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Experimentally there exist many materials with first-order phase transitions at finite temperature
that display quantum criticality. Classically, a strain-energy density coupling is known to drive first-
order transitions in compressible systems, and here we generalize this Larkin-Pikin1 mechanism to
the quantum case. We show that if the T = 0 system lies above its upper critical dimension,
the line of first-order transitions ends in a “quantum annealed critical point” where zero-point
fluctuations restore the underlying criticality of the order parameter. The generalized Larkin-Pikin
phase diagram is presented and experimental consequences are discussed.

I. INTRODUCTION

The interplay of first-order phase transitions with
quantum fluctuations is an active area2–9 in the study
of exotic quantum states near zero-temperature phase
transitions.10–16 In many metallic quantum ferromag-
nets, coupling of the local magnetization to the low en-
ergy particle-hole excitations transforms a high temper-
ature continuous phase transition into a low tempera-
ture discontinuous one, and the resulting classical tri-
critical points have been observed in many systems.2–9

Experimentally there also exist insulating materials that
have classical first-order transitions that display quantum
criticality,17–21 and here we provide a theoretical basis
for this behavior. In a nutshell, we study a system with
strain-energy density coupling1 that has a line of first-
order transitions at finite temperatures. We show that as
the temperature is lowered, quantum fluctuations reduce
the amplitudes of their thermal counterparts, weakening
the first-order transition and “annealing” the system’s
elastic response, ultimately resulting in a T = 0 “quan-
tum annealed” critical point. The generalized temper-
ature (T )-tuning parameter (g)-field (h) phase diagram
emerging from our study is presented in Figure 1 where
the field (h) is conjugate to the order parameter.

At a first-order transition the quartic mode-mode cou-
pling of the effective action becomes negative. One mech-
anism for this phenomenon, studied by Larkin and Pikin1

(LP), involves the interaction of strain with the fluctu-
ating energy density of a critical order parameter. LP
found that a diverging specific heat in the “clamped”
(fixed volume) system leads to a first-order transition in
the unclamped system at constant pressure. The Larkin-
Pikin criterion1 for a first order phase transition is

κ <˜ ∆CV
Tc

(
dTc
d lnV

)2

(1)

where V is the volume, ∆CV is the singular part of the
specific heat capacity in the clamped critical system, Tc is
the transition temperature and dTc

dlnV is its volume strain
derivative. The effective bulk modulus κ is defined by

FIG. 1. Temperature (T )-Field (h)-Tuning Parameter (g)
Phase Diagram with a sheet of first-order transitions bounded
by critical end-points (CEP) terminating at a zero tempera-
ture quantum critical point (QCP); here g tunes the quantum
fluctuations and h is the field conjugate to the order param-
eter. Inset: Temperature-Tuning Paramter “slice” indicating
a line of classical phase transitions ending in a “quantum an-
nealed critical point” where the underlying order parameter
criticality is restored by zero-point fluctuations.

κ−1 = K−1 − (K + 4
3µ)−1 where K and µ are the bare

bulk and the shear moduli in the absence of coupling
between the order parameter and strain; more physi-

cally κ ∼ K
c2L
c2T

where cL and cT are the longitudinal

and the transverse sound velocities.22 An experimental
setting for this behavior is provided by BaTiO3 with a
classical ferroelectric phase transition that is continuous
when clamped and, due to electromechanical coupling,
becomes first-order when unclamped.23,24

Low-temperature measurements on ferroelectric insu-

ar
X

iv
:2

01
2.

01
60

1v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

 D
ec

 2
02

0



2

lators provide a key motivation for our study.17–21 At
finite temperatures and ambient pressure these mate-
rials often display first-order transitions due to strong
electromechanical coupling;24 yet in many cases17–21

their dielectric susceptibilities suggest the presence of
pressure-induced quantum criticality associated with
zero-temperature continuous transitions.17–21 It is thus
natural to explore whether a generalization of the Larkin-
Pikin mechanism1 with strain-energy density coupling,
can be developed to describe this phenomenon.

Here we generalize the Larkin-Pikin approach to in-
clude quantum zero-point fluctuations of the energy den-
sity, showing that it is the divergence of the energy
fluctuations, both quantum and classical, that govern
the LP mechanism. Quantum fluctuations introduce an
additional time dimension into the partition function,
which now sums over all space-time configurations.25,26

At a finite temperature T , the temporal extent of the
quantum fluctuations is bounded by the Planck time
τP = ~

kBT
with a corresponding quantum correlation

length ξQ ∼ (τP )1/z where z is the the dynamical ex-
ponent. Therefore for temperatures where ξQ is greater
than the lattice spacing, the thermal correlation volume
contains a quantum mechanical core on length- and time-
scales determined by ξQ and τP . Due to their additional
time dimension, quantum fluctuations are typically less
singular than are their classical counterparts. As the
temperature is lowered, the correlation volume of the
zero-point fluctuations grows, reducing the amplitudes of
the singular thermal fluctuations in the clamped system.
The induced Larkin-Pikin first order transition thus be-
comes progressively weaker with decreasing temperature,
leading to a continuous “quantum annealed” transition
at T = 0.

More specifically, Larkin and Pikin considered the
coupling1

LI = λell(~x)ψ2(~x) (2)

between the volumetric strain field ell and the squared
amplitude ψ2 of the critical order parameter. In a critical
system, the singular fluctuations of the energy density
are directly proportional to ψ2; thus (2) corresponds to a
strain-energy coupling. Naively (2) is expected to induce
a short-range attractive order parameter interaction. LP
showed that (2) also leads to an anomalous long-range
interaction between order parameter fluctuations.

S −→ S − λ2

2Tκ

[
1

V

∫
d3x

∫
d3x′ψ2(~x)ψ2(~x′)

]
(3)

with

1

κ
=

(
1

K
− 1

K + 4
3µ

)
(4)

where µ is the shear modulus. This long-range inter-
action is finite if µ > 0, i.e if the medium is a solid.
LP showed that this induced long-range interaction in

(3) generates positive feedback to the tuning parameter,
leading to a multi-valued free energy surface and a re-
sulting first order phase transition.

Here we expand the LP approach to include both quan-
tum and classical fluctuations, summing over all possible
spacetime configurations in the action, to obtain a gen-
eralized LP criterion

κ <˜
(

dgc
d lnV

)2

χψ2 (5)

where

χψ2 =

∫ β

0

dτ

∫
d3x〈δψ2(~x)δψ2(0)〉 (6)

is the space-time average of the quantum and thermal
“energy” fluctuations, β = 1

kBT
and g is the tuning pa-

rameter for the phase transition, with the convention that
gc(T = 0) = 0. At zero temperature, this expression
extends the original LP criterion (1) to quantum phase
transitions. At finite temperatures, the critical temper-
ature and the critical coupling constant are related by

gc(Tc) = uT
1/Ψ̃
c , where Ψ̃ = ν̃z is the shift exponent

governing the finite temperature transition with ν̃ and z
the quantum correlation length and the dynamical criti-
cal exponents respectively;27 therefore d ln gc = 1

Ψ̃
d lnTc

and the LP criterion becomes

κ <˜
(

dTc
d lnV

)2

∆CV /Tc︷ ︸︸ ︷(
g

2Tc

)2

χψ2 , (7)

where we have identified ∆Cv/Tc = (g/2Tc)
2χψ2 with

the specific heat capacity. In this way, we see that the
generalized Larkin Pikin equation encompasses the orig-
inal criterion (1) in addition to being applicable at low
temperatures.

Recently an adaptation of the Larkin-Pikin approach
was proposed for pressure(P )-tuned quantum magnets
where it is often found that dTc

dP → ∞ as Tc → 0.

For a pressure-tuned transition, P − Pc = uT
1/Ψ̃
c , so

that dTc/dP ∝ T
1−1/Ψ̃
c diverges as Tc → 0 if Ψ̃ < 1.

It was then argued that the associated quantum phase
transitions be first-order.28–30 However such a diverg-
ing coupling of the critical order parameter fluctua-
tions and the lattice should lead to structural instabil-
ities near the quantum phase transition that have not
been observed.9,31 Using Maxwell relations, we can write
dTc
dP = ∆V

∆S

∣∣
T=Tc

. Since ∆S → 0 as Tc → 0, proponents

of the previous argument assume that ∆V is finite in the
same limit, indicating latent work at the quantum phase
transition. However the ratio ∆V

∆S can still diverge at a
continous quantum transition if the numerator and the
denominator have different temperature-dependences as
Tc → 0+. In fact, from our generalization of the Larkin-
Pikin approach, we show that

∆V ∝ −T η,
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∆S ∝ −T η(T
1
Ψ̃
−1), (8)

where η = α−α̃
αΨ̃

with α and α̃ the classical and quantum

critical exponents respectively, governing the divergence
of energy fluctuations. Generically α > α̃, since ther-
mal fluctuations are more singular than quantum fluctu-
ations, so that η > 0. This means that

lim
Tc→0+

∆V → 0 (9)

so there is no latent work at the quantum phase transi-
tion, confirming its continuous nature, despite the fact
that when Ψ̃ < 1,

dTc
dP

=
∆V

∆S

∣∣∣∣
T=Tc

∝ −T
1− 1

Ψ̃
c (10)

diverges as Tc goes to zero.
The structure of the paper is as follows. In Section

II we present the original Larkin-Pikin approach,1 first
constructing the classical LP action. Next, following LP,
we parameterize the positive feedback contribution to
the internal tuning parameter of the elastically-coupled
free energy using the uncoupled (clamped) free energy
and scaling functions associated with classical critical-
ity. The non-monotonic relation between the internal
tuning parameter and the physical temperature is coin-
cident with a multivalued (unclamped) free energy, in-
dicating the presence of a first-order transition in the
elastically-coupled system. We also derive the classical
Larkin-Pikin criterion (1) as a macroscopic instability of
the original (uncoupled) critical point with respect to the
strain-energy density coupling.32 This approach can be
rewritten in terms of correlation functions, giving insight
into the Tc → 0 result.

The generalized Larkin-Pikin action is derived in Sec-
tion III, where all possible space-time configurations are
summed over so that quantum and thermal fluctuations
are included. In Section IV a crossover scaling form
for the clamped free energy that is applicable for both
the classical and quantum critical points27 is presented
and used in the generalized Larkin-Pikin equations to
study the system’s behavior in the approach to Tc → 0
along the clamped system’s critical line. The Clausius-
Clapeyron relations as Tc → 0 are studied for the un-
clamped system, and it is shown that there is no latent
work at Tc → 0, confirming that the quantum transition
is continuous. Next a field conjugate to the order param-
eter is applied in Section V, and the critical endpoints
are determined. Field behavior in the approach to the
quantum critical point is also studied, and these results
are summarized in the Larkin-Pikin phase diagram. Ex-
perimental consequences are presented in Section VI and
we end (VII) with a summarizing discussion and open
questionsfor future work. Derivations of the classical and
quantum Larkin-Pikin actions and of various crossover
scaling expressions are presented in five Appendices for
interested readers.

