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Abstract

Wavefunction structure is analyzed for dense interacting many-boson systems using Hamiltonian

H, which is a sum of one-body h(1) and an embedded GOE of k-body interaction V (k) with

strength λ. In the first analysis, a complete analytical description of the variance of the strength

function as a function of λ and k is derived and the marker λt defining thermalization region

is obtained. In the strong coupling limit (λ > λt), the conditional q-normal density describes

Gaussian to semi-circle transition in strength functions as body rank k of the interaction increases.

In the second analysis, this interpolating form of the strength function is utilized to describe the

fidelity decay after k-body interaction quench and also to obtain the smooth form for the number of

principal components, a measure of chaos in finite interacting many-particle systems. The smooth

form very well describes embedded ensemble results for all k values.

I. INTRODUCTION

It is now well established that Random Matrix Theory, due to it’s universality [1], success-

fully describes the spectral as well as wavefunction properties of isolated finite many-particle

quantum systems [2]. The spectral statistics deals only with the energy eigenvalues while

the statistical properties related to the structure of the wavefunctions can reveal different

layers of chaos and hence give profound understanding of various problems in the field of

quantum many-body chaos and thermalization, in isolated finite interacting particle systems

such as atomic nuclei, atoms, mesoscopic systems (quantum dots, small metallic grains), in-

teracting spin systems modeling quantum computing core, ultra- cold atoms and quantum

black holes with SYK model and so on [2–9]. To analyze the wavefunction properties, it

is very crucial to examine the so-called strength functions (also known as local density of

states) in detail, as they give information about how a particular basis state spreads onto the

eigenstates. The chaos measures like number of principal components (NPC), information

entropy, fidelity decay etc. can also be determined by examining the general features of the

strength functions [2].

The statistical properties of isolated finite many-particle quantum systems investigated

by employing random matrix ensembles are generally referred as Gaussian ensembles (and

in particular the Gaussian orthogonal ensemble (GOE)) for m-particle system. They involve

interaction up to m-body in character and are dominated by the m-body interactions. How-

2



ever, constituents of isolated quantum systems interact via few-body interactions. Hence the

concept of embedded ensemble (EE) of k-body interaction, in particular EGOE(k) (GOE

version of EE(k)) was introduced by French and co-workers [10, 11]. These models for the

particles in a mean-field and interacting via two-body interactions (k = 2) and their various

extended versions form good models for understanding various aspects of chaos in interact-

ing particle systems [2] and they are investigated in detail both for fermion systems (called

EGOE(1+2)) [12–17] as well as boson systems (called BEGOE(1+2) with ’B’ for bosons)

[18–23]. Here, with m particles distributed in N single particle (sp) states, two limiting

situations exist, one is the dilute limit (defined as m → ∞, N → ∞ and m/N → 0) and

another is the dense limit (defined by m→ ∞, N → ∞ and m/N → ∞). In the dilute limit,

one can expect similar behavior for both fermion and boson systems while the dense limit

is feasible only for boson systems and therefore the focus was on the dense limit in BEGOE

investigations [18–24]. For EGOE(1+2) in dilute limit and for BEGOE(1+2) in dense limit,

as a function of the two-body interaction strength λ (measured in units of the average spac-

ing between the one-body mean-field sp levels), exhibits three transition or chaos markers

(λC , λF , λt): (a) as the two-body interaction is turned on, level fluctuations exhibit a transi-

tion from Poisson to GOE at λ = λC ; (b) with further increase in λ, the strength functions

make a transition from Breit-Wigner (BW) form to Gaussian form at λ = λF > λC ; and (c)

beyond λ = λF , there is a region of thermalization around λ = λt where the basis depen-

dent thermodynamic quantities like entropy behave alike. It is important to note that the

transitions mentioned above are inferred from large number of numerical calculations and

they are well verified to be valid in the bulk part of the spectrum. For further details see [2]

and references there in.

Going beyond two-body interaction, it is seen that the higher body interactions i.e. k > 2

play an important role in strongly interacting quantum systems [25, 26], nuclear physics

[27], quantum black holes [7, 28] and wormholes [29] with SYK model and also in quantum

transport in disordered networks connected by many-body interactions [30–32]. Therefore, it

is necessary to extend the analysis of EE to higher k-body interactions in order to understand

these problems. From the previous studies, it is known that with EGOE(k) or (BEGOE(k)),

the eigenvalue density for a system of m fermions/bosons in N sp states changes from

Gaussian form to semi-circle as k changes from 2 to m [2, 6, 13, 33]. Very recently, q-

Hermite polynomials have been employed to study spectral densities of the so-called SYK

3



model [34, 35] and quantum spin glasses [36], along with studying the strength functions and

fidelity decay (also known as survival or return probability) in EE, both for fermion as well

as boson systems [33]. The smooth form of eigenvalue density can be given by the so-called

q-normal distribution fqN and formulas for parameter q in terms of m, N and k are derived

for fermionic and bosonic EE(k) in [33] which explain the Gaussian to semi-circle transition

in spectral densities, strength functions and fidelity decay in many-body quantum systems

as a function of rank k of interactions. Recently, the lower-order bivariate reduced moments

of the transition strengths are examined for the action of a transition operator on the

eigenstates generated by EGOE(k) and it is shown that the ensemble averaged distribution

of transition strengths follows a bivariate q-normal distribution fbiv−qN and a formula for

NPC in the transition strengths from a state is obtained [37]. Very recently, analytical

formulas for the lowest four moments of the strength functions for fermion systems modeled

by EGOE(1+k) are derived and it is shown that the conditional q-normal density fCqN can

be used to represent strength functions in the strong coupling limit [38]. One can expect

similar behavior for isolated finite interacting boson systems with k-body interactions in the

dense limit. The purpose of the present letter is firstly to demonstrate that in strong coupling

domain (in the thermalization region), the strength functions indeed can be represented by

the conditional q-normal distribution fCqN in the dense interacting boson systems interacting

via k-body interaction. Secondly, using fCqN form and parameters that enter in this form,

fidelity decay is described in BEGOE(1+k) and an analytical formula for NPC is derived.

