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PENCIL-BEAM APPROXIMATION OF FRACTIONAL FOKKER-PLANCK

GUILLAUME BAL† AND BENJAMIN PALACIOS‡

Abstract. We consider the modeling of light beams propagating in highly forward-peaked tur-
bulent media by fractional Fokker-Planck equations and their approximations by fractional Fermi
pencil beam models. We obtain an error estimate in a 1-Wasserstein distance for the latter model
showing that beam spreading is well captured by the Fermi pencil-beam approximation in the
small diffusion limit.

1. Introduction

The stationary Radiative Transfer Equation (sRTE) models the mesoscopic equilibrium state
of particles, such as photons or electrons, propagating across heterogenous media. The density of
particles at the equilibrium state results from the interaction of them with the microscopic con-
stituents of the underlying background, by virtue of absorption and scattering. More specifically,
denoting by u(x, θ) the phase-space density of particles, this is, those located at position x ∈ R

d

and moving in direction θ ∈ S
d−1, the sRTE is given by

(1.1) θ · ∇xu+ λu = I(u) + f,

where f(x, θ) represents a source or sink; λ(x) measures absorption caused by the medium; and
I(u) controls the rate of collisions between particles and the background. It is commonly defined
as an integral operator of the form

I(u) =

∫

Sd−1

k(x, θ, θ′)
(
u(x, θ′)− u(x, θ)

)
dθ′,

where the scattering kernel k(x, θ′, θ) represents the probability of a particle at a location x,
changing direction from θ′ to θ due to collisions. It is commonly assumed to be symmetric in the
angular variable, this is, k(x, θ′, θ) = k(x, θ, θ′).

In specific circumstances, a single or even a few scattering interactions are not enough to consid-
erably change the direction of propagation of traveling particles. However, when collisions occur
with high frequency, for example in the propagation of light in biological tissues or in thick atmo-
spheres, their accumulative effect becomes significant and therefore visible at a larger scale. This
is the regime of highly forward-peaked scattering. It intents to model a diffusive transport at a scale
where the initial directionality of particles is not completely lost, but frequent enough to produce
some mixing effect. It is suitable for the study of electron and photon transport [10, 25, 27], optical
imaging and microscopy [13, 24], and laser propagation on turbulent media [18, 29]. More details
on its derivation and application to inverse problem can be found in [4, 5], and we refer the reader
to [14] for a mathematical introduction to the theory of the transport equation.
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A standard choice for scattering kernel in this regime is the well-known Henyey–Greenstein
phase function [19], defined in 3-dimensional space as

kHG(θ
′, θ) :=

1

∆
· 1− g2

(1 + g2 − 2gθ′ · θ)3/2
.

The parameter ∆ > 0 is the mean free path, the mean distance between successive interactions
of particles with the underlying medium; while g ∈ (−1, 1) is the anisotropy factor, representing
forward-peaked scattering and determining the mean scattering cosine associated to kHG(θ, θ

′).
The closer g is to 1, the more forward-peaked the scattering is. Physically, the most meaningful
distance is the transport mean free path given by ∆∗ = ∆/(1 − g). It measures the average
distance over which particles change directions ‘significantly’ after undergoing a large number of
forward-peaked collisions when g is close to 1.

Its been pointed out in a number of publications that Henyey–Greenstein scattering has small
but significant large-angle effect, and this behavior is not accurately captured by standard ap-
proximation models such as the (local) Fokker–Planck equation and its respective Fermi–Eyges
pencil-beam equation, which are better for numerical implementations and practical purposes. See
for instance [10, 24]. Moreover, the derivation of these simpler approximation models are known to
fail for this specific kernel [28]. Phenomena of this type are not specific to the Henyey–Greenstein
kernel and occur also for the Rutherford scattering kernel in electron transport [10, 25].

There has been previous attempts to find better suited approximation model such as the
Boltzmann–Fokker–Planck equation and the Generalized Fokker–Planck equation (or Leakeas–
Larsen equation) [25]. In the highly forward-peaked limit when g → 1, it was shown in [3] (for the
time-evolution case) that (a rescaling of) global solutions to RTE with Henyey-Greenstein scat-
tering cross-section, weakly converge in L2 to functions satisfying a fractional version of Fokker–
Planck, where the limiting scattering term involves a singular integral operator which resembles a
fractional Laplace-Beltrami operator on the unit sphere. The hypoelliptic property of the associ-
ated integro-differential operator was also analyzed. Similar results have been obtained in [16, 17]
for the radiative transfer equation with long-range interactions. Analyzing the limiting scaling of
this equation, the authors demonstrated the emergence of a Fokker–Planck type operator in the
highly forward-peaked limit, with a diffusion component consisting of another singular integral op-
erator whose high frequency behavior equals that of the Laplace-Beltrami operator on the sphere.
The first publication provides precise hypoelliptic estimates for such operators.

The main goal of this paper is the study of the propagation of narrow beams in the highly
forward-peaked regime. This corresponds to the analysis of the fractional Fokker–Planck equations
obtained in [3], for particle sources that are highly concentrated in phase-space and with a choice of
scales so that ∆∗ ≫ 1. The latter condition ensures that the beams remain narrow over a domain
of interest. In this setting, the magnitude of the diffusion coefficient in the fractional Laplacian
is small compared to the spatial dynamic of particles and characterized by a small parameter ǫ.
Analogously to what the authors have done in the local case (s = 1) in [7], we provide a higher
order approximation to the Fokker–Planck solution by means of pencil-beams, which are solutions
to appropriate fractional Fermi pencil-beam equations. We establish error estimates to contrast
the accuracy of the approximations for the pencil-beam model and the ballistic (i.e., unscattered)
transport solution. We perform this analysis in an adapted 1-Wasserstein sense with a level of
accuracy given in terms of powers of the diffusion parameter ǫ. Similarly as in [3], we consider a
generalized version of the Henyey–Greenstein forward-peaked scattering.
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1.1. Highly forward-peaked radiative transfer for narrow beams. In space dimension d ≥
2, we say k(x, θ′, θ) is a Henyey–Greenstein scattering kernel with parameters (g, s,m) whenever

(1.2) kg(x, θ
′, θ) :=

b(x)

∆
· (1− g)m(1 + g)m

(
(1− g)2 + 2g(1 − θ′ · θ)

)d−1
2

+s
, (x, θ′, θ) ∈ R

d × S
d−1 × S

d−1,

b a Lipschitz function, and with m > 0 so that

(1.3)

∫

Sd−1

kg(x, θ
′, θ)dθ′ = O(∆−1).

We recover the standard 3-dimensional kernel when the parameters are (g, 1/2, 1). For a general
fractional exponent s ∈ (0, 1), one easily verifies that in dimension d = 3, (g, s, 2s) satisfies the
required scaling for the integral of bg in (1.3). The collision operator associated to such kernels is
given by

Ig(u) :=

∫

Sd−1

kg(x, θ, θ
′)
(
u(x, θ′)− u(x, θ)

)
dθ′.

We work in the narrow beam regime for particle transport defined by the following hypotheses:

i. The scattering kernel is of Henyey–Greenstein type with parameters (g, s,m).
ii. The transport mean free path is given by ∆∗ := ∆/(1 − g)m, where (1 − g)m ≪ ∆. More

precisely, we take (1− g)m = ǫ2s∆, for ǫ≪ 1.
iii. The source term f(x, θ) is highly concentrated near a single point (x0, θ0) ∈ R

d × S
d−1.

The exponent 2s in condition ii is included here for notational convenience, and agrees with the
exponent considered in [7] as we approach the local case s = 1. Without loss of generality, we
assume in most of the article that (x0, θ0) = (0, N) with N = (0, . . . , 0, 1). We also consider the
following modified version of iii:

iii’. f ∈ L∞
x,θ∩L1

x,θ is a compactly supported δ-approximation to the identity δxδN (θ), i.e., such

that
∣∣∫ fϕdxdθ − ϕ(0, N)

∣∣ . δ for all ϕ ∈ C(Rd × S
d−1).

1.2. Fractional Fokker–Planck equation (fFPE). As g → 1, a Henyey-Greenstein kernel
formally converges to the singular one

(1.4) k(x, θ, θ′) :=
2m− d−1

2
−sǫ2sb(x)

(
1− θ · θ′

) d−1
2

+s
,

whose link to the fractional Laplacian was noticed in [3] and established by means of a stereographic
transformation S : Sd−1\{S} → R

d−1, with S = −N . The unit sphere is considered to be an embed-
ded hyper-surface in R

d, where spatial coordinates have been fixed so that N = (0, . . . , 0, 1) = −S.
The stereographic coordinates (with respect to N) and its associated surface measure are then
defined by

v = S(θ) :=
1

(1 + θd)
(θ1, . . . , θd−1) and dθ =

2d−1

〈v〉2(d−1)
dv, with 〈v〉 = (1 + |v|2)1/2;

while its inverse transformation is defined as

θ = S−1(v) :=

(
2v

〈v〉2 ,
1− |v|2
〈v〉2

)
.

The identity

1− θ · θ′ = 2
|v − v′|2
〈v〉2〈v′〉2 ,
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allows us to write the limiting singular integral
∫
Rd−1 k(x, θ

′, θ)
(
u(θ′) − u(θ)

)
dθ′ in stereographic

coordinates as ∫

Rd−1

〈v〉2(d−1)kS(x, v
′, v)

(
u(v′)− u(v)

)
dv′,

where [u]S = u(v) stands for the pullback u(S−1(v)), and with kernel such that

kS(x, v
′, v)dv′dv =

[
k(x, θ′, θ)dθ′dθ

]
S
=

2m−2sǫ2sb(x)dv′dv
|v − v′|d−1+2s〈v′〉d−1−2s〈v〉d−1−2s

.

By introducing the following version of the fractional Laplacian on the unit sphere (as in [3]),

(1.5) [(−∆θ)
su]S := 〈·〉d−1+2s

(
−∆v

)s
wS, wS =

[u]S
〈·〉d−1−2s

,

with the Euclidean fractional Laplacian given by the singular integral

(−∆v)
sg(v) := cd−1,s

∫

Rd−1

f(v)− f(v + z)

|z|d−1+2s
dz,

we see that in the (so far formal) limit g → 1, we encounter the fractional Fokker–Planck equation

(1.6) θ · ∇xu+ λ(x)u+ ǫ2sσ(x)
(
(−∆θ)

su− cu
)
= f, in R

d × S
d−1,

where σ(x) := c−1
d−1,s2

m−2sb(x) and c = cs,d > 0, for suitable positive constants cd−1,s, cd,s (see

appendices A.2 and A.3 in [3] for more details). A rigorous convergence result is presented in
Section 2 (see also [3]).

Using this notation, the limiting kernel (1.4) takes the form k(x, θ, θ′) = ǫ2sσ(x)K(θ′, θ), where
we define its angular part and the associated integral operator as

(1.7) K(θ′, θ) :=
cd−1,s2

s− d−1
2

(1− θ · θ′)
d−1
2

+s
, Iθ(u) :=

∫
K(θ′, θ)(u(θ′)− u(θ))dθ′.

It will be occasionally more convenient to work with the integro-differential version

(1.8) θ · ∇xu+ λ(x)u = ǫ2sσ(x)Iθ(u) + f(x, θ),

where, in stereographic coordinates, the integral part takes the form

(1.9)

[Iθ(u)]S := cd−1,s

∫

Rd−1

(
u(v′)− u(v)

)
KS(v

′, v)〈v〉2(d−1)dv′,

with KS(v
′, v) :=

〈v′〉−(d−1−2s)〈v〉−(d−1−2s)

|v − v′|d−1+2s
.

Throughout the paper, we will assume the following conditions on the coefficients of equation (1.8):

(1.10)
σ and λ are Lipschitz continuous, and there exist constants

σ0, λ0 > 0, such that σ0 ≤ σ(x) ≤ σ−1
0 and λ0 ≤ λ(x) ≤ λ−1

0 .
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1.3. Fermi pencil-beam approximation. Similarly as in the original derivation of the Fermi
pencil-beam equation (see, for instance, [9]), we can derive an approximation to the fractional
Fokker–Planck equation (1.6) by following simple formal computations. Let u be the solution to
(1.6) (or equivalently (1.8)-(1.9)) upon which we perform a change of coordinates that we proceed
to define. We introduce the stretched coordinate system, or pencil-beam coordinates, as

X := ((2ǫ)−1x′, xd) and V = ǫ−1S(θ),

defined on R
d × R

d−1. In addition, the volume form on R
d × S

d−1 adopts the representation

dxdθ =
(2ǫ)2(d−1)

〈ǫV 〉2(d−1)
dXdV.

We see that in pencil-beam coordinates, the function U(X,V ) = (2ǫ)2(d−1)u(2ǫX ′,Xd, J(ǫV ))
satisfies the equation

(
V

〈ǫV 〉2 ,
1− ǫ2|V |2
〈ǫV 〉2

)
· ∇XU + λ(2ǫX ′,Xd)U

= ǫ2sσ(2ǫX ′,Xd) · cd−1,s

∫

Rd−1

(
U(X,V ′)− U(X,V )

)
KS(ǫV, ǫV

′)〈ǫV 〉2(d−1)dV ′ + F,

for F (X,V ) = (2ǫ)2(d−1)f(2ǫX ′,Xd, J(ǫV )). By ignoring the dependence of U and F with respect
to ǫ, we can take the point-wise limit as ǫ → 0 in order to (formally) deduce the fractional Fermi
pencil-beam equation

(1.11) P(U) := ∂XdU + V · ∇X′U + λ̃U + σ̃(−∆V )
sU = F, in R

d
+ × R

d−1,

where σ̃(Xd) = σ(0,Xd) and λ̃(Xd) = λ(0,Xd). Rd
+ stands for the half-space X = (X ′,Xd) ∈ R

d

with Xd > 0.
We also define the backward (or adjoint) problem as

(1.12) P′(W ) := −∂XdW − V · ∇X′W + λ̃U + σ̃(−∆V )
sW = F, in R

d
+ ×R

d−1.

For more details on the derivation of the Fermi pencil-beam equation we refer the reader to [9].

1.4. 1-Wasserstein distance. Narrow beam solutions are by construction singular. Approxima-
tion errors need to be measured using a metric that adequately captures beam spreading, which
is intuitively a form of a ‘mass’ transport. A natural notion to measure the mass transport of
probability measures is given by the 1-Wasserstein (or earth-mover) distance. In our setting, while
solutions preserve positivity, their total mass may vary. As we have done in, e.g., [6, 7] for similar
reasons, we consider a generalization of the standard 1-Wasserstein distance.

We denote by BL1,κ the set of ψ ∈ C(Rd × S
d−1) such that ‖ψ‖∞ ≤ 1 and Lip(ψ) ≤ κ, for a

fixed parameter κ ≥ 1. Given two finite Borel measures in R
d×S

d−1, µ and ν, their 1-Wasserstein
distance is defined as

W1
κ(µ, ν) := sup

{∫
ψ(µ− ν) : ψ ∈ BL1,κ

}
.

For any Ω ⊂ R
d open and bounded, we can similarly define a 1-Wasserstein distance in the compact

region Ω̄× S
d−1 by restricting the test functions to this set, which we denote by W1

Ω̄,κ
(µ, ν).