II. THE CLASSICAL LARKIN-PIKIN
APPROACH

The Larkin-Pikin (LP) mechanism1 refers to a com-
pressible system where the order parameter, ψ2(~x), is
coupled to the volumetric strain in the simplest case of
a scalar ψ and isotropic elasticity. The action S [ψ, u]
for this compressible system then divides up into three
contributions

S [ψ, u] = SL[ψ] + SE [u] + SI [ψ, e]

=
1

T

∫
d3x(LL[ψ] + LE [u] + LI [ψ, e]). (11)

Here, in order to present the original classical LP problem
in a way that is amenable to its quantum generalization
considered later, we have used the notation L, denot-
ing the Lagrangian density which is also the Hamiltonian
density in the classical case.

The Lagrangian density LL[ψ] describes the physics of
the order parameter in the clamped system that, in the
simplest case, is a ψ4 field theory

LL[ψ] =
1

2
(∂µψ)2 +

a

2
ψ2 +

b

4!
ψ4, (12)

where a = c(T − Tc) is the tuning parameter, and b > 0;
the clamped system thus undergoes a continuous phase
transition. The term

LE [u] =
1

2

[(
K − 2

3
µ

)
e2
ll + 2µe2

ab

]
− σabeab (13)

describes the elastic degrees of freedom, where σab is the

external stress, eab(~x) = 1
2

(
∂ua
∂xb

+ ∂ub
∂xa

)
is the strain ten-

sor, ua(~x) is the local atomic displacement and ell(~x) =
Tr[e(~x)] is the volumetric strain. Finally

LI [ψ, e] = λellψ
2 (14)

describes the interaction between the volumetric strain
ell and the squared amplitude ψ2, the “energy density”,
of the order parameter, where λ is a coupling constant as-
sociated with the strain-dependence of Tc. If we combine

LL + LI =
1

2
(∂µψ)2 +

c

2
(T − Tc[ell])ψ2 +

b

4!
ψ4, (15)

where

Tc[ell] = Tc − (2λ/c)ell (16)

is the strain dependent Tc, so that (2λ/c) = −
(
dTc
dlnV

)
.

For notational simplicity and convenience, we shall set
c = 1 in the following development.

The key idea of the Larkin-Pikin approach is that we
integrate out the Gaussian strain degrees of freedom from
the action so that the partition function takes the form

Z =

∫
D[ψ]

∫
D[u] e−S [ψ,u] −→ Z =

∫
D[ψ]e−S[ψ].

(17)
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where the effective action S is a function of the order
parameter ψ.

Though the elastic degrees of freedom are Gaussian,
and can be exactly integrated out, this procedure must be
done with some care because of the special role of bound-
ary normal modes. In a solid of volume L3, the normal
modes can be separated into two components accord-
ing to their wavelength λ: sound waves have wavelength
λ � L whereas boundary waves have wavelength com-
parable with the size of the system, λ ∼ L. The Larkin
Pikin effect is a kind of “elastic anomaly”, whereby the
integration over boundary modes generates a nonlocal in-
teraction between the order parameter in the bulk action.
This elastic anomaly destroys the locality of the original
theory, yet paradoxically, as a bulk term in the action it
is independent of the detailed boundary conditions.

Larkin and Pikin chose periodic boundary conditions
as the most convenient way to integrate out the boundary
modes.1 In a system with periodic boundary conditions,
the strain field separates into a uniform (~q = 0) “bound-
ary term” and a finite-momentum (~q 6= 0) contribution
determined by fluctuating atomic displacements

eab(~x) = eab +
1

V

∑
~q 6=0

i

2
[qaub(~q) + qbua(~q)]ei~q·~x (18)

where ua(~q) is the Fourier transform of ua(~x) with dis-
crete momenta ~q = 2π

L (l,m, n) with {l,m, n} integers,

{a, b} ∈ {1, 2, 3} and volume V = L3. Physically we
can understand this separation in (18) by noting that
the strain only couples to the longitudinal modes; how-
ever at q = 0 there is no distinction between transverse
and longitudinal modes so this case must be treated sep-
arately from the finite q situation. Formally, the solid
forms a 3-torus, and the integral of the strain eab around
the torus defines the number of line defects enclosed by

the torus, a kind of flux, that is∮
eab(~x)dxb = eab

∮
dxb = ba (19)

where bb is the Burger’s vector of the enclosed defects.
Thus on a torus, the boundary modes of the strain have
a topological character.

In order to integrate out the Gaussian strain degrees
of freedom from (11) to derive an effective action for the
order parameter field in (17), we write the effective action

S[ψ] = SL[ψ] + ∆S[ψ] (20)

where SL[ψ] = 1
T

∫
d3x LL[ψ] from (12) and

e−∆S[ψ] =

∫
D[e, u]e−(SE [u]+SI [ψ,e]). (21)

If we write the elastic action in a schematic, discretized
form

SE [u] + SI [ψ, e] =
1

2

∑
i,j

uiMijuj + λ
∑
j

ujψ
2
j (22)

then the effective action becomes simply

∆S[ψ] =
1

2
ln det[M ]− λ2

2

∑
i,j

ψ2
iM
−1
i,j ψ

2
j (23)

where the second term is recognizable as an induced at-
tractive interaction between the order parameter fields.
Because of subtleties associated with the separation (18)
of the strain into uniform and finite ~q components, in-
tegration of the elastic degrees of freedom in (21) leads
to an overall attractive interaction (∝ −ψ2

iM
−1
ij ψ

2
j ) with

both short-range and infinite range components.

Integrating over the elastic degrees of freedom (18) in (21) we obtain the Larkin-Pikin action

S[ψ] = SL[ψ, t, b∗]− λ2

2T

(
1

K
− 1

K + 4
3µ

)[
1

V

∫
d3x

∫
d3x′ ψ2(~x) ψ2(~x′)

]
, (24)

where

SL(ψ) =
1

T

∫
d3x

[
1

2
(∂µψ)2 +

t

2
ψ2 +

b∗

4!
ψ4

]
(25)

with a renormalized local interaction

b∗ = b− 12λ2

K + 4
3µ
. (26)

where we have made the replacement a→ t where t = (T − Tc) and c = a
T−Tc = 1.

The essence of the Larkin-Pikin effect is the appearance
of a distance-independent interaction between the energy
densities of the order parameter field that appears in (24):

it is this term that drives a non-perturbative first order
transition at arbitrarily small λ. Since the Larkin-Pikin
argument is valid for arbitrarily small coupling λ, the per-
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turbative O(λ2) renormalization of the short-range inter-
action in (26) becomes negligibly small in this limit and
can be safely neglected. The prefactor of the long range
attractive interaction (24)

1

κ
=

(
1

K
− 1

K + 4
3µ

)
(27)

has two competing terms. The first is attractive (∝ 1
K ),

resulting simply from integrating out the q = 0 part of
the strain (18), governed by the bulk modulus K. The
second results from the finite q components of the strain
(18), but in a rather subtle fashion. The finite q elas-
tic fluctuations, arising from longitudinal sound modes,
are governed by the elastic modulus K + 4

3µ and lead
to the perturbative renormalization of b in (26). How-
ever, the finite q modes explicitly exclude a contribution
from q = 0. This “bosonic hole” in the longitudinal in-
teractions gives rise to a residual long-range repulsion,
resulting in the second term ( ∝ − 1

K+ 4
3µ

). Remarkably,

the overall prefactor of the long-range interaction term
( 1
κ ) is only non-zero for finite shear modulus (µ 6= 0),

indicating that the Larkin-Pikin effect only occurs for

solids and is absent for liquids. We also note that for the
clamped system only the second contribution to (27) re-
mains, leading to a repulsive interaction; this is consistent
with the continuous transition of the clamped system.

The distance-independent interaction in (24) can be
written in terms of the volume average of the energy den-
sity

Ψ2 ≡
[

1

V

∫
d3x ψ2(~x)

]
(28)

so that

S[ψ] = SL −
λ2V

2Tκ
(Ψ2)2. (29)

Since Ψ2 is an intensive variable, its fluctuations about
its thermal average 〈Ψ2〉

δΨ2 = Ψ2 − 〈Ψ2〉 (30)

become vanishingly small in the thermodynamic limit,
〈(δΨ2)〉 ∼ O( 1

V ). Thus

(
Ψ2
)2

=
(
〈Ψ2〉+ δΨ2)

)2
= 2Ψ2〈Ψ2〉 − 〈Ψ2〉2 +O(1/V ), (31)

so that we can reexpress (24) as a set of self-consistent equations

S[ψ] =
1

T

∫
d3x

[
LL(ψ, t)− λ2

κ
〈Ψ2〉 ψ2(~x)

]
+
λ2V

2κ
〈Ψ2〉2

〈Ψ2〉 =

∫
dψ Ψ2 e−SL[ψ]∫
dψ e−SL[ψ]

. (32)

Equations (32) may be succintly formulated by introduc-
ing an auxiliary “strain” variable

φ = −λ〈Ψ
2〉

κ
(33)

Then we may write

e−
F̃ (φ)
T =

∫
Dψ e−S[ψ,φ] (34)

where

S[ψ, φ] =
1

T

∫
d3x

[
LA(ψ, t) + λφψ2 +

κ

2
φ2
]

(35)

that can be reexpressed as

S[ψ, φ] =
1

T

∫
d3x [LL(ψ, t+ 2λφ)] +

κV

2T
φ2 (36)

where we see that the auxiliary variable φ shifts the
“mass” (e.g. tuning parameter) of the order parameter

by a→ x = a+ 2λφ. Self-consistency is then imposed as
stationarity of the free energy with respect to φ,

∂F̃ [φ]

∂φ
= 0 =⇒

[
λ〈Ψ2〉+ κφ

]
V = 0. (37)

In the original Larkin Pikin derivation,1 the action
(35) was obtained by performing a Hubbard-Stratonovich
transformation of the long-range interaction (29)

−λ
2V

2T
(Ψ2)2 → κV

2T
φ2 + λ(Ψ2)φ, (38)

followed by a saddle-point evaluation of the integral over
φ. Larkin-Pikin observed that main effect of the elasticity
in the unclamped system is make a parameterized shift
of the physical reduced temperature t to a parameterized
variable X

t→ X = t+ λφ. (39)

Although the phase transition of the unclamped system
is continuous for parameterized parameter X, Larkin-
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Pikin1 observed (see Section II.A) that the original (phys-
ical) tuning parameter t[X] becomes a non-monotonic
function of X, leading to a first-order phase transition at
finite temperatures.

Subsequent authors pursued alternative approaches to
the Larkin-Pikin criterion.32–34 If, rather than integrat-
ing out the elasticity variable φ, one integrates out the
order parameter fluctuations, this results in a reduction
∆κ in the bulk modulus that is proportional to energy
density fluctuations.32 When the specific heat diverges,
the bulk modulus is negative, there is a macroscopic in-
stability and the system undergoes a first-order transi-
tion. In the next two sections, we summarize each of
these approaches to the classical Larkin-Pikin problem.