The Letter is organized as follows. We briefly introduce BEGOE(1+k) and q-Hermite

polynomials along with their generating function and conditional q-normal distribution in

Section II. The numerical results of the variation of parameter q as a function of k-body

interaction strength λ in BEGOE(1+k) are presented in Section III. Also the formula of

q for BEGOE(k) is given for the sake of completeness, even though it is clearly given in

[6, 33]. Further, a complete analytical description of the variance of the strength function,

in terms of the correlation coefficient ζ , for BEGOE(1+k) is given and (m,N ,k) dependence

of marker λt is derived. In Section IV, the results for the variation of strength function,

in the strong coupling domain (λ >> λt), are presented as a function of body rank k and

ensemble averaged results are compared with smooth forms given by fCqN . In Section V the

interpolating form fCqN for the strength function is utilized to describe the fidelity decay after

random k-body interaction quench in BEGOE(1+k) in the thermalization region. Further,
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two parameter (ζ and q) analytical formula for NPC is derived as a function of energy for

k-body interaction and tested with numerical embedded ensemble results in Section VI.

Finally, the concluding remarks are given in section VII.

II. PRELIMINARIES

A. Embedded bosonic ensembles - BEGOE(1+k)

Consider m spinless bosons distributed in N degenerate sp states interacting via k-body

(1 ≤ k ≤ m) interactions. Distributing these m bosons in all possible ways in N sp states

generates many-particle basis of dimension d =
(

N+m−1
m

)

. The k-body random Hamiltonian

V (k) is defined as,

V (k) =
∑

ka,kb

Vka,kbB
†(ka)B(kb) . (1)

Here, operators B†(ka) and B(kb) are k-boson creation and annihilation operators. They

obey the boson commutation relations. Vka,kb are the symmetrized matrix elements of V (k)

in the k-particle space with the matrix dimension being dk =
(

N+k−1
k

)

. They are chosen to be

randomly distributed independent Gaussian variables with zero mean and unit variance, in

other words, k-body Hamiltonian is chosen to be a GOE. BEGOE(k) is generated by action

of V (k) on the many-particle basis states. Due to k-body nature of interactions, there

will be zero matrix elements in the many-particle Hamiltonian matrix, unlike a GOE. By

construction, we have a GOE for the case k = m. For further details about these ensembles,

their extensions and applications, see [2, 39, 40] and references therein.

In realistic systems, bosons also experience mean-field generated by presence of other

bosons in the system and hence, it is more appropriate to model these systems by BEGOE(1+

k) defined by,

H = h(1) + λV (k) (2)

Here, the one-body operator h(1) =
∑N

i=1 ǫini is described by fixed sp energies ǫi; ni is

the number operator for the ith sp state. The parameter λ represents the strength of the

k-body interaction and it is measured in units of the average mean spacing of the sp energies

defining h(1). In this analysis, we have employed fixed sp energies ǫi = i + 1/i in defining

the mean-field Hamiltonian h(1). As the dense limit is more interesting for bosons, for

numerical study, we have chosen N = 5, m = 10 with space dimensionality of d = 1001 and
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varied k from 2 to m. It is now known that in nuclear reactions and strongly interacting

quantum systems k = 2, 3, 4 are of physical importance[7, 25, 26]. However for the sake of

completeness, to study the generic features of embedded ensembles and the possibility of

higher k becoming prominent, we address k = 2 to m.

B. q-Hermite polynomials and conditional q-normal distribution

The q-Hermite polynomials were first introduced by L. J. Rogers in Mathematics. Con-

sider q numbers [n]q defined as [n]q = (1−q)−1(1−qn). Then, [n]q→1 = n, and [n]q! = Πn
j=1[j]q

with [0]q! = 1. Now, q-Hermite polynomials Hn(x|q) are defined by the recursion relation

[41],

xHn(x|q) = Hn+1(x|q) + [n]q Hn−1(x|q) (3)

with H0(x|q) = 1 and H−1(x|q) = 0. Note that for q = 1, the q-Hermite polynomials

reduce to normal Hermite polynomials (related to Gaussian) and for q = 0 they will reduce

to Chebyshev polynomials (related to semi-circle). Importantly, q-Hermite polynomials are

orthogonal within the limits ±2/
√
1− q, with the q-normal distribution fqN(x|q) as the

weight function defined by [37],

fqN(x|q) =
√
1− q

2π
√

4− (1− q)x2

∞
∏

i=0

(1− qi+1)[(1 + qi)2 − (1− q)qix2]. (4)

Here, −2/
√
1− q ≤ x ≤ 2/

√
1− q and q ∈ [0, 1]. Note that

∫

s(q)
fqN(x|q) dx = 1 over

the range s(q) = (−2/
√
1− q, 2/

√
1− q). It is seen that in the limit q → 1, fqN(x|q) will

take Gaussian form and in the limit q = 0 semi-circle form. Now the bivariate q-normal

distribution fbiv−qN (x, y|ζ, q) is defined as follows [37, 42],

fbiv−qN (x, y|ζ, q) = fqN (x|q)fCqN(y|x; ζ, q)

