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Effective structure of a system with continuous polydispersity
Palak Patel,1, 2 Manoj Kumar Nandi,1 Ujjwal Kumar Nandi,1, 2 and Sarika Maitra Bhattacharyya1, 2, a)
1)Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune-411008,
India
2)Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002,
India

In a system of N particles, with continuous size polydispersity there exists N(N-1) number of partial structure
factors making it analytically less tractable. A common practice is to treat the system as an effective one
component system which is known to exhibit an artificial softening of the structure. The aim of this study is
to describe the system in terms of M pseudo species such that we can avoid this artificial softening but at the
same time have a value of M << N . We use potential energy and pair excess entropy to estimate an optimum
number of species, M0.We then define the maximum width of the polydispersity, ∆σ0 that can be treated as
a monodisperse system. We show that M0 depends on the degree and type of polydispersity and also on the
nature of the interaction potential, whereas, ∆σ0 weakly depends on the type of the polydispersity, but shows
a stronger dependence on the type of interaction potential. Systems with softer interaction potential have a
higher tolerance with respect to polydispersity. Interestingly, M0 is independent of system size, making this
study more relevant for bigger systems. Our study reveals that even 1% polydispersity cannot be treated as
an effective monodisperse system. Thus while studying the role of polydispersity by using the structure of an
effective one component system care must be taken in decoupling the role of polydispersity from that of the
artificial softening of the structure.

I. INTRODUCTION

Most systems that can be found in nature are inher-
ently polydisperse. Polydispersity can be of different
kinds like in size, in mass, and also in the shape of the
particles. Also, the type of polydispersity and the degree
of it varies with systems. Polydispersity brings variation
in the properties of the material and there are specially
designed controlled experiments to create monodisperse
particles1,2. However, in some cases polydispersity is a
desirable property. The size polydispersity is one of the
most common types and it has been found that systems
beyond certain value of polydispersity, known as the ter-
minal polydispersity are good glass former3–9. It was
shown that in a polydisperse system due to an increase in
surface free energy, the crystal nucleation is suppressed
promoting glass formation10. Thus in study of super-
cooled liquids, polydisperse systems play an important
role.
In recent time, it has been shown that structure plays

an important role in the dynamics of glass forming su-
percooled liquids11–19. Since polydisperse systems are
good glass former describing the structure of these sys-
tems becomes important. For a continuous polydisperse
system, the number of species is the number of particles
in the system. In this case, describing the system’s par-
tial structure in terms of independent species becomes
an impossible task. Thus it is common practice to treat
a polydisperse system in terms of an effective one com-
ponent system20–24 . However, it has been shown that
we not only lose a large deal of information of the sys-
tem by pre averaging the structure, the properties of the
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liquid thus predicted can also give spurious results.25,26.
Truskett and coworkers25 have shown that for moderate
polydispersity the thermodynamic quantities like the pair
excess entropy obtained from the effective one compo-
nent radial distribution function (rdf) predicts that with
an increase in interaction the static correlation becomes
weaker thus predicting structural anomaly. The study
showed that when the system is expressed in terms of 60
pseudo neighbors and the excess entropy is calculated in
terms of the partial structure factors (radial distribution
functions), this structural anomaly disappears. Weysser
et. al. while working with Mode coupling theory have
shown that for a polydisperse system, we need to pro-
vide information about the partial structure factors to
obtain the correct dynamics26. Ozawa and Berthier have
highlighted the fact that for a system with continuous
size polydispersity the contribution from the mixing en-
tropy term diverges27. This makes the calculation of en-
tropy and any other dependent quantity ill-defined. They
showed by calculating the inherent structure properties
that when the position of the particles with similar sizes
is exchanged, the system stays in a similar basin. This
modifies the vibrational entropy, which also has the same
mixing entropy term. The process allowed them to group
particles into a certain finite number of pseudo species
leading to a finite value of the mixing entropy. These
studies thus emphasize the importance of describing the
structure of a polydisperse system in terms of the partial
structure factors of the pseudo species.

The present study attempts to develop a general frame-
work to describe the structure of a system having con-
tinuous polydispersity. As discussed before, for a system
with continuous polydispersity the number of species is
the same as the number of particles which makes it dif-
ficult to describe the structure. We also know that de-
scribing all the particles in terms of a single species does
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not work. So the aim of this study is to describe the
system in terms of M pseudo species such that the prop-
erties of this system are the same as the original system.
The questions that we ask are i) Can we determine the
minimum number of pseudo species ′M ′

