical

elevators, each of capacity C. We investigate two basic characteristics of the transport

dynamics—the steady state and synchronization.

5.1. The steady state

Under the assumption that the elevators are uncorrelated, the steady-state criterion

derived in Sec. 4.1 now becomes λT (C) ≤ kC. Again using Eq. (1) for T (C), the
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steady-state condition is

λ ≤ λc =
k

2τs + 2F/(C + 1)
. (15)

For elevators with capacity C = 20 and using τs = 2.5 sec, F = 100, the steady-state

criterion now gives λ ≤ 0.0689 k. As long as the elevators are uncorrelated, the overall

transport capacity is simply proportional to the number of elevators.

It is instructive to estimate the number of elevators of capacity C = 20 that are

needed to service the start-of-day “rush” in an office building of 100 floors without having

a pileup of passengers waiting in the lobby. We assume that each floor accommodates

100 people, so that 104 people need to reach their offices at the start of a workday‡.
With 20 people in each elevator, 500 elevator trips are needed. Each trip takes roughly

5 minutes for a total of 2500 elevator minutes. If the morning rush spans a two-hour

period, these 2500 elevator minutes have to fit in a 120-minute window, which requires

21 elevators. These 21 elevators can accommodate a total passenger arrival rate of

Λc = 21λc ≈ 1.5 passengers arriving per second and still remain in the steady state.

This total arrival rate over a two-hour period also corresponds to accommodating all 104

occupants of the building. If the elevators are uncorrelated, the time interval between

successive events where an elevator reaches the ground floor should equal the single-

elevator cycle time divided by the number of elevators, which is roughly 15 seconds.

These numbers accord with common experience.

5.2. Synchronization

As passenger demand increases, it is not uncommon for a set of elevators to synchronize.

This leads to the annoying feature that a large number of passengers build up in the

lobby and then multiple elevators return to the lobby at nearly the same time. This

clustering is analogous to what occurs in the bus-route model [16]. In this latter example,

a circular bus route is serviced by multiple buses, with passengers arriving at a fixed

rate at a set of bus stops. If a bus spends a time longer than usual at a stop because

more passengers than usual are either loading or disembarking, the following bus will

tend to catch up. Consequently, there is less time for passengers to accumulate at stops

after the leading bus has departed. Since the number passengers waiting at stops will

be less than average for the trailing bus, it will continue to catch up to the leading

bus. If the trailing bus is allowed to pass the leading bus, the same instability arises in

which there are fewer passengers than average waiting at each stop for the new trailing

bus. Overall, this instability leads to an effective attraction between buses that tends

to reduce their separation.

A similar instability occurs in a multi-elevator building when the arrival rate of

passengers in the lobby is sufficiently large. Although each elevator runs on its own

‡ As a check of this estimate, the number of workers in the Willis (formerly Sears) tower in Chicago is

roughly 15,000 [26]
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independent track, so that elevators can effectively “pass” each other, the same effective

attraction between elevators occurs, which leads to the clustering of waiting passengers

waiting in the lobby. To quantify this synchronization, let us first treat the much simpler

case of deterministic dynamics and suppose that all elevators are already synchronized.

Because of the deterministic dynamics, the number of waiting passengers in the lobby

when all the elevators reach the ground floor equals λ times the cycle time. We also

suppose that Fmax is deterministic and equal to its average value of NF/(N + 1), where

N is the number of passengers in each elevator (which is the same for each elevator).

If the number of waiting passengers is large enough to trigger the movement of all k

elevators, then these elevators will again return at the same time in the next cycle. In

turn, there will be a sufficient number of new waiting passengers to trigger the next

cycle and lock the system in a synchronized state. Thus within deterministic dynamics,

synchronization is locked in once it is achieved.

To trigger all k elevators in the building, the number of waiting passengers should

be greater than the capacity of k − 1 elevators. That is,

λT (N) > (k − 1)C .