The parameter κ defines the spatial scale κ−1 over which we wish to penalize transport. The
uniform bound on ψ allows us to penalize variations in total mass.
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1.5. Main results. Our main result asserts that a suitable transformation of a Fermi pencil-beam
solution approximates the solution to the fractional Fokker–Planck equation, at a higher accuracy
than the ballistic solution —the one that completely neglects diffusion (i.e., a solution to (1.6) for
ǫ = 0).

Theorem 1.1. Assume that conditions i, ii and iii’ hold with the latter satisfied for δ . ǫ2sκ. Let
u be the solution to the fractional Fokker–Planck equation (1.6), v the ballistic solution, and U
the solution to the corresponding fractional Fermi pencil-beam equation (1.11). The pencil-beam
approximation in the original variables is defined by

u(x, θ) := (2ǫ)−2(d−1)U((2ǫ)−1x′, xd, ǫ−1S(θ)).

Then, for any s′ ∈ (0, s) in dimension d ≥ 3, or any s′ ∈ (2s − 1, s) in dimension d = 2, there
exist positive constants M1 = M1(d, s, s

′), M2 = M2(d, s, s
′) and m = m(d, s) (depending also on

λ and σ) such that

W1
κ(u, u) ≤M1 · ǫ2s

′
κs

′
, and m ·min{ǫκ, 1} ≤ W1

κ(v, u) ≤M2 · (ǫκ)min{2s′,1},

where M1 → ∞ as s′ → s, while M2 → ∞ when s′ → s for s ≤ 1/2, otherwise, M2 is independent
of s′.

The proof of this result is split into Theorems 4.3 and 4.4, which we prove in Sections 4.1 and
4.2, respectively.

By linearity, we may generalize the above pencil-beam approximation to sources that do not
satisfy condition iii (and hence iii’). We construct a general approximation by (continuously)
superposing pencil-beams. The details of this definition are postponed to Section 5.

Theorem 1.2 (Approximation via continuous superposition). Under the hypotheses of the previous
theorem, except for hypothesis iii, the same conclusion holds for a broad source f satisfying

f ∈ L1(Rd × S
d−1), f ≥ 0 and supp(f) ⋐ R

d × S
d−1,

and u(x, θ) :=
∫
Rd×Sd−1 f(y, η)u(x, θ; y, η)dydη, a continuous superposition of pencil-beams.

Our last result concerns the approximation to fractional Fokker–Planck solutions by means of
a finite number of pencil-beams.

Theorem 1.3 (Approximation via discrete superposition). Under the hypotheses of the previous

theorem, we reach the same conclusions for some u(x, θ) :=
∑I

i=1 ai · u(x, θ;xi, θi), a discrete
superposition of pencil-beams.

Throughout the paper, we adopt the notation a . b to denote an estimate of the form a ≤ Cb,
for a constant that is independent of ǫ and κ. We will occasionally use the notation: Q = R

d×S
d−1,

Q+ = R
d
+ × S

d−1, Q = R
d × R

d−1, and Q+ = R
d
+ × R

d−1.
The paper is organized as follows. We begin with the study of the sRTE and its Fokker–Planck

approximation. Well-posedness results are proven in Section 2, as well a convergence result in the
1-Wasserstein framework, along the lines of [3] for the L2-case. In Section 3, we show existence and
uniqueness of solution to the fractional Fermi pencil-beam equation, and prove some integrability
properties of their solutions which will be of great importance in subsequent sections. We then
move to the approximation analysis where we define in details the pencil-beam approximation and
provide the proof of our main Theorem 1.1. This is the content of Section 4. We conclude the
article with constructions, based on the narrow beam case, for the superposition of pencil-beams
and the proof of Theorems 1.2 and 1.3 in Section 5.
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2. Stationary Radiative Transfer and fractional Fokker–Planck equations

2.1. Well-posedness of sRTE. The existence and uniqueness of global solutions in L2 is (eas-
ily) deduced from the well-posedness in bounded domains [14]. It follows by an approximation
argument after confining equation (1.1) to a bounded region Ω×S

n−1 with smooth boundary, and
solving the null Cauchy data problem there. Defining

W 2
Ω := {u ∈ L2(Ω × S

d−1} : θ · ∇xu ∈ L2(Ω × S
d−1))},

and similarly W 2 when Ω = R
d in the previous definition, the standard argument states that the

solutions uΩ ∈ W 2
Ω converge to the desired global solution u of (1.1) as Ω → R

d, and moreover
u ∈W 2. A proof of this can be found in Appendix A.

Theorem 2.1. For f ∈ L2(Q), there exists a unique solution u ∈W 2 to the stationary RTE (1.1)
for an integrable symmetric kernel. Furthermore, if f ≥ 0 then u ≥ 0.

We need the following two properties of solutions to the sRTE with Henyey–Greenstein kernels.
The fist one follows directly from the mass-conservation property: Ig[·]:

(2.1)

∫

Sd−1

Ig[u
g](x, θ)dθ =

∫

Sd−1

∫

Sd−1

(
ug(θ′)− ug(θ)

)
kg(x, θ, θ

′)dθ′dθ = 0.

Lemma 2.2. For a nonnegative source f ∈ L1(Q), the solution to (1.1)-(1.2) satisfies the estimate
‖ug‖L1 ≤ λ−1

0 ‖f‖L1 for all g ∈ (0, 1).

Proof. This follows by integrating equation (1.1) and the fact that for f ≥ 0, ug ≥ 0. Indeed, by
integration by parts and (2.1) we get

∫

Q
θ · ∇xu

gdxdθ

︸ ︷︷ ︸
=0

+

∫

Q
λugdxdθ =

∫

Q
Ig[u

g]dxdθ

︸ ︷︷ ︸
=0

+

∫
fdxdθ.

�

Lemma 2.3. For f ∈ L∞(Q) ∩ L2(Q) the solution to (1.1)-(1.2) satisfies the estimate ‖ug‖∞ ≤
λ−1
0 ‖f‖∞ for all g ∈ (0, 1).

Proof. We follow [20]. Let M = ‖f‖∞ and assume there exists α > 0 and a bounded set A ⊂ R
n

with positive measure such that (without loss of generality) u(x, θ) > Mλ−1
0 + α in A. For any

small enough δ > 0 we can find a ball B ⊂ Q such that

meas(B ∩A) > (1− δ)meas(B).

This in particular implies the inequality meas(B\A) < δ ·meas(B).
For such ball we take a nonnegative function h ∈ C∞

c (B̄) so that h . meas(B)−1, and
∣∣∣∣
∫ ( χB

meas(B)
− h
)
dxdθ

∣∣∣∣ =
∣∣∣∣1−

∫
hdxdθ

∣∣∣∣ < δ.

Let ϕ ∈W 2, ϕ ≥ 0, be the unique solution to the backward sRTE,

−θ · ∇xϕ+ λϕ = Ig[ϕ] + h,

which according to the previous lemma it satisfies
∫

Q
ϕdxdθ ≤ λ−1

0

∫

Q
hdxdθ < λ−1

0 (1 + δ).
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Its existence, uniqueness, and regularity follows similarly as in Theorem 2.1 by means of [14,
Chapter XXI-Proposition 8]. Then,

∫
fϕdxdθ ≤M

∫

Q
ϕdxdθ ≤Mλ−1

0 (1 + δ).

On the other hand,

(2.2)

∫

Q
fϕdxdθ =

∫

Q
ughdxdθ,

where we split the integration into two integrals, one over B ∩A and another one over B\A. By
our initial assumption,

∫

B∩A
ughdxdθ ≥ (Mλ−1

0 + α)

(∫

B∩A

χB

meas(B)
dxdθ −

∫

B∩A

( χB

meas(B)
− h
)
dxdθ

)

≥ (Mλ−1
0 + α)

(
meas(B ∩A)
meas(B)

− δ

)
> (Mλ−1

0 + α)(1 − 2δ),

and also ∫

B\A
ughdxdθ ≤ ‖ug‖L2‖h‖L2 ≤ ‖ug‖L2‖h‖1/2∞ meas(B\A)1/2 . ‖ug‖L2δ1/2.

We then obtain a contradiction by noticing that (2.2) and previous estimates imply that for some
C > 0, independent of δ,

(Mλ−1
0 + α)(1 − 2δ) − Cδ1/2 ≤Mλ−1

0 (1 + δ),

and consequently

Mλ−1
0 + α ≤Mλ−1

0 + Cδ1/2,

which cannot hold if δ is sufficiently small. �

2.2. Well-posedness of fFPE. Let’s introduce the bilinear form

B(u, ϕ) :=
1

2

∫

Sd−1

∫

Sd−1

K(θ′, θ)(u(θ′)− u(θ))(ϕ(θ′)− ϕ(θ))dθ′dθ,

for the kernel K(θ′, θ) as in (1.7), and define its associated Hilbert space Hs
B
given by

Hs
B := {u ∈ L2

θ : B(u, u) < +∞}, for s ∈ (0, 1),

with inner product

〈u, ϕ〉Hs
B
:= B(u, ϕ) +

∫

Sd−1

uϕdθ.

It is worth mentioning how Hs
B and Hs(Rd−1) are related to each other when stereographic coor-

dinates are considered. It turns out that passing to stereographic coordinates, ‖u‖2Hs
B

is equivalent

(up to a multiplicative factor) to
∫

Rd−1

∫

Rd−1

(u(v′)− u(v))2

|v′ − v|d−1+2s〈v′〉d−1−2s〈v〉d−1−2s
dv′dv +

∫

Rd−1

|u(v)|2
〈v〉2(d−1)

dv,

which yields the inclusion Hs(Rd−1) ⊂
[
Hs

B

]
S
. Moreover, one can also verify that

∫

Rd−1

∫

Rd−1

(u(v′)− u(v))2

|v′ − v|d−1+2s〈v′〉d−1−2s〈v〉d−1−2s
dv′dv ∼ ‖(−∆v)

s/2wS‖2L2(Rd−1) + ‖u‖2L2(Sd−1),
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which implies the following equivalence of norms

(2.3) ‖u‖Hs
B
∼ ‖(−∆v)

s/2wS‖L2(Rd−1) + ‖u‖L2(Sd−1) ∼ ‖(−∆θ)
s/2u‖.

Let us consider now the Hilbert space Hs
ǫ := L2

x(R
d;Hs

B), equipped with the norm

‖f‖2Hs
ǫ
:= ‖f‖2L2

x,θ
+ ǫ2s

∫

Rd

‖f‖2Hs
B

dx,

where we use the shorthand notation L2
x,θ for L2(Rd × S

d−1). Its dual will be denoted by (Hs
ǫ)

′.
Denoting the transport operator T = θ ·∇x, we define the solution space for the fractional Fokker–
Planck equation as

Ys
ǫ := {f ∈ Hs

ǫ : Tf ∈ (Hs
ǫ)

′}, with norm ‖f‖Ys
ǫ
:= ‖f‖Hs

ǫ
+ ‖Tf‖(Hs

ǫ)
′ .

Definition 2.4. We say that a function u ∈ Ys
ǫ is a weak solution of (1.6) if for all ϕ ∈ C∞

c (Rd×
S
d−1), it satisfies

(2.4)

∫
−u(θ · ∇xϕ) + λuϕdxdθ + ǫ2s

∫
σ(x)B(u, ϕ)dx =

∫
fϕdxdθ.

The well-posedness and some properties of the solutions to the fractional Fokker–Planck equa-
tion are summarized next. Additional properties are stated in Theorem 2.7 after we obtain a
convergence result for sRTE-solutions in the highly forward-peaked limit.

Theorem 2.5. Let σ, λ satisfying (1.10). For any f ∈ L2
x,θ there exists a unique solution u ∈ Ys

ǫ

to (1.6). Moreover, there is C > 0 such that ‖u‖Ys
ǫ
≤ C‖f‖L2

x,θ
for all f ∈ L2

x,θ.

Proof. 1. Following the definition of weak solution, we introduce the bilinear form a : Hs
ǫ×C∞

c → R

so that the left hand side of (2.4) is given by a(u, ϕ), while the right hand defines the linear operator
L(ϕ) mapping L : C∞

c → R. The bilinear form becomes a bounded linear operator in Hs
ǫ when

freezing the second component ϕ ∈ C∞
c , and moreover, using integration by parts we get

a(ϕ,ϕ) ≥ min{λ0, σ0}‖ϕ‖2Hs
ǫ
, ∀ϕ ∈ C∞

c .

Then, applying [7, Theorem 2.4] (see also [26]) for the pre-Hilbert space F = (C∞
c , ‖ · ‖Hs

ǫ
) we

obtain the existence of a weak solution u ∈ Hs
ǫ , which in addition satisfies u ∈ Ys

ǫ , since (2.4)
allows to define Tu in the sense of distributions, and T is a bounded linear operator in Hs

ǫ .
It is not hard to verify that the set C∞

c (Rd × S
d−1) is dense in Ys

ǫ , and this allows us to obtain
the integration by parts formula

(2.5) 〈u1, Tu2〉Hs
ǫ ,(H

s
ǫ)

′ = −〈u2, Tu1〉Hs
ǫ ,(H

s
ǫ)

′ , ∀u1, u2 ∈ Ys
ǫ ,

In particular, 〈u, Tu〉Hs
ǫ ,(H

s
ǫ)

′ = 0. The identity (2.5) is obtained as in [8]. More recent proofs of
similar density results are presented in [2, 12]. The density used in this paper is easier to establish
as we do not deal with boundaries.

It follows from the weak formulation of the fractional Fokker–Planck equation that

〈u, Tu〉Hs
ǫ ,(H

s
ǫ)

′ +

∫
λ|u|2dxdθ + ǫ2s

∫
σ(x)B(u, u)dx =

∫
fudxdθ,

and consequently,

min{λ0, σ0}‖u‖2Hs
ǫ
≤ ‖f‖L2

x,θ
‖u‖L2

x,θ
≤ 1

2
δ−2‖f‖2L2

x,θ
+

1

2
δ2‖u‖2L2

x,θ
,

where we choose δ > 0 small enough so that we can absorb the last term with the left hand side.
Uniqueness of solutions follows directly from the continuous dependence estimate. �
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2.3. Convergence of sRTE and some properties of fFPE. In what follows, we take the
kernel kg(x, θ, θ

′) to be in the narrow beam scaling, thus, we assume it satisfies condition ii. Then,

(2.6) kg(x, θ, θ
′) :=

ǫ2s(1 + g)mb(x)
(
1 + g2 − 2gθ · θ′

) d−1
2

+s
,

whose limit as g → 1 is given by (1.4)
We next extend the weak-L2 convergence result in [3] to the topology induced by the Wasserstein

distance.

Theorem 2.6. For any open bounded Ω ⊂ R
d and a nonnegative and integrable function f , there

exists an increasing sequence {gk}k ⊂ (0, 1) converging to 1, and κ0 > 0 depending on ‖λ‖C1 and
‖f‖L1 , such that

W1
Ω̄,κ(u

gk , u) → 0 as k → ∞,

for all κ ≥ κ0, and where ugk are the solutions to (1.1) with kernel (2.6) and parameter g = gk,
and u is the solution to the fractional Fokker–Planck equation (1.6).