0 required to de-
scribe the structure of the system? ii) Is this dependent
on the property that we study? iii) Does it depend on the
degree and nature of polydispersity? iv) Does it depend
on the interaction potential?
To answer these questions we use the route of calcu-

lating thermodynamic quantities which can be obtained
from the structure of the liquid. Namely the potential en-
ergy of the system and the pair excess entropy. Note that
the former is a linear function of the structure whereas
the latter is a nonlinear function of the structure and
thus can have different sensitivities to the effective struc-
ture. We find that by studying these above mentioned
thermodynamical quantities, we can determine a value of
M0. It depends on the type of polydispersity, the degree
of polydispersity, and the interaction potential. We also
provide an estimate of the width of polydispersity that
can be treated like a one component system. This width
appears to depend primarily on the interaction potential
of the system. Systems with longer range and softer in-
teraction potential have a better tolerance towards poly-
dispersity. In these cases, systems with a wider spread
of size can be addressed in terms of a one component
system.
The organization of the rest of the paper is the fol-

lowing. Section II contains the simulation details. In
Section III, we discuss the methods used for evaluating
the various quantities of interest. Section IV contains
results with discussions and the paper ends with a brief
conclusion in Section V.

II. SIMULATION DETAILS

In this study, we perform molecular dynamics simu-
lations for three-dimensional polydisperse system with
continuous size polydispersity in the canonical ensemble.
The system contains N=1000-4000 particles in a cubic
box of volume V. The number density for all the systems
is ρ = N/V = 1.0. In our simulations, we have used
periodic boundary conditions and Nosé-Hoover thermo-
stat with integration timestep 0.001τ . The time con-
stants for the Nosé-Hoover thermostat are taken to be
100 timesteps. We have carried out the molecular dy-
namics simulations using the LAMMPS package28. The
study involves two different kinds of systems with respect
to size polydispersity, constant volume fraction (CVF)
and Gaussian (as shown in Fig. 1) and three different
kinds of interaction potentials. The distributions of the
particle size are continuous. This means each of the N
particles has a different radius. The form of the constant
volume fraction distribution is given by8,

P1(σ) =
A

σ3
, σ ∈ [σmax, σmin] (1)

TABLE I: Details of the size distributions, constant
volume fraction and Gaussian, for different degrees of

polydispersity PDI=
√
<σ2>−<σ>2

<σ> . The maximum,
σmax, and minimum σmin, values of the diameter of the
particles. The volume fraction η is also given showing
an increase in η with degree of polydispersity.

Distribution PDI % σmax σmin ∆σ η
P1(σ) 5% 1.1 0.92 0.18 0.53

10% 1.21 0.85 0.36 0.54
15% 1.34 0.8 0.54 0.56

P2(σ) 5% 1.15 0.85 0.3 0.53
10% 1.3 0.7 0.6 0.54
15% 1.45 0.55 0.9 0.56

where A is the normalization constant and σmax and
σmin are the maximum and minimum values of particle
diameter. σmax and σmin values are given in Table.I. The
degree of polydispersity is quantified by8 the normalized
root mean square deviation

PDI =
√
<σ2>−<σ>2

<σ>

Where
〈

..
〉

defines the average of the particle size distri-

bution.
The Gaussian distribution is given by

P2(σ) =
1√
2πδ2

exp
−(σ−<σ>)2

2δ2 (2)

Where δ is the standard deviation. In this distribution
we consider σmax/min =< σ > ±3δ. The degree of poly-
dispersity is quantified by,

PDI =
√
<σ2>−<σ>2

<σ> = δ
<σ>

For all the polydisperse systems the particle sizes are such
chosen that < σ >=

∫

P (σ)σdσ = 1 and is kept as the
unit of length for all the systems studied here.
The three different interaction potentials studied here

are inverse power law (IPL) potential, Lennard-Jones
(LJ) potential and its repulsive counterpart the Weeks-
Chandeler-Andersen (WCA) potential. The inverse
power law potential (IPL) between two particles i and
j is given by,8,29.

U(rij) =

{

ǫij(
σij

rij
)12 +

∑2
l=0 c2l(

rij
σij

)2l, (
rij
σij

) ≤ xc

0, (
rij
σij

) > xc

(3)
The constants c0, c2 and c4 are selected such that the
potential becomes continuous up to its second derivative
at the cutoff xc = 1.25σij .
The LJ potential between the two particles i and j is

described using truncated and shifted LJ potential30;

U(rij) =

{

U (LJ)(rij ;σij , ǫij)− U (LJ)(r
(c)
ij ;σij , ǫij), rij ≤ r

(c)
ij

0, rij > r
(c)
ij

(4)
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where U (LJ)(rij ;σij , ǫij) = 4ǫij [(
σij

rij
)12 − (

σij

rij
)6]. The cutoff

for the LJ system is r
(c)
ij = 2.5σij and for the WCA system is

r
(c)
ij = 21/6σij .