= fqN (y|q)fCqN(x|y; ζ, q)
(5)
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where ζ is the bivariate correlation coefficient and the conditional q-normal densities, fCqN

can be given as,

fCqN(x|y; ζ, q) = fqN(x|q)
∞
∏

i=0

(1− ζ2qi)

h(x, y|ζ, q);

fCqN(y|x; ζ, q) = fqN(y|q)
∞
∏

i=0

(1− ζ2qi)

h(x, y|ζ, q);

h(x, y|ζ, q) = (1− ζ2q2i)2 − (1− q)ζqi(1 + ζ2q2i)xy + (1− q)ζ2(x2 + y2)q2i.

(6)

The fCqN and fbiv−qN are normalized to 1 over the range s(q), which can be inferred from

the following property,

∫

s(q)

Hn(x|q)fCqN(x|y; ζ, q) dx = ζnHn(y|q). (7)

The first four moments of the fCqN can be given [38] as,

Centroid = ζy,

Variance = 1− ζ2 ,

Skewness, γ1 = −ζ(1− q)y
√

1− ζ2
,

Excess, γ2 = (q − 1) +
ζ2(1− q)2y2 + ζ2(1− q2)

(1− ζ2)
.

(8)

Recently, it is shown that generating function for q-Hermite polynomials describes Gaus-

sian to semi-circle transition in the eigenvalue density as k changes from from 1 to m in

spectral densities using k-body EGOE and their Unitary variants EGUE, both for fermion

and boson systems [33]. Very recently, in the strong coupling domain the lowest four mo-

ments of the strength function for k-body fermionic embedded ensemble are obtained and

it is shown that they are essentially same as that of fCqN [38]. Therefore, one can use fCqN

distribution to represent the smooth forms of the strength functions and analyze the wave-

function structure in quantum many-body systems with k-body interactions. With this, the

width of fCqN (and also of the strength fucntion) is related to the correlation coefficient ζ by
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Eq. (8). In the next section, we will present our results for the variation of parameter q and

the correlation coefficient ζ as a function of k-body interaction strength λ in BEGOE(1+k).

Also, a complete analytical description of ζ , in terms of N,m,k and λ, for BEGOE(1+k) is

given.

III. PARAMETER DEPENDENCE OF q AND ζ : RESULTS FOR BEGOE(1+k)

A. Formula of q-parameter

It has already been demonstrated that the state density for EE(k)(and also EE(1+k)) in

general exhibits Gaussian to semi-circle transition as k increases from 1 tom [17]. This is now

well verified in many numerical calculations and analytical proofs obtained via lower order

moments [2, 6, 9, 20, 39, 43]. Figure 1(a) represents ensemble averaged state density obtained

for a 100 member BEGOE(1+k) ensemble with m = 10 bosons distributed in N = 5 sp

states and the body rank of interaction changing from k = 2 to 10. In these calculations, the

eigenvalue spectrum for each member of the ensemble is first zero centered (ǫH is centroid)

and scaled to unit width (σH is width) and then the histograms are constructed. The

results clearly display transition in the spectral density from Gaussian to semi-circle form

as k changes from 2 to m = 10. With E as zero centered and using x = E/σH , the

numerical results are compared with the normalized state density ρ(E) = d fqN(x|q) with

ǫH − 2σH√
1−q

≤ E ≤ ǫH + 2σH√
1−q

. Here the parameter q is computed using the formula, valid for

BEGOE(k)(i.e. H = V (k)), given in [33],

qV (k) ∼
(

N +m− 1

m

)−1 νmax=min[k,m−k]
∑

ν=0

X(N,m, k, ν) d(gν)

[Λ0(N,m, k)]2
;

X(N,m, k, ν) = Λν(N,m,m− k) Λν(N,m, k) ;

Λν(N,m, r) =

(

m− ν

r

) (

N +m+ ν − 1

r

)

,

d(gν) =

(

N + ν − 1

ν

)2

−
(

N + ν − 2

ν − 1

)2

.

(9)
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In the strong coupling domain, one can also apply Eq.(9) to BEGOE(1+k), as the k-body

part of the interaction is expected to dominate over one-body part. One can see that the

ensemble averaged results in Figure 1(a) are in excellent agreement with the smooth forms

obtained using fqN . With λ = 0 in Eq.(2) i.e. one-body part h(1) only, the analytical

formula of q for bosons, based on trace propagation method [44], can be given as,

qh(1) = 〈h(1)4〉m − 2

= {3(m− 1)N(1 +N)(1 +m+N)

m(2 +N)(3 +N)(m+N)
− 2}

+
m2 + (N +m)2 + (N + 2m)2

m(N +m)

∑N

i=1 ǫ̃i
4

(
∑N

i=1 ǫ̃i
2)2
.