A. Review of the Original Larkin-Pikin Argument

The free energy of the clamped system is defined as

e−
F(t)
T =

∫
D[ψ] e−SL[ψ,t] (40)

where SL is defined in (11) and we have explicitly in-
cluded its dependence on the tuning parameter t. In
writing (40), we have glossed over issues of renormaliza-
tion. In particular, self-energy corrections to the order
parameter propagators will shift the critical value of Tc
in t = T − Tc from its bare value Tc to a renormalized
transition temperature T ∗c . All of these renormalization
effects can be absorbed into redefinitions of the appropri-
ate variables, in particular from now on we will redefine
t = T−T ∗c and for convenience we will drop the asterix so
that Tc refers to the renormalized critical temperature.

From (34) and (35) we can write the free energy for
our unclamped system as

F̃ [φ, t] = F [X] +
κV

2
φ2 (41)

where

X = t+ 2λφ. (42)

indicates the shifting the of the tuning parameter due to
the presence of energy fluctuations.

Now

1

V

∂F
∂X

=
〈Ψ2〉

2
(43)

so that

φ = −λ〈Ψ
2〉

κ
= − 2λ

V κ

(
∂F
∂X

)
≡ − 2λ

V κ
F ′[X] (44)

where we have defined F ′[X] ≡
(
∂F
∂X

)
for simplicity.

Therefore

F̃ = F [X] +
2λ2

V κ
(F ′[X])

2
(45)

and

X = t− 4λ2

V κ
F ′[X]. (46)

Let us define

f̃ ≡ 2λ

V κ
F̃ , f ≡ 2λ

V κ
F . (47)

Then the two equations descibing the unclamped system
are

f̃ = f [X] + λ (f ′[X])
2

(48)

and

t = X + 2λf ′[X] (49)

which have to solved self-consistently, where f̃ and f are
the (renormalized) free energies of the unclamped and
clamped systems respectively.

To examine the consequences of these equations, we
recall that that we can identify a ∝ T−Tc

Tc
≡ t with the

reduced temperature t. In the clamped system, we as-
sume a second-order transition so we can write

f ∝ −|t|2−α (50)

where t is the reduced temperature and α > 0 is the
exponent associated with the specific heat. Since a ∝ t,
this leads to

f ∝ −|X|2−α and f ′[X] ∝ −(2−α)|X|1−αsgn(X) (51)

and combining these results with (49) we obtain

t = X + 2λf ′[X]

= X − 2λ(2− α)|X|1−αsgn(X). (52)

where we see that there is a non-monotonic relationship
between the physical temperature (t) and the parameter-
ized variable (X), as shown in Figure 2, that leads to an
inevitable first-order transition.

In order to see more specifically how (52) translates
into a discontinuous transition let us consider, following
the example of Larkin-Pikin,1 the specific case of α =
1/2. Then for t large, f ∝ |t| 32 . For t = 0 there are
two solutions of (52): X = 0 and X = 4λ2 with f =

0 and f = − 16
3 λ

3 respectively. A plot of f̃ vs. t is
shown in Figure 3, indicating the presence of a first-order
transition.

The Larkin-Pikin criterion (1) emerges from

t = X + 2λf ′[X] = X + 2
λ2

κ
〈Ψ2〉X (53)

where again

〈Ψ2〉X =

∫
D[Ψ]Ψ2e−S(X,ψ)∫
D[Ψ]e−S(X,ψ)

(54)
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FIG. 2. Schematic of the non-monotonic relationship between
the reduced temperature (t) and the parameterized variable
(X) shifted by energy fluctuations for the unclamped Larkin-
Pikin problem.

is the energy density computed with the shifted reduced
temperature X. This expression describes the relation-
ship between the physical temperature t = (T − Tc)/Tc
and the parameterized variable X. Now the derivative
dt/dX is given by

dt

dX
= 1− λ2V

κ
〈(δΨ2)2〉 (55)

We can identify the fluctuations in the right-hand side of
this equation with the specific heat capacity

CV =
〈(δΨ2)2〉
T 2
c

(56)

so that

dt

dX
= 1− λ2T 2

c

κ
CV (X) (57)

Thus if the specific heat capacity diverges at the classical
critical point of the clamped system CV (X)→∞, dt/dX
will change sign as X → 0. Then t[X] becomes a non-
monotonic function of the internal temperature X that
inevitably leads to a first order phase transition. dt

dX = 0
in (57) is the LP criterion (1).

B. The Larkin-Pikin Criterion as a Macroscopic
Instability

An alternative approach to the Larkin-Pikin crite-
rion is to probe the macroscopic stability of the original

FIG. 3. Schematic of the free energy of the unclamped com-
pressible system (f̃) vs reduced temperature (t) for α = 1

2
;

the first-order transition, due to the non-monotonicity of t vs.
X, is marked here.

critical point with respect to the strain-energy density
coupling.32 From (34) and (35) we know that the parti-
tion function of the unclamped system can be written as
an integral over the order parameter fluctuations

Z[φ] = e−F̃ [φ]/T =

∫
D[ψ] e−S[ψ,φ]. (58)

The renormalized bulk modulus,

κ̃ ≡ κ−∆κ (59)

at the transition is then obtained by taking the second
derivative of (34)

κ̃ =
1

V

∂2F̃

∂φ2
= κ− λ2

Tc

∫
d3x〈δψ2(~x)δψ2(0)〉 (60)

where δψ2(~x) = ψ2(~x) − 〈ψ2〉. We recall the tuning pa-
rameter a = c(T − Tc) where we have set c = 1, so that
the singular component of the specific heat coefficient is
also proportional to the energy fluctuations

∆CV
Tc

= −∂
2F

∂T 2

∣∣∣∣
Sing

=
1

4Tc

∫
d3x〈δψ2(~x)δψ2(0)〉 (61)
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which allows us to relate the shift in the bulk modulus
to the singular part of the specific heat

∆κ = (2λ)
2 ∆CV

Tc
=

(
dTc
d lnV

)2
∆CV
Tc

, (62)

where we have used (78) to identify 2λ = −dTc/dlnV .
The condition for a macroscopic instability, and hence
a first-order transition, is when the renormalized bulk
modulus is negative

κ−∆κ < 0⇒ κ <
∆CV
Tc

(
dTc
d lnV

)2

(63)

and we see that we have recovered the Larkin-Pikin cri-
terion (1).

The renormalization of the bulk modulus (59) that re-
sults can also be obtained diagrammatically (Figure 4).
In this approach the bare order parameter interaction
b now acquires a contribution from the coupling to the
strain (Figure 4a). In the Feynman diagrams 1/κ is the
bare “propagator” for the auxilliary strain variable φ.
We can use a Dyson equation for this strain propagator
(Figure 4b) to determine κ̃. Specifically we write(

1

κ̃

)
=

(
1

κ

)
+

(
1

κ

)
λ2〈ψ2(~q)ψ2(−~q)〉

∣∣
~q=0

(
1

κ̃

)
(64)

that results in

κ̃ = κ−∆κ = κ− λ2χψ2 (65)

where χψ2 is the static susceptibility for ψ2,

χψ2 =
1

Tc

∫
d3x〈δψ2(~x)δψ2(0)〉, (66)

recovering (60). ∆κ is thus a self-energy correction to
the strain propagator.

FIG. 4. Diagrammatic approach to the generalized Larkin-
Pikin criterion a) Bare interaction is a sum of a local and a
nonlocal contribution mediated by fluctuations in the strain;
b) Feynman diagram showing renormalization of the strain
propagator by coupling to energy fluctuations.

This discussion enables us to obtain a heuristic under-
standing of how the how Larkin Pikin approach can be
generalized to include quantum fluctuations of the or-
der parameter which now occur in both both space and
(imaginary) time. The prefactor 1/Tc in (66) is now re-
placed by an integral over time so that

χψ2 −→
∫ β

0

dτ

∫
ddx〈δψ2(~x, τ)δψ2(0)〉, (67)

where we have also generalized the expression to d spa-
tial dimensions. This quantity is represented by the same
Feynman diagrams, where momentum variables now be-
come four-momenta q = (~q, νn). If we make the Gaussian
approximation 〈δψ2(~x)δψ2(0)〉 ≈ (〈δψ(~x)δψ(0)〉)2, then
the zero-temperature limit of χψ2 is

lim
T→0

χψ2 ≈
∫
dτddx(〈δψ(~x)δψ(0)〉)2

=

∫
dν

2π

ddq

(2π)d
(χψ(~q, ν))2 (68)

where in the second line we have Fourier transformed into
momentum space, and χψ(~q, ν) = 〈δψ(−q)δψ(q)〉, the
order parameter susceptibility, is the space-time Fourier
transform of the correlator 〈ψ(~x)ψ(0)〉. It follows that

lim
T→0

∆κ ∝
∫
dq dν qd−1 [χψ(~q, iν)]2. (69)

To examine how this quantity behaves in the approach
to the quantum critical point of the clamped system, we

can use dimensional power-counting. Since [χ] =
[

1
q2

]
and [ν] = [qz],

lim
T→0

[∆κ] =
[qd+z]

[q4]
∼ ξ4−(d+z)

Q

where we have replaced [q−1] = [ξQ], the quantum
correlation length. As the quantum critical point of the
clamped system is approached, ξQ → ∞, so that the
quantum corrections to κ are non-singular for d+ z > 4.

III. GENERALIZATION OF THE
LARKIN-PIKIN APPROACH TO INCLUDE

QUANTUM FLUCTUATIONS

Motivated by these heuristic arguments, we now gen-
eralize the Larkin-Pikin approach to include both quan-
tum and thermal fluctuations. In order to probe how
the fluctuation-driven first order transition predicted by
Larkin and Pikin1 evolves as the temperature is lowered
to absolute zero, we need to understand the crossover be-
tween the continuous quantum and classical phase tran-
sitions of the clamped system. From a scaling perspec-
tive, temperature is a relevant perturbation that drives
the system from a quantum to a classical critical point.
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The action of temperature on a quantum phase tran-
sition is to introduce a boundary condition in time, so
that temperature plays the role of a finite-size correction
at a quantum critical point. In contrast to their static
classical counterparts, quantum zero point fluctuations
are intrinsically dynamical. At a finite temperature T ,
the criticality of quantum fluctuations is cut off by the
Planck time τP = ~

kBT
, with a corresponding quantum

correlation length ξQ ∼ τ1/z
P where z is the dynamical ex-

ponent; thus the static classical correlation volume con-
tains a quantum mechanical core on length- and time-
scales governed by the Planck time. At low tempera-
tures, ξQ provides the essential short-distance cut-off to
the static classical fluctuations of the order parameter.
In pictorial terms, we can visualize the fluctuations as
being “annealed” at short distances.

When the temperature is raised from absolute zero,
there comes a point where the finite correlation time be-
comes of order the Planck time, and as the temperature
is raised further, the temporal correlation length becomes
“stuck” at the Planck time. The temperature when this
occurs determines the quantum classical crossover. Be-
yond this point, correlations continue to grow but only
in the spatial direction; the dynamical aspect of the fluc-
tuations is lost and the statistical mechanics is governed
purely by a sum over spatial configurations, namely the
statistical mechanics has become classical.

