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1 Abstract

The magneticaloric properties of the Ising nanotube constituted by arbitrary
core spin values S, and the shell spin values S; have been investigated by mean
field approximation. During this investigation, several quantities have been
calculated, such as isothermal magnetic entropy change, full width at half max-
imum value and the refrigerant capacity. The variation of these quantities with
the values of the spins and exchange interaction between the core and shell is
determined. Besides, recently experimentally observed double peak behavior in
the variation of the isothermal magnetic entropy change with the temperature
is obtained for the nanotube.

2 Introduction

Magnetocaloric effect (MCE) is defined as an occurred temperature change in
the material when it is subject to the magnetic field. It was first observed in Iron
[1] and theoretically explained after many years [2, [3]. MCE is simply based on
the variation in different contributions to the entropy. The entropy of a magnetic
material is composed of three independent parts namely, the electronic part,
lattice part, and magnetic part. Under adiabatic changes, the total entropy of
the material is constant. This means that, occurred a change in one part of the
entropy should be balanced by other parts. Then if one increases the magnetic
part of the entropy by an adiabatic process, the lattice part should decrease (by
an assumption of the constant electronic part of the entropy). Decreasing lattice
entropy manifests itself as a reduction in the temperature of the material. In
this way, one can construct a thermodynamical cycle, in which at one step the
material is at the temperature 77 and at another step it has the temperature
T5 > Ti.

Refrigerant capacity (RC) is the amount of heat that can be transferred
from the cold end (at temperature T7) to the hot end (at temperature Tb )
in one thermodynamical cycle. This quantity is one of the quantities which
measure the suitability of the magnetic material for magnetocaloric purposes.
It is in relation to another quantity namely isothermal magnetic entropy change
(IMEC). In order to obtain a large adiabatic temperature change, the material
should have a large IMEC, and a large RC. On the other hand a good candidate
has sufficient thermal conductivity for the aim of easy heat exchange.

The typical behavior of the IMEC by the temperature includes peak at a
critical temperature of the material. Generally, bulk magnetocaloric materials
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display larger IMEC peaks but with negligible or very low RC values. On the
other side, nanosystems show reduced IMEC values. But their IMEC curve
spread over a wide temperature range and this fact sometimes yields larger RC
(in comparison to the bulk counterparts). Thus they are promising candidates
for magnetic refrigeration [4 [5]. For instance, it has been shown that the ge-
ometrical confinement of Dy and Ho can lead to an enhanced magnetocaloric
effect in comparison to the bulk counterparts [0l [7]. Similarly, it has been shown
for Lag.7S70.3MnO3 nanotube arrays, the bulk sample exhibits higher IMEC
but nanotubes present an expanded temperature dependence of IMEC curves
that spread over a broad temperature range [8, 9].

As explained in Sec. B IMEC is related to the magnetization change with
the temperature. If the magnetization rapidly changes over some interval of
the temperature, it is said that large MCE obtained. Nanotubes are promising
materials for obtaining efficient MCE. For instance, large MCE, associated with
the sharp change in magnetization of the GdaO3 nanotubes has been shown
experimentally [10, [IT]. Another example of experimental MCE in nanotubes
is the structural defect-induced MCE in Nig3Zng.7Fe20,4 graphene (NZF/G)
nanocomposites [12].

As seen in these examples, experimental studies are up to date for MCE
in nanotubes. Although, MCE in nano systems is an active research area for
experimentalists, to the best of our knowledge MCE on nanotube geometry
has not been worked out, theoretically. But, from the theoretical side both of
the magnetic behavior of these systems well studied. After the first theoretical
treatments of the Ising model on nanotube geometry [I3] by effective field ap-
proximation, the first results for the anisotropic Heisenberg model on nanotube
geometry have been obtained within the same methodology [14]. As studied in
this work in terms of the MCE, mixed spin models have been worked out for
obtaining the magnetic properties. The magnetic properties of the spin (1/2-1)
mixed system on nanotube geometry has been worked out within the improved
mean-field approximation [I5] and Monte Carlo simulation [I6, [I7, [18]. Also
hysteresis and magnetic properties of the spin-1/2 spin-1 nanowire have been
determined by Monte Carlo simulations [19]. The magnetic and hysteresis be-
haviors of the higher spin models are also well known theoretically.