(10)

Here, 〈h(1)4〉m is the reduced fourth moment of one-body part and ǫ̃i are the traceless sp

energies of i’th state. With H = h(1) and uniform sp energies ǫi = i, Eq.(10) gives q = 0.71

for (m = 5, N = 10) and q = 0.68 for (m = 10, N = 5). While with sp energies ǫi = i+ 1/i,

used in the present study, one obtains q = 0.68 for (m = 5, N = 10) and q = 0.63 for

(m = 10, N = 5). Figure 1(b) shows variation of qh(1) as a function of N for various values

of m/N . Here, sp energies ǫi = i + 1/i are used. It can be clearly seen that in the dense

limit (m → ∞, N → ∞ and m/N → ∞), qh(1) → 1. In the dilute limit (m → ∞, N → ∞
and m/N → 0), similar variation in qh(1) can be observed due to m↔ N symmetry between

the dense limit and the dilute limit as identified in [18, 44]. Furthermore, the variation of

parameter q is also studied as the interaction strength λ varies in BEGOE(1+k) for a fixed

body rank k. Here, the ensemble averaged value of q is computed for a system of 100 member

BEGOE(1+k) ensemble with m = 10 bosons in N = 5 sp states and results are shown in

Figure 1(c). q estimates are also shown in the figure by horizontal marks for H = h(1) and

H = V (k) on left and right vertical axes respectively. One can see that for very small values

of λ, ensemble averaged q values are found very close to qh(1) for all body rank k. While for a

sufficiently large λ, where k-body part dominates over one-body part and ensemble averaged

q values reach corresponding qV (k) given by Eq.(9). From the variation of ensemble averaged

q values in Figure 1(c), one can see that the shape of the state density takes intermediate

form between Gaussian to semi-circle as λ changes in BEGOE(1+k) for a fixed k. Therefore,

the q-normal distribution fqN formula can be used to describe the transition in the state

density with any value of λ and k in BEGOE(1+k).
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FIG. 1. (a) Histograms represent the state density vs. normalized energy E results of the spectra

of a 100 member BEGOE(1 + k) ensemble with m = 10 bosons in N = 5 sp states for different k

values. The strength of interaction λ = 0.5 is chosen and in the plots
∫

ρ(E)dE = d. Ensemble

averaged state density histogram is compared with q-normal distribution (continuous black curves)

given by fqN (x|q) with the corresponding q values given by Eq. (9). (b) qh(1) vs. N for various

values of m/N . qh(1) is obtained using Eq. (10) with sp energies ǫi = i + 1/i. Dense limit curve

corresponds to the result with m/N = 1000. (c) Ensemble averaged q vs. λ for a 100 member

BEGOE(1+k) ensemble with m = 10 bosons in N = 5 sp states for different k values. The

horizontal black mark on left q-axis indicates q estimate for H = h(1) given by Eq. (10), while the

colored marks on right q-axis represent the q values, given by Eq. (9), for corresponding k-body

rank with H = V (k). See text for more details.
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B. Formula of ζ

The parameter ζ , which is the correlation coefficient between full Hamiltonian H and

the diagonal part Hdia of the full Hamiltonian, is related to the width σF of the strength

functions, given by,

ζ =

√

1−
σ2
Hoff-dia

σ2
H

=
√

1− σ2
F , σF =

σHoff-dia

σH
(11)

In the above equation, σ2
H and σ2

Hoff-dia
are variances of the eigenvalue distribution using full

Hamiltonian and by taking all diagonal matrix elements as zero, respectively. Since ζ and

σF are simply related as σ2
F = 1−ζ2, here the discussion is in terms of ζ . For BEGOE(1+k)

ensemble, analytical expression for ζ based on the method of trace propagation can be

derived as follows. For H = V (k) i.e. with all sp energies as degenerate, it is known that

[20],

σ2
H=V (k) = T (N,m, k)

(

N + k − 1

k

)−1
∑

α,β

w2
αβ ,

T (N,m, k) = Λ0(N,m, k)/

(

N + k − 1

k

)

.

(12)

Here, α and β denote k-particle states. In k-particle space, the H matrix is GOE. Therefore,

the k-particle matrix elements wαβ are Gaussian random variates with zero mean and unit

variance. The variance of diagonal matrix elements is w2
αα = 2 while that of off-diagonal

matrix elements is w2
αβ = 1 for (α 6= β). With this,

σ2
H=V (k) = T (N,m, k)

(

N + k − 1

k

)−1

{2× no-dia + 2× no-offdia} , (13)

here the number of independent diagonal k-body matrix elements is ’no-dia’=
(

N+k−1
k

)

and

that of off-diagonal is ’no-offdia’= 1
2

(

N+k−1
k

)

{
(

N+k−1
k

)

− 1}. Similarly, σHoff-dia
is given by

removing the contribution of diagonal k-body matrix elements from the above equation.

Then using Eq.(11) for H = V (k),

ζ2 =
4

(

N+k−1
k

)

+ 1
. (14)

Here, it can be immediately seen that ζ2 is independent of m for BEGOE(k). In the dense

limit with N → ∞ and m → ∞, σF → 1 giving ζ → 0 as was suggested in [21]. Also, with
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k << m, ζ2 ∝ 1/Nk. Using m↔ N symmetry between the dense limit and the dilute limit

formula [18, 44], we have ζ2 ∝ 1/mk in the dilute limit and this result is in agreement with

[38]. Going further, with inclusion of one-body part defined by the external sp energies (ǫi),

and with H = h(1) + λV (k), we have

σ2
H = σ2

h(1) + λ2 σ2
V (k),

= m(N+m)
N(N+1)

∑

ǫ̃i
2 + λ2 σ2

V (k).