FIG. 5. Schematic showing the dependence of the Free energy
of the clamped system in the vicinity of the quantum criti-
cal point. The scaling function about the QCP determines
the amplitude factors for the finite temperature classical crit-
ical point (CCP), given by AI(T ) for a constant temperature
sweep and AII(g) for a sweep at constant tuning parameter.
Here the location of the quantum critical point at gc(0) is
labelled as simply gc.

More specifically near the quantum critical point at
T = 0, the zero-point fluctuations are governed by a finite
correlation length ξQ ∼ (g − gc(0))−ν̃ , where g is the
parameter that tunes the transition and g = gc(0) is the
location of the quantum critical point. If we combine

our expressions for the quantum correlation length in the
ordered phase close to the line of phase transitions, we
find

(g − gc)−ν̃ ∼
(

~
kBTc

) 1
z

(70)

which leads to

Tc ∼ (g − gc)ν̃z ≡ (g − gc)Ψ̃ (71)

where Ψ̃ is called the shift exponent, and we see that
Ψ = ν̃z if the effective dimension of the quantum sys-
tem is below its upper critical dimension where scaling
is applicable. Here we keep with convention using this
notation, hoping that there will be no confusion with the
the spacetime volume average of the energy density.

Larkin and Pikin1 showed that the feedback effect of
the energy fluctuations could be reformulated in terms
of the critical temperature-dependence of the free energy
of the decoupled system near the phase transition, al-
lowing an analysis purely in terms of the universal crit-
ical behavior of the decoupled system. By generalizing
this parameteric approach to include the effect of quan-
tum fluctuations, we are able to analyze the evolution of
the Larkin-Pikin system from finite to zero temperature,
showing that if the energy fluctuations are not divergent
at T = 0, the finite-temperature first-order phase tran-
sition progressively weakens as temperature is reduced,
becoming continuous at zero temperature.

A. The Generalized Larkin Pikin Action

The quantum mechanical action now picks up an ad-
ditional integral over time

S =

∫
d4x L ≡

∫ β

0

dτ

∫
d3x L. (72)

where β = 1
T and we recover the classical result for large

T . The spacetime generalizations of equations (12-14)

S [ψ, u] = SL[ψ] + SE [u] + SI [ψ, e]

=

∫
dτd3x(LA[ψ] + LE [u] + LI [ψ, e]) (73)

now contain kinetic energy terms, so that

LL[ψ, b] =
1

2
(∂µψ)2 +

a

2
ψ2 +

b

4!
ψ4 (74)

where (∂µψ) ≡ (ψ̇)2 + (∇ψ)2 and we now identify a =
c(g − g0

c ), where g0
c is the bare value of the critical cou-

pling constant. The elastic degrees of freedom are now
described by

LE [u] =
1

2

[
ρu̇2

l +

(
K − 2

3
µ

)
e2
ll + 2µe2

ab

]
− σabeab,

(75)
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and strain-energy density interaction

LI [ψ, e] = λellψ
2 (76)

is unchanged. If we combine

LL + LI =
1

2
(∂µψ)2 +

c

2
(g − gc[ell])ψ2 +

b

4!
ψ4, (77)

where

gc[ell] = g0
c − (2λ/c)ell (78)

is the strain dependent gc, so that (2λ/c) = −
(
dgc
dlnV

)
.

For notational simplicity and convenience, we shall set
c = 1 in the following development.

Following the argument of Larkin-Pikin in the classical
case, we choose periodic boundary conditions as the most
convenient way to integrate out the elastic degrees of
freedom for the analogous quantum problem. It is then
natural to generalize the classical expression for the strain
field (18) to the quantum case summing over all space-
time configurations as

eab(~x, τ) = eab(τ) +
1

βV

∑
iνn

∑
~q 6=0

i

2
[qaub(q) + qbua(q)]ei(~q·~x−νnτ) (79)

where qα ≡ (~q, iνn), ub(q) ≡ ub(~q, iνn) and νn = 2πnT is the Matsubara bosonic frequency. A priori, the uniform
strain tensor eab(τ) involves configurations that are time-dependent. However, we recall that the integral of the strain
field around the toroidal solid ∮

eab(x, τ)dxb = eab(τ)

∮
dxb = ba(τ) (80)

measures ba(τ), the Burger’s vector of the defects enclosed by the torus. If we restrict ourselves to smooth Gaussian
deformations of the solid, then the Burger’s vector is a topological invariant, like the conserved winding number of
superconductor. Changes in the Burger’s vector are akin to flux creep in a superconductor, and they involve the
passage of dislocations across the entire solid. Spacetime configurations with such moving defects will be associated
with large actions, making their contributions to the path integral exponentially small in the thermodynamic limit.
Therefore the strain field for the quantum Larkin-Pikin problem can be written

eab(~x, τ) = eab +
1

βV

∑
iνn

∑
~q 6=0

i

2
[qaub(q) + qbua(q)]ei(~q·~x−νnτ). (81)

As in the classical case, our next step is to integrate out the Gaussian elastic degrees of freedom from the action

Z =

∫
D[ψ]

∫
D[u] e−S [ψ,u] −→ Z =

∫
D[ψ]e−S[ψ]. (82)

where the actions now involve integrals over space-time. We write the effective action

S[ψ] = SL[ψ] + ∆S[ψ] (83)

where SL[ψ] =
∫
d4x LL[ψ] ((74)) and

e−∆S[ψ] =

∫
D[e, u]e−(Se[u]+SI [ψ,e]). (84)

Again our task is to cast this action into matrix form

SE + SI =
1

2

∑
q

uiMijuj + λ
∑
j

ujψ
2
j →

λ2

2

∑
i,j

ψ2
iM
−1
i,j ψ

2
j . (85)

and to determine the nature of the induced order parameter interaction; now the summations run over the discrete
wavevector and Matsubara frequencies q ≡ (iνn, ~q), where νn = 2π

β n, ~q = 2π
L (j, l, k). Because of the form of the strain

tensor (81), the action in (84) separates in two terms, corresponding to the q = 0 and the finite (~q, iνn) contributions.
Integration over the elastic degrees of freedom in (81) now results in order-parameter interactions local and nonlocal
both in space and time.

Integrating over the elastic degrees of freedom (81) in (84) (see Appendix B for details), we obtain the effective
action

S[ψ] = S∗L[ψ]− λ2

2

(
1

K
− 1

K + 4
3µ

)[
1

βV

∫
d4x

∫
d4x′ ψ2(~x) ψ2(~x′)

]
. (86)
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Here

S∗L(ψ) =

∫
d4x

[
1

2
(∂µψ)2 +

g̃

2
ψ2 +

b∗

4
ψ4 +

1

2
ψ2(~x)Vdyn(x− x′)ψ2(~x′)

]
(87)

where g̃ = (g − g0
c ) and

b∗ = b− 12λ2

K + 4
3µ

(88)

is identical to that in the classical case (26). The Fourier transform of Vdyn(x− x′) is

Vdyn(q) =
λ2

K + 4
3µ

(
ν2
n/c

2
L

~q2 + ν2
n/c

2
L

)
, (89)

a dynamical order-parameter interaction where q ≡ (νn, ~q) is the wavevector in space-time. The effective action in
the quantum Larkin-Pikin problem is thus the sum of a d+ z - dimensional generalization of the classical effective LP
action and a dynamical interaction induced by quantum fluctuations. Although Vdyn(q) in (89) has q-dependence, it is
still local from a scaling perspective since Vdyn(q) is finite and non-singular in the limit q → 0. (89) also has the same
scaling dimension as the original local repulsive interaction in (74). Though Vdyn(q) does break Lorentz invariance, it
does not reduce the order parameter symmetry. The universality of a Wilson-Fisher fixed point is known to be robust
to such spacetime symmetry-breaking.35,36 For this reason the critical behavior of the clamped system is unaffected,
and thus Vdyn can be neglected in the local action.

We have therefore established that the generalized Larkin-Pikin action, following the integration over the Gaussian
strain including both thermal and quantum fluctuations, is

S[ψ] = SL[ψ, g̃, b∗]− λ2

2

(
1

K
− 1

K + 4
3µ

)[
1

βV

∫
d4x

∫
d4x′ ψ2(~x) ψ2(~x′)

]
. (90)

with the local action

SL[ψ, g̃, b∗] =

∫
d4x LL[ψ, g̃, b∗] =

∫
d4x

[
1

2
(∂µψ)2 +

g̃

2
ψ2 +

b∗

4!
ψ4

]
(91)

where b∗ is defined in (88). We note that (90) is a d + z-dimensional generalizations of the effective classical LP
action, (24), where all spacetime configurations are summed to include both thermal and quantum fluctuations. Here
z is the dynamical exponent associated with the temporal dimension, since the dispersion ω ∝ qz leads to [ξτ ] = [ξ]z

where ξτ and ξ are the correlation time and length respectively.

B. Generalized Larkin Pikin Equations

The development of the approach is now a simple space-time generalization of its classical counterpart, described in
equations (40-49). First, we perform a Hubbard-Stratonivich transformation of the spacetime-independent interaction
in (90)

−λ
2

2

(
1

κ

)[
1

βV

∫
d4x

∫
d4x′ ψ2(~x) ψ2(~x′)

]
→

∫
d4x

[
(λφ)ψ2(~x) +

κ

2
φ2
]

(92)

where

1

κ
=

1

K
− 1

K + 4
3µ

(93)

is the effective bulk modulus and we have introduced the auxiliary “strain” field φ that is spacetime independent.
Then we may write

Z = e−S̃(φ) =

∫
Dψ e−S[ψ,φ] (94)
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where S̃ = βF̃ and

S[ψ, φ] =

∫
d4x

[
LL(ψ, g̃) + λφψ2 +

κ

2
φ2
]

(95)

that can be reexpressed as

S[ψ, φ] =

∫
d4x [LL(ψ, g̃ + 2λφ)] +

κV β

2
φ2 (96)

where we see that the auxiliary variable φ shifts the “mass” (e.g. tuning parameter) of the order parameter pp by

g̃ → X = g̃ + 2λφ. (97)

Because the second term in (96) scales as the spacetime
volume, we can solve for φ using a saddle-point evaluation

∂F̃ [φ]

∂φ
= 0 =⇒

[
λ〈Ψ2〉+ κφ

]
V = 0 (98)

where

Ψ2 ≡
[

1

βV

∫
d4x ψ2(x)

]
(99)

is the spacetime volume average of the energy density
and

〈Ψ2〉 =

∫
dψ Ψ2 e−SL[ψ]∫
dψ e−SL[ψ]

. (100)

with SL as in (91). Equations (98), (99) amd (100) lead
to

φ = −λ
κ
〈Ψ2〉. (101)

Equations (98-101) are identical to their classical coun-
terparts (28-37), apart from the replacement of a spatial
integral by a space-time integral in (99). The follow-
ing development, parameterizing the free energy of the
clamped and unclamped system, precisely follows its clas-
sical counterpart (41-49), but for completeness we include
it here in its entireity. The free energy of the clamped
system is

e−
F(g̃)
T =

∫
D[ψ] e−SL[ψ,g̃] (102)

where SL is defined in (73) and (74) and we have explic-
itly included its dependence on the tuning parameter g̃.
As in the classical case, in writing (102) we have glossed
over issues of renormalization. In particular, self-energy
corrections to the order parameter propagators will shift
the quantum critical value of gc from its bare value g0

c

to a new value gc(0). All of these renormalization ef-
fects can be absorbed into redefinitions of the appropri-
ate variables, in particular from now on we will redefine
g̃ = g − gc(0).