31 The interaction strength between two parti-

cles i and j is ǫij = 1.0. σij =
(σi+σj)

2
, where σi is a diameter

of particle i and it varies according to the system. Length,
temperature and times are given in units of < σ >, ǫij and
(

m<σ>2

ǫij

) 1
2 respectively. For all state points, the equlibration

is performed for 100τα (τα is the α- relaxation time) and three
to five independent samples are analyzed. As discussed later,
in this work both potential energy and pair excess entropy
are calculated using the partial structure factors. In a system
with continuous polydispersity, each particle has a different
diameter. So there are N×N

2
partial radial distribution func-

tions. For N = 1000 there are thus 500, 000 partial rdf and
with increase in N this number grows as N2. Calculating
these many partial rdf with good precision is an impossible
task. However, in this study, we divide the total system into
M species. Particles with diameter range (σmax − σmin)/M
are treated as a single species. Note that this is an approx-
imation because the particle sizes in a single species are still
different. With an increase in M this diameter range becomes
narrow and the approximation leads to less error. The maxi-
mum value of M that we have used in this work is 26. Thus
we have calculated at the most 338 partial rdf. Although
the study is performed in the high temperature regime where
the production run length is usually around 100 τα where τα
varies between 5− 100, for this study to get a good precision
of the partial rdf we require longer production run lengths
to compensate for the poor particle averaging. For 5% PDI
the production run length is 107 and for 15% PDI and 10%
PDI the production run lengths are 107 for T= 5.0-0.38 and
6× 107 for T=0.36-0.2

III. DEFINITION AND BACKGROUND

A. Radial distribution function

The partial radial distribution gαβ(r) is define as:

gαβ(r) =
V

NαNβ

〈

Nα
∑

i=1

Nβ
∑

j=1,j 6=i

δ(r − ri + rj)
〉

(5)

Where V is the volume of the system, Nα , Nβ are the number
of α and β type of particles, respectively.

The effective one component radial distribution function,
g(r) can be written in terms of partial rdf of M species as.32

g(r) =
M
∑

α,β=1

χαχβgαβ(r) (6)

Where χα and χβ are the mole fraction of α and β particles,
respectively.

B. Potential energy

The per particle potential energy of the system can be ex-
actly calculated from simulation Esim. The same can also be
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FIG. 1: Different kind of distributions (a)Constant
volume fraction distribution, P1(σ) (b) Gaussian
distribution, P2(σ). For the same degree of
polydispersity, compared to P1(σ) the distribution is
wider for P2(σ).

written in terms of the partial radial distribution function,
E2.

E2 =
ρ

2

M
∑

α,β=1

χαχβ

∫ ∞

0

4πr2Uαβ(r)gαβ(r)dr (7)

In the effective one component treatment the energy can
be written as Eeff

2 ,

Eeff
2 =

ρ

2

∫ ∞

0

4πr2U(r)g(r)dr (8)

C. Excess entropy

Excess entropy Sex is a loss of entropy due to the interac-
tion between the particle or in other words excess entropy is
a difference between Stotal and Sideal at same temperature T
and density ρ. The value of Sex is always a negative. Sex can
be evaluated by thermodynamic integration (temperature
density landscape)33. Entropy at high temperature and
low density is that of an ideal gas entropy. This Sideal

is a relative reference for any other state points entropy
calculation. Other state point entropy can be calculated
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using a combination of isotherms (Eq.9) and isochoric
(Eq.10) paths, making sure that no phase transitions occurs
along the selected path33.

Sex(T, V
′)−Sex(T, V ) =

U(T, V ′)− U(T, V )

T
+

∫ V ′

V

P (V )

T
dV

(9)

Sex(T
′, V ′)− Sex(T, V

′) =

∫ T ′

T

1

T

(δU

δT

)

V ′
dT (10)

Addition of Eq. 9 and Eq. 10 give the total excess entropy.

D. Pair Entropy

Using Kirkwood factorization34 , the excess entropy can also
be expressed in terms of an infinite series,

Sex = S2 + S3 + S4.... (11)

Where Sn is an entropy contribution due to n particle spatial
correlation. The pair excess entropy, S2 includes 80% of the
total excess entropy35. We can calculate S2 from the partial
rdf of M species33-

S2

kB
= −2πρ

M
∑

α,β=1

χαχβ

∫ ∞

0

r2dr{gαβ(r) ln gαβ(r)−(gαβ(r)−1)}

(12)
Where kB is a Boltzmann constant.
If we do not consider the different species then the entropy

for an effective one component system can be written as Seff
2 ,

Seff
2

kB
= −2πρ

∫ ∞

0

r2dr{g(r) ln g(r)− (g(r)− 1)} (13)

E. Onset temperature calculation from Inherent structure

energy

While cooling a glass forming liquid from high temper-
atures at the onset temperature, Tonset the system’s ther-
modynamic and dynamic properties deviate from its high-
temperature behavior. There are different dynamical and
thermodynamical measures of Tonset. The temperature pre-
dicted by each method is not identical but lies in a similar
range. A comparison of the different methods is given in
Ref.15. In this work, we will discuss the one calculated from
the inherent structure energy and the other from the excess
entropy.