(15)

The analytical expression for ζ2 can be given by,

ζ2 =

m(N+m)
N(N+1)

∑

ǫ̃i
2 + 2 λ2 T (N,m, k)

m(N+m)
N(N+1)

∑

ǫ̃i
2 + λ2 T (N,m, k) {1 +

(

N+k−1
k

)

}
. (16)

In the above equation, the contribution from the diagonal part of V (k) is also included into

the numerator term. The analytical expression for ζ2 given by Eq.(16) is tested with the

numerical ensemble averaged results obtained using a 100 member BEGOE(1+k) ensemble

with (m = 10, N = 5). The results of ζ2 as a function of k-body interaction strength λ for

different body rank k are presented in Figure 2. The black smooth curve in each plot is

obtained using Eq.(16) with fixed sp energies employed in the present study. It can be seen

from the results that agreement between the ensemble averaged values (red solid circles) and

the smooth forms obtained by Eq.(16) is very good for all k values. Small difference with

large λ, for k < 5, is due to neglect of induced sp energies. The contribution of induced sp

energies reduces as λ and k increases. One can see from the results shown in Figure 2 that

the width of the strength function is strongly dependent on λ. For λ → 0, ζ2 → 1 for all k

and the strength functions are known to be represented by δ functions. With increase in λ

i.e.λ ≥ λC , the strength functions are known to be described by the Briet-Wigner (Lorentz)

form. With further increase in λ >> λF , ζ
2 goes on decreasing smoothly leading to a fully

chaotic domain giving the Gaussian or semi-circle or intermediate to Gaussian and semi-

circle character of the strength functions depending upon the values of λ and k. One can

also observe the BW to Gaussian to semi-circle transition in strength functions by changing

both λ and k. Therefore, it is possible to have a shape intermediate to BW and semi-circle

for some values of λ and k [45].

For two-body interaction, the thermodynamic region λ = λt can be determined using the

condition ζ2 = 0.5 [23, 46]; i.e. the spreading produced by one-body part and two-body
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part are equal. Similarly, one can obtain marker λt for k-body interactions in presence of

mean field by considering the spreading produced by one-body part and k-body part equal

in Eq.(16). Solving it for λ, (m, N , k) dependence of marker λt is given by,

λt =

√

√

√

√

m(N +m)
∑

ǫ̃i
2

N(N + 1)Λ0(N,m, k)(1− 3
(

N+k−1
k

)−1
)
. (17)

Figure 3 shows the variation of marker λt in dense boson systems with BEGOE(1+k) as a

function of N for the fixed sp energies used in the present study. The results are shown for

body rank values k = 2, 3 and 4, and with m/N = 2 and 5. From the results one can clearly

see that λt decreases as the rank of the interaction k increases. Hence, the thermalization

sets in faster as the rank of interaction k increases.

Recently, using k-body embedded ensembles both for fermions and bosons, it is demon-

strated that in the thermalization region (λ ≥ λt), shape of the strength functions changes

from Gaussian to semi-circle for the states close to the center of the spectrum as the rank

of the interaction k increases and they can be well represented by fqN form for all k values

in V (k) [33]. The strength functions are symmetrical in E near the center of the spectrum

as is the result with fqN . However, it is seen in some calculations with k = 2 that the

strength functions become asymmetrical in E as one moves away from the center [24]. This

feature can be incorporated by representing strength function using fCqN which can not be

generated by fqN . This will be verified with a numerical example in the next section and

more importantly, a single interpolating function fCqN , in terms of parameters q and ζ , is

considered for describing Gaussian to semi-circle transition in the strong coupling domain

as the body rank k in BEGOE(1+k) is changed.

IV. STRENGTH FUNCTION

Given m-particle basis state |κ〉, the diagonal matrix elements of m-particle Hamiltonian

H are denoted as energy ξκ, so that ξκ = 〈κ|H|κ〉. The diagonalization of the full matrix

H gives the eigenstates |Ei〉 with eigenvalues Ei, where |κ〉 =
∑

i C
i
κ |Ei〉. The strength

function that corresponds to the state |κ〉 is defined as Fξκ(E) =
∑

i |C i
κ|

2
δ(E − Ei). In

the present study, we take the |κ〉 states to be the eigenstates of h(1). In order to get an

ensemble averaged form of the strength functions, the eigenvalues Ei are scaled to have

zero centroid and unit variance for the eigenvalue distribution. The κ-energies, ξκ, are also
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FIG. 2. Ensemble averaged ζ2 (red solid circles) as a function of interaction strength λ, calculated

for BEGOE(1+k) ensemble with N = 5,m = 10 example, are shown for different k values. The

smooth black curves are due to Eq.(16) using fixed sp energies ǫi = i+1/i employed in the present

study.
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FIG. 3. Variation of marker λt as a function of N for dense boson systems with BEGOE(1+k).

Results are shown for various values of (k,m/N) using Eq.(17).

scaled similarly. Now, for each member, all |C i
κ|

2
are summed over the basis states κ with

energy ξ in the energy window ξ ± ∆. Then, the ensemble averaged Fξ(E) vs. E are

constructed as histograms by applying the normalization condition
∫

s(q)
Fξ(E) dE = 1. In

Figure 4, histograms represent ensemble averaged Fξ(E) results for all body rank k values
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with λ = 0.5 using a 250 member BEGOE(1+k) ensemble with m = 10 and N = 5 system.