Proof. Let f be a nonnegative integrable function and consider an increasing sequence {gn}n≥1 ⊂
(0, 1) so that gn → 1 as n → ∞. We have that ugn ≥ 0 for all n, and therefore, we can regard
λugn/‖f‖L1 as a family of Radon probability measures since (as in Lemma 2.2)

∫
λugndxdθ = ‖f‖L1 , ∀n ≥ 1.

In the compact set Ω̄ × S
d−1, weak∗-compactness for measures (Banach-Alaoglu theorem) yields

then the existence of a subsequence {ugnk }k, and another Radon probability measure µ, for which

(2.7)
1

‖f‖L1

∫

Ω̄×Sd−1

ϕλugnkdxdθ →
∫

Ω×Sd−1

ϕµ(x, θ), ∀ ϕ ∈ Cb(Ω̄ × S
d−1),

with Cb(Ω̄ × S
d−1) the set of bounded continuous functions in Ω̄ × S

d−1. Writing instead ψ =
λϕ/‖f‖L1 , and since λ ∈ Lip(Rd × S

d−1), then we can find κ0 > 0 such that for all κ ≥ κ0,∫

Ω×Sd−1

ψugnkdxdθ →
∫

Ω×Sd−1

ψ
(
‖f‖L1λ−1µ(x, θ)

)
, ∀ ψ ∈ BL1,κ(Ω̄× S

d−1),

Due to uniqueness of the distributional limit, one verifies that ‖f‖L1λ−1µ = udxdθ, with u
solution to (1.1) and limiting scattering cross-section (1.4) (i.e. the fractional Fokker–Planck
equation (1.8)). This follows from similar computations as in [3], leading to

‖ug‖L2
x,θ

+ ‖θ · ∇xu
g‖L2

x,θ
+ ‖Igug‖L2

x,θ
≤ C‖f‖L2

x,θ
,

uniformly in g, which subsequently imply weak-L2
x,θ convergence to a limiting function u, i.e.

θ · ∇xu
g + λug − Ig[u

g] ⇀ θ · ∇xu+ λu− Iθ[u] as g → 1.

The previous then implies

W1
Ω̄,κ(u

gk , u) → 0 as k → ∞.

�

With the aid of the previous convergence theorem, some properties of the radiative transfer
solution are inherited by the limiting function. This yields the following additional properties for
the solution to the fractional Fokker–Planck equation.
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Theorem 2.7. Let σ, λ and f as in Theorem 2.5. The unique solution u to the fractional Fokker–
Planck equation (1.6) satisfies the following additional properties:

1. (non-negativity) if f ≥ 0 then u ≥ 0;
2. (continuous dependence for bounded sources) ‖u‖∞ ≤ λ−1

0 ‖f‖∞ for all f ∈ L∞
x,θ ∩ L2

x,θ.

Proof. 1. The non-negativity of u for a source term f ≥ 0 follows from the analogous property of
the sRTE in Theorem 2.1 and the convergence in Theorem 2.6.

2. The continuity in the L∞-norm follows in a similar fashion as Lemma 2.3 for sRTE. We point
out here the main differences in the argument. The exact same computations yield to (2.2) for
a test function ϕg, solution to the backward sRTE. Instead of estimating directly the right hand
side

∫
Q u

ghdxdθ, we take the limit as g → 1 and obtain
∫
fϕdxdθ =

∫
uhdxdθ,

where ϕ is the weak-L2
x,θ limit of the solutions ϕg, thus it solves a backward fractional Fokker-

Planck equation. It is of course nonnegative and with L1
x,θ-norm bounded by λ−1

0 (1 + δ). The
proof is then complete by repeating the remaining steps in the proof of Lemma 2.3. �

2.4. Regularity of solutions to fFPR. The regularity results of this section are based on a
local representation of the fractional Fokker–Planck equation, in a neighborhood of an arbitrary
(x0, θ0) ∈ R

d × S
d−1. The idea is to pseudo-localize the equation in the sense that we can approx-

imate a solution to the Fokker–Planck equation with smooth and compactly supported functions,
satisfying a Fokker–Planck equation with a smooth source that might not be compactly supported.

Theorem 2.8 (Regularity of solutions).

1. (Sub-elliptic regularity) For σ, λ and f as in Theorem 2.5, the unique solution u to the
fractional Fokker–Planck equation is a strong solution, and more precisely (−∆θ)

su, Tu ∈
L2
loc(R

d;L2(Sd−1));
2. (Continuity) For f ∈ L∞

x,θ ∩ L2
x,θ, the solution u to the fractional Fokker–Planck equation

(1.6) is locally Hölder continuous in R
d×S

d−1, and consequently, it belongs to C(Rd×S
d−1).

Proof. 1. The subelliptic character of fractional order kinetic equation is known to derive, for ex-
ample, from commutator identities and energy estimates [11, 1]. In order to adapt these arguments
to the setting of the fractional Laplacian on the unit sphere, we pseudo-localize the equation and
consider suitable local coordinates that allow us to apply known results.

By a standard localization and mollification technique (see Appendix B) we can assume without
loss of generality that u is a smooth and compactly supported solution to the fractional Fokker–
Planck equation (1.6), or equivalently (1.8), with support contained in R

n × S
d−1
+ , and for a

right-hand side f ∈ C∞(Rd × S
d−1) ∩ L2(Rd × S

d−1). By considering beam coordinates, we see

that for θ(v), θ′(v′) ∈ S
d−1
+ ,

(
1− θ · θ′

)
B
=

〈v〉〈v′〉 − v · v′ − 1

〈v〉〈v′〉 .

Therefore, multiplying (1.8) by 〈v〉− d
2 and setting ũ(x, v) = 〈v〉− d

2
−1u(x, v), we obtain the kinetic

equation

∂xd ũ+ v · ∇x′ ũ =

∫
k̃(x, v, v′)(ũ(x, v′)− ũ(x, v))dv′ + f̃(x, v),
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for f̃ =
∑3

j=0 fj with

(2.8)

f0(x, v) =
f(x, v)

〈v〉 d
2

, f1(x, v) = −λ(x)u(x, v)
〈v〉 d

2

f2(x, v) =
u(x, v)

〈v〉 d
2
+1

∫
k̃(x, v, v′)

(
1− 〈v〉 d+1

2

〈v′〉 d+1
2

)
dv′,

f3(x, v) =

∫
k̃(x, v, v′)

u(x, v′)

〈v′〉 d+1
2

(
1

〈v〉 1
2

− 1

〈v′〉 1
2

)
dv′,

and for a kernel defined by

(2.9) k̃(x, v′, v) = 2m− d−1
2

−sǫ2sσ(x)
〈v〉s〈v′〉s

h(v, v′)
d−1
2

+s
, with h(v, v′) = 〈v〉〈v′〉 − v · v′ − 1.

Notice that here, f(x, v) stands for [f |
S
d−1
+

]B which is in L2(Rd × R
d−1; 〈v〉−ddxdv).

We now estimate the L2-norm of (−∆θ)
su in terms of the kernel k̃(x, v, v′). By comparing (1.6)

and (1.8), we have

(2.10)

‖(−∆θ)
su‖L2

x,θ
= ‖Iθ(u)− cu‖L2

x,θ
.

(∫
([Iθ(u)]B + c[u]B)

2 dv

〈v〉d dx
)1/2

.

∥∥∥∥
∫
k̃(x, v, v′)(ũ(v′)− ũ(v))dv′

∥∥∥∥
L2
x,v

+ ‖u‖L2
x,θ
.

The last inequality follows, in particular, from the fact that f̃ ∈ L2(Rd × R
d−1; dxdv), which we

prove next. The latter spaces is denoted in this section by L2
x,v. Indeed, we directly have that

‖f0‖L2
x,v

. ‖f‖L2
x,θ

and ‖f1‖L2
x,v

. ‖u‖L2
x,θ

, and moreover,

f2(x, v) =
u(x, v)

2〈v〉 d
2
+1

∫
k̃(x, v, v + z)

(
2− 〈v〉 d+1

2

〈v + z〉 d+1
2

− 〈v〉 d+1
2

〈v − z〉 d+1
2

)
dz

+
u(x, v)

2〈v〉 d
2
+1

∫ (
k̃(x, v, v − z)− k̃(x, v, v + z)

)
(
1− 〈v〉 d+1

2

〈v − z〉 d+1
2

)
dz;

f3(x, v) =

∫
k̃(x, v, v + z)

(
u(v + z)

〈v + z〉 d+1
2

− u(v)

〈v〉 d+1
2

)(
1

〈v〉 1
2

− 1

〈v + z〉 1
2

)
dz

+
u(x, v)

2〈v〉 d+1
2

∫
k̃(x, v, v + z)

(
2

〈v〉 1
2

− 1

〈v + z〉 1
2

− 1

〈v − z〉 1
2

)
dz

+
u(x, v)

2〈v〉 d+1
2

∫ (
k̃(x, v, v − z)− k̃(x, v, v + z)

)
(

1

〈v〉 1
2

− 1

〈v − z〉 1
2

)
dz

We show in Appendix C that for some β ∈ (0, 1),

β

2
|v − v′|2 ≤ h(v, v′) ≤ 1

2
|v − v′|2,
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which then implies the inequality (see (C.4))

∣∣k̃(x, v, v − z)− k̃(x, v, v + z)
∣∣ . 〈v〉2s

|z|d−1+2s−1
.

The above (and the compact support of u) allows us to estimate the L2-norm of f2 and the last
two terms in f3, by a constant times ‖u‖L2

x,θ
. For the remaining term in f3, we notice that

∥∥∥∥∥

∫
k̃(x, v, v + z)

(
u(v + z)

〈v + z〉 d+1
2

− u(v)

〈v〉 d+1
2

)(
1

〈v〉 1
2

− 1

〈v + z〉 1
2

)
dz

∥∥∥∥∥

2

L2
x,v

.

∫ ∫
k̃(x, v, v + z)

(
u(v + z)

〈v + z〉 d+1
2

− u(v)

〈v〉 d+1
2

)2

dzdv

.

∫
[Iθ(u)]Budxdθ + ‖u‖2L2

x,θ

. ‖(−∆θ)
s/2u‖2L2

x,θ
+ ‖u‖2L2

x,θ
.

Summarizing, we have shown that

‖f̃‖L2
x,v

. ‖f‖L2
x,θ

+ ‖u‖L2
x,θ

+ ‖(−∆θ)
s/2u‖L2

x,θ
.

It then follows from the above and results from [1] (see Appendix D) that

‖(−∆v)
sũ‖L2 + ‖(−∆x)

s
1+2s ũ‖L2 . ‖f‖L2 + ‖ũ‖L2 + ‖(−∆v)

s/2ũ‖L2 ,

and subsequently (see Remark D.2),
∥∥∥∥
∫
k̃(x, v, v′)(ũ(x, v′)− ũ(x, v))dv′

∥∥∥∥
L2
x,v

≤ ‖f‖L2 + ‖ũ‖L2 + ‖(−∆v)
s/2ũ‖L2

x,v
.

Combining the above, (2.10), and the estimates ‖ũ‖L2
x,v

≤ ‖u‖L2
x,θ

and

‖(−∆v)
s/2ũ‖2L2

x,v
.

∫ ∫
k̃(x, v, v + z) (ũ(v + z)− ũ(v))2 dzdv . ‖(−∆θ)

s/2u‖2L2
x,θ

+ ‖u‖2L2
x,θ
,

we finally deduce that

‖(−∆θ)
su‖2L2

x,θ
. ‖f‖L2

x,θ
+ ‖u‖L2

x,θ
+ ‖(−∆θ)

s/2u‖2L2
x,θ
.

Using equation (1.6) one also has that Tu ∈ L2(Rd × Sd−1) with and analogous estimate.
Lastly, given any bounded set Ω ⊂ R

d and a partition of unity defined on R
d × S

d−1, the above
yields that (−∆θ)

su and Tu belong to L2(Ω × S
d−1) for any solution to the fractional Fokker–

Planck equation (1.6) with source f ∈ L2(Rd × S
d−1).

2. Similarly, the continuity of solutions is a consequence of the continuity property satisfied by
solutions to fractional order kinetic equations, and more generally satisfied by solutions to some
linear transport equations with singular scattering kernels. We again localize the solution in order
to use beam coordinates on the sphere.

We assume without loss of generality that u(·, ·) is a compactly supported solution to the

fractional Fokker–Planck equation (1.6), with support in V × S
d−1
+ , for some open bounded set

V ⊂ R
d, and for a source term f ∈ L2

x,θ ∩ L∞
x,θ. By the previous regularity result, it is indeed a

strong solution.
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By considering beam coordinates, we saw above that ũ(x, v) = 〈v〉− d
2
−1u(x, v) solved

∂xd ũ+ v · ∇x′ ũ =

∫
k̃(x, v, v′)(ũ(x, v′)− ũ(x, v))dv′ + f̃(x, v)

with f̃ and k̃ defined respectively in (2.8) and (2.9). It turns out that the kernel (see Appendix
C) satisfies the point-wise inequalities,

1

|v − v′|d−1+2s
. k̃(x, v, v′) .

〈v〉s〈v′〉s
|v − v′|d−1+2s

,

which directly implies coercivity of the integral operator associated to k̃. Namely, for every R ≥ 1,
there is C > 0 so that for all ϕ : Rd−1 → R compactly supported inside the ball BR,

C−1

∫

Rd−1

∫

Rd−1

|ϕ(v) − ϕ(v′)|2
|v − v′|d−1+2s

dvdv′

≤ −
∫

Rd−1

(∫

Rd−1

k̃(x, v, v′)(ϕ(v′)− ϕ(v))dv′
)
ϕ(v)dv + ‖ϕ‖2L2(Rd−1).

The same inequality helps us to deduce the non-degeneracy condition (in the case s < 1/2):

inf
|e|=1

∫

Br(v)
max((v′ − v) · e, 0)2k̃(x, v, v′)dv′ ≥ cr2−2s, ∀v ∈ BR.

Finally, we also verify that
∫

Rd−1\Br(v)
k̃(x, v, v′)dv′ . r−2s, ∀r > 0 and v ∈ BR;

∫

BR\Br(v′)
k̃(x, v, v′)dv . r−2s, ∀r > 0 and v′ ∈ BR.

As long as we have f̃ ∈ L∞(Rd × BR), the Hölder regularity result in [21] guarantees that ũ
is Hölder continuous in V × R

d−1, and consequently, u(x, θ) is continuous in a neighborhood of
(x0, θ0).

In order to show that f̃ is bounded, and since f, u ∈ L∞
x,θ (by virtue of Theorem 2.7), it remains

to deduce the boundedness of f2 and f3 in (2.8). Indeed, denoting ϕ(v′) = 〈v〉
d+1
2

〈v′〉
d+1
2

, we see that

f2(x, v) =

∫
k̃(x, v, v′)

(
ϕ(v) − ϕ(v′)

)
dv′

=
1

2

∫
k̃(x, v, v + z)(2ϕ(v) − ϕ(v + z)− ϕ(v − z))dz

+
1

2

∫
(k̃(x, v, v − z)− k̃(x, v, v + z))(ϕ(v) − ϕ(v − z))dz.

Moreover, since ϕ is twice-continuously differentiable and using also that u(x, v) is compactly
supported, we have that (again from (C.4))

|f2(x, v)| . |u(x, v)|
(∫

|z|<1

1

|z|d−1−2(1−s)
dz +

∫

|z|>1

1

|z|d−1+2s
dz

)
. ‖u‖∞.