From (94) and (96) we can write the free energy for
our unclamped system as

F̃ [φ, g̃] = F [X] +
κV

2
φ2 (103)

where

X = g̃ + 2λφ. (104)

indicates the shifting the of the tuning parameter due to
the presence of energy fluctuations. Now

1

V

∂F
∂X

=
〈Ψ2〉

2
(105)

so that

φ = −λ〈Ψ
2〉

κ
= − 2λ

V κ

(
∂F
∂X

)
≡ − 2λ

V κ
F ′[X] (106)

where we have defined F ′[X] ≡
(
∂F
∂X

)
for simplicity.

Therefore

F̃ = F [X] +
2λ2

V κ
(F ′[X])

2
(107)

and

X = g̃ − 4λ2

V κ
F ′[X]. (108)

Let us define

f̃ ≡ 2λ

V κ
F̃ , f ≡ 2λ

V κ
F . (109)

Here we recall that the integrals in the action involve

an integral over time (72),
∫
d4x =

∫ β
0
dτ
∫
d3x where

β = 1
T is a boundary term, so that these free energies

are determined at fixed temeprature. Therefore the two
equations describing the unclamped system are

f̃ = f [X,T ] + λ (f ′[X,T ])
2

(110)

and

g̃ = X + 2λf ′[X,T ] (111)
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which have to be solved self-consistently.
Equation (111) can be rewritten as

g̃ = X +
2λ2

κ
〈Ψ2〉X (112)

which leads to

dg̃

dX
= 1− λ2V

κ
χψ2 (113)

where

χψ2 =

∫ β

0

dτ

∫
d3x〈δψ2(~x)δψ2(0)〉 (114)

is the space-time average of the quantum and thermal
“energy” fluctuations. Since dg̃

dX = 0 corresponds to the
development of a first-order transition, as previously dis-
cussed in the classical case, analogously the generalized
LP criterion is

κ <˜
(

dgc
d lnV

)2

χψ2 . (115)

where we have assumed

gc[ell] = gc − 2λell (116)

similar to (78). At zero temperature, this expression gen-
eralizes the original LP criterion (1) to quantum phase
transitions. At finite temperatures, the critical temper-
ature and the critical coupling constant are related by

gc(Tc) = uT
1/Ψ̃
c , so that d ln gc = 1

Ψ̃
d lnTc and the LP

criterion becomes

κ <˜
(

dTc
d lnV

)2

∆CV /Tc︷ ︸︸ ︷(
g

2Tc

)2

χψ2 , (117)

where we have identified ∆Cv/Tc = (g/2Tc)
2χψ2 with the

specific heat capacity. Thus we see that the generalized
Larkin Pikin equation encompasses the original LP crite-
rion, (1) and also (57),in addition to being applicable at
low temperatures. Our next step is to identify a crossover
scaling form for the clamped free energy, f , that includes
both thermal and quantum critical fluctuations.

IV. QUANTUM ANNEALING OF THE FIRST-ORDER TRANSITION

A. The Amplitude Factors

In order to generalize the Larkin-Pikin argument to T → 0, we need to introduce a crossover scaling form for the
clamped free energy f in (110) and (111) that is applicable near both the classical and the quantum critical points.
The approach we follow here that describes both the quantum and classical cases27 was adapted from an earlier study
used to describe Ising anisotropy at a Heisenberg critical point.37

At a finite temperature, the location of the phase transition is shifted by the thermal fluctuations, so that

gc(T ) = gc(0)− uT
1
Ψ̃ (118)

where Ψ̃ is the shift exponent defined in (71); we note that if the effective dimension of the quantum system is at

or below its upper critical dimension Ψ̃ = ν̃z. For convenience, we will shift the definition of g to absorb the zero

temperature QCP critical coupling constant, gc(0), i.e g − gc(0)→ g, so that gc(T ) = −uT
1
Ψ̃ . Now temperature is a

finite size correction to the quantum critical point, and the free energy is determined by a crossover function

f(g, T ) = g2−α̃Φ

(
T

1
Ψ̃

g

)
. (119)

which describes both the quantum critical point, and the finite temperature classical critical point of the clamped
system (see Figure 5), here we will use the convention that an exponent with a tilde refers to the quantum case so
that α and α̃ are classical and quantum exponents respectively. A key point is that at finite temperature, critical
behavior now occurs at the shifted value of gc(T ), and the scaling behavior is governed by the finite temperature
critical exponents. Therefore for a fixed temperature scan (Fig. 5) for small g − gc(T ),

f(g, T ) = (g − gc(T ))2−αAI(T ). (120)

where AI(T ) is the amplitude factor for the classical critical point occuring at g = gc(T ). Similarly if we perform a
sweep through the phase transition at constant coupling constant g (Fig. 5), then we can write

f [g, T ] ∼ (T − Tc[g])2−αAII(g), (121)
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where AII(g) is amplitude factor for the quantum transition at Tc[g] = (−g/u)Ψ̃. The scaling form (119) allows us to
determine the form of these amplitude factors (see Appendix C), given by

AI(T ) = a1T
(α−α̃

Ψ̃
),

AII(g) = a2g
(1−Ψ̃)(2−α)+(α−α̃), (122)

where a1 and a2 are constants. The resulting expressions for the singular parts of the free energy for constant
temperature and constant coupling constant sweeps (see Figure 5) are

f [g, T ] =

 |g − gc(T )|2−α T
α−α̃

Ψ̃ (constant T),

|T − Tc[g]|2−α g(1−Ψ̃)(2−α)+(α−α̃) (constant g),

(123)

where, since we are interested in the singular scaling behavior, we have dropped the constants a1 and a2.

B. Clausius-Clapeyron Relations as Tc → 0

We now examine how the discontinuities ∆S(Tc) and
∆V (Tc) in entropy and volume evolve along the first
order phase boundary as the transition Tc is lowered
towards zero, and connect them with the Clausius-
Clapeyron relation. In this discussion, we shall identify
the tuning parameter g with the pressure P , g ≡ P −Pc.
Using Maxwell’s relations we have

dTc
dPc
≡ dTc
dgc

= − ∆V

∆S

∣∣∣∣
T=Tc

(124)

From (118), we have

dTc
dgc
∝ −T 1− 1

Ψ
c . (125)

In the case of particular interest, that of three-
dimensional ferroelectrics, the dynamical exponent z =
1, so the effective dimension deff = 3 + z = 4 lies at

the upper critical dimension. In this case, Ψ̃ = ν̃z = 1
2 ,

we see that this dTc/dPc ∝ T−1
c , implying that ∆V/∆S

diverges as Tc → 0. To understand how this hap-
pens, we now independently evaluate the temperature-
dependences of ∆V and ∆S.

To carry out this calculation, we need to input the
quantum-renormalized amplitude factors for the free en-
ergy into the parameterized equations (110) and (111).
We consider tuning through the first order phase tran-
sition at constant T = Tc. The corresponding tuning
variable g = g − gc(Tc) of the clamped system in (123)
is now replaced by the parametric variable X describing
the tuning parameter that has been shifted by the long
range interactions, g → X. The singular part of the free
energy, by (123), is then

f [X] = −|X|2−αT
α−α̃

Ψ̃
c . (126)

Using (110) and (111), the explicit form of the quantum
Larkin-Pikin equations are then

f̃ [X] = −|X|2−αT
α−α̃

Ψ̃
c + λ

[
(2− α)X1−αT

α−α̃
Ψ̃

c

]2

(127)

and

g [X] = X − 2λ(2− α)|X|1−αT
α−α̃

Ψ̃
c sgn(X). (128)

The only difference between this calculation and the orig-
inal Larkin Pikin calculation is the presence of the am-

plitude factors T
α−α̃

Ψ̃
c . From the original Larkin Pikin

analysis, we know that since g [X] is a non-monotonic
function of X, the inverse function X[g ] is a discontin-
uous function of g , given by X[g ] = sgn(g)X+(|g |). In
particular, at g = 0, X jumps from −Xc to +Xc, Since

the free energy f̃ [Xc] = f̃ [−Xc] is an even function of X,
it follows that the first order transition occurs at g = 0.
Using g [Xc] = 0, we obtain

Xc = [2λ (2− α)]
1

T
α−α̃
αΨ̃
c . (129)

To obtain ∆V = df̃/dg = f̃ ′[Xc]/g ′[Xc], we need g ′[X]

and f̃ ′[X]. First, we differentiate (128) with respect toX,
and using the expression (129) for Xc, we find g ′[Xc] = α
is just a constant. Also, differentiating (127) with respect
to X and substituting (129), we find that

f̃ ′[X] = −(α/2λ)Xc. (130)

from which we obtain

∆V (Tc) ∝ −T
α−α̃
αΨ̃
c . (131)

Similarly, to obtain ∆S = −df̃/dTc = −f̃ ′[X]dX/dTc,we

need dX/dTc. Now since g = g + uT
1/Ψ̃
c and g ′[Xc] = α,

we obtain

dX

dTc
=

1

g ′[Xc]

dg
dTc

=
u

αΨ̃
T

1
Ψ̃
−1

c . (132)

so that

∆S[Tc] = −f̃ ′[Xc]
dX

dTc
∝ T

α−α̃
αΨ̃
c T

1
Ψ̃
−1

c . (133)

For the case Ψ̃ = ν̃z = 1/2, α = 1/2, α̃ = 0, both
∆V ∼ T 2

c and ∆S ∼ T 3
c vanish at absolute zero, but in
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such a way that their ratio diverges as Tc → 0, in agree-
ment with (125). Naively, the divergence of ∆V/∆S as
Tc → 0 might be taken as evidence that the tendency
towards a first order transition increases as the temper-
ature goes to zero, yet the paradox is resolved by noting
that ∆S and ∆V simply vanish at different rates, still
signifying an approach to a continuous quantum phase
transition. More generally, so long as the finite tempera-

ture exponent α exceeds the quantum exponent α̃, α > α̃,
(131) indicates that

lim
Tc→0

∆V → 0 (134)

so that quite generally, there is no latent work as Tc goes
to zero, indicating that quantum fluctuations “anneal”
the zero-temperature quantum phase transition to be-
come continuous (see Figure 6).

FIG. 6. Schematic figure showing the evolution of the first order phase transition in the approach to the quantum annealed
critical point for the case Ψ̃ = ν̃z = 1/2, α = 1/2, α̃ = 0. (a) Evolution of jump in volume (b) dependence of ∆V and ∆S on
Tc and (c) Tc dependence of ∆V/∆S.

V. THE LARKIN-PIKIN PHASE DIAGRAM

We therefore have a system with a line of classical first-
order transitions that ends in a T = 0 quantum critical
point. Next we consider application of a field conjugate
and parallel/antiparallel to the order parameter. In this
Section we present the scaling approaches to the criti-
cal endpoints, classical and quantum, and the resulting
temperature-field-quantum tuning parameter (g) phase
diagram of the generalized Larkin-Pikin problem.