The strength function plots are obtained for ξ = 0.0,±1.0 and ±2.0. The value of k-body

interaction strength is chosen such that λ >> λt, i.e. the system exists in the region

of thermalization [9, 23]. The histograms, representing BEGOE(1+k) results of strength

functions, are compared with the conditional q-normal density function as given by,

Fξ(E) = fCqN(x = E|y = ξ; ζ, q). (18)

The smooth black curves in Figure 4 for each k are obtained via Eq.(18) using corresponding

ensemble averaged ζ and q values. With λ >> λt, ζ
2 << 1/2, the q value in Eq.(18) can

fairly be given by Eq.(9) [38]. The results in Figure 4 clearly show very good agreement

between the numerical histograms and continuous black curves for all body rank k. The

Fξ(E) results for ξ = 0 are given in Figure 4(a) which clearly demonstrate that the strength

functions are symmetric and also exhibit a transition from Gaussian form to semi-circle as k

changes from 2 tom = 10. The smooth form given by Eq.(18) using the conditional q-normal

density function interpolates this transition very well. Going further, Fξ(E) results for ξ 6= 0

are shown in Figures 4(b) and 4(c). One can see that Fξ(E) results are asymmetrical about

E as demonstrated earlier [24]. Also, Fξ(E) are skewed more in the positive direction for

ξ > 0 and skewed more in the negative direction for ξ < 0 and their centroids vary linearly

with ξ. We have also computed the first four moments (centroid, variance, skewness (γ1)

and excess (γ2)) of the strength function results shown in Figure 4 for the body rank k going

from 2 to m = 10. Figure 5 represents results for centroid, γ1 and γ2 for various values of ξ.

As discussed earlier in Section III, the variance of the strength functions is independent of

ξ and simply related to correlation coefficient; for more details, see results of ζ2 (Figure 2).

From the numerical results obtained for strength functions (Figure 4) along with results of

lower order moments (Figure 5), one can clearly see that in the thermodynamic domain,

the strength functions of dense interacting many-boson systems, with k-body interaction,

follow the conditional q-normal distribution fCqN . The results are also consistent with the

analytical forms derived in [38].

In the study of thermalization and relaxation dynamics of an isolated finite quantum

system after a random interaction quench, strength functions play an important role. Having

tested that in the thermodynamic region with λ >> λt, ensemble averaged strength functions

of dense boson systems with k-body interaction can be represented by smooth forms given
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by fCqN , we will now utilize these interpolating forms, in the coming sections, to study

fidelity decay and NPC in dense boson systems with k-body interaction.

V. FIDELITY DECAY AFTER AN INTERACTION QUENCH

Fidelity decay or return probability of a quantum system after a sudden quench is an

important quantity in the study of relaxation of a complex (chaotic) system to an equilibrium

state. Let’s say the system is prepared in one of the eigenstates (ψ(0) = |κ〉) of the mean-

field Hamiltonian H = h(1). With the quench at t = 0 by λV (k), the system evolves

unitarily with respect to H → h(1) + λV (k) and the state changes after time t to ψ(t) =

|κ(t)〉 = exp(−iHt) |κ〉. Then, the probability to find the system in it’s initial unperturbed

state after time t, called fidelity decay, is given by,

W0(t) = | 〈ψ(t)|ψ(0)〉 |2 =
∣

∣

∣

∑

E

[

CE
k

]2
exp−iEt

∣

∣

∣

2

=
∫

Fξ(E) exp−iEt dE

=
∫

s(q)
fCqN(E|ξ; ζ, q) exp−iEt dE .

(19)

Thus, fidelity is the Fourier transform in energy of the strength function; this is valid for

times not very short or very long. In the thermalization region, the form of Fξ(E) is Gaus-

sian for k = 2 while it is semi-circle for k = m. These two extreme situations are recently

studied, both analytically [47] as well as numerically [48–50]. The formula for W0(t) can

be given in terms of width of λV (k) scaled by σH . Clearly, following the results of the

previous section, fCqN can be used to obtain W0(t) generated by BEGOE(1+k). As an-

alytical formula for the Fourier transform of fCqN is not available, therefore we evaluated

Eq.(19) numerically. Figure 6 shows results for W0(t) (red solid circles) for a 100 member

BEGOE(1+k) ensemble with m = 10, N = 5 and λ = 0.5 for various k values and they

are compared with numerical Fourier transform (black smooth curves) of Eq.(18). Here, we

have used normalized eigenenergies in the computation of W0 and therefore the time t is

measured in the units of 1/σH . It is clear from the results that the Fourier transform of fCqN

describes the short-time behavior nicely and also captures the positions of the oscillations.

The results generated here are consistent with the reported results in [33], obtained using

fqN form for Fξ(E).
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It is known that in the strong interaction domain, the decrease in W0 (for k = 2) follows

quadratic in time and this Gaussian decrease can last for a quite large time and after that an

exponential one emerges [51]. The transition time depends on the ratio of the spectral width

and the square of the second moment of strength fucntion (σ2
F ). As here λ >> λt, ζ

2 → 0

giving σ2
F ≈ 1, t is in 1/σH units and the spectral width will be in σH units. Therefore, the

results in Figure 6 describe W0 nicely for short time and the standard exponential decrease

for long time for k = 2 seems absent. The long time behavior of fidelity decay is of great

interest as it is expected thatW0 surely demonstrates a power-law behavior i.e. W0(t) ∝ t−γ

with γ ≥ 2 implying thermalization [52], no matter how fast the decay may initially be. As

shown in [52], the power-law behavior appears due to the fact that the energy spectrum is

bounded from both the ends. This condition is essentially satisfied by fCqN . Therefore, it is

important to analyze the long-time behavior of fidelity decay for embedded ensembles first

to establish it’s universality and second to test whether it can be explained with the use of

fCqN . These are open questions.