In this deterministic picture, the cycle time for all the elevators is T (N) = 2Fmax +2Nτs,

with N = ηC and η in the range (1 − 1
k
) to 1. At the lower limit case, λ is just large

enough that the number of waiting passengers, λT (N), just exceeds the capacity of

k − 1 elevators. At the upper limit, the number of waiting passengers completely fills

all elevators. For simplicity we take η = 1 henceforth. Using the expression λcT = kC,

the lower bound for synchronization becomes

λ > λc (k − 1)/k . (16)

According to this deterministic picture, synchronization occurs in a narrow window of

arrival rates that lies between λc(k − 1)/k and λc. This prediction is only approximate

because we have not accounted for the randomness in the cycle times of each elevator.

Illustrations of the vertical positions of each elevator versus time for a two-elevator,

three-elevator, and six-elevator system are shown in the right panels of Figs. 10–12. Each

row consists of data for the same value of λ. For these cases, the elevator trajectories

tend to cluster when λ >∼ 0.9λc. For λ = 0.8λc, there are hints of synchronization for

k = 2 and k = 3, but not for k = 6. This behavior is expected from the deterministic

picture of Eq. (16), in which synchronization requires k ≤ 5 when λ = 0.8λc.

A useful characteristic of the many-elevator system is the time ∆T between

successive elevator arrivals. These inter-arrival times play an analogous role to successive

cycle times in the single elevator system. When elevators become synchronized, there

should be a repetitive pattern of a long time interval whose value is close to the single

elevator cycle time, followed by k − 1 short time intervals that correspond to the

subsequent arrivals of nearly synchronized elevators (left panel of each figure). Because

of the near periodicity of the elevators, it is helpful to study the Fourier transform of
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Figure 10. The inter-arrival time distribution F (∆T ) versus ∆T (left panels), the

discrete Fourier transform f(ω) of the inter-arrival time series versus the normalized

frequency ω/M , where M is the total number of intervals (middle panels), and

representative late-time plots of the vertical positions of two elevators versus time

for λ = 0.5λc, 0.8λc, and 0.98λc for elevators with C = 50
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Figure 11. The same as in Fig. 10 for a three-elevator system.
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Figure 12. The same as in Fig. 10 for a six-elevator system.
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the ordered inter-arrival time series,

f(ω) =
M−1∑
m=0

∆Tm e−2πimω/M ,

where ∆Tm is the mth inter-arrival time and M is the total number of time intervals in

the dataset. In the synchronized state, this discrete Fourier transform should have k−1

peaks in addition to the component at zero frequency; this feature is illustrated in the

middle panels of each figure.

Finally, we investigate the waiting time distribution for multiple elevators. We focus

on the simplest case of the waiting-time distribution two elevators, and simulation results

are shown in Fig. 9(b). The step-like form of the waiting-time distribution is a result

of the synchronization of the two elevators. When the elevators become synchronized,

we can treat one cycle of the two-elevator cluster as a single time unit for the biased

random walk picture for the dynamics of number of passengers in the lobby. This leads

to the long-time exponential decay of the waiting-time distribution, as in the single-

elevator case. For times that are less than a single cycle, the waiting time distribution

can be again deduced using (6) after replacing the cycle-time distribution P (T ) by the

inter-arrival times distribution F (∆T ).

6. Concluding Comments

We investigated the transport of people by elevators in a tall building during the start-

of-the-day operation within the framework of a minimal probabilistic model. For a

single infinite-capacity elevator, we computed the expected time for one elevator cycle

and the condition for a steady-state to arise. In this steady state, we determined the

distribution of the elevator cycle times and occupancy distribution of the elevator. We

constructed a rapidly converging iterative procedure that determined these distributions.

The resulting distributions have well-defined peaks; thus fluctuations about the average

are noticeable but do not overwhelm the dynamics.

For a single finite-capacity elevator, a new aspect of the dynamics is the clearing

time, defined as the time interval between two successive events where all waiting

passengers are accommodated by the elevator. We argued that this clearing time can

be determined by invoking a random-walk picture for the number of passengers that

remain in the lobby when the elevator departs. From this picture, we computed the

average clearing time and its distribution. We also determined the distribution of the

number of passengers who are stranded in the lobby when the elevator leaves and the

number of passengers in the elevator. We then turned to the realistic situation of a

fixed number of finite-capacity elevators. Again, we determined the condition for the

steady state. Finally, we investigated the conditions under which a set of elevators will

synchronize.