We similarly obtain |f3(x, v)| . ‖u‖∞, which allows us to conclude that ‖f̃‖∞ . ‖f‖∞ and the
proof is complete. �
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We saw above that solutions to the fFPE can be viewed locally as solutions to evolution integro-
differential kinetic equations, and it was this precise local form that allowed us to derive the
regularity properties. How the optimal Hölder exponent associated to solutions of (1.6) depends
on the regularity of the source f term (e.g., Lipschitz continuous) remains unclear.

Several recent results related to the more general and/or closely related non-local kinetic models,
such as the Boltzmann equation without cut-off, may be found in [21, 22, 23, 30]. It is expected that
results along those lines could lead to quantitative approximation estimates in the 1-Wasserstein
sense between the (stationary) radiative transfer solution, in the narrow beam regime, and the
fractional Fermi pencil-beam solution. We proved above that the radiative transfer solution con-
verged in the highly forward-peaked limit, in a weak sense (and with no known estimates), to
the fractional Fokker–Planck solution (Theorem 2.6), and furthermore, the latter solution can be
subsequently approximated by a pencil-beam in the narrow beam regime (Theorem 1.1, above).
The main obstacle that prevents the application of the regularity results in [21, 22, 23, 30] resides
in the a-priori regularity assumed on the solutions. The Hölder estimates proved in [21, 30] hold
for weak solutions and thus are appropriate for our work. In contrast, the local Schauder estimates
and their global extension obtained respectively in [22] and [23], assume solutions to be at least
classical. A generalization of the Schauder estimates for weak solutions would be necessary to
quantify the convergence of radiative transfer to the Fokker-Planck equation, something we do not
pursue here.

3. Analysis of the Fractional Fermi pencil-beam equation

3.1. Existence of solutions and properties. Let F ∈ C(R+; S
′(R2(n−1))) and G ∈ S′(R2(n−1)).

In this section we will assume σ̃(Xn), λ̃(Xn) ∈ C(R̄+). Analogously to the non-fractional case we
have an explicit characterization of the solutions to the fractional Fermi pencil-beam equation.
However, this time it is explicit only in the Fourier domain.

We denote by FX′ [f ](ξ,Xd, V ) :=
∫
e−iX′·ξf(X,V )dX ′ the Fourier transformation of f with

respect to X ′, and similarly we denote by FV the Fourier transform operator with respect to the
angular variable V . We also write FX′,V = FX′FV .

Lemma 3.1. For the above choice of parameters there exists a unique solution to

(3.1)

{
∂XnU + V · ∇X′U + σ̃(−∆V )

sU + λ̃U = F, X = (X ′,Xn) ∈ R
n
+, V ∈ R

n−1

U = G, (X ′, V ) ∈ R
2(n−1), Xn = 0,

whose Fourier Transform (with respect to transversal and angular variables) is given by
(3.2)

FX′,V [U ](ξ,Xn, η) = e−
∫Xn

0 λ̃(r)drFX′,V [G](ξ, η +Xnξ)e−
∫Xn

0 |η+(Xn−t)ξ|2sσ̃(t)dt

+

∫ Xn

0
e−

∫Xn

t λ̃(r)drFX′,V [F ](ξ, t, η + (Xn − t)ξ)e−
∫Xn

t |η+(Xn−r)ξ|2sσ̃(r)drdt.

Proof. It follows in a similar fashion as in the non-fractional case. We refer the reader to the proof
of [7, Proposition 4.1]. �

Lemma 3.2. Let U as in the previous lemma with null interior source (F = 0) and G = δ(X)δ(V ).
Then, ∫

R2(d−1)

(
X ′ · ξ0

)
U(X ′,Xd, V )dX ′dV = 0, for all ξ0 ∈ R

d−1 and Xd > 0.
∫

Rd−1

(−∆V )
sU(X ′,Xd, V )dV = 0, for all X ′ ∈ R

d−1 and Xd > 0.
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Proof. Using that integration is equivalent to the zero Fourier coefficient we get

∫

R2(d−1)

(
X ′ · ξ0

)
U(X ′,Xd, V )dX ′dV

=

∫

Rd−1

(
X ′ · ξ0

)
FV [U ](X ′,Xd, 0)dX ′

= iξ0 ·
[
∇ξF[U ]

]
(0,Xd, 0)

= ie−
∫Xn

0 λ̃(r)dr
(
2s
∫Xd

0 (Xd − t)2sσ̃(t)dt
) (
ξ0 · ξ̂

)
|ξ|2s−1e−|ξ|2s

∫Xn

0 (Xn−t)2sσ̃(t)dt
∣∣∣
ξ=0

= 0.

Similarly,

∫

Rd−1

(−∆V )
sU(X ′,Xd, V )dV = FV [(−∆V )

sU ](X ′,Xd, 0)

= |η|2sF[U ](X ′,Xd, η)
∣∣
η=0

= 0.

�

Lemma 3.3. Let U be as in Lemma 3.1 with null interior source (F = 0) and G = δ(·−Y ′, ·−W ).

Then, for any Φ ∈ C(Rn
+×R

n−1)∩H1(Rn
+;L

2(R2(n−1))) we have the following integration by parts
formula

∫

Rn
+×Rn−1

U∂XnΦdXdV = −
∫

Rn
+×Rn−1

(
∂XnU

)
ΦdXdV − Φ(Y ′, 0,W ).

Proof. We use Plancherel’s formula to write

∫

Rn
+×Rn−1

U∂XnΦdXdV =

∫

R2(n−1)×R+

FX′,V [U ]
(
∂XnFX′,V [Φ]

)
dXdV dξ′dηdXn

=−
∫

R2(n−1)×R+

(
∂XnFX′,V [U ]

)
FX′,V [Φ]dXdV dξ

′dηdXn −
∫

R2(n−1)
FX′,V [U ]|Xn=0FX′,V [Φ]|Xn=0dξdη

=−
∫

Rn
+×Rn−1

(
∂XnU

)
ΦdXdV −

∫
eiY

′·ξ+iW ·ηFX′,V [Φ]|Xn=0dξdη.

�

Lemma 3.4. Let F ∈ Cc(Q̄) and Lipschitz continuous with respect to Z = (X ′, V ), and G = 0.
Let U be the solution to (3.1). There exists C > 0 so that UXn(Z) = U(X ′,Xn, V ) satisfies

|UXn(Z1)− UXn(Z2)| ≤ CLip(F )|Z1 − Z2|,

for all Z1, Z2 ∈ R
2(n−1) and Xn > 0.
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Proof. For arbitrary (X ′
1,X

n, V1), (X
′
2,X

n, V2) ∈ R
2(n−1) we have

U(X ′
1,X

n, V1)− U(X ′
2,X

n, V2)

=

∫
ei(X

′
1·ξ)+i(V1·η)FX′,V [U ](ξ,Xn, η)dξdη −

∫
ei(X

′
2·ξ)+i(V2·η)FX′,V [U ](ξ,Xn, η)dξdη

=

∫ ∫ Xn

0
e−

∫Xn

t λ̃(r)drFV FX′

[
τX′

1−(Xn−t)(V −V1)τV1F − τX′
2−(Xn−t)(V −V2)τV2F

]

×
[
e−

∫Xn

t
|η+(Xn−r)ξ|2sσ̃(r)dr

]
dtdξdV

=

∫ ∫ Xn

0
e−

∫Xn

t λ̃(r)dr
(
τX′

1−(Xn−t)(V −V1)τV1F − τX′
2−(Xn−t)(V −V2)τV2F

)

× F−1
X′F

−1
V

[
e−

∫Xn

t
|η+(Xn−r)ξ|2sσ̃(r)dr

]
dtdX ′dV.

Therefore,

∣∣U(X ′
1,X

n, V1)− U(X ′
2,X

n, V2)
∣∣ ≤ Lip(F )

∫ ∫ Xn

0
|(X ′

1 −X ′
2 − (Xn − t)(V1 − V2), V1 − V2)|

× e−
∫Xn

t λ̃(r)dr
∣∣∣F−1

X′,V

[
e−

∫Xn

t |η+(Xn−r)ξ|2sσ̃(r)dr
] ∣∣∣dtdX ′dV

≤ CLip(F )
(
|X ′

1 −X ′
2|+ |V1 − V2|

)
,

for C > 0, a uniform upper bound of

∫ ∫ Xn

0

(
1 + (Xn − t)

)
e−

∫ Xn

t
λ̃(r)dr

∣∣∣F−1
X′,V

[
e−

∫Xn

t
|η+(Xn−r)ξ|2sσ̃(r)dr

] ∣∣∣dtdX ′dV < +∞.

�

3.2. Integrability properties of solutions. We state some integrability properties for the fun-
damental solution associated to the fractional Fermi equation that will be used in the following
sections. The fractional Fermi equation (3.1) is a slight generalization of the fractional Kolmogorov
equation (see §2.4 in [21])

(3.3) ft + v · ∇xf + (−∆v)
sf = h, x, v ∈ R

d−1.

Lemma 3.1 provides us with a fundamental solution (solving (3.1) with sources F = 0 and G =
δ(X)δ(V )) which takes the self-similar form

(3.4) J(X,V ) = cd−1
1

(Xd)d−1+ d−1
s

J

(
X ′

(Xd)1+
1
2s

,
V

(Xd)
1
2s

)
exp

(
−
∫ Xd

0
λ̃(τ)dτ

)
,

for some appropriate constant cd−1 > 0, and with J defined via its Fourier transform:

Ĵ(ξ, η;Xd) := exp

(
−
∫ 1

0
|η − τξ|2sσ̃

(
Xd(1− τ)

)
dτ

)
.

In what remains of this section, we abbreviate the exponential factor in the definition of J by

writing Λ(Xd) := exp
(
−
∫Xd

0 λ̃(τ)dτ
)
. The solution to the initial value problem (3.1) takes the
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form
(3.5)

U(X,V ) =

∫

Rd−1

∫

Rd−1

G(Y ′,W )J(X ′ − Y ′ −XdW,Xd, V −W )dWdY ′

+

∫ Xd

0

∫

Rd−1

∫

Rd−1

F (Y,W )J(X ′ − Y ′ − (Xd − Y d)W,Xd − Y d, V −W )dWdY.

The next proposition is the analogous to [21, Proposition 2.1] for the fractional Fermi equation
and we state it without proof.

Proposition 3.5. For J and J as above we have:

(1) The function J is C∞ and decays polynomially at infinity. Moreover, J and all its deriva-

tives are integrable in R
2(d−1).

(2) For every Xd > 0,
∫
R2(d−1) J(X,V )dX ′dV = Λ(Xd).

(3) J ≥ 0 and J ≥ 0.
(4) For any Xd > 0,

‖J(·,Xd, ·)‖L1(R2(d−1)) = Λ(Xd)‖J‖L1(R2(d−1))

‖(−∆V )
s/2J(·,Xd, ·)‖L1(R2(d−1)) = (Xd)−1/2Λ(Xd)‖(−∆V )

s/2J‖L1(R2(d−1)).

We use the Riemann-Lebesgue theorem to deduce explicit estimates for the decay at infinity of
the kernel J. Indeed, for any pair of multi-indices α, β such that |α|+ |β| = d− 1, one verifies that

Λ(Xd)−1|∂αξ ∂βη Ĵ(ξ, η;Xd)| .
∫ 1

0

dρ

|η + ρξ|d−1−2s
e−σ0

∫ 1
0 |η+τξ|2sdτ ,

which is integrable since Fubini’s theorem implies the integrability of (ρ, η, ξ) 7→ e−σ0
∫ 1
0 |η+τξ|2sdτ

|η+ρξ|d−1−2s .

This yields (thanks to the Riemann-Lebesgue theorem) that X ′αV βJ(X ′, ·, V ) ∈ C0(R
2(d−1)) and

consequently, for some γ > 0,

Λ(Xd)−1J(X ′,Xd, V ) .
1

(1 + |X ′|2 + |V ′|2) d−1
2

+γ

uniformly in Xd > 0. By averaging J with respect to either X ′ or V one deduces that γ ≤ s. This
follows from the fact

FV→η

(∫
J(X,V )dX ′

)
= exp

(
−σ1(Xd)|η|2s

)
Λ(Xd) and

FX′→ξ

(∫
J(X,V )dV

)
= exp

(
−σ2(Xd)|ξ|2s

)
Λ(Xd),

where σ1(X
d) :=

∫ 1
0 σ̃(τX

d)dτ and σ2(X
d) :=

∫ 1
0 τ

2sσ̃(τXd)dτ . Therefore, for some C,C ′ > 0,

(3.6)

C−1Λ(Xd)

(1 + |V |2)
1
2
(d−1+2s)

≤
∫

J(X,V )dX ′ ≤ CΛ(Xd)

(1 + |V |2)
1
2
(d−1+2s)

;

C ′−1Λ(Xd)

(1 + |X ′|2)
1
2
(d−1+2s)

≤
∫

J(X,V )dV ′ ≤ C ′Λ(Xd)

(1 + |X|2)
1
2
(d−1+2s)

.
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In a similar fashion we can obtain upper bounds for the decay of the derivatives of J. For any
α′, β′ multi-indices we see that

Λ(Xd)−1|∂αξ ∂βη
(
ξα

′
ηβ

′
Ĵ(ξ, η;Xd)

)
| .

∫ 1

0

dρ

|η + ρξ||α|+|β|−|α′|−|β′|−2s
e−σ0

∫ t
0 |η+τξ|2sdτ ,

uniformly in Xd > 0, and the right hand side is still integrable for |α| + |β| = d − 1 + |α′| + |β′|
which yields the decay

(3.7)
∣∣∂α′

X′∂
β′

V J(X,V )
∣∣ . Λ(Xd)

(1 + |X ′|2 + |V |2)
d−1+|α′|+|β′|

2
+γ′

, ∀Xd > 0,

for some 0 < γ′ ≤ s. We then obtain the next.

Lemma 3.6. For any nonnegative real numbers m,n, such that m + n ≤ |α| + |β|, with α, β
multi-indices,

‖|X ′|m|V |n∂αX′∂
β
V J(X,V )‖L1(R2(d−1)) = O((Xd)(1+

1
2s)(m−|α|)+ 1

2s
(n−|β|)Λ(Xd)).

Proof. We use the self-similar form of J to obtain
∫

R2(d−1)

|X ′|m|V |n|∂αX′∂
β
V J(X,V )|dX ′dV

=
cd−1Λ(X

d)

(Xd)d−1+ d−1
s

∫

R2(d−1)

|X ′|m|V |n
∣∣∣∂αX′∂

β
V

(
J

(
X ′

(Xd)1+
1
2s

,
V

(Xd)
1
2s

))∣∣∣dX ′dV

=
cd−1Λ(X

d)

(Xd)d−1+ d−1
s

+|α|(1+ 1
2s )+|β| 1

2s

∫

R2(d−1)

|X ′|m|V |n
∣∣∣(∂αX′∂

β
V J)

(
X ′

(Xd)1+
1
2s

,
V

(Xd)
1
2s

)∣∣∣dX ′dV

By means of a change of variable and the decay estimate (3.7) we conclude the proof by noticing
that

∫

R2(d−1)

|X ′|m|V |n|∂αX′∂
β
V J(X,V )|dX ′dV

=
cd−1(X

d)(d−1)(1+ 1
s)+m(1+ 1

2s )+n 1
2s

(Xd)d−1+ d−1
s

+|α|(1+ 1
2s )+|β| 1

2s

Λ(Xd)

∫

R2(d−1)

|X ′|m|V |n
∣∣∣
(
∂αX′∂

β
V J

)
(X,V )

∣∣∣dX ′dV

. (Xd)(m−|α|)(1+ 1
2s )+(n−|β|) 1

2sΛ(Xd).