In the study of fidelity decay, strength function with ξ = 0 is involved. However, the

statistical properties, related to wavefunction structure, namely NPC and S info can be writ-

ten as integrals involving strength functions over all ξ energies. Very recently, an integral

formula for NPC in the transition strengths from a state as a function of energy for fermionic

EGOE(k) using the bivariate q-normal form is presented in [37]. In the past, the smooth

forms, for NPC and S info, were derived in terms of energy and correlation coefficient ζ for

two-body interaction [53]. In the next section, we present our results for NPC and S info

using fCqN forms for the strength functions and compare with those for dense interacting

boson systems with k-body interaction.

VI. NPC AND INFORMATION ENTROPY

The NPC in wavefunction characterizes various layers of chaos in interacting particle

systems [16, 54, 55] and for a system like atomic nuclei, NPC for transition strengths is a

measure of fluctuations in transition strength sums [37]. For an eigenstate |Ei〉 spread over

the basis states |κ〉, with energies ξκ = 〈κ|H|κ〉, NPC (also known as inverse participation
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ratio) is defined as,

NPC(E) =

{

∑

κ

∣

∣C i
κ

∣

∣

4

}−1

(20)

NPC essentially gives the number of basis states |κ〉 that constitute an eigenstate with

energy E. The GOE value for NPC is d/3. NPC can be studied by examining the general

features of the strength functions Fξ(E). The smooth forms for NPC(E) can be written as

[53],

NPC(E) =
d

3

{
∫

dξ
ρHκ(ξ)[Fξ(E)]

2

[ρH(E)]2

}−1

, (21)

where ρHκ(ξ) and ρH(E) are normalized eigenvalue densities generated by diagonal Hamil-

tonian Hκ matrix and full Hamiltonian H matrix, respectively. Taking E and ξ as zero

centered and scaled by corresponding widths, the above equation can be written in terms of

fqN and fCqN [37, 38],

NPC(E) =
d

3

{
∫

S(q)

dξ
fqN(ξ|q)[fCqN(E|ξ; ζ, q)]2

fqN(E|q)

}−1

, (22)

In general, q’s in the above equation need not be same [37, 38]. However, in the thermaliza-

tion region, with ζ2 ≤ 1/2, one can approximate γ2 ≈ (q − 1) in Eq.(8). Then, the formula

for q given by Eq.(9) is valid for fqN as well as for fCqN . This is well verified numerically

in Section II. Also, the results of γ2 in Figure 5(c) corroborate this claim. With this, it is

possible to simplify Eq.(22) using Eqs.(6) and (7) and a simple two parameter formula, valid

in chaotic domain, for NPC can be written as,

NPC(E) =
d

3

{ ∞
∑

n=0

ζ2n

[n]q!
H2

n(E|q)
}−1

, (23)

It is easy to see from above formula that NPC(E) approaches GOE value d/3 as ζ → 0.

Also for q → 1, fqN and fCqN in Eq.(22) reduce to Gaussian and then Eq.(23) gives similar

results obtained for k = 2 in [53]. We have tested this formula with numerical ensemble

averaged BEGOE(1+k) results. Figure 7, shows results for ensemble averaged NPC vs.

normalized energy, for a 100 member BEGOE(1+k) with m = 10 and N = 5 example for

different values of λ and k. The ensemble averaged NPC values are shown with red solid

circles and continuous lines are obtained using the theoretical expression given by Eq. (23).

One can see from the results that with fixed k (i) for small value of λ, where the one-

body part of the interaction is dominating, the numerical NPC values are zero and the
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theoretical curve is far away from the numerical results indicating that the wavefunctions

are completely localized (the bottom panels in Figure 7); (ii) with further increase in λ, the

theoretical estimate for NPC in the chaotic domain is much above the ensemble averaged

curve indicating that the chaos has not yet set in; (iii) However, with sufficiently large λ,

we see that the ensemble averaged curve is matching with the theoretical estimate given by

Eq. (23), indicating that system is in chaotic domain corresponding to the thermalization

region given by ζ2 ∼ 1/2 [23] and the strength functions Fξ(E) are well represented by

conditional q normal distribution. Again with further increase in λ (the top panels in Figure

7), the match between the theoretical chaotic domain estimate and the ensemble averaged

values is very well in the bulk part of the spectrum (|E| < 2) for all values of k with

deviations near the spectrum tails. Hence, in the chaotic domain, the energy variation of

NPC(E) using Eq. (23) is essentially given by two parameters, ζ and q. The results clearly

show that the thermalization sets in faster with increase in the body rank k.

Another statistical quantity normally considered is the information entropy defined by

S info(E) = −
∑

κ p
i
κ ln p

i
κ = −

∑

κ |C i
κ|2 ln |C i

κ|2, here piκ is the probability of basis state

κ in the eigenstate at energy Ei. The localization length, lH is related to S info(E) by

lH(E) = exp
{

Sinfo(E)
}

/(0.48d). Then the corresponding embedded ensemble expression

for lH involving Fξ(E), can be written as[53],

lH(E) = −
∫

dξ
Fξ(E) ρ

Hκ(ξ)

ρH(E)
ln

{

Fξ(E)

ρH(E)

}

. (24)

Replacing ρHκ(ξ) and ρH(E) by fqN and Fξ(E) by fCqN , formula for lH valid in chaotic

domain is given by,

lH(E) = −
∫

dξ
fCqN(E|ξ; ζ, q)fqN(ξ|q)

fqN (E|q)
ln

{

fCqN (E|ξ; ζ, q)
fqN (E|q)

}

. (25)

Simplifying Eq.(25) for lH is an open problem and therefore, it is evaluated numerically

and results are compared with ensemble averaged numerical results of BEGOE(1+k). Fig-

ure 8, shows results for ensemble averaged lH vs. normalized energy E for a 100 member

BEGOE(1 + k) with m = 10 bosons in N = 5 sp states for different values of k. Here, we

choose k-body interaction strength λ = 1 so that the system will be in thermalization re-

gion. Numerical embedded ensemble results (red solid circles) are compared with theoretical

estimates (black curves) obtained using Eq. (25). The ζ values are shown in the figure. A

very good agreement between numerical results and smooth form is obtained for all values
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of k in the bulk of the spectrum with small deviations near the spectrum tails. Hence, in

the chaotic domain, the energy variation of lH(E), with Eq. (25), is essentially given by

conditional q forms for the strength functions.