A. Identification of the Classical Critical Endpoints

We can work out the scaling of the critical end point
in the LP mechanism using the scaling form for the free
energy

f ∝ −t2−αΦ

(
h

tβδ

)
. (135)

where h is the dimensionless external field, t = (T −
T 0
c )/T 0

c is the reduced temperature and T 0
c is the tran-

sition temperature of the clamped system. We want
to know how (135) behaves in a finite field when t is
small compared with h1/βδ. In this limit we know that

f ∝ h 1
δ+1 and (135) can be rewritten

f ∝ −h 1
δ+1Λ

(
t

h1/βδ

)
= −h

2−α
βδ Λ

(
t

h1/βδ

)
(136)

where,using the identity 2− α = β(1 + δ), we have sub-
stituted (δ + 1)/δ = (2 − α)/δβ, Comparing (135) and
(136), we see that

Λ =

(
tβδ

h

)1+ 1
δ

Φ. (137)

The scaling form of the free energy, defined by (136) and
(137), results in the finite-field Larkin Pikin equations

f̃ = h1+1/δΛ

(
X

h1/β/δ

)
+ λ

(
h

1−α
βδ Λ′

(
X

h1/βδ

))2

t = X − 2λ

[
1

h(α−1)/βδ
Λ′(0) +

X

hα/βδ
Λ′′(0)

]
. (138)

where details of the derivation of (138) are presented in
Appendix D.

We recall that criticality of f [X,h] only occurs at X =

0 (t = tc) indicating that f̃ [X,h] can only be critical at
X = 0. In the region of first order transitions t[X] is non-
monotonic with two points, a maxima and minima, where
the gradient dt/dX = 0 goes to zero. As we approach the
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critical field hc, the maxima and minima merge together
at a point of inflection, meeting at X = 0. As a result
we deduce that the critical end point occurs when X = 0
(for criticality) and at dt/dX = 0 (merger of maximum

and minimum). More succinctly, the critical endpoint
corresponds to the inflection point in t(X). When we
impose these two conditions, we can solve for hc and

tc = (TCEP − T (0)
c )/T

(0)
c , which from (138) implies that

hc = (2λΛ′′)δβ/α, (dt/dX = 0)

tc = − 2λΛ′

h
α−1
δβ
c

= −h
1
δβ
c

Λ′

Λ′′
= −(2λΛ′′)

1
α

Λ′

Λ′′
, (X = 0) (139)

We can be sure that these quantities are both positive, because ∆S = −∂f [t, h]/∂t = h
1−α
βδ Λ′ is the change in

the entropy due to the field, and we expect this to be negative, so that Λ′ < 0 and hence tc > 0. Similarly,

−∂
2f
∂t2 ∼

∆C
T ∼ h

−α/δβΛ′′. This quantity gets bigger as the field is reduced, so that Λ′′ > 0, guaranteeing that hc > 0
is real and positive.

B. Field Behavior Close to the Quantum Critical Endpoint

When we look at this problem as part of the approach to a QCP, we must now include the amplitude AI(Tc) =

T
(α−α̃/Ψ̃)
c . The tuning parameter t of the classical calculation now becomes g = g − gc(Tc) = g − uT

1
Ψ
c . If we now

expand around the finite temperature critical point at a specific Tc, the singular free energy of the clamped system is

f [g , h] = −h
2−α
βδ Λ

(
δg

h1/βδ

)
AI(Tc). (140)

The Larkin Pikin equations now become

f̃ [X,h] = −h
2−α
βδ AI(Tc)Λ

(
X

h1/βδ

)
+ λ

(
h

1−α
βδ AI(Tc)Λ

′
(

X

h1/βδ

))2

g [X] = X − 2λAI(Tc)

[
1

h(α−1)/βδ
Λ′(0) +

X

hα/βδ
Λ′′(0)

]
. (141)

where again f̃ [X,h] refers to the free energy of the unclamped system.

As discussed in the last section, the critical end point
occurs at X = 0. The critical end point is then at g =

−uT 1/Ψ̃
c + g [0]. When we do the subsequent algebra, we

see that we get similar equations to those we obtained
at finite temperature (138) with the replacement λ →
λAI(Tc). Taking equations (139) and replacing tc → gc
and λ→ λAI(Tc), we obtain

hc ∝ (λAI(Tc))
δβ/α = (λ)δβ/α(Tc)

δβ(α−α̃)

αΨ̃ ,

gc ∝ (λAI(Tc))
1
α = λ

1
α (Tc)

(α−α̃)

αΨ̃ . (142)

These equations are valid in the plane of constant Tc.
For small λ we can transform these expressions into the

plane of constant g, writing Tc = (gc(0)− g)Ψ̃, while the
location of the critical end point is at a temperture TEP =

Tc + δTEP , where δTEP = g(dTc/dg) ∝ g(gc(0)− g)Ψ̃−1,
which then gives

hc ∝ λ
δβ
α (gc(0)− g)

δβ(α−α̃)
α

δTEP ∼ λ
1
α (gc(0)− g)

α−α̃
α −(1−Ψ̃) (143)

where we have restored gc(0) For the Gaussian fixed point

considered by Larkin and Pikin, with α̃ = 0, α = 1/2,

β = 1/4 δ = 5, Ψ̃ = 1/2, we have

Tc ∼ (gc − g)1/2

hc ∼ λ5/2(gc − g)5/4 ∼ T 5/2
c

δTEP ∼ λ2(gc − g)1/2 (144)

which yields a pointed, V -shaped “anteater’s tongue” as
the surface of first-order transitions in the LP problem.
In Figure 7 we present a schematic of the evolution of
the critical endpoints as a function of Tc, and we note
that the full Larkin-Pikin phase diagram is displayed in
Figure 1.

VI. IMPLICATIONS FOR OBSERVABLE
PROPERTIES

The specific heat exponent α of the clamped (fixed
volume) system plays a key role in the universality of
the classical Larkin-Pikin criterion (1) since the coupling
of the order parameter to the lattice is a strain-energy
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FIG. 7. Evolution of the critical end-points with Tc.

density. For the scalar (n = 1) case considered here,
α > 0, so that ∆κ is singular and the finite-temperature
transition is always first-order in the unclamped (fixed
pressure) system. By contrast for d + z > 4, the system
is above its upper critical dimension and there is a con-
tinuous transition at T = 0 and quantum annealed criti-
cality. The amplitudes of thermodynamic quantities will
decrease with temperature in the approach to the quan-
tum critical point, and we have specifically presented this
behavior for the latent work and the entropy.

A key motivation for our study has been recent low-
temperature experiments on polar insulators that display
quantum criticality even though their classical transi-
tions are first-order. Many ferroelectrics have scalar or-
der parameters with dynamical exponent z = 1, so such
three-dimensional materials are in their marginal dimen-
sion; logarithmic corrections to the bulk modulus are cer-
tainly present but they are not expected to be singular.
Indeed such contributions to the dielectric susceptibil-
ity, χ, in the approach to ferroelectric quantum criti-
cal points have not been observed to date;20 furthermore
here the temperature-dependence of χ is described well
by a self-consistent Gaussian approach appropriate above
its upper critical dimension.20,21 Therefore there may be
a very weak first-order quantum phase transition38 but
experimentally it appears to be indistinguishable from a
continuous one. We note that near quantum criticality
the main effect of long-range dipolar interactions, not in-
cluded in this treatment, is to produce a gap in the logitu-
dinal fluctuations, but the transverse fluctuations remain
critical;39–41 the excellent agreement between theory and
experiment at ferroelectric quantum criticality confirms
that this is the case.20,21

Dielectric loss and hysteresis measurements can be
used to probe the line of classical first-order transitions,
and to determine the nature of the quantum phase tran-
sition. The Gruneisen ratio (Γ), the ratio of the thermal

expansion and the specific heat, is known to change signs
across the quantum phase transition;42,43 furthermore it
is predicted to diverge at a 3D ferroelectric quantum crit-
ical point as Γ ∝ 1

T 2 so this would be a good indicator of

underlying quantum criticality.21 Both the bulk modulus
and the longitudinal sound velocity should display fea-
tures near quantum annealed criticality, where specifics
are material-dependent. Elastic anisotropy may drive
this system into an inhomogeneous state.32,34,44 The cou-
pling of domain dynamics to anisotropic strain has been
studied classically for ferroelectrics,45 and implications
for the quantum case are a topic for future work.

VII. DISCUSSION AND OPEN QUESTIONS

In summary, we have developed a theoretical frame-
work to describe compressible insulating systems that
have classical first-order transitions and display pressure-
induced quantum criticality. We have generalized the
Larkin-Pikin approach1 to the quantum case using
crossover scaling forms that describe both its classical
and its quantum behavior. We show that when the sys-
tem is above its upper critical dimensionality, there is no
latent work at the quantum transition indicating that it
is continuous. We then include a field conjugate to the
order parameter, and derive the Larkin-Pikin phase di-
agram with three critical points, two classical and one
quantum. Following the original Larkin-Pikin analysis,
ours has been performed for a scalar order parameter
and isotropic elasticity where the phase transition is first-
order for all finite temperatures; here we show that for
d+ z > 4 the quantum transition is continuous. The key
point is that a compressible material can host a quantum
critical phase even if it displays a first-order transition at
ambient pressure. More generally the order of the clas-
sical phase transition can be different from its quantum
counterpart.

An interesting question arising from our work, is
whether the Larkin Pikin mechanism can be understood
in a broader field-theoretic context. The long-range in-
teraction that drives the Larkin Pikin mechanism relies
on the presence of a finite shear modulus: a rigidity of a
solid that is absent in a liquid. The Larkin Pikin deriva-
tion has a topological flavor, in that the q = 0 “bound-
ary component” of the strain which drives the long-range
interaction, when integrated around a closed loop on a
torus is a topological invariant that counts the number of
enclosed defects (19) and which is closely connected with
the concept of torsion.46 In a system with boundaries,
we still expect the long-range interaction, but now de-
rived from the boundary waves of the material. There is
thus a kind of bulk-boundary correspondence in the phe-
nomenon that may be topological in character. One pos-
sibility here, is that the Larkin Pikin interaction, which
breaks the Lorentz invariance of the short-range physics,
is a kind of symmetry breaking anomaly.47

Recently the possibility of a line of discontinuous
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transitions ending in a quantum critical point has
also been studied in frustrated spin models,48,49 in
multiferroics,50,51 and in transition metal difluorides.52

There are also experiments on metallic systems53–55 that
suggest quantum annealed criticality, so a quantum gen-
eralization of the electronic case56 with possible links to
previous work on metallic magnets should be pursued;9

implications for doped paraelectric materials and polar
metals21 will also be explored. Extension of this work to
quantum transitions between two distinct ordered states
separated by first-order classical transitions may be rele-
vant to the iron-based superconductors57 and to the enig-
matic heavy fermion material URu2Si2 where quantum
critical endpoints have been suggested.58