�

Remark 3.7. We can improve the above estimates for the cases with no differentiation involved.
Using the sharp decay estimates for the averages of J in (3.6), we obtain that for any m < 2s,

‖|X ′|mJ(X,V )‖L1(R2(d−1)) + ‖|V |mJ(X,V )‖L1(R2(d−1)) <∞, ∀Xd > 0.

This implies

‖|X ′|mJ(X,V )‖L1(R2(d−1)) = O((Xd)(1+
1
2s)mΛ(Xd)), for m < 2s;

‖|V |nJ(X,V )‖L1(R2(d−1)) = O((Xd)
1
2s

nΛ(Xd)), for n < 2s.
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Remark 3.8. If instead of considering the whole half-space Rd
+×R

d−1 as domain of integration one
restricts the estimates to a compact region, it is possible to obtain estimates for exponents m ≥ 2s
and n ≥ 2s. However the appearing constants will grow with the (transversal, i.e. in X ′, V ) size
of the domain, logarithmically for m (or n) = 2s and polynomially for m (or n) > 2s.

We will need the following decay estimates for the fractional Laplacian of J .

Lemma 3.9. For any nonnegative real numbers m,n, such that m,n < 2s,

‖|X ′|m(−∆V )
sJ(X,V )‖L1(R2(d−1)) = O((Xd)(1+

1
2s )m−1Λ(Xd));

‖|V |n(−∆V )
sJ(X,V )‖L1(R2(d−1)) = O((Xd)

1
2s

n−1Λ(Xd)).

Remark 3.10. The constants in the estimates blow up as m or n approaches 2s.

Proof. We do the estimation involving powers of |V |, the other case is simpler and follows similarly.
Recall the following singular integral definition of the fractional Laplacian:

(−∆V )
sJ =

cd,s
2

∫

Rd−1

2J(V )− J(V + z)− J(V − z)

|z|d−1+2s
dz.

Then,
∫

R2(d−1)

|V |n|(−∆V )
sJ(X,V )|dX ′dV

.

∫

R2(d−1)

|V |n
∫

Rd−1

|2J(V )− J(V + z)− J(V − z)|
|z|d−1+2s

dzdX ′dV

. (Xd)n/2s−1Λ(Xd)

∫

R2(d−1)

|V |n
∫

Rd−1

|2J(V )− J(V + z)− J(V − z)|
|z|d−1+2s

dzdX ′dV

We split the integral with respect to z into two integrals for the respective regions |z| < 1 and
|z| > 1. For the former, we see that

∫

R2(d−1)

|V |n
∫

|z|<1

|2J(V )− J(V + z)− J(V − z)|
|z|d−1+2s

dzdX ′dV

.

∫

Rd−1

1

|z|d−1−2(1−s)

∫ 1

0

∫

R2(d−1)

|V |n|∇2
V J(X,V + rz)|dX ′dV drdz

.

∫

|z|<1

1

|z|d−1−2(1−s)

∫ 1

0

∫

R2(d−1)

|V − rz|n|∇2
V J(X,V )|dX ′dV drdz

.

(∫

|z|<1

dz

|z|d−1−2(1−s)

)∫

R2(d−1)

(|V |n + 1)|∇2
V J(X,V )|dX ′dV <∞,

where the finiteness of the last integral with respect to (X ′, V ) follows from the previous lemma.
On the other hand, for |z| > 1 and using Remark 3.7 we easily obtain that

∫

R2(d−1)

|V |n
∫

|z|>1

|2J(V )− J(V + z)− J(V − z)|
|z|d−1+2s

dzdX ′dV

.

(∫

|z|>1

dz

|z|d−1+2s−n

)∫

R2(d−1)

|V |nJ(X,V )dX ′dV <∞.

�
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Remark 3.11. Similar estimates hold for more general solution to (3.1) by means of the represen-
tation formula (3.5). We indeed use this in the proof of Lemma 4.2.

4. Approximation analysis for narrow beams

4.1. Fractional Fermi pencil-beam approximation. The next lemma is a crucial step in the
proof of the pencil-beam approximation result.

Lemma 4.1. Let ψ ∈ Cc(Q) ∩ Lipκ(Q) so that the backward fractional Fokker-Planck system,

(4.1) − θ · ∇xϕ+ λϕ = Iθ(ϕ) + ψ.

has a unique continuous strong solution ϕ. Let U be the solution to the fractional Fermi pencil-beam
system (3.1) with

F = 0, G = δ(X ′)δ(V ), σ̃ = σ(0,Xd) and λ̃ = λ(0,Xd),

and extended by zero to Xd < 0. (i.e. for Xn > 0, U coincides with the fundamental solution J
defined in the previous section). In dimension d = 2 we take s′ ∈ (2s − 1, s) and for d ≥ 3 we
choose s′ ∈ (0, s). Then, there exists Cs′ > 0 so that the rescaling

u(x, θ) := (2ǫ)−2(d−1)U((2ǫ)−1x′, xd, ǫ−1S(θ))

satisfies ∣∣∣∣
∫

Q
u(x, θ)ψ(x, θ)dxdθ − ϕ(0, N)

∣∣∣∣ ≤ Cs′ǫ
2s′κs

′
,

where N = (0, . . . , 0, 1) ∈ S
d−1 and Cs′ → ∞ as s′ → s.

Proof. We define Ψ and Φ as the following rescaling of ψ and ϕ respectively:

(4.2) ϕ(x, θ) = Φ((2ǫ)−1x′, xd, ǫ−1S(θ)) and ψ(x, θ) = Ψ((2ǫ)−1x′, xd, ǫ−1S(θ)),

thus ‖Φ‖∞ = ‖ϕ‖∞ . ‖ψ‖∞ = ‖Ψ‖∞. Then,
∫

Q
uψdxdθ =

∫

Q
u (−θ · ∇xϕ+ λϕ− Iθ(ϕ)) dxdθ

=

∫

Q
u

(
−θ · ∇xϕ+ λϕ+ ǫ2sσ(x)

(
(−∆θ)

sϕ− cd,sϕ
))

dxdθ

=: I1 + I2 + I3 + I4.

The proof consists in showing that

I1 + I2 + I3 + I4 = Φ(0, 0, 0) +

∫
P(U)︸ ︷︷ ︸
=0

Φ

〈ǫV 〉2(d−1)
dXdV +O(ǫ2s

′
κs

′
),

where we recall P is the fractional Fermi pencil-beam operator defined in (1.11).

Estimation of I1. The advection component I1 = −
∫
Q u
(
θ · ∇xϕ

)
dxdθ is computed as follows. A

change of variables gives us

I1 = −
∫

Rd
+×Rd−1

[( V · ∇X′Φ

1 + ǫ2|V |2
)
U +

(1− ǫ2|V |2
1 + ǫ2|V |2

)
(∂XdΦ)U

] dXdV

〈ǫV 〉2(d−1)
,
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where the integration by parts formula from Lemma 3.3 and the decay of U at infinity lead to

I1 =

∫

Rd
+×Rd−1

[( V · ∇X′U

1 + ǫ2|V |2
)
Φ+

(1− ǫ2|V |2
1 + ǫ2|V |2

)
(∂XdU)Φ

] dXdV

〈ǫV 〉2(d−1)

+Φ(0, 0, 0)

=

∫

Rd
+×Rd−1

(V · ∇X′U + ∂XdU)
Φ

〈ǫV 〉2(d−1)
dXdV +Φ(0, 0, 0) + E1(Φ).

The error term is given by

E1 = −2ǫ2
∫

Rd
+×Rd−1

|V |2
〈ǫV 〉2d

(
V · ∇X′U + ∂XdU

)
ΦdXdV + ǫ2

∫

Rd
+×Rd−1

|V |2
〈ǫV 〉2d

(
V · ∇X′U

)
ΦdXdV.

The next simple inequality is used extensively in subsequent estimations in order to reduce the
powers of |V | and obtain integrability:

(4.3)
ǫ2|V |2
〈ǫV 〉2m ≤ ǫ2s

′ |V |2s′ (ǫ2|V |2)1−s′

(1 + ǫ2|V |2)1−s′
≤ ǫ2s

′ |V |2s′ , for any s′ ∈ (0, s) and m ≥ 1− s′.

Then,

|E1| . ǫ2s
′

∫ ∞

0

(
‖|V |2s′(−∆V )

sU‖L1(R2(d−1)

+ ‖|V |2s′V · ∇X′U‖L1(R2(d−1) + ‖|V |2s′U‖L1(R2(d−1)

)
dXd,

where the integrals on the right hand side are finite according to Lemmas 3.6 and 3.9.

Estimation of I2. Similarly, for I2 =
∫
Q λuϕdxdθ we obtain

(4.4)

I2 =

∫

Rd
+×Rd−1

λ̃U
Φ

〈ǫV 〉2(d−1)
dXdV +

∫

Rd
+×Rd−1

(
λ(ǫX ′,Xd)− λ(0,Xd)

)
U

Φ

〈ǫV 〉2(d−1)
dXdV

︸ ︷︷ ︸
=:J1(Φ)

=

∫

Rd
+×Rd−1

λ̃U
Φ

〈ǫV 〉2(d−1)
dXdV + J1(Φ),

Let us skip for a moment the estimation of J1(Φ) and move on to I3 and I4.

Estimation of I4. We see that

I4 = −ǫ2sσ(x)cd,s
∫

Q
uϕdxdθ = −ǫ2sσ(x)cd,s

∫

Q
U

Φ

〈ǫV 〉2(d−1)
dXdV,

thus, from the the explicit dependence on ǫ we easily verify that |I4| . ǫ2s‖ψ‖∞.
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Estimation of I3. Recall I3 = ǫ2sσ(x)
∫
Q u(−∆θ)

sϕdxdθ. We drop for a moment the dependence

in X ′ and by abusing notation write σ instead of σ(2ǫX ′,Xd). We have

I3 =

∫

Rd
+×Rd−1

∫

Rd−1

U(V )

〈ǫV 〉d−1−2s

( Φ(V )

〈ǫV 〉d−1−2s
− Φ(V ′)

〈ǫV ′〉d−1−2s

) σ dV ′dXdV
22s|V − V ′|d−1+2s

=

∫

Rd
+×Rd−1

∫

Rd−1

Φ(V )

〈ǫV 〉d−1−2s

( U(V )

〈ǫV 〉d−1−2s
− U(V ′)

〈ǫV ′〉d−1−2s

) σ dV ′dXdV
22s|V − V ′|d−1+2s

=
1

21+2s

∫

Rd
+×Rd−1

∫

Rd−1

Φ(V )

〈ǫV 〉d−1−2s

( 2U(V )

〈ǫV 〉d−1−2s
− U(V + z)

〈ǫ(V + z)〉d−1−2s
− U(V − z)

〈ǫ(V − z)〉d−1−2s

)σ dzdXdV
|z|d−1+2s

=
1

21+2s

∫

Rd
+×Rd−1

∫

Rd−1

Φ(V )

〈ǫV 〉2(d−1−2s)

(
2U(V )− U(V + z)− U(X,V − z)

)

|z|d−1+2s
σdzdXdV

+
1

21+2s

∫

Rd
+×Rd−1

∫

Rd−1

Φ(V )

〈ǫV 〉d−1−2s

(
1

〈ǫV 〉d−1−2s
− 1

〈ǫ(V + z)〉d−1−2s

)
U(V + z)

|z|d−1+2s
σ dzdXdV

+
1

21+2s

∫

Rd
+×Rd−1

∫

Rd−1

Φ(V )

〈ǫV 〉d−1−2s

(
1

〈ǫV 〉d−1−2s
− 1

〈ǫ(V − z)〉d−1−2s

)
U(V − z)

|z|d−1+2s
σ dzdXdV

=:I3,1 + I3,2 + I3,3.

The first integral gives

(4.5) I3,1 =

∫
σ̃(Xd)

Φ

〈ǫV 〉2(d−1)
(−∆V )

sUdXdV + E3(Φ) + J2(Φ),

with error terms

E3 =

∫

Rd
+×Rd−1

Φ

〈ǫV 〉2(d−1)
(−∆V )

sU
(
〈ǫV 〉4s − 1

) 1

22s
σ(2ǫX ′,Xd) dXdV,

and

(4.6) J2 =
1

22s

∫

Rd
+×R2(d−1)

(
σ(2ǫX ′,Xd)− σ(0,Xd)

) Φ

〈ǫV 〉2(d−1)
(−∆V )

sUdXdV.

On the other hand,

I3,2 + I3,3 =
1

21+2s

∫

Rd
+×Rd−1

∫

Rd−1

σ(2ǫX ′,Xd)
Φ(X,V )

〈ǫV 〉d−1−2s

×
(

2

〈ǫV 〉d−1−2s
− 1

〈ǫ(V + z)〉d−1−2s
− 1

〈ǫ(V − z)〉d−1−2s

)
U(V + z)

|z|d−1+2s
dzdXdV

+
1

21+2s

∫

Rd
+×Rd−1

∫

Rd−1

σ(2ǫX ′,Xd)
Φ(X,V )

〈ǫV 〉d−1−2s

×
(

1

〈ǫV 〉d−1−2s
− 1

〈ǫ(V − z)〉d−1−2s

)
(U(V − z)− U(V + z))

|z|d−1+2s
dzdXdV.
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By denoting h(z) = 1
〈ǫ(V+z)〉d−1−2s , the above simplifies to

I3,2 + I3,3

=
1

21+2s

∫

Rd
+×Rd−1

∫

Rd−1

σ(2ǫX ′,Xd)
Φ(X,V )

〈ǫV 〉d−1−2s

(2h(0) − h(z) − h(−z))
|z|d−1+2s

U(V + z) dzdXdV

+
1

21+2s

∫

Rd
+×Rd−1

∫

Rd−1

σ(2ǫX ′,Xd)
Φ(X,V )

〈ǫV 〉d−1−2s
(h(0) − h(−z)) (U(V − z)− U(V + z))

|z|d−1+2s
dzdXdV.

To continue with the estimation we split the each integrals into two, for the respective regions
|z| > 1 and |z| ≤ 1. For the former we use that

∇zh(z) =
(d− 1− 2s)ǫ2(V + z)

〈ǫ(V + z)〉d+1−2s

therefore

|h(0) − h(z)| ≤ Cǫ2|z|(|V ± z|+ |z|), ∀|z| > 1, V ∈ R
d−1,

which directly implies

|2h(0) − h(z)− h(−z)| ≤ |h(0) − h(z)| + |h(0) − h(−z)| ≤ Cǫ2|z|(|V + z|+ |z|).