The magnetic properties of the spin-1 and spin 3/2 nanotube has been de-
termined within the Monte Carlo simulation [20] and quantum simulation treat-
ment [2I]. The same model on the nanowire geometry has been investigated by
Monte Carlo simulation [22]. Spin (1/2-3/2) model on nanotube geometry has
been investigated within the effective field theory [23] and on a nanowire geom-
etry by Monte Carlo simulation [24] 25]. The magnetic phase transition charac-
teristics and hysteresis behaviors of spin-3/2 spin -5/2 model on Ising nanowire
have been determined by the Monte Carlo simulation [26] 27]. Besides, hys-
teresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising
nanowire have been studied within the Monte Carlo simulation [28].

The aim of this work is to determine the MCE characteristics of the magnetic
nanotube, by solving the Ising model with several different spin values. For this
aim, the paper is organized as follows: In Sec. [3 we briefly present the model



and formulation. The results and discussions are presented in Sec. Ml and finally
Sec. [ contains our conclusions.

3 Model and Formulation
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Figure 1: Schematic representation of one layer of the nanotube in xy plane.
The system periodically extends in z direction.

We can see the schematic representation of the one layer of the nanotube in
Fig. (). As seen in Fig. (), one layer of the nanotube consists of two hexagons
which is called core (inner hexagon) and the shell (outer hexagon). Let the core
spins have value S. and shell spins have S;. We can write the Hamiltonian of
this system as

H=—Je (S785) = Jo D (SiS5) = Jes D (S5S5) —HY S (1)

<ig> <ig> <ij>

where Sy, S7 denote the z component of the Pauli spin operator at a site ¢ which
belongs to the core (c¢) and shell (s), respectively. J. is the exchange interaction
between the nearest neighbor core spins, Js is the exchange interaction between
the nearest neighbor shell spins, and J.s is the exchange interaction between
the nearest neighbor core and shell spins. The former three sums in Eq. () are



taken over the nearest neighbor sites, while last summation is taken over all the
lattice sites. In Eq. (), H is the longitudinal magnetic field.

In order to include the effect of all exchange interactions, we take four spin
cluster. We can construct one layer of the nanotube by repetition of this se-
lected cluster. The nanotube consists of repeating layers (seen in Fig. () in z
direction. The Hamiltonian of this cluster (which consists of red colored spins

in Fig. ) is

HW = —J.(5182) — J5 (S354) — Jes (5153 4 S1.S4 + S253) (2)

4 4
~HY 8i = hiS;.
=1 =1

Here, h; are the local fields that represent the interaction of the i*" spin with
nearest neighbor spins that belong to outside of the cluster. These local fields
represent the following spin-spin interactions:

hi = Jo(S6 + Si1+ S12) + JesSs

ha = J,. (S7 + So1 + 522) + Jes (Sg + Sg) (3)
hy = Jg (Sg + S31 + 832)

hy = Js(Ss+ S+ Sa2).

Here the spins which are denoted as S;;, wherei¢ = 1,2,3,4 and j = 1, 2 represent
the neighbor spins of the spin denoted as S;, which are in the upper and lower
plane in z direction. The thermal average of the quantity €2 can be calculated
via the exact generalized Callen-Suzuki identity [29)]

Q) = <TT4Q exp (—[37—[(4)) > @

Tryexp (—BH(4))

In Eq. ) Try stands for the partial trace over all the lattice sites which belong
to the selected cluster and 8 = 1/(kT') where k is the Boltzmann constant and
T is the temperature.

Let us denote the basis set for this finite cluster by {|¢:)} = |s1525354),
where s, is just one spin eigenvalue of the operator Sy (k = 1,2,3,4). In this
representation of the basis set, operators in the 4-spin cluster acts on the bases
via

Sk |s1528384) = Sk |S1528354) , (5)

where k£ = 1,2,3,4. Note that, since the system consist of spin-S. core and
spin-S, shell particles, number of bases equals to (25 + 1) (25, + 1)°.

Indeed calculation of Eq. (@) is trivial, since the matrix H*) is diagonal for
the Hamiltonian given in Eq. (@), in the chosen basis set. The diagonal element
related to the base |s1528354) (which can be obtained by applying operator Eq.
@) to bases according to Eq. () is given by
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H(4)‘ ¢i> = —Jc(5152) — Js (5354) — Jes (5153 + 5154 + S253) (6)

4 4
_stl — thsl
i=1 i=1

Let us denote this element as H® (s1, so, 53, 54), then we can write Eq. (@)
as

Z spexp (—BH® (s1, 52, 53,51))

(S),) = <{51’52’53’S4} > k=1,2,3,4.  (7)
Z exp (=BH® (s1, 52, 53,54))

{51752153154}

The summations are taken over all the possible configurations of (s1, so, 83, $4).
The core (m.), shell (ms) and total (m) magnetizations can be calculated
via

1 1 1
me =3 ((S1) + (S2)), ms = 3 ((S3) +(S4)), m= 3 (me +2ms). (8)
Up to this point, all equations are exact. But how can local fields in Eq. (Gl
be treated? Since our aim is to obtain some general qualitative results about
the MCE in nanotube system, it is enough to treat these local fields in a level
of mean field, i.e. by writing operators in Eq. [B]) as their thermal averages,

hi = Je(2my +mg) + Jesms

ho = Jec(mi+2ma) + Jeos (M3 + my) ()
h,g = JS (2m3 + m4)

hy = Jg (m3 + 2m4) .