The inherent structure energy is the potential energy evalu-
ated at the local minimum of the energy reached from the con-
figuration via the steepest descent procedure. As suggested
earlier36 the onset temperature is connected to the inherent
structure energy. At high temperatures as the system is not
influenced by the landscape properties, the average inherent
structure energy is almost temperature independent. However
below a certain temperature, where the landscape properties
influence the system, the inherent structure energy starts to

decrease rapidly. Usually, the two different regimes are fitted
to two straight lines and the point where these lines cross is
identified as the onset temperature, Tonset.

F. Dynamics

In this work to characterize the dynamics we consider the
self part of the overlap function Q(t) definied as,37

Q(t) =
1

N

N
∑

i=1

〈ω(|ri(t)− ri(0)|)〉 , (14)

where the function ω(x) is 1 if 0 ≤ x ≤ a and ω(x) = 0
otherwise. The parameter a is chosen to be 0.3, a value that
is slightly larger than the size of the cage.

Note that the dynamics can also be obtained from self in-
termediate scattering function Fs(q, t) where q = 2π/rmax,
rmax being the position of the first peak of the radial distri-
bution function. Since relaxation times from Q(t) and Fs(q, t)
behave very similarly at low temperature, we use Q(t) for the
dynamics.

IV. RESULT

A. Effective one-component description

As discussed before it is a common practice to describe the
structure of a polydisperse system in terms of an effective one
component system.
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FIG. 2: The difference in energy obtained from effective

one component radial distribution functions, Eeff
2 and

simulation,Esim as a function of T at different PDIs.
Here particles are interacting via IPL potential and the
particle size distribution is given by P1(σ) (constant
volume fraction distribution).

In Fig.2, we plot the difference between the average per par-
ticle potential energy of the species agnostic Eeff

2 and that
obtained from simulation Esim for systems with different PDI
values (5%,10% and 15%). In the simulation study, the parti-
cle sizes are obtained from P1(σ) distribution and they inter-
act via IPL potential. In Fig.3 we also plot the Sex and the
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species agnostic Seff
2 for the above mentioned systems. Note

that if the structure is described properly then Esim = E2

and S2 is not exactly equal to Sex but comprises of 80% of its
value15,33,35,38–42.
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FIG. 3: Excess entropy, Sex and effective one

component pair excess entropy, Seff
2 (Eq.13) at

different PDIs. Solid line with filled symbol represents

Sex and dotted line with open symbol represents Seff
2 .

Here particles are interacting via IPL potential and the
particle size distribution is given by P1(σ) (constant
volume fraction distribution).

We find that as the PDI increases the difference between
Esim and Eeff

2 and Sex and Seff
2 increases. This clearly

shows that as expected, with an increase in PDI the effec-
tive one component description of the system becomes less
accurate. In Fig.4 we plot both the dynamics and the effec-
tive one component rdf of the systems. We find that within
the temperature range studied here although the dynamics
remains almost the same, with an increase in polydispersity
the structure appears to soften.We have plotted the rdf at two
temperatures, (T=1.0 and 0.5) and it appears that the soft-
ening is present in both temperatures. However, the fact that
the difference between Eeff

2 and Esim reduces at low temper-
atures (Fig.2) do suggest that the softening also reduces with
temperature. This artificial softening of the structure leads to
the increase in Eeff

2 and Seff
2 . Note that even for 5% polydis-

persity we find that the effective one component structure of
the system fails to provide the correct value of the potential
energy and the pair excess entropy. These results presented
in Fig.2 and Fig.3 are not surprising but a confirmation of the
observations made earlier25,26.

B. Pseudo species and its dependence on degree of

polydispersity

Describing the structure of a continuous polydisperse sys-
tem can be challenging? Unlike in a discrete polydisperse sys-
tem where each species has a finite number of particles and
all of them have the same size, for a continuous polydisperse
system the number of species is the same as the number of
particles. However, let us assume that we describe a pseudo
system where we divide the particles into M number of pseudo
species (where M < N) in terms of the size of the particles. In
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FIG. 4: (a) Dynamics of systems at different PDIs. The
overlap function is plotted against time. (b) Effective
one component radial distribution function of the
systems at T = 1.0. (c) Same as Fig.4(b) at T = 0.5.
Black square,red triangle, green circle and blue diamond
represent a mono disperse system, 5% PDI, 10% PDI
and 15% PDI, respectively. With an increase in PDI
although the dynamics remains almost the same the
structure shows a substantial softening. Here particles
are interacting via IPL potential and the particle size
distribution is given by P1(σ) (constant volume fraction
distribution).

doing so we bunch particles with similar but different sizes,
in a group and assign an average size to them. This intro-
duces disparity in the actual size and the assigned size of the
particles and leads to an error in describing the properties of
the system. An extreme case of that (M = 1) can be seen
in Fig.2 and Fig.3. For a fixed M , the maximum difference
in the actual diameter of a particle and its assigned average
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diameter is ∆σ/2M . Thus with an increase in M this error re-
duces and at M = N the pseudo system is exact. So the first
question is can we describe the structure of a system in terms
of an optimum number of species M0, where M0 << N such
that the structure can provide a correct estimate of the ther-
modynamic quantities? If we can then how does M0 depend
on the degree of polydispersity?