Since |h| ≤ 1 we then have that for any s′ ∈ (0, s),

|h(0) − h(z)|s′+(1−s′) ≤ C|h(0) − h(z)|s′ ≤ Cǫ2s
′
(|V ± z|2s′ + |z|2s′),

and similarly for |2h(0) − h(z) − h(−z)|. The above gives us that on the region |z| > 1,

|I3,2 + I3,3| ≤ Cǫ2s
′
(∫

|z|>1
1

|z|d−1+2(s−s′)dz
)
‖σ‖∞‖Φ‖∞‖(1 + |V |)U‖L1 ≤ Cǫ2s

′‖ψ‖∞.

For the second part, |z| ≤ 1, we compute

∇2
zh(z) =

(d− 1− 2s)ǫ2I

〈ǫ(V + z)〉d+1−2s
+

(d− 1− 2s)(d + 1− 2s)ǫ4(V + z)t(V + z)

〈ǫ(V + z)〉d+3−2s
,

thus, from the inequality ǫ2|V+z|2
〈ǫ(V +z)〉d+3−2s ≤ 1 it follows

(4.7) |2h(0) − h(z) − h(−z)| ≤ Cǫ2|z|2, ∀|z| ≤ 1, V ∈ R
d−1,

and this leads to the estimate
∫

Rd
+×Rd−1

∫

Rd−1

σ(2ǫX ′,Xd)
Φ(X,V )

〈ǫV 〉d−1−2s

(2h(0) − h(z)− h(−z))
|z|d−1+2s

U(V + z) dzdXdV

≤ Cǫ2‖σ‖∞‖Φ‖∞‖U‖L1

(∫
|z|<1

1
|z|d−1−2(1−s) dz

)
≤ Cǫ2‖ψ‖∞.

On the other hand, we notice that

h(0)− h(−z) =
∫ 1

0
z · ∇h(tz)dt = (d− 1− 2s)ǫ2

∫ 1

0

z · (V − tz)

〈ǫ(V − tz)〉d+1−2s
dt.
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Thus∫

Rd
+×Rd−1

∫

Rd−1

σ(2ǫX ′,Xd)
Φ(X,V )

〈ǫV 〉d−1−2s
(h(0) − h(−z)) (U(V − z)− U(V + z))

|z|d−1+2s
dzdXdV

= (d− 1− 2s)ǫ2
∫ ∫ 1

0
σ(2ǫX ′,Xd)

Φ(X,V )

〈ǫV 〉d−1−2s

z · (V − tz)

〈ǫ(V − tz)〉d+1−2s

(U(V − z)− U(V + z))

|z|d−1+2s
dtdzdXdV

= Cǫ2
∫ ∫ 1

0

σ(2ǫX ′,Xd)Φ(X,V )

〈ǫV 〉d−1−2s〈ǫ(V − tz)〉d+1−2s

z · (U(V − z)V − U(V + z)V )

|z|d−1+2s
dtdzdXdV +O(ǫ2),

where the error terms is given by

Cǫ2
∫
σ(2ǫX ′,Xd)Φ(X,V )

〈ǫV 〉d−1−2s

(∫ 1

0

tdt

〈ǫ(V − tz)〉d+1−2s

)
(U(V − z)− U(V + z))

|z|d−1−2(1−s)
dzdXdV

≤ Cǫ2‖σ‖∞‖Φ‖∞‖U‖L1

( ∫
|z|<1

1
|z|d−1−2(1−s)dz

)
.

For the remaining integral we see that

z ·(U(V −z)V −U(V +z)V ) =
(
U(V −z)z ·(V −z)−U(V +z)z ·(V +z)

)
+|z|2

(
U(V −z)+U(V +z)

)
.

Thus, for any ẑ = z/|z|, with 0 < |z| < 1, by defining the function

gẑ(V ) = (ẑ · V )U(V ),

we have that
∫ ∫ 1

0

σ(2ǫX ′,Xd)Φ(X,V )

〈ǫV 〉d−1−2s〈ǫ(V − tz)〉d+1−2s

z · (U(V − z)V − U(V + z)V )

|z|d−1+2s
dtdzdXdV

=

∫ ∫ 1

0

σ(2ǫX ′,Xd)Φ(X,V )

〈ǫV 〉d−1−2s〈ǫ(V − tz)〉d+1−2s

(
gẑ(V − z)− gẑ(V + z)

|z|

)
1

|z|d−1−2(1−s)
dtdzdXdV

+

∫ ∫ 1

0

σ(2ǫX ′,Xd)Φ(X,V )

〈ǫV 〉d−1−2s〈ǫ(V − tz)〉d+1−2s
(U(V − z) + U(V + z))

1

|z|d−1−2(1−s)
dtdzdXdV,

and hence, denoting by Dz
V gẑ := gẑ(V +z)−gẑ(V )

|z| the difference quotient of gẑ(V ), the integral is

bounded by

C‖σ‖∞‖Φ‖∞
(∫ (∫

|Dz
V gẑ(V )|dV dX

)
1

|z|d−1−2(1−s)
dz + ‖U‖L1

( ∫
|z|<1

1
|z|d−1−2(1−s) dz

))

≤ C‖σ‖∞‖Φ‖∞
(

sup
ŵ∈Sd−2

(
sup
|z|<1

‖Dz
V gŵ(V )‖L1

)
+ ‖U‖L1

)(∫
|z|<1

1
|z|d−1−2(1−s) dz

)

≤ C‖σ‖∞‖Φ‖∞ (‖|V |∇V U‖L1 + ‖U‖L1) ,

where the last inequality follows from [15, §5.8.2], while the boundedness of the L1-norms of U are

due to Lemma 3.6. This concludes the proof that |I3,2 + I3,3| ≤ Cǫ2s
′‖ψ‖∞.

We still need to estimate the error terms of I3,1 (defined in (4.5)). By simply noticing that

|〈ǫV 〉4s − 1| . ǫ2|V |2〈ǫV 〉2(2s−1), then

|E3| . ǫ2‖σ‖∞
∫

Rd
+×Rd−1

|Φ||V |2
〈ǫV 〉2(d−2s)

|(−∆V )
sU | dXdV.

Therefore, we get an O(ǫ2s
′
) upper bound by means of the inequality (4.3) with m = d − 2s and

the integrability Lemma 3.9. Notice that for (4.3) to hold we need d− 2s ≥ 1− s′, or equivalently
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s′ ≥ 2s + 1 − d. For d = 2 this translates into s′ ≥ 2s − 1, while for d ≥ 3 it is always satisfied.
This explains the hypothesis imposed in the statement of the theorem.

We deduce |E3| . ǫ2s
′‖ψ‖∞ with constant depending on

∫
R+

‖|V |2s′(−∆V )
sU‖L1(R2(d−1))dX

d.

Estimation of J1 and J2. Let us now estimate J1 and J2 (defined respectively in (4.4) and (4.6)).
We write J1 and J2 as follows,

J1 =
1

2

∫

Rd
+×Rd−1

(
λ(ǫX ′,Xd)− λ(0,Xd)

)
U(X,V )Φ(X,V )dXdV +O(ǫ2s

′
).

with a reminder depending on ‖|V |2s′U(X,V )‖L1 , and

J2 =
1

22s

∫

Rd
+×Rd−1

(
σ(2ǫX ′,Xd)− σ(0,Xd)

)
Φ(X,V )

[
(−∆V )

sU(X,V )
]
dV dX +O(ǫ2s

′
),

with a reminder depending on ‖|V |2s′(−∆V )
sU(X,V )‖L1 . To proceed we need the next lemma

whose proof is postponed until the end of this section.

Lemma 4.2 (Sub-optimal approximation for the adjoint equation). Let ϕ(x, θ) = Φ((2ǫ)−1x′, xd, ǫ−1S(θ))
and ψ(x, θ) = Ψ((2ǫ)−1x′, xd, ǫ−1S(θ)) with ϕ solution to the backward fractional Fokker–Planck
equation

−θ · ∇xϕ+ λϕ = Iθ[ϕ] + ψ, ψ ∈ Cc(Q).

Let W be the unique solution to the backward fractional Fermi pencil-beam equation (1.12) with
source Ψ. Then, for any f absolutely integrable function in R

d
+ × R

d−1 and for any s′ ∈ (0, s),
there exists C > 0 (depending on σ, λ and ‖f‖L1) such that

∣∣∣
∫

Rd
+×Rd−1

fΦdXdV −
∫

Rd
+×Rd−1

fWdXdV
∣∣∣ ≤ Cǫmin{1,2s′}‖Ψ‖∞.

with C = Cs′ blowing up to infinity as s′ → s for s < 1/2, and independent of s′ otherwise.

In view of the previous lemma we get

J1 =
1

2

∫

Rd
+×Rd−1

(
λ(ǫX ′,Xd)− λ(0,Xd)

)
W (X,V )U(X,V )dXdV +O(ǫ2s

′
),

and

J2 =
1

22s

∫

Rd
+×Rd−1

(
σ(2ǫX ′,Xd)− σ(0,Xd)

)
W (X,V )

[
(−∆V )

sU(X,V )
]
dV dX +O(ǫ2s

′
),

where we used the Lipschitz property of λ and σ to obtain the O(ǫ2)-error when interchanging Φ
with W . In order to utilize the Lipschitz continuity of W we employ Lemma 3.2. We first split
the computations into two cases. For s ≤ 1/2 we do not need Lemma 3.2 and simply obtain

|J1| . ǫ2s
′‖λ‖2s′C1‖λ‖1−2s′

∞ ‖ψ‖1−2s′

∞ ‖|X|2s′U(X,V )‖L1 + Cǫ2s
′
,

for some s′ ∈ (0, s). Otherwise, for s ∈ (1/2, 1), the lemma allows us to write

J1 =
ǫ

2

∫

Rd
+×Rd−1

∇X′λ(0,Xn) ·X ′ (W (X,V )−W (0, V ))U(X,V )dXdV +O(ǫ2s
′
).

from which we deduce

|J1| . ǫ1+r‖ψ‖1−r
∞ κr‖λ‖C1‖|X ′|1+rU(X,V )‖L1 +Cǫ2s

′
,

for r = 2s′−1 and s′ ∈ (1/2, s). In both cases, we end up with an estimate of the form |J1| . ǫ2s
′
κs

′
.
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Regarding J2, Lemma 3.2 yields

J2 =
1

22s

∫

Rd
+×Rd−1

(
σ(2ǫX ′,Xd)− σ(0,Xd)

)

×
(
W (X,V )−W (X, 0)

)[
(−∆V )

sU(X,V )
]
dV dX +O(ǫ2s

′
).

Similarly as above, we reduce the exponent by interpolating upper bounds and obtain

|J2| ≤
1

22s
‖σ‖1−s′

∞ ‖ψ‖1−s′
∞

∫

Rd
+×Rd−1

∣∣σ(2ǫX ′,Xd)− σ(0,Xd)
∣∣s′

×
∣∣W (X,V )−W (X, 0)

∣∣s′∣∣(−∆V )
sU(X,V )

∣∣dV dX +O(ǫ2s
′
),

which then gives rise to

|J2| ≤ Cǫ2s
′‖σ‖1−s′

∞ ‖σ‖s′C1‖ψ‖1−s′

∞ κs
′
∫

Rd
+×Rd−1

|X ′|s′ |V |s′
∣∣(−∆V )

sU(X,V )
∣∣dV dX +O(ǫ2s

′
),

and consequently |J2| ≤ Cǫ2s
′
κs

′
. The positive constant depends on

‖|X ′|2s′(−∆V )
sU(X,V )‖L1 and ‖|V |2s′(−∆V )

sU(X,V )‖L1 .

which are finite thanks to Lemma 3.9. �

Theorem 4.3. Let δ . ǫ2κ and f ∈ L∞
x,θ ∩ L1

x,θ be a compactly supported δ-approximation to

the identity δ0(x)δN (θ), this is
∣∣∫ fϕdxdθ − ϕ(0, N)

∣∣ . δ for all ϕ ∈ C(Q). We let u(x, θ) be
the solution to the fractional Fokker–Planck equation (1.6) (or equivalently (1.8)-(1.9)). For any
s′ ∈ (2s − 1, s) in dimension d = 2, and s′ ∈ (0, s) for d ≥ 3, there exists a constant C =
C(s′, d, λ, σ) > 0, blowing up as s′ → s, such that

W1
κ(u, u) ≤ Cǫ2s

′
κs

′
.

Proof. For an arbitrary ψ ∈ Cc(Q) ∩ Lipκ(Q) let ϕ be the unique solution to (4.1). We see that
∣∣∣∣
∫

(u− u)ψdxdθ

∣∣∣∣ =
∣∣∣∣
∫

uψdxdθ −
∫
fϕdxdθ

∣∣∣∣

≤
∣∣∣∣
∫

uψdxdθ − ϕ(0, N)

∣∣∣∣ +
∣∣∣∣ϕ(0, N) −

∫
fϕdxdθ

∣∣∣∣ .

The proof follows from the hypothesis on the source f and Lemma 4.1. �

Proof of Lemma 4.2. We let U be the solution to the inhomogeneous fractional Fermi pencil-beam
equation P(U) = f with boundary conditions U|Xn=0 = 0, and let u be its rescaling

u(x, θ) = (2ǫ)−2(d−1)U((2ǫ)−1x′, xd, ǫ−1S(θ)).

One verifies that ∫

Q+

fWdXdV =

∫

Q+

UΨdXdV,

and hence a change variables leads to∫

Q+

fWdXdV =

∫

Q+

uψdxdθ +R(ǫ2s
′
),

with the reminder term given explicitly by

R(ǫ2s
′
) =

∫

Q

UΨ
(
1− 〈ǫV 〉−(d−1)

)
dXdV ≤ ǫ2s

′(‖U‖L1(Rd×B1) + ‖|V |2s′U‖
)
L1(Rd×Bc

1)
‖Ψ‖∞.
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The proof then reduces to showing that
∣∣∣
∫

Q+

uψdxdθ −
∫

Q+

fΦdXdV
∣∣∣ ≤ Cǫmin{1,2s′}‖Ψ‖∞,

for any s′ ∈ (0, 1), with the constant depending on this choice.
We proceed as in the proof of Lemma 4.1 using the following decomposition

∫

Q+

uψdxdθ =

∫

Q+

u (−θ · ∇xϕ+ λϕ− Iθ(ϕ)) dxdθ

=: I1 + I2 + I3 + I4,

where the term Ij are defined as in Lemma 4.1 with U replaced by U. The objective is to show
that

(4.8)

I1 + I2 + I3 + I4 =

∫

Rd−1×Rd−1

U(X ′, 0, V )︸ ︷︷ ︸
0

Φ(X ′, 0, V )

〈ǫV 〉2(d−1)
dX ′dV

+

∫

Q+

P(U)︸ ︷︷ ︸
=f

ΦdXdV +O(ǫmin{1,2s′}).

Most of the estimates performed in the proof of Lemma 4.1 remain identical, although with upper
bounds now depending on various integrals of U (which are guaranteed to be finite by virtue of
Lemma 3.6 and the convolution formula for pencil-beam solutions (3.5)). These are subsequently
bounded by the L1-norm of f (see §3.2 and Remark 3.11). The main difference is that we are

interested here in obtaining a sub-optimal accuracy for the error, namely O(ǫmin{1,2s′}), so that
Lipschitz-continuity of σ and λ is enough to deduce (4.8). �

4.2. Ballistic approximation. We denote by v the solution to the ballistic transport equation

(4.9) θ · ∇xv + λ(x)v = f(x, θ),

which, for a source f ∈ L1(Rd × S
d−1), has the explicit form

(4.10) v(x, θ) = L[f ](x, θ) :=

∫ ∞

0
e−

∫ t
0 λ(x−sθ)dsf(x− tθ, θ)dt.