VII. CONCLUSIONS

In the present work, we have analyzed wavefunction structure of dense many-body bosonic

systems with k-body interaction by modeling the Hamiltonian of these complex systems

using BEGOE(1+k). We have shown that for dense boson systems with BEGOE(1+k), the

q-polynomials are used to describe the transition from Gaussian to semi-circle in the state

density as the strength of the k-body interaction increases. A complete analytical description

of the correlation coefficient ζ , which is related to variance of strength functions, is obtained

in terms of N ,m,k and λ and it is found to describe the embedded ensemble results very

well for all the values of rank of interaction k. Also, in the dense limit ζ → 0. We have

also obtained formula for λt in terms of (m, N , k). Further, it is shown that in the strong

interaction domain (λ >> λt), the strength functions make transition from Gaussian to semi-

circle as the rank of interaction k increases in BEGOE(1+k) and their smooth forms can be

represented by the q-normal distribution function fCqN to describe this crossover. Moreover,

the variation of the lowest four moments of strength functions computed numerically are

in good agreement with the analytical formulas obtained in [38]. With this, we have first

utilized the interpolating form for strength function fCqN to describe the fidelity decay in

dense boson systems after k-body random interaction quench. Secondly, using smooth forms

for fqN and fCqN , we have also derived two parameter (q and ζ) formula for NPC valid in

thermalization region and shown that these smooth forms describe BEGOE(1+k) ensemble

averaged results very well. Therefore, the results of this work, along with [33, 37, 38],

establish that the q-Hermite polynomials play a very significant role in analyzing many-body

quantum systems interacting via k-body interaction. The generic features explored in this

work are important for a complete description of many-body quantum systems interacting

via k-body interaction as the nuclear interactions are now known to have some small 3-

body and 4-body parts and higher body interactions may become prominent in strongly

interacting quantum systems [7, 25, 26].

Following the work in [52], it is interesting to analyze power-law behavior of fidelity decay
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for very long time using embedded ensembles with k-body forces as smooth forms of strength

functions can be represented by fCqN . Further, as smooth forms for the density of states

can be represented by fqN , it is possible to study normal mode decomposition of the density

of states for various k values using fqN [13, 17, 56] and thereby one can study spectral

statistics in strongly interacting quantum systems. This is for future. It is also known that

the strength functions and the entanglement essentially capture the same information about

eigenvector structure [55, 57] and therefore it is important to study entanglement properties

using embedded ensembles with k-body forces.
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FIG. 4. Strength function vs. normalized energy E for a system of m = 10 bosons in N = 5 sp

states with λ = 0.5 for different k values in BEGOE(1+k) ensemble. An ensemble of 250 members

is used for each k. Strength function plots are obtained for (a) ξ = 0 (purple histogram) , (b)

ξ = −1.0 (blue histogram) and 1.0 (red histogram) and (c) ξ = −2.0 (blue histogram) and 2.0 (red

histogram). In the plots
∫

Fξ(E)dE = 1. The continuous black curves are due to fitting with fCqN

given by Eq. (18) using q and ζ values obtained by Eq. (9) and Eq. (11), respectively. See text for

more details.
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FIG. 5. Ensemble averaged (a) Centroid, (b) γ1 and (c) γ2 as a function of body rank k for the

strength function results presented in Figure 4. Results are shown for various values of ξ.
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FIG. 6. Fidelity decay W0(t) as a function of time for a 100 member BEGOE(1+k) ensemble with

N = 5 and m = 10 represented by the red solid circles; the ψ(0) here corresponds to middle states

of h(1) spectrum. Here t is measured in the units of σ−1
H . The black smooth curves are obtained

by taking numerical Fourier transform of the strength functions represented by Eq.(18).
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FIG. 7. Ensemble averaged NPC as a function of normalized energy E for a 100 member

BEGOE(1+k) with m = 10 interacting bosons in N = 5 sp states for different values of k.

Ensemble averaged BEGOE(1+k) results are represented by solid circles while continuous curves

correspond to the theoretical estimates in the chaotic domain obtained using Eq. (23). The ensem-

ble averaged ζ and q values are also given in the figure. GOE estimate is represented by dotted

line in each graph.
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FIG. 8. Ensemble averaged localization lengths lH vs. normalized energy E for a 100 member

BEGOE(1+k) with m = 10 interacting bosons in N = 5 sp states for different k values. Here,

λ = 1 is chosen for all k. Ensemble averaged BEGOE(1+k) results (red solid circles) are compared

with the smooth forms obtained via Eq.(25) involving parameters ζ and q. The ensemble averaged

ζ values are given in the figure and Eq.(9) is used for q values. Dotted lines in each graph represent

GOE estimate.
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