In Fig.5(a) we plot E2
ESim

as a function of M , at two dif-

ferent temperatures for the different PDIs. For systems with
a fixed value of PDI as we increase the value of M the E2

decreases and after a certain value of M, E2 ≃ Esim. We find
that this is weakly temperature dependent. For this work,
we consider that at T = 1 the minimum number of pseudo

species for which (E2−Esim)
Esim

< 0.01 is M0. The value of M0 is

system dependent and as expected increases with the increase
in PDI value as can be seen from Fig.5(b). Note that while
determining M0 this choice of the relative error (0.01) is arbi-
trary but practical. In principle, we can choose values much
smaller or probably larger than this. However, later, while
discussing the value of M0 as obtained from entropy, we will
see that this choice is reasonable.

Is the value of M0 sensitive to the thermodynamic quantity
that we calculate or is it universal? To answer this question
we calculate the two body pair entropy for different values of
M . We find that similar to the energy, as M increases the S2

comes closer to Sex (Fig.6). However, even for large values of
M , S2 is not equal to Sex. This is because unlike the potential
energy which can be exactly calculated in terms of the partial
rdf, only a part of the excess entropy can be calculated from
the rdf (Eq.11)15,33,35,38–42. This makes it difficult to use the
same methodology as used for potential energy to make an
estimation of M0 from entropy.

However, from our earlier studies, we know that if the struc-
ture of the liquid is described properly then the excess en-
tropy and the two body pair entropy crosses each other at
a temperature,Tcross which can be considered as the onset
temperature of the supercooled liquid dynamics15. This on-
set temperature can also be obtained from the change in the
slope of the temperature dependence of the inherent structure
energy36 and also other methods15. As shown earlier the val-
ues of the onset temperatures obtained using these different
methods are not exactly the same but they are in a similar
range15.

In Fig.7 we plot the variation of Tcross with M for the
different systems. For higher PDI, at small values of M , we
cannot calculate Tcross which implies that S2 is far away from
Sex and never crosses it as seen in Fig.6. However, from our
other estimates of onset temperature, we know that we are in
a temperature range where these two forms of entropy should
cross. As M increases the two functions cross at some tem-
perature Tcross. We find that initially Tcross increases with
M and then after a certain value of M it shows a saturation.
As mentioned before S2 is not the total excess entropy of the
system. There is no other method of calculating S2. Thus it
is not possible to do a similar error estimation of pair excess
entropy as done for the potential energy. However, the sat-
uration of Tcross is an indication of the saturation of S2 w.
r. t. M . We find that this saturation value of Tcross is in
a similar range as the estimated onset temperature using the
method of inherent structure energy (see Sec III E and Table
II). In this plot we also mark the M0 values as obtained from
the potential energy. We find that the M value for which
Tcross saturates falls in the similar range as M0. The val-
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FIG. 5: Comparison between energy obtain from
simulation, Esim, and energy obtain from partial radial
distribution functions, E2 (Eq. 7). (a)Ratio of E2 and
Esim vs the number of pseudo species M at T = 1.0
(open red symbols) and T = 0.5 (filled blue symbols) for
different PDIs.(b) Relative error calculation between
Esim and E2, (E2 −Esim)/Esim plotted as a function of
M for different PDIs. For better visualization, we have
shifted the y-axis of the 10% PDI plot by 0.1, and 15%
PDI plot by 0.2. The horizontal lines signify the
corresponding large M values which are 1.0 for (a) and
0.0 for (b). Here particles are interacting via IPL
potential and the particle size distribution is given by
P1(σ) (constant volume fraction distribution).

ues of Tcross at M = M0 and the Tonset are given in Table II.
Thus we show that the minimum number of pseudo species re-
quired to describe the potential energy of the system can also
describe the two body excess entropy of the system. Note
that although with M0 pseudo species we can get a reason-
able value of S2, this quantity is not the total excess entropy
of the system. The residual multi-particle entropy (RMPE)
defined as the difference between the total excess entropy and
the pair excess entropy, Sex − S2 although has a small value
when compared to S2, plays an important role in describing
the thermodynamics of the system. For example, it has been
observed that if we ignore RMPE then the correlation between
dynamics and thermodynamics expressed via the well known
Adam-Gibbs relation does not hold12. It has also been ob-
served that in the supercooled liquid regime RMPE provides
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FIG. 6: Excess entropy, Sex, and pair excess entropy
S2. The latter is calculated at different values of M
(Eq.12). Dashed dot line represents Sex and solid lines
represent S2. (a) PDI 5% (b) PDI 10% (c) PDI 15%.
Here particles are interacting via IPL potential and the
particle size distribution is given by P1(σ) (constant
volume fraction distribution).

us a measure of the activated dynamics of the system12,17.
Thus although the pseudo species description provides us a
reasonable estimation of S2, care should be taken while us-
ing this quantity in describing the full thermodynamics of the
system.