For a point source f = δ0(x)δN (θ) the solution is defined in the distributional sense as

(4.11) 〈v, ψ〉 =
∫ ∞

0
e−

∫ t
0 λ(~0,s)dsψ(tN,N)dt, ∀ψ ∈ C(Rd × S

d−1),

where ~0 stands for the origin in R
d−1.

We now compare the order of approximation between the ballistic solution and the pencil-beam
approximation introduced in the previous section. We obtain a lower and upper bound for their
1-Wasserstein distance for different choices of parameters.

Theorem 4.4. There exists a constant c > 0 (independent of ǫ and κ) such that

cǫκ ≤ W1
κ(v, u) for 1 ≤ κ ≤ ǫ−1 and c ≤ W1

κ(v, u) for κ > ǫ−1.

Moreover, there exist constants Cs′ > 0 and Cs > 0, with the former blowing up to infinity as
s′ ∈ (0, s) approaches s, and the latter blowing up to infinity as sց 1

2 , such that

W1
κ(v, u) ≤ Cs′(ǫκ)

2s′ if s ∈ (0, 1/2] and W1
κ(v, u) ≤ Csǫκ if s ∈ (1/2, 1).
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Proof. Upper bound. Let ψ be an arbitrary test function in BL1,κ(R
d × S

d−1) and Ψ its rescaling
according to (4.2), which is Lipschitz with constant O(ǫκ). For s′ ∈ (0, s) we have that

〈v − u, ψ〉 =
∫ ∞

0
e−

∫ t
0
λ(~0,s)dsΨ(~0, t,~0)dt−

∫ ∞

0

∫

R2(d−1)

U(X ′, t, V )Ψ(X ′, t, V )
dX ′dV dt

〈ǫV 〉2(d−1)

=

∫ ∞

0

(
e−

∫ t
0
λ(~0,s)dsΨ(~0, t,~0)−

∫ ∞

0

∫

R2(d−1)

U(X ′, t, V )Ψ(X ′, t, V )dX ′dV

)
dt+O(ǫ2s

′
).

The expression inside parentheses is equivalent to
∫

R2(d−1)

J(X ′, t, V )
(
Ψ(~0, t,~0)−Ψ(X ′, t, V )

)
dX ′dV,

with J the fundamental solution to the fractional Fermi pencil-beam of Section 3.2. There are two
scenarios depending on the values of the exponent s. For s > 1/2, we take s′ = 1/2 above and get

〈v − u, ψ〉 . ǫκ

∫ ∞

0
e−

∫ t
0 λ(~0,r)dr‖|(X ′, V )|J(X ′, t, V )‖L1(R2(d−1))dt = O(ǫκ).

On the other hand, for s ≤ 1/2, we interpolate the Lipschitz and the L∞ bound of the difference

Ψ(~0, t,~0)−Ψ(X ′, t, V ) to get

〈v − u, ψ〉 . (ǫκ)2s
′

∫ ∞

0
e−

∫ t
0
λ(~0,r)dr‖|(X ′, V )|2s′J(X ′, t, V )‖L1(R2(d−1))dt = O((ǫκ)2s

′
).

for any s′ ∈ (0, s) with the constant in the estimate blowing up as s′ approaches s.
The desired estimates follow after taking supremum with respect to ψ.

Lower bound. Let us choose a specific test function: ψ(x, θ) = ψ1(x
′) = e−κ|x′|. When passing to

stretched coordinate we denote Ψ1(X
′) = e−2ǫκ|X′| and therefore Ψ(X,V ) = Ψ1(X

′). The Fourier
Transform of Ψ1 is given by

Ψ̂1(ξ) := FX′→ξ[Ψ1](ξ) = cd
ǫκ

(4π2ǫ2κ2 + |ξ|2)
d
2

,

for some constant cd > 0. We find that

(4.12)

〈v, ψ〉 =
∫ ∞

0
e−

∫ t
0
λ(~0,s)dsΨ(~0, t,~0)dt =

∫ ∞

0
e−

∫ t
0
λ(~0,s)ds

∫

Rd−1

Ψ̂1(ξ)dξdt

= cdǫκ

∫ ∞

0
e−

∫ t
0 λ(~0,s)ds

∫

Rd−1

1

(4π2ǫ2κ2 + |ξ|2)
d
2

dξdt.

On the other hand,

〈u, ψ〉 =
∫ ∞

0

∫

R2(d−1)

U(X ′, t, V )Ψ(X ′, t, V )
dX ′dV dt

〈ǫV 〉2(d−1)

≤
∫ ∞

0

∫

R2(d−1)

U(X ′, t, V )Ψ1(X
′)dX ′dV dt.

Then, the integration with respect to V and the Plancherel’s identity yield

(4.13)

〈u, ψ〉 ≤
∫ ∞

0

∫

Rd−1

Û(ξ, t, 0)Ψ̂1(ξ, t)dξdt

≤ cdǫκ

∫ ∞

0
e−

∫ t
0 λ(~0,s)ds

∫

Rd−1

e−τ(t)|ξ|2s

(4π2ǫ2κ2 + |ξ|2)
d
2

dξdt,
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where τ(t) :=
∫ t
0 r

2sσ̃(r)dr (≈ t2s+1). Let us compare this to (4.12). We get

〈v − u, ψ〉 ≥ cdǫκ

∫ ∞

0
e−

∫ t
0 λ(~0,s)ds

∫

Rd−1

(
1− e−τ(t)|ξ|2s)

(4π2ǫ2κ2 + |ξ|2)
d
2

dξdt > 0.

To simplify notation, we consider a generic constant c > 0 independent of ǫ and κ so that once
passing to spherical coordinates we get

〈v − u, ψ〉 ≥ cǫκ

∫ ∞

0
e−

∫ t
0
λ(~0,s)ds

∫ ∞

0

(
1− e−τ(t)r2s

)

(4π2ǫ2κ2 + r2)
d
2

rd−2drdt.

We now analyze the integral I(t) := ǫκ
∫∞
0

(
1−e−τ(t)r2s

)

(4π2ǫ2κ2+r2)
d
2
rd−2dr. The term inside the parentheses

is bounded from below by

1− e−τ(t)r2s = 2sτ(t)

∫ r

0
ρ2s−1e−τ(t)ρ2sdρ

≥ 2sτ(t)e−τ(t)r2s
∫ r

0
ρ2s−1dρ

= τ(t)e−τ(t)r2sr2s

which leads to

I(t) ≥ ǫκτ(t)

∫ ∞

0

e−τ(t)r2srd−2+2s

(4π2ǫ2κ2 + r2)
d
2

dr.

We then get

I(t) ≥ ǫκτ(t)e−τ(t)

∫ 1

0

rd−2(1−s)

(4π2(ǫκ)2 + 1)
d
2

dr ≥ cǫκ

(
1

((2πǫκ)2 + 1)
d
2

)
τ(t)e−τ(t).

Consequently, under the resolution restriction κ ≤ ǫ−1, we obtain the estimate

〈v − u, ψ〉 ≥ cǫκ

∫ ∞

0
τ(t)e−τ(t)e−

∫ t
0 λ(~0,r)drdt.

Let us now consider the case κ > ǫ−1. We can use a different lower bound, namely

ǫκ

∫ ∞

0

e−τ(t)r2srd−2+2s

(4π2ǫ2κ2 + r2)
d
2

dr ≥ ǫκe−τ(t)(ǫκ)2s

(ǫκ)d (4π2 + 1)
d
2

∫ ǫκ

0
rd−2+2sdr ≥ c(ǫκ)2se−τ(t)(ǫκ)2s ,

thus

〈v − u, ψ〉 ≥ c(ǫκ)2s
∫ ∞

0
τ(t)e−τ(t)(ǫκ)2se−

∫ t
0
λ(~0,s)dsdt & (ǫκ)2s

∫ ∞

0
t2s+1e−αt2s+1(ǫκ)2se−βtdt

for some α, β > 0 depending on ‖σ‖∞ and ‖λ‖∞. Performing the change of variables ρ =

t(ǫκ)2s/(2s+1), we get

(ǫκ)2s
∫ ∞

0
t2s+1e−αt2s+1(ǫκ)2se−βtdt ≥ (ǫκ)−

2s
2s+1

∫ ∞

0
ρ2s+1e−αρ2s+1−βρdρ.

which is a worse lower bound since ǫκ > (ǫκ)−
2s

2s+1 for all s ∈ (0, 1) when ǫκ > 1.
Since the requirement on the Lipschitz constant for ψ is Lip(ψ) ≤ κ (with κ > ǫ−1), by taking

ψ1(x) = e−ǫ−1|x′| and repeating previous computations we arrive to the stronger lower bound
〈v − u, ψ〉 = O(1). �
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5. Approximation via superposition of pencil-beams

Let f ∈ L1(Q) be such that

f ≥ 0 and supp(f) ⋐ R
d × S

d−1.

We denote by {Uy,η(X,V )}y,η a continuous family of pencil-beams indexed by the parameters
(y, η), so that Uy,η is the solution to the fractional Fermi pencil-beam equation (1.11) with initial

condition G = δ(X ′)δ(V − ǫ−1S(η)), extended by zero for Xd < 0 (the source F is always taken
to be null), and for diffusion and absorption coefficients

σ̃(Xd) = σ(y +Xdη) and λ̃(Xd) = λ(y +Xdη).

The construction of the approximation via pencil beams is based on the superposition of the Uy,η’s.
We define their respective affine transformations as

u(·, ·; y, η) := (2ǫ)−2(d−1)Uy,η ◦ T ǫ
y , (y, η) ∈ supp(f),

where each T ǫ
y,η : Rd × S

d−1 ∋ (x, θ) 7→ (X,V ) ∈ R
d × R

d−1 encodes an affine transformation of
the spatial coordinates plus a rescaled stereographic projection of the angular variables. They are
given by

T ǫ
y,η(x, θ) :=

(
(2ǫ)−1Πη⊥(x− y), η · (x− y), ǫ−1Sη(θ)

)
,

where Πη⊥x := (Id − ηηT )x is the orthogonal projection of x onto the subspace η⊥, while Sη
denotes the stereographic projection of the unit sphere that takes η to the origin in R

d−1 (defined
similarly as in Section 1).

The approximation via pencil-beams is then defined as

(5.1) u(x, θ) :=

∫

Q
f(y, η)u(x, θ; y, η)dydη,

which acts in the distributional sense according to the rule

〈u, φ〉 :=
∫

Q

∫

Q
f(y, η)u(x, θ; y, η)φ(x, θ)dxdθdydη, φ ∈ C0(Q).

We give once again the statement of the approximations results for the superposition of beams,
as formulated in Section 1.5. These results follows almost directly from the narrow beam case.

Theorem (Theorem 1.2). The same conclusion of Theorem 1.1 holds for a source f satisfying

f ∈ L1(Q), f ≥ 0 and supp(f) ⋐ R
d × S

d−1.

and u given by the continuous superposition of pencil-beam in (5.1).

Proof. Let ψ be an arbitrary test function in BL1,κ(R
d×S

d−1) and ϕ the solution to the backward
Fokker–Planck system. We see that∫

Q
ψ(x, θ) (u− u) dxdθ =

∫

Q
f(y, η)ϕ(y, η)dydη

−
∫

Q
f(y, η)

(∫

Q
u(x, θ; y, η)ψ(x, θ)dxdθ

)
dydη.

Therefore, the estimate for the 1-Wasserstein distance between the Fokker–Planck solution and
the superposition of pencil-beams follows by noticing that∣∣∣∣

∫

Q
u(x, θ; y, η)ψ(x, θ)dxdθ − ϕ(y, η)

∣∣∣∣ . ǫ2s
′
κs

′
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as a consequence of Lemma 4.1, and for a constant uniform with respect to (y, η) but depending
on ‖f‖L1 , ‖λ‖C1 and ‖σ‖C1 .

Regarding the upper and lower bounds of the distance between the ballistic transport solution
(i.e. v(x, θ)) and the pencil-beam approximation, we again use the explicit expression of v given
in (4.10), and see that

∫

Q
ψ(x, θ) (v − u) dxdθ =

∫

Q

∫ ∞

0
e−

∫ t
0 λ(y−sη)dsf(y − tη, η)ψ(y, η)dtdydη

−
∫

Q
f(y, η)

(∫

Q
u(x, θ; y, η)ψ(x, θ)dxdθ

)
dydη

=

∫

Q
f(y, η)

∫ ∞

0
e−

∫ t
0 λ(y+sη)dsψ(y + tη, η)dtdydη

−
∫

Q
f(y, η)

(∫

Q
u(x, θ; y, η)ψ(x, θ)dxdθ

)
dydη.

Therefore, the upper and lower bounds arise from the analysis of the difference

(5.2)

∫ ∞

0
e−

∫ t
0
λ(y+sη)dsψ(y + tη, η)dt −

∫

Q
u(x, θ; y, η)ψ(x, θ)dxdθ.

For each pair (y, η), a coordinates rotation plus passing to stretched coordinates allow us to simplify
the second integral and get

∫ ∞

0

∫

R2(d−1)
Uy,η(X

′, t, V )Ψ(X ′, t, V )
dX ′dV dt

〈ǫV 〉2(d−1)
,

for Ψ defined by the relation ϕ(x, θ) = Ψ ◦ T ǫ
y,η(x, θ). Following the proof of Theorem 4.4 it is not

hard to realize that
∫ ∞

0

∫

R2(d−1)

Uy,η(X
′, t, V )Ψ(X ′, t, V )

dX ′dV dt

〈ǫV 〉2(d−1)
=

∫ ∞

0
e−

∫ t
0 λ(y+sη)dsΨ(~0, t,~0)dt+O((ǫκ)2s

′
),

where we take s′ ∈ (0, s) for s ∈ (0, 1/2] and s′ = 1/2 for s ∈ (1/2, 1), and with the remainder
independent of the values of y and η. By noticing that

Ψ(~0, t,~0) = ψ(y + tη, η), 1

the upper bound follows directly.
The same computations performed in the proof of Theorem 4.4 to obtain a lower bound can be

carried out here, in order to bound from below the differences in (5.2) uniformly with respect to
y and η. �

We end this article by stating the analogous result in the case of a discrete superposition of
pencil-beams. Given a spread out source f as in the previous theorem, which we assume to be
bounded, we can approximate it in the 1-Wasserstein sense as a finite sum of delta sources. Indeed,

there exists a simple function g =
∑I

i=1 aiχRi , ai ≥ 0 and with χRi the characteristic function for
the open set Ri ⊂ Q, which without loss of generality can be taken of diameter |Ri| ≤ ǫ2, so that

1If t = η · (x− y), then 0 = (Id− ηηT )(x− y) = (x− y)− tη, this is, x = y + tη.
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∫
|f − g|dxdθ < ǫ2κ. We set ãi = aimeas(Ri), with meas(Ri) denoting the measure of Ri with

respect to dxdθ. Then,

W1
κ(f, f̃) . ǫ2κ, f̃(x, θ) :=

I∑

i=1

ãiδxi(x)δθi(θ),

since for any ψ ∈ BL1,κ,∣∣∣∣
∫
ψ(f − f̃)dxdθ

∣∣∣∣ ≤
∣∣∣∣
∫
ψ(f − g)dxdθ

∣∣∣∣+
∣∣∣∣
∫
ψ(g − f̃)dxdθ

∣∣∣∣

≤ ‖ψ‖∞ǫ2κ+
I∑

i=1

ai

∣∣∣∣
∫

Ri

(ψ(x, θ)− ψ(xi, θi)) dxdθ

∣∣∣∣

. ǫ2κ+

I∑

i=1

aimeas(Ri)|Ri|κ = O(ǫ2κ).