Note that, the periodicity of the lattice has been used for obtaining the expres-
sions of local fields given in Eq. (@) from Eq. @)). In other words,

(S11) = (S12) = (S7) = my

(S21) = (S22) = (S6) = m2 (10)
(S31) = (S32) = (S5) = (Ss) = m3

(Sa1) = (Sa2) = (S9) = ma.

By using this approximation, Eq. (@) gets the form

Z S exp (—ﬁH(4) (s1, 52, 83754))

_ {s1,52,53,54}

my = k=1,2,3,4, (11)
Z exp (~BHW (s1,52,53,54))

{51)52753)54}




where the definitions of local fields given by Eq. (@) have been used in matrix
elements H® (s1, 52, 83,84). Then, the magnetizations my,ms, msz, my can be
found by numerical solution of the nonlinear equation system given by Eq. ([II).
Core, shell and the total magnetization can be obtained by using Eq. (8). Note
that, the formulation used here is a generalization of the traditional mean-field
to a larger cluster. The effect of using larger clusters can be found in Ref. [30].

In order to determine the magnetocaloric properties of the system, we calcu-
late the isothermal magnetic entropy change (IMEC) when maximum applied
longitudinal field is H,y 4., which is given by [31]

Himaax
ASy = / (g—’;) dH. (12)
H
0

The other quantitiy of interest is the refrigerant capacity which is defined by

32

T>
q= —/ASM (T)p dT. (13)
T

Here T3 and T% are chosen as those temperatures at which the magnetic entropy
change gains the half of the peak value and this is called as the full width at
half maximum value (FWHM) of the IMEC. This is also an important quantity
of the MCE.

4 Results and Discussion

We want to focus on the magnetocaloric properties of the system. The Hamil-
tonian of the system includes four parameters, as one can see from Eq. (). In
order to make it possible for investigation, we have to reduce this number of
parameters. For this aim let us choose J. = J; = J. By this unit of energy J
(which is positive) we can work with scaled quantities as
Jcs H - kBT

r=—, h—J, t= 7 (14)
Note that, hAyee = 1.0 is chosen in the calculations.

First, we want to elaborate on IMEC behavior for differently structured nan-
otubes. For this aim, we depict the variation of the IMEC with the temperature
for several nanotubes constituted by core spin value S, = 1/2 in Fig. (@) and
S. = 7/2 in Fig. @)). Each figure contains different shell spin values (Ss) and
core-shell exchange interaction values (1), which are shown in the related figure.
We can see from Fig. (@) that, when the spin value of the shell increases, the
maximum value of the IMEC occurs in higher temperatures, and the peak value
(i.e. height of the peak) of the IMEC decreases. At the same time, the curve
gets wider, i.e. FWHM increases. This is consistent with the general relation
between the spin value of the model and IMEC behavior. As demonstrated in



Ref. [36], when the spin value of the model increases, the height of the peak in
IMEC decreases, but the curves get wider, i.e. FWHM increases.

Besides for lower values of 7, the double peak behavior of the curve takes
attention (see Figs. (@) (a) and (b)). This double peak behavior is depressed
when the interaction of the core-shell gets stronger (see Figs. @) (c¢) and (d)).
Very recently, this behavior is obtained for the bilayer system experimentally
[33]. Besides, double peak behavior has been obtained theoretically for bilayer
[34] and superlattice systems [35].

The same double peak behavior can be seen for the system constituted by
spins S, = 7/2 (Fig. @)). But the evolution of the curves by changing shell
spin value is slightly different from the nanotubes that have S. = 1/2, for the
nanotubes that have S, = 7/2 as a core spin value (see Fig. ([@)). When the
shell spin value increases, the peak value of IMEC increases.