The details of the M0 values for the different systems are
given in Table II. We also tabulate a quantity ∆σ0 = ∆σ

M0
. We
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T
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FIG. 7: Tcross vs M plot for different PDIs. Initially,
Tcross increases with M but after certain value of M, it
saturates. For larger PDI the saturation takes place at a
higher M value. The vertical lines give the value of M0

obtained from energy criteria. Here particles are
interacting via IPL potential and the particle size
distribution is given by P1(σ) (constant volume fraction
distribution).

find that although M0 is dependent on the PDI this quantity
∆σ0 is not. Note that when M = M0, the maximum error
in assigning a diameter to a particle is ∆σ0

2
. Thus our study

suggests that the thermodynamic properties of the system
studied here are not sensitive to a change in diameter by ∆σ0

2
and for a constant volume fraction polydisperse system inter-
acting via IPL potential when ∆σ ≈ 0.036 we can treat it as
a monodisperse system.

Interestingly we find that when we plot the partial rdf for
two consecutive pseudo species, g11(r) and g22(r) (here these
two species 1 and 2 have the largest and the second largest
number of particles, respectively) for different values of M
then for M = M0 the peaks of the two rdfs almost overlap
(Fig.8) . Thus we can say that when the size difference of the
two consecutive species are such that there is a large overlap
between the radial distribution functions of two consecutive
species then they can be treated as a single species.

TABLE II: The values of M0 and ∆σ0 for different
systems. We also provide the values of Tcross at
M = M0 and for comparison we give the Tonset values
obtained from fitting the Inherent structure energy to
two straight lines.

Distribution Potential PDI % M0 ∆σ0=
∆σ
M0

Tcross(M0) Tonset

P1(σ) IPL 5% 5 0.036 0.42 0.43
10% 10 0.036 0.33 0.36
15% 15 0.036 0.26 0.31

P2(σ) IPL 5% 7 0.043 0.43 0.46
10% 14 0.043 0.35 0.34
15% 21 0.043 0.28 0.30

P1(σ) WCA 15% 20 0.027 0.58 0.7
LJ 15% 12 0.045 0.67 0.81
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FIG. 8: The partial radial distribution function for the
first two species for different values of M . (a)PDI 5%
(b) PDI 10% (c) PDI 15%. For M = M0 the rdf peak of
the two consecutive species almost overlap. Here
particles are interacting via IPL potential and the
particle size distribution is given by P1(σ) (constant
volume fraction distribution).

C. Effect of the type of distribution on M0 and ∆σ0

We next study the effect of the type of distribution on M0

and ∆σ0. In Fig.9 we compare the M dependence of Tcross for
systems where polydispersity is described in terms of P1(σ)
(constant volume fraction) and P2(σ) (Gaussian), for three
different PDIs. In the same plot the M0 values as obtained
from the potential energy are also marked.

At the same PDI, the nature of saturation of Tcross and also
the value ofM0 are different for the two different distributions.
Compared to the constant volume fraction distribution, the
values of M0 are higher for the Gaussian distribution. The
reason behind this can be understood by comparing Fig.1 and
Fig.2 (also see Table I). For the same PDI, the Gaussian dis-
tribution is wider compared to the constant volume fraction
distribution. A closer observation tells us that the saturation
of Tcross is better for the CVF distribution when compared to
the Gaussian distribution. Note that for the Gaussian distri-
bution M0 is higher (more number of species), and by nature
towards the tail of the distribution the number of particles is
less so the partial rdf for the largest and the smallest species
are poorly averaged. We have seen that with an increase in
system size the saturation improves (not shown here).
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FIG. 9: The effect of the type of distribution on M0.
Tcross vs M plot for different PDIs for systems where
particles are interacting via IPL potential and the
particle size distribution are given by P1(σ) (constant
volume fraction distribution) and P2(σ) (Gaussian
distribution). The vertical lines give the value of M0

obtained from energy criteria (solid lines for P1 and
dashed lines for P2 distribution). At the same value of
PDI for the Gaussian distribution the M0 is higher and
Tcross saturates at a higher M value.

We find that when compared to CVF distribution, the ∆σ0

is marginally higher for the systems with Gaussian distribu-
tion (see Table II). Note that we divide a continuous poly-
disperse system into M species in a way that the difference
in diameter of two consecutive species is always separated
by ∆σ

M
. This implies that the percentage error in calculating

the size of the smaller particles are higher than that of the
larger particles. Also, note that in constant volume fraction
distribution the smallest particles are the largest in number
thus by construction the error is maximum for the dominant
species. On the other hand for the Gaussian distribution, the
place where the percentage error is maximum the population
of particles are the minimum. Thus compared to the Gaus-
sian distribution for continuous volume fraction we need to
go to marginally smaller values of ∆σ0. A way to increase
∆σ0 (decrease M0) in CVF distribution can be to have a size
dependent bin width such that the percentage error in de-
scribing the size of a smaller particle is the same as that of a
larger particle.
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FIG. 10: Role of interaction potential on M0. Tcross vs
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interacting via IPL, WCA and LJ potential and the
particle size distribution are given by P1(σ) (constant
volume fraction distribution). The vertical lines give the
value of M0 obtained from energy criteria. The value of
M0 is higher for WCA potential and the Tcross also
saturates at higher value of M .