Finally the possibility of quantum annealed critical-
ity in compressible materials, magnetic and ferroelectric,
provides a new setting for the exploration of exotic quan-
tum phases where a broad temperature range can be
probed with easily accessible pressures due to the lattice-
sensitivity of these systems. In particular, the elimina-
tion of the Larkin Pikin mechanism at T = 0 exposes
a bare quantum critical point, a state of matter with
quantum fluctuations on all scales, with the potential for
instabilities into novel quantum phases.
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Appendix A: Gaussian Strain integration in the Classical case

We would like to integrate out the Gaussian elastic degrees of freedom from the action so that the partition function
takes the form

Z =

∫
D[ψ]

∫
D[u] e−S [ψ,u] −→ Z =

∫
D[ψ]e−S[ψ]. (A1)

where the effective action S is a function of the order parameter ψ. We write

S[ψ] = SL[ψ] + ∆S[ψ] (A2)

where

SL[ψ] =
1

T

∫
d3x

[
1

2
(∂µψ)2 +

a

2
ψ2 +

b

4!
ψ4

]
(A3)

describes the physics of the order parameter in the clamped system with tuning parameter a ∝ T−Tc
TC

and b > 0 as in

(11) and (12). Our task is to calculate the Gassian integral(21),

e−∆S[ψ] =

∫
D[eab, uq]e

−(SE+SI) (A4)

with

SE + SI =
1

T

∫
d3x

[
1

2

(
K − 2

3
µ

)
e2
ll(~x) + µeab(~x)2 + λψ2(~x)ell(~x)

]
. (A5)

As discussed in the main text, we separate the strain field into its q = 0 and finite q components (18),

eab(~x) = eab +
1√
V

∑
~q 6=0

i

2
(qaub(~q) + qbua(~q)) ei~q·~x, (A6)
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so that the action (A5) divides into two terms, SE + SI = S[eab, ψ] + S[u, ψ]. We next define the integrals∫
deab e

−S[eab,ψ] = e−S1[ψ],

and ∫
D[u]e−S[u,ψ] = e−S2[ψ]. (A7)

that treat the q = 0 and finite q elastic contributions to (A4) respectively.
The uniform part of the action is

S[eab, ψ] =
V

T

[
1

2

(
K − 2

3
µ

)
e2
ll + µe2

ab

]
+
V

T
λψ2

q=0ell

=
1

2
eabMabcdecd + vabeab, (A8)

where ψ2
~q = 1

V

∫
d3xψ2(~x)ei~q·~x is the Fourier transform of the fluctuations in “energy density” and

Mabcd =
1

T

K
PLabcd︷ ︸︸ ︷

(δabδcd) +2µ

PTabcd︷ ︸︸ ︷(
δacδbd −

1

3
δabδcd

) , (A9)

vab =
V

T
λψ2

q=0δab. (A10)

In (A9) PLabcd and PTabcd are independent projection operators (PΓ
abefPΓ

efcd = PΓ
abcd, Γ ∈ L, T ) associated wtih the

longitudinal and transverse components of the strain.
When we integrate over the uniform part of the strain field (A8),

S[eab, ψ] =
1

2
eabMabcdecd + vabeab → S1[ψ] = −1

2
vabM−1

abcdvcd (A11)

Because of the independent nature of the projection operators PL,Tabcd in (A9), we can write the inverse of M as

M−1
abcd =

T

V

[
1

K
(δabδcd) +

1

2µ

(
δacδbd −

1

3
δabδcd

)]
, (A12)

so the Gaussian integral over the uniform part of the strain field yields

S1[ψ] = −1

2
vabM−1

abcdvcd = − V

2T

λ2

K
(ψ2
q=0)2. (A13)

which can also be written as

S1[ψ] = − λ
2

2T

(
1

K

)[
1

V

∫
d3x

∫
d3x′ ψ2(~x) ψ2(~x′)

]
. (A14)

The nonuniform part of the action is

S[u, ψ] =
1

T

∑
~q 6=0

(
1

2
u∗a(~q)Mabub(~q) + ~a(~q) · ~u(~q)

)
(A15)

where

Mab =

[(
K − 2

3
µ

)
qaqb + µ

(
q2δab + qaqb

)]
,

~aq =
(
iλ
√
V ψ2

−q

)
~q. (A16)
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The matrix entering the fluctuating part of the action S[u, ψ] in (A7) can be projected into the longitudinal and
transverse components of the strain

Mab(~q) = q2

[(
K +

4

3
µ

)
q̂aq̂b + µ(δab − q̂aq̂b)

]
(A17)

where q̂a = qa/q are the direction cosines of ~q. Inversion of this matrix is then

M−1
ab (~q) = q−2

[(
K +

4

3
µ

)−1

q̂aq̂b + µ−1(δab − q̂aq̂b)

]
, (A18)

so the Gaussian integral over fluctuating part of the strain field leads to

S[u, ψ] =
1

T

∑
~q 6=0

1

2
u∗a(~q)Mab(~q)ub(~q) + ~a(~q) · ~u(~q)→

S2[ψ] = − 1

2T

∑
~q 6=0

aa(−~q)M−1
ab (~q)ab(~q)

= − V

2T

∑
~q 6=0

ψ2
−qψ

2
q

λ2

K + 4
3µ

(A19)

We can rewrite this as a sum over all ~q, plus a remainder at ~q = 0:

S2[ψ] = − V

2T

∑
~q

ψ2
−qψ

2
q

λ2

K + 4
3µ

+
V

2T
(ψ2
q=0)2 λ2

K + 4
3µ

= − 1

2T

λ2

K + 4
3µ

∫
d3xψ4(~x) +

V

2T
(ψ2
q=0)2 λ2

K + 4
3µ

(A20)

which can be reexpressed as

S2[ψ] = − λ
2

2T

(
1

K + 4
3µ

){∫
d3x ψ4(~x)−

[
1

V

∫
d3x

∫
d3x′ ψ2(~x) ψ2(~x′)

]}
. (A21)

The first term is a local attraction while the second term corresponds to a long-range repulsion.

When we combine (A14) and (A21), we obtain

∆S[ψ] = − λ
2

2T

{(
1

K + 4
3µ

)∫
d3x ψ4(~x) +

(
1

K
− 1

K + 4
3µ

)[
1

V

∫
d3x

∫
d3x′ ψ2(~x) ψ2(~x′)

]}
. (A22)

Recalling (A2), we note that we can group the first term in (A22) in the local SL[ψ] (A3) to obtain the results

S[ψ] = SL[ψ, a, b∗]− λ2

2T

(
1

K
− 1

K + 4
3µ

)[
1

V

∫
d3x

∫
d3x′ ψ2(~x) ψ2(~x′)

]
, (A23)

where

SL[ψ, a, b∗] =
1

T

∫
d3x

[
1

2
(∂µψ)2 +

a

2
ψ2 +

b∗

4!
ψ4

]
(A24)

with a renormalized local interaction

b∗ = b− 12λ2

K + 4
3µ
. (A25)

as in the main text (equations (24), (25) and (26)).
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Appendix B: Gaussian Strain Integration in the Quantum Case

We would like to integrate out the Gaussian elastic degrees of freedom so that the partition function takes the form

Z =

∫
D[ψ]

∫
D[u] e−S [ψ,u] −→ Z =

∫
D[ψ]e−S[ψ]. (B1)

where the integrals are over spacetime (73), S =
∫
d4xL ≡

∫ β
0
dτ
∫
d3xL. We write the effective action

S[ψ] = SL[ψ] + ∆S[ψ] (B2)

where

SL[ψ] =

∫
d4x

[
1

2
(∂µψ)2 +

a

2
ψ2 +

b

4!
ψ4

]
(B3)

and

e−∆S[ψ] =

∫
D[e, u]e−(SE [u]+SI [ψ,e]) (B4)

with

SE + SI =

∫
d4x

[
ρ

2
u̇2
l +

(
K − 2

3
µ

)
e2
ll(~x) +

1

2
2µeab(~x)2 + λψ2(~x)ell(~x)

]
. (B5)

This action can be cast into matrix form

SE + SI =
1

2

∑
q

uiMijuj + λ
∑
j

ujψ
2
j →

λ2

2

∑
i,j

ψ2
iM
−1
i,j ψ

2
j . (B6)

where now the summations run over the discrete wavevector and Matsubara frequencies q ≡ (iνn, ~q), where νn = 2π
β n,

~q = 2π
L (j, l, k). As discussed in the main text, we separate out the static ~q = 0 component of the strain tensor (81),

writing

eab(x, τ) = eab +
1√
V β

∑
iνn

∑
~q 6=0

i

2
(qaub(q) + qbub(q)) e

i(~q·~x−νnτ). (B7)

We note that there is no time-dependence in the uniform part of the strain since we restrict ourselves to smooth
Gaussian deformations of the solid (see discussion in main text preceeding (81)). However the fluctuating component
includes all Matsubara frequencies; with these caveats, the quantum integration of the strain fields closely follows
that of the classical case. Given the form of the elastic tensor (B7), the action (B6) naturally divides into two terms,

SE + SI = S[eab, ψ] + S[u, ψ] (B8)

corresponding to the distinct unifom and finite ~q contributions to the strain, and we define the respective integrals∫
deabe

−S[eab,ψ] = e−S1[ψ]

and ∫
D[u]e−S[u,ψ] = e−S2[ψ]. (B9)

so that

∆S[ψ] = S1[ψ] + S2[ψ]. (B10)

The uniform part of the action

S[eab, ψ] =

∫
d4x

[
1

2

(
K − 2

3
µ

)
e2
ll +

1

2
2µe2

ab

]
+
V

T
(λψ2

q=0)ell
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=
1

2
eabMabcdecd + vabeab, (B11)

where

Mabcd =

[
K(δabδcd) + 2µ

(
δacδbd −

1

3
δabδcd

)]
,

vab = V βλψ2
q=0δab, (B12)

is similar to the classical case (A9), but now

ψ2
q =

1

V β

∫
d4x ψ2(x)e−i(~q·~x−νnτ) (B13)

is the spacetime Fourier transform of the order parameter intensity. When we integrate over the uniform part of the
strain field, we obtain

S[eab, ψ] =
1

2
eabMabcdecd + vabeab → S1[ψ] = −1

2
vabM−1

abcdvcd (B14)

which, as in the classical case, can be reexpressed as

S1[ψ] = −λ
2βV

2K
(ψ2
q=0)2 (B15)

using (A9), (A12) and (B12) where β = 1
T .

The nonuniform part of the elastic contribution to (B4) is

S[u, ψ] =
∑
iνn

∑
~q 6=0

(
1

2
u∗a(q)Mabub(q) + ~a(q) · ~u(q)

)
, (B16)

where q = (~q, iνn) and we use Roman letters (e.g. a, b) to denote spatial variables so that qa is a spatial component
of q. Here

Mab =

[
ρν2
n

(
K − 2

3
µ

)
qaqb + µ

(
q2δab + qaqb

)]
,

~aq =
(
iλ
√
V β ψ2

−q

)
~q. (B17)

This matrix can be projected into its longitudinal and transverse components

Mab =

[(
ρν2
n + (K +

4

3
µ)

)
q̂aq̂b +

(
ρν2
n + µ

)
(δab − q̂aq̂b)

]
, (B18)

where q̂a = qa/q is the unit vector. Inversion of this matrix is then

M−1
ab =

[
1

ρ(ν2
n + c2Lq

2)
q̂aq̂b +

1

ρ(ν2
n + c2T q

2)
(δab − q̂aq̂b)

]
, (B19)

where

c2L =
K + 4

3µ

ρ
, c2T =

2µ

ρ
(B20)

are the longitudinal and transverse sound velocities; the two terms appearing in M−1 are recognized as the propagators
for longitudinal and tranverse phonons.