For non-interacting core-shell, two peaked behavior of IMEC occurs, as seen
in Figs. @) (a) and @) (a). For non-interacting case, the system consists of
two independent layer which have spin values S. and Ss. The low temperature
peak seen in Fig.[@) (a) is related to the system with spin value of S. and
other peak is related to the system with spin value S;. Since S5 > S, in Fig.
@) (a), it is natural for the peak related to the Ss to lie right side of the
peak related to S, in (|[ASa|,t) plane, due to the relations between the critical
temperatures of layers that have different spin values.The same reasoning holds
also for Fig.([@) (a). When the interaction between the core and shell increases,
one peak behavior takes place (compare Figs.([2) (d) by (a), and Figs.@) (d) by
(a)). While this transition, the peak that occurs at lower temperature values
suppressed (compare Figs.[@)) (b) by (a), and Figs.@) (b) by (a)).

To take a closer look at the IMEC behaviors with the spin value and the
value of core-shell interaction, we calculate the maximum value (height of the
peak) of the IMEC for different nanotubes which can be seen in Fig. (). At
first sight, height of the peak of IMEC for a certain S. occurs at Sy = S,
regardless of the value of r. Thus, as seen in Fig. (@) decreasing trend with
rising S occurs for S, = 1/2 and increasing trend with rising S occurs for
S. = 7/2. For the values of 1/2 < S, < 7/2, rising S, rises the height of the
peak of IMEC until Sy = S,, after then rising S5 causes to a decline in the
height of the peak of IMEC. We can see similar behavior for FWHM in Fig.
). Except (S¢,Ss) = (5/2,1/2),(3,1/2),(7/2,1/2) nanotubes, rising S first
decreases FWHM, minimum FWHM occurs at Sy = S, after then rising S,
causes to increment behavior in FWHM.

For refrigerant capacity defined in Eq. (I3]), we depict the same scatter plot
in Fig. (@). As we can see from Fig. (), rising Ss cause increasing refrigerant
capacity for spin values of core provide S. < 3. If the core spin value exceeds 5/2,
slightly lowering behavior takes place for larger shell spin values. Interestingly,
weak interaction between the core and the shell causes larger refrigerant capacity
for higher spin values (compare gray dots by black dots in S, = 3 and 7/2).
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Figure 2: The variation of IMEC with the temperature for selected values of
S =1/2,1,3/2,2,5/2,3,7/2 and r = 0.0,0.1,0.5, 1.0 for nanotube that have
core spin value of S, = 1/2.

5 Conclusion

The MCE properties of the Ising nanotube constituted by arbitrary core spin
values S. and the shell spin values S; have been investigated by mean field ap-
proximation. During this investigation, several quantities have been calculated,
such as IMEC, FWHM and the refrigerant capacity (¢). The variation of these
quantities with the values of the spins and exchange interaction between the
core and shell is determined.

First general conclusions about the variation of the IMEC with the temper-
ature has been obtained. As consistently by the conclusions obtained in Ref.
[36] for the general spin valued Ising model on a regular lattice, it is observed
that when the spin values of the nanotube increase, the height of the peak in
IMEC decreases. This peak occurs at the critical temperature of the system,
as expected. Besides, for a chosen spin value for the core, increasing shell spin
value yields rising height of the peak in IMEC, when S, = S, maximum value
is obtained. After that (i.e. S. < Sy), increasing spin value of the shell yields
decreasing behavior in the height of the peak in IMEC. Completely reverse evo-
lution occurs in FWHM, when the value of the shell spin increases. On the
other hand, refrigerant capacity has increasing trend in the conditions of rising
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Figure 3: The variation of IMEC with the temperature for selected values of
S =1/2,1,3/2,2,5/2,3,7/2 and r = 0.0,0.1,0.5, 1.0 for nanotube that have
core spin value of S, = 7/2.

core and shell spin values. These observations may yield a tuning of MCE in
nanotube system. Although it is very hard task to tune the interaction between
the core and shell experimentally, theoretical knowledge about the relation be-
tween the spin values (or exchange interaction between the core and the shell)
and MCE characteristics may yield important experimental achievements.

Other than these results, recently obtained double peak behavior in IMEC
for bilayer system is observed in nanotube system also. The physical explanation
is briefly discussed.

We hope that the results obtained in this work may be beneficial form both
theoretical and experimental point of view.
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Figure 4: The maximum value of the IMEC for nanotubes that consist of spin
values S., Ss = 1/2,1,3/2,2,5/2,3,7/2 and for selected values of r = 0.1, 1.0.
Each box labeled by S, contains number of 7 circles for certain value of r. Each
circle corresponds to different values of Sy, starting from S, = 1/2 (most left),
by increment value of 1/2 and arrive S; = 7/2 (most right) in a box.
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