Our naive approach represents a small step in developing a physical understanding

elevator transport. There are also many natural generalizations of the basic model that
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are worth considering within a our physics-based perspective. Perhaps the simplest is

to study the situation where the cross-sectional area A(h) of the building decreases with

height h. A logical question now is: does there exist an optimal profile for A(h) that

minimizes the waiting time, but also optimizes available office space? Another relevant

issue to investigate is that of elevator staging; that is, some fraction of the elevators

services floors 0 through F/2 and another fraction services floors F/2 through F . Is

this configuration better—in that the average waiting time and/or average total travel

time is shorter—than two elevators that service all floors?

It should also be worthwhile to study the case of end-of-day operation, when

occupants are leaving the building and nobody is entering. That is, passengers start

their floor of occupancy and call for an elevator to take them to the ground floor. This

case is not merely the time-reversed version of start-of-day operation and it would be

interesting to understand the difference between these two cases.

ZFs Undergraduate Research Experience at the Santa Fe Institute was funded by

the General Collaboration Agreement for the ASU-SFI Center for Biosocial Complex

Systems. SRs research was partially supported by NSF grant DMR-1910736.

Appendix A. Event-driven simulation algorithm

Our numerical results are based on an event-driven simulational approach, in which we

only monitor the (variable) time interval for the next elevator to reach the ground floor.

We describe our algorithm below, first for a single elevator of capacity C, and then for

multiple elevators, each of the same capacity C.

One elevator

• If no passengers are waiting when an empty elevator reaches lobby, advance the time

by an exponentially distributed random number δt whose average value equals to

the inter-arrival time between successive passengers. We then set N = 1, since one

new passenger is in the lobby.

• If N ≥ 1 passengers are waiting when an elevator arrives, then:

(i) The waiting passengers enter the elevator until either all N < C are

accommodated or the elevator is full. The number of waiting passengers is

decreased by min(N,C).

(ii) From the passenger destination floors, which are all chosen independently

from a uniform distribution in [1, F ], determine the cycle time T by setting

T = 2Fmax + 2Nτs, where Fmax is the maximum destination floor among the

N passengers and τs is randomly chosen from any well-behaved (i.e., no long

tails) continuous distribution with mean value 2.5. In our simulations, we use

a uniform distribution.

(iii) Increment the time by T and populate the lobby with N new passengers, with

N chosen from a Poisson distribution with mean value λT . The passengers
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currently in the elevator are erased.

(iv) The elevator picks up the waiting passengers and a new cycle begins.

k > 1 elevators

We need to now track the return time of each of the k elevators and an event is defined

by the return of the elevator with the shortest current return time.

• If no passengers are waiting when an empty elevator reaches the ground floor,

advance the time by a random number δt whose average value equals is the inter-

arrival time between successive passengers, and then set N = 1. Decrement the

return times of all other elevators by δt.

• If N ≥ 1 passengers are waiting when an elevator arrives, then:

(i) Passengers enter the elevator until either all N < C passengers are

accommodated or the elevator is full. The number of waiting passengers is

decreased by min(N,C).

(ii) From the set of passenger destination floors, determine the return time T .

(iii) Increment the time by Tmin ≡ min{Ti}, where Ti is the current travel time

of the ith elevator to reach the lobby and i runs from 1 to k. Decrement the

travel times of all other elevators by Tmin. Populate the lobby with N new

passengers, with N chosen from a Poisson distribution with mean value λTmin.

(iv) The elevator with the minimum return time picks up the waiting passengers

and a new cycle begins.

Note that loading an elevator, elevator travel, and elevator unloading are combined

into a single event in this algorithm. Consequently, there is no possibility for a

second elevator to arrive in the lobby during the time that one is currently loading

passengers.
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