When we integrate over the fluctuating component of the strain field, only the longitudinal phonons couple to the
order parameter:

1

2

∑
iνn

∑
~q 6=0

u∗a(q)Mab(q)ub(q) + ~a(q) · ~u(q)→

S2[ψ] = −1

2

∑
iνn

∑
~q 6=0

aa(−q)M−1
ab (q)ab(q)
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= −V βλ
2

2

∑
iνn,~q 6=0

ψ2
−qψ

2
q

(
q2

ρν2
n + (K + 4

3µ)q2

)
. (B21)

In this last term, (
q2

ρν2
n + (K + 4

3µ)q2

)
(B22)

the ~q = 0 term vanishes for any finite νn, but in the case where νn = 0, the limiting ~q → 0 form of this term is finite:(
q2

ρν2
n + (K + 4

3µ)q2

)∣∣∣∣
~q→0

=

{
0 νn 6= 0
1

K+ 4
3µ

νn = 0. (B23)

We can thus replace∑
iνn,~q 6=0

ψ2
−qψ

2
q

(
q2

ρν2
n + (K + 4

3µ)q2

)
→
∑
iνn,~q

ψ2
−qψ

2
q

(
q2

ρν2
n + (K + 4

3µ)q2

)
−

(ψ2
q=0)2

K + 4
3µ
. (B24)

so that

S2[ψ] =
V βλ2

2(K + 4
3µ)

(ψ2
q=0)2 − V βλ2

2

∑
iνn,~q

ψ2
−qψ

2
q

(
q2

ρν2
n + (K + 4

3µ)q2

)
. (B25)

which can be rewritten as

S2[ψ] =
V βλ2

2(K + 4
3µ)

(ψ2
q=0)2 −

∑
iνn,~q

ψ2
−qψ

2
q

(
1− ν2

n/c
2
L

ν2
n/c

2
L + q2

) (B26)

where cL is defined in (B20).
If we now combine (B15) and (B26), recalling (B10), we obtain

∆S = −V βλ
2

2


(

1

K
− 1

K + 4
3µ

)
(ψ2
q=0)2 −−

(
1

K + 4
3µ

) ∑
iνn,~q

ψ2
−qψ

2
q

(
1− ν2

n/c
2
L

ν2
n/c

2
L + q2

) (B27)

The useful spacetime expression ∫
d4x

ei(q−q
′)x

βV
= δqq′ (B28)

allows us to rewrite (B27) in spacetime coordinates as

∆S = −λ
2

2

{
1

βV κ

∫
d4x d4x′ψ2(x)ψ2(x′)−

(
1

K + 4
3µ

)∫
d4x [ψ4(x)] +

∫
d4x d4x′ψ2(x)Vdyn(x− x′)ψ2(x′)

}
(B29)

where

Vdyn(x− x′) =
1

βV

∑
~q,iνn

e−i(~q·~x−νnτ)

(K + 4
3µ)

ν2
n/c

2
L

ν2
n/c

2
L + q2

(B30)

with

1

κ
=

1

K
− 1

K + 4
3µ

(B31)

is the effective Bulk modulus. Recalling (B2), we note that we can group the second and third terms in (B29) in
SL[ψ] (B3) to obtain the results

S[ψ] = SL[ψ]− λ2

2

(
1

K
− 1

K + 4
3µ

)[
1

βV

∫
d4x

∫
d4x′ ψ2(x) ψ2(x′)

]
, (B32)
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with

SL[ψ] =

∫
d4x

[
1

2
(∂µψ)2 +

a

2
ψ2 +

b∗

4!
ψ4 +

1

2
ψ2(x)Vdyn(x− x′)ψ2(x′)

]
(B33)

where the Fourier transform of Vdyn(x− x′) is

Vdyn(q) =
λ2

K + 4
3µ

(
ν2
n/c

2
L

~q2 + ν2
n/c

2
L

)
, (B34)

and

b∗ = b− 12λ2

K + 4
3µ
. (B35)

as in the main text (equations (86), (87) and (88)). We note that (B34) is finite and non-singular in the limit q → 0,
and has the same scaling dimensions as the original local repulsive interaction in (B3); from a scaling perspective it
is thus local and will not afect the critical behavior of the clamped system.

Appendix C: Derivation of the Amplitude Factors for the Crossover Scaling

In order to generalize the Larkin-Pikin argument to T → 0, we need to introduce a crossover scaling form for the
clamped free energy f in (110) and (111) that is applicable near both the classical and the quantum critical points.27

At a finite temperature, the location of the phase transition is shifted by the thermal fluctuations, so that

gc(T ) = gc(0)− uT
1
Ψ̃ . (C1)

where Ψ̃ is called the shift exponent; we note that if the effective dimension of the quantum system is below its upper
critical dimension Ψ̃ = ν̃z. For convenience, we’ll take the zero temperature QCP critical coupling constant to be
zero, gc(0) = 0. Now temperature is a finite size correction to the quantum critical point, and the free energy is
determined by a crossover function

f(g, T ) = g2−α̃Φ

(
T

1
Ψ̃

g

)
. (C2)

that describes both the quantum critical point, and the finite temperature classical critical point of the clamped
system (see Figure 5); here we will use the convention that α and α̃ refer to the classical and quantum exponents
respectively. At a finite temperature the critical behavior now occurs at the shifted value of gc(T ), governed by the
finite temperature specific heat exponent α. For a fixed T scan with small g − gc(T ), the singular part of the free
energy is

f(g, T ) = (g − gc(T ))2−αAI(T ). (C3)

where AI(T ) is the amplitude factor for the classical critical point occuring at Tc = T .
The scaling form (C2) allows us to determine the form of this amplitude factor. The crucial observation is that

the classical critical point occurs at a value T 1/Ψ/g = −1/u, so that Φ(~x) must have a singularity of the form

(g + uT
1
Ψ̃ )2−α = g2−α(1 + uT

1/Ψ̃

g )2−α ∼ (1 + ux)2−α, so that the scaling function takes the form

Φ(~x) = (1 + ux)2−αΦ̃(~x), (C4)

To see this in detail, let us rewrite (C2) as

f(g, T ) = (g − gc(T ))2−α g2−α̃

(g − gc(T ))2−αΦ

(
T

1
Ψ

g

)

= (g − gc(T ))2−α gα−α̃

(1 + uT
1
Ψ̃

g )2−α
Φ

(
T

1
Ψ̃

g

)
. (C5)
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In other words,

f(g, T ) = (g − gc(T ))2−αgα−α̃Φ̃

(
T

1
Ψ

g

)
, (C6)

where

Φ̃(~x) =
Φ(~x)

(1 + ux)2−α . (C7)

To assure a classical phase transition at finite temperature with the right exponent, the cross-over function Φ̃ must be
smooth around x = −1/u, in otherwords, the original cross-over function contains a hidden singularity at x = −1/u
and factorizes as follows:

Φ(~x) = (1 + ux)2−αΦ̃(~x), (C8)

as inferred in (C4). Thus at finite temperature, the singularity at zero temperature splits into a shifted singularity
with modified exponent 2− α

f(g, T ) = (g − gc(T ))2−αA[g, T ], (C9)

where the amplitude factor is given by

A[g, T ] = gα−α̃Φ̃

(
T

1
Ψ

g

)
. (C10)

Suppose we carry out a sweep at constant temperature Tc (Fig. 5) , then near the classical critical line, we may

replace g = gc(Tc) = uT
1
Ψ̃
c , so that T

1/Ψ
c /g = −1/u, inside the cross-over function and

f [g, Tc] ∼ (g − gc)2−αAI(Tc) (C11)

where

AI(Tc) = A[gc(T ), Tc] = a1T
(α−α̃

Ψ̃
)

c , (C12)

and a1 =
[
uα−α̃Φ̃

(
− 1
u

)]
. Likewise, if we carry out a sweep through the phase transition at constant gc (Fig. 5), then

we can write

f [gc, T ] ∼ (T − Tc)2−αAII(gc) (C13)

where

AII(gc) =

(
dgc
dT

)2−α

gα−α̃c Φ̃

(
− 1

u

)
= a2g

(1−Ψ)(2−α)+(α−α̃)
c . (C14)

with a2 =
(
uΨ

Ψ̃

)2−α
Φ̃
(
− 1
u

)
. Summarizing the amplitude factors are then

AI(Tc) = a1T
(α−α̃

Ψ̃
)

c ,

AII(gc) = a2g
(1−Ψ)(2−α)+(α−α̃)
c . (C15)

as given in (122) in the main text.
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Appendix D: Derivation of the Larkin-Pikin Equations in Finite Field

We use our scaling form for the free energy

f ∝ −t2−αΦ

(
h

tβδ

)
. (D1)

where h is the dimensionless external field, t = (T − T 0
c )/T 0

c is the reduced temperature and T 0
c is the transition

temperature of the clamped system. We want to describe the behavior of (D1) when t is small compared with h1/βδ.

In this limit we know that f ∝ h 1
δ+1 and (D1) can be rewritten

f ∝ −h 1
δ+1Λ

(
t

h1/βδ

)
= −h

2−α
βδ Λ

(
t

h1/βδ

)
(D2)

where,using the identity 2−α = β(1 + δ), we have substituted (δ+ 1)/δ = (2−α)/δβ, Comparing (D1) and (D2), we
obtain

Λ =

(
tβδ

h

)1+ 1
δ

Φ. (D3)

If y = t
h1/βδ and z = y−βδ, then we have

Λ(y) = yβ(1+δ)Φ(y−βδ) = y2−αΦ(y−βδ). (D4)

We note that at large values of z = h/tβδ, small values of y = t
h1/βδ , the free energy can be expanded perturbatively

in y around y = 0, so that

f [X,h] = −h
2−α
βδ

[
Λ(0) +

X

h1/βδ
Λ′(0) +

X2

2h2/βδ
Λ′′(0)

]
. (D5)

where we have replaced t by the parameterized variable X of the unclamped material. This means that

∂f

∂X
≡ f ′X = −

[
1

h(α−1)/βδ
Λ′(0) +

X

hα/βδ
Λ′′(0)

]
. (D6)

When (D5) and (D6) are input into the LP equations (48) and (49), The Larkin Pikin equations in a finite field
become

f̃ = h1+1/δΛ

(
X

h1/β/δ

)
+ λ

(
h

1−α
βδ Λ′

(
X

h1/βδ

))2

t = X − 2λ

[
1

h(α−1)/βδ
Λ′(0) +

X

hα/βδ
Λ′′(0)

]
. (D7)

which are exactly the equations (138) in the main text.
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