D. Effect of interaction potential on M0

Next, we study the role of interaction potential on the value
of M0 (also ∆σ0) and the saturation of Tcross. For this we
study P1(σ) system, with PDI=15% and vary the interaction
potential between the particles (IPL, WCA, and LJ). The
parameter values are given in Table II. When we compare the
IPL, WCA and LJ systems we find that M0 value is higher
for the WCA system and also the Tcross of the WCA system
appears to saturate at a higher M value (see Fig.10). This
suggests that ∆σ0 for the WCA potential is smaller than the
LJ and the IPL systems (see Table.II).

To understand the origin of this lower tolerance of the WCA
system in Fig.11 we plot for the WCA system the partial
rdfs of the first two species for different values of M and find
that compared to the IPL system we need to go to higher
values of M to observe a good overlap between the two rdfs.
Similar to that found for the IPL system, at M = M0 the
rdf peaks almost overlap. Note that compared to the WCA
potential the IPL potential is softer and has a longer range.
Thus compared to the WCA system the IPL system has a
flatter rdf and a larger overlap of the rdfs of two consecutive
species. This definitely explains why compared to the IPL
system the M0 is higher for the WCA system.

In Fig.12 we compare the rdf values for the first two species
of the IPL, WCA and LJ systems, for M = 15. Note that for
the IPL and the LJ systems M0 ≤ 15 and for the WCA sys-
tem M0 > 15. However, compared to the WCA and IPL
systems, the partial rdfs for the LJ system are more sharply
peaked. This does not explain why the M0 for the LJ system
is smaller than the WCA system. Note that the structure
along with the interaction potential describes both the poten-
tial energy and also the two body entropy. In S2 the leading
term is -g(r) ln g(r) ≃ g(r)W (r) where W (r) = − ln g(r) can
be considered as the effective potential of the system. Thus
along with the rdf the interaction potential also plays a role
in determining these thermodynamic quantities. The range
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FIG. 11: The partial radial distribution function for the
first two species for different values of M . The particles
are interacting via WCA potential and the polydispersity
of the system is described by P1(σ) with 15% PDI.
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FIG. 12: The partial radial distribution functions for
the first two species for IPL, WCL and LJ potentials for
M = 15. The size distribution of the particles is given
by P1(σ) with 15% polydispersity.

of the LJ potential is much larger compared to the IPL and
WCA potentials. Moreover, the attractive part of the poten-
tial which provides a dominant contribution also varies much
more smoothly compared to the WCA and IPL potentials. It
appears that this slow variation of the potential increases the
tolerance of thermodynamic quantities w.r.t the particle size
which leads to a smaller M0 value.

We will like to mention that in this work while working
with the LJ system we only vary the size of the particles while
keeping the interaction energy constant. This choice is quite
similar to that used in earlier studies of model polydisperse
systems9,43,44. However, this choice of system is not consis-
tent with the van der Waals attraction dependence on particle
volume. Thus the system can have some unusual structures
like that of clustering of smaller particles observed earlier44
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FIG. 14: The system size dependence of M0. Tcross vs
M plot for different PDIs for systems where particles
are interacting via IPL potential and the particle size
distribution are given by P1(σ). The open red symbols
are for N=1000 and the filled blue symbols are for
N=4000. The vertical lines give the value of M0

obtained from energy criteria. M0 from energy is
independent of system size and for systems with higher
PDI the Tcross saturates better for higher system size.

E. System size dependence

Note that for finite number of particles (N) in the system,
we can still describe the N ∗N partial structure factors. How-
ever in the thermodynamic limit when N → ∞ this becomes
ill-defined. Thus for larger systems describing the system in
terms of pseudo species becomes even more important. In
this section, we study the system size dependence of M0. For
this study, we take the system where particle size distribution
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FIG. 15: Alternate definition of M0. Tcross vs M has
two different regimes, low M shows growth and high M
shows a near saturation. The two different regimes are
fitted to two straight lines and the M value where these
lines cross is identified as M0. The open red symbols are
for N=1000 and the filled blue symbols are for N=4000.
The M0 values thus obtained are smaller than that
obtained from energy criteria and similar to that
obtained by Ozawa and Berthier27

is given by P1(σ) and the particles interact via IPL potential.
We study three systems at 5%, 10% and 15% PDI. In Fig.13

we plot the (E2−Esim)
Esim

for systems with 1000 and 4000 parti-

cles. We find that the relative error in energy is independent
of the system size and so is M0. In Fig.14 we plot the Tcross

values for the two different system sizes. We find that for
5% and 10% PDI they overlap and for 15% PDI the bigger
system size predicts a better saturation of Tcross. This is be-
cause we now have a larger number of particles in each species
giving rise to better averaging. Thus we can say that M0 is
independent of system size.

F. Comparison with earlier predictions

Next, we compare our results with that of Ozawa and
Berthier (OB)27. The goal of both studies is to find an ef-
fective number of pseudo species that can describe a polydis-
perse system. However, the methodologies are quite different.
We work with the partial rdf of the liquid and use them to
calculate the excess entropy and total energy near the onset
temperature. Ozawa and Berthier used the information of
the vibrational entropy and the inherent structure properties
and the study was performed below the MCT transition tem-
perature. They divided the system into M species and then
swapped particles within a species. After N such swaps, they
minimized the system and obtained the mean square displace-
ment (MSD) between the original equilibrium configuration
and swapped configuration. The MSD as a function of M ini-
tially decreased with increasing M and showed saturation at
high values of M. They fitted these two regimes to two differ-
ent power laws, and the intersection point of the power laws
determined the value of M0. In their study they have calcu-
lated the value of M0 for an IPL potential system with P1(σ)
distribution at 23% PDI. They then extrapolated the value of
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M0 for smaller PDIs. For 10% PDI they predicted a value of
M0 = 4−5 and for 5% PDI, M0 = 2−3. We can do a similar
exercise with Tcross. In Fig.15 we show that Tcross also shows
two different regimes. We fit the two different regimes to two
straight lines and the point where they cross is, M0 = 2−3 for
5% PDI, M0 = 4 − 5 for 10% PDI, and M0 = 8 − 9 for 15%
PDI. Interestingly these numbers are surprisingly the same
as that extrapolated by Ozawa and Berthier27 although the
two methodologies are completely different. However, these
values of M0 are lower than our earlier prediction which was
made by looking at the saturation point of Tcross. In the OB
study if they define the M0 at the value where their MSD
becomes independent of M then they too will have a higher
value of M0.

We next compare our predictions with an earlier work
which involved the study of the dynamics26. As discussed
in the Introduction, Weysser et al studied the effect of poly-
dispersity on the dynamics26. They studied a system with
constant polydispersity where ∆σ = 0.2. According to their
study, the dynamics can be well explained when the system
is divided into 5 pseudo species and thus ∆σ0 = 0.04 falls in
a similar range as predicted here and so is M0.

At this point, we cannot comment on which will be a better
choice of M0, the value at which Tcross saturates or the value
at which two different regimes intersect. When we compare
our result with the study using the dynamics26 it appears
that the former which leads to higher values of M0 is a better
choice whereas if we compare with OB study then the latter
seems to be a better choice. It is possible that the dynamics
is more sensitive to change in M0. This suggests that further
studies are required to narrow down the value of M0. One
such option will be to see how the configurational entropy for
different values of M0 correlates with the dynamics.

V. CONCLUSION

In this work we attempt to develop a framework to describe
the structure of systems with continuous polydispersity. The
study involves systems where the polydispersity is described
in terms of different distributions (constant volume fraction
and Gaussian) and the degree of polydispersity is varied. We
also study the effect of the interaction potential.

We exploit the fact that the potential energy and the pair
excess entropy can be described in terms of the partial radial
distribution functions. First, we describe the system in terms
of pseudo species. In the case of potential energy, we obtain
the minimum number of pseudo species, M0 required to match
the energy obtained from the partial rdf with that obtained
from the simulation. For the entropy part, since the excess
entropy and pair excess entropy are never equal, we calculate
the temperature where they cross each other. Our earlier
study has shown that this Tcross is an estimate of the onset
temperature of supercooled liquids15. We show that for a
smaller number of species, the Tcross varies with M and as
a function of species this temperature shows a saturation,
suggesting a saturation of the pair excess entropy w.r.t M .
This gives us a second estimation of M0 which we find is
similar to that obtained from the potential energy.

Our study reveals that for a given system, it is possible
to define a parameter ∆σ0 which gives the limiting width of
the size distribution that can be treated as a monodisperse
system. This limiting value primarily depends on the interac-

tion potential. The softer the interaction potential the larger
is the value of ∆σ0. Depending on the type of distribution
this limiting width ∆σ0 translates into different values of PDI.

For a 1% PDI system with constant volume fraction dis-
tribution, ∆σ = 0.036 and with Gaussian distribution,∆σ =
0.06. When we compare these values with ∆σ0, we can say
that polydispersity greater than 1% when treated as an effec-
tive monodisperse system will not provide us with the correct
structure of the liquid. This implies that when the effec-
tive one component structure is used to study the influence
of polydispersity on some property, we have to be careful in
decoupling the effect of this artificial softening of the struc-
ture from the actual effect of the polydispersity. Note that
M0 and ∆σ0 are independent of the system size. This makes
this pseudo neighbour description of a system more useful for
larger systems.
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