Considering the same affine transformations defined previously, we set

(5.3) u(x, θ) :=

I∑

i=1

ãi · u(x, θ;xi, θi),

a discrete superposition of pencil beams, where

u(·, ·;xi, θi) := (2ǫ)−2(d−1)Uxi,θi ◦ T ǫ
xi,θi ,

with the Uxi,θi ’s defined as in the continuous case. Following the same steps as in the previous
proof, we deduce the following result:

Theorem (Theorem 1.3). The same conclusion of the Theorem 1.1 holds for a source f satisfying

f ∈ L1(Q) ∩ L∞(Q), f ≥ 0 and supp(f) ⋐ R
d × S

d−1.

and u given by the discrete superposition of pencil-beam in (5.3).
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Appendix A. Proof of Theorem 2.1

Let f ∈ L2(Rd × S
d−1) and uΩ ∈W 2

Ω the unique solution to

(A.1)

{
θ · ∇xu+ λu = I(u) + f, in Ω× S

d−1,
u = 0, on Γ−,

which is non-negative whenever f ≥ 0. Since the scattering kernel is integrable and assumed to be
symmetric with respect to its angular entries, the existence and uniqueness of uΩ follows from [14,
Chapter XXI-Theorem 4] provided λ ≥ λ0 > 0. The non-negativity property can be derived from
the proof of Proposition 6 in the same reference. Moreover, by zero-continuing uΩ to the whole
space, and regardless of Ω, we have the estimates

‖uΩ‖L2(Rd×Sn−1) ≤ ‖f‖L2(Rn×Sd−1),
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thus, the Banach-Alaoglu theorem gives us a limit function u ∈ L2(Rd × S
d−1) and a convergent

sequence {uΩk
}k, such that uΩk

→ u weakly in L2. Moreover, the limit satisfies the same inequality
which then gives us uniqueness of solutions. It remains to show that u ∈W 2 and it satisfies (1.1).

Without loss of generality, we assume {Ωk}k is an increasing sequence of open bounded subsets
of Rd. Let Ωk0 be an arbitrary element. For any ϕ ∈ C∞

c (Rd × S
d−1) there exist k0 > 0 so that

ϕ ∈ C∞
c (Ωk0 × S

d−1), and for k > k0 we have that

∫

Rd×Sd−1

(
(−θ · ∇xϕ)uΩk

+ λϕuΩk

)
dxdθ

=

∫

Rd×Sd−1

∫

Sd−1

k(x, θ′, θ)(uΩk
(x, θ′)− uΩk

(x, θ))ϕ(x, θ)dθ′dxdθ +
∫

Rd×Sd−1

fϕdxdθ.

Therefore, we can take the limit as k → ∞ and obtain
∫

Rd×Sd−1

(
(−θ · ∇xϕ)u+ λϕu

)
dxdθ

=

∫

Rd×Sd−1

∫

Sd−1

k(x, θ, θ′)(u(x, θ)− u(x, θ′))ϕ(x, θ)dθ′dxdθ +
∫

Rd×Sd−1

fϕdxdθ.

On the other hand, using (A.1) we see that ‖(θ · ∇xuΩk
)1Ωk

‖L2(Rd×Sd−1) ≤ Cλ,b‖f‖L2(Rd×Sd−1),

thus passing to a subsequence we deduce that u ∈ W 2 and u is a strong solution of (1.1). We
directly deduce that u ≥ 0 for f ≥ 0.

Appendix B. Localization and mollification

We consider stereographic coordinates on the unit sphere and smooth and compactly supported
mollification kernels ξ(x) and η(v). The localization and mollification technique is a standard
procedure for local operators and we thus focus on the singular integral term in (1.8). For a fixed
pair (y, v′′) ∈ R

d×R
d−1, we consider the test function ϕ(x, θ) defined via stereographic coordinates

as [ϕ]S(x, v) = χ(y, v′′)ξδ(y−x)ηδ(v′′−v)〈v〉2(d−1) with χ a smooth compactly supported function,
and

ξδ(x) = δ−dξ(δ−dx) and ηδ(x) = δ−(d−1)η(δ−(d−1)x),

with δ > 0 small, and ξ and η smooth, nonnegative functions, with compact support around their
respective origins, and such that

∫
ξ(x)dx =

∫
η(v)dv = 1.

In the weak formulation of Fokker–Planck (2.4), the non-local part corresponds to the integral∫
σ(x)B(u, ϕ)dx, which in stereographic coordinates rewrites as

∫
σ(x)B(u, ϕ)dx

=
1

2

∫ ∫
σ(x)

∫
K(θ′, θ)(u(x, θ′)− u(x, θ))(ϕ(x, θ′)− ϕ(x, θ))dθ′dθdx

=

∫ ∫
σ(x)(−∆v)

s/2

(
u(x, v)

〈v〉d−1−2s

)
· (−∆v)

s/2

(
ϕ(x, v)

〈v〉d−1−2s

)
dvdx

− c

∫ ∫
σ(x)u(x, v)ϕ(x, v)〈v〉−2(d−1)dvdx.
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We use the notation w(x, v) = u(x,v)
〈v〉d−1−2s . Then, for the test function introduced above, we have

that
∫
σ(x)B(u, ϕ)dx

= χ(y, v′′)
∫ ∫

σ(x)ξδ(y − x)((−∆v)
s/2w)(x, v)

∫
ηδ(v′′ − v)〈v〉d−1+2s − ηδ(v′′ − v′)〈v′〉d−1+2s

|v − v′|d−1+s
dv′dvdx

+ cχ(y, v′′)
∫ ∫

σ(x)u(x, v)ξδ(y − x)ηδ(v′′ − v)dxdv

= χ(y, v′′)〈v′′〉d−1+2s

∫ ∫
σ(x)ξδ(y − x)((−∆v)

s/2w)(x, v)((−∆v)
s/2η)(v′′ − v)dvdx

− χ(y, v′′)
∫ ∫

σ(x)ξδ(y − x)((−∆v)
s/2w)(x, v)

×
∫
ηδ(v′′ − v)

(
〈v〉d−1+2s − 〈v′′〉d−1+2s

)
− ηδ(v′′ − v′)

(
〈v′〉d−1+2s − 〈v′′〉d−1+2s

)

|v − v′|d−1+s
dv′dvdx

+ c(χ · (ξδ ⊗ ηδ) ∗ (σu))(y, v′′)

= σ(y)χ(y, v′′)〈v′′〉d−1+2s

∫ ∫
ξδ(y − x)((−∆v)

s/2w)(x, v)((−∆v)
s/2η)(v′′ − v)dvdx

+ χ(y, v′′)〈v′′〉d−1+2s

∫ ∫
(σ(x)− σ(y))ξδ(y − x)((−∆v)

s/2w)(x, v)((−∆v)
s/2η)(v′′ − v)dvdx

− χ(y, v′′)
∫ ∫

σ(x)ξδ(y − x)((−∆v)
s/2w)(x, v)

×
∫
ηδ(v′′ − v′)

(
〈v′〉d−1+2s − 〈v′′〉d−1+2s

)
− ηδ(v′′ − v)

(
〈v〉d−1+2s − 〈v′′〉d−1+2s

)

|v − v′|d−1+s
dv′dvdx

+ c(χ · (ξδ ⊗ ηδ) ∗ (σu))(y, v′′).

Using the Fourier definition of the fractional (Euclidean) Laplacian, we see that

(−∆v)
s(f ∗ g) = F−1(|k|sF(f) · |k|sF(g)) =

(
(−∆v)

sf
)
∗
(
(−∆v)

sg
)
.

Thus, the first term on the right-hand side is equivalent to

σ(y)〈v′′〉d−1+2sχ(y, v′′)(−∆v)
s
(
ξδ ⊗ ηδ ∗ w

)
(y, v′′).

However, we would like to obtain an expression for 〈v〉−(d−1−2s)(χ · (ξδ ⊗ ηδ ∗ u)), which involves

computing the commutators between convolution and multiplication by 〈v〉−(d−1−2s), and between
the fractional Laplacian and multiplication by χ. We have

η ∗ (fg) = f(η ∗ g) +
∫
η(v′)g(v − v′)(f(v − v′)− f(v))dv′

and also that

(−∆v)
s(fg) = f(−∆v)

s(g) + g(−∆v)
s(f).
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Then, denoting ũ(x, v) = χ(x, v) · (ξδ ⊗ ηδ ∗ u)(x, v) and w̃(x, v) = ũ(x,v)
〈v〉d−1−2s , we see that

χ(y, v′′)(−∆v)
s
(
ξδ ⊗ ηδ ∗ w

)
(y, v′′)

= ((−∆v)
sw̃)(y, v′′)− (ξδ ⊗ ηδ ∗ u)(y, v′′)

〈v′′〉d−1−2s
((−∆v)

sχ)(y, v′′)

−
∫
(
(ξδ⊗ηδ∗u)(y,v)

〈v〉d−1−2s − (ξδ⊗ηδ∗u)(y,v′′)
〈v′′〉d−1−2s

)
(χ(y, v)− χ(y, v′′))

|v − v′′|d−1+2s
dv

+ χ(y, v′′)

(
(−∆v)

s

∫ ∫
ξδ(y − x)ηδ(v − v′)u(x, v′)

(
1

〈v′〉d−1−2s
− 1

〈v〉d−1−2s

)
dv′dx

)
(y, v′′).

Bringing the above computations together, we conclude that
∫
σ(x)B(u, ϕ)dx = σ(y)[(−∆θ)

s(ũ)](y, v′′) + h(y, v′′),

with an error h(y, v′′) given by

h(y, v′′)

= −σ(y)〈v′′〉d−1+2s (ξ
δ ⊗ ηδ ∗ u)(x, v′′)
〈v′′〉d−1−2s

((−∆v)
sχ)(y, v′′)

− σ(y)〈v′′〉d−1+2s

∫
(
(ξδ⊗ηδ∗u)(x,v)

〈v〉d−1−2s − (ξδ⊗ηδ∗u)(x,v′′)
〈v′′〉d−1−2s

)
(χ(y, v) − χ(y, v′′))

|v − v′′|d−1+2s
dv

+ σ(y)〈v′′〉d−1+2sχ(y, v′′)

(
(−∆v)

s

∫ ∫
ξδ(y − x)ηδ(v − v′)u(x, v′)ζ1(v

′; v)dv′dx

)
(y, v′′)

+ χ(y, v′′)〈v′′〉d−1+2s

∫ ∫
(σ(x)− σ(y))ξδ(y − x)((−∆v)

s/2w)(x, v)((−∆v)
s/2ηδ)(v′′ − v)dvdx

− χ(y, v′′)
∫ ∫

σ(x)ξδ(y − x)((−∆v)
s/2w)(x, v)

∫
ηδ(v′′ − v′)ζ2(v′, v′′)− ηδ(v′′ − v)ζ2(v, v

′′)
|v − v′|d−1+s

dv′dvdx

+ c(χ · (ξδ ⊗ ηδ) ∗ (σu))(y, v′′)

=:

6∑

i=1

Ii,

where ζ1(v
′; v) = 1

〈v′〉d−1−2s − 1
〈v〉d−1−2s and ζ2(v, v

′′) = 〈v〉d−1+2s − 〈v′′〉d−1+2s.

We will show that h ∈ L2(Rd×R
d−1; 〈v〉−2(d−1)dxdv), with norm bounded by the sum of ‖u‖L2

and ‖(−∆θ)
s/2u‖L2 , times a constant factors that is independent of the mollifying parameter δ.

We recall that integrating over the unit sphere translates into integration on R
d−1 for the measure

〈v〉−2(d−1)dv. Our main tool throughout the next computations is Young’s inequality.
•We start with I6, whose upper bounds is obtained by a simple application of Young’s inequality:

‖I6‖L2(Rd×Sd−1) . ‖〈v〉−(d−1)χ · ξδ ⊗ ηδ ∗ σu‖L2(Rd×Rd−1) . ‖ξδ ⊗ ηδ‖L1(Rd×Rd−1)‖u‖L2(Rd×Sd−1).

• Let’s recall the equivalence of norms in (2.3). For I5, we have that

‖I5‖L2(Rd×Sd−1) . C‖(−∆θ)
s/2u‖L2(Rd×Sd−1),
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with a constant depending on

(B.1)

sup
v′′∈sup(χ)

∥∥∥∥〈v
′′ − ·〉d−1−2s

∫
ηδ(v′)ζ2(v′′ − v′, v′′)− ηδ(·)ζ2(v′′ − ·, v′′)

| · −v′|d−1+s
dv′
∥∥∥∥
L1(Rd−1)

;

sup
v∈Rd−1

∥∥∥∥〈v〉
d−1−2s

∫
ηδ(· − v′)ζ2(v′, ·)− ηδ(· − v)ζ2(v, ·)

|v − v′|d−1+s
dv′
∥∥∥∥
L1(supp(χ))

.

Let us verify that the previous quantities are finite and remain bounded as δ → 0. After rescaling
the integration variables, the first integral takes the form

∫
〈v′′ − δv〉d−1−2s

∣∣∣∣
∫
ζ3(v + z, v′′)− ζ3(v, v

′′)
δs|z|d−1+s

dz

∣∣∣∣ dv,

where ζ3(v, v
′′) = η(v)ζ2(v

′′ − δv, v′′) = η(v)(〈v′′ − δv〉d−1+2s − 〈v′′〉d−1+2s). For |z| < 1,

|ζ3(v + z, v′′)− ζ3(v, v
′′)|

≤ |z|
∫ 1

0
|∇ζ3(v + tz, v′′)|dt

≤ δ|z|
∫ 1

0

∫ 1

0
|∇η(v + tz)||(v′′ − τδ(v + tz)) · (v + tz)|〈v′′ − τδ(v + tz)〉d−3+2sdτdt

+ δ|z|
∫ 1

0
|η(v + tz)||v + tz|〈v′′ − δ(v + z)〉d−3+2sdt.

Therefore, since v′′ ∈ supp(χ) and η is compactly supported, we have

∫
〈v′′ − δv〉d−1−2s

∫

|z|<1

ζ3(v + z, v′′)− ζ3(v, v
′′)

δs|z|d−1+s
dzdv

≤ δ1−s

∫ ∫

|z|<1

∫ 1

0

∫ 1

0

|∇η(v + tz)||v + tz|〈v′′ − τδ(v + tz)〉d−2+2s〈v′′ − δv〉d−1−2s

|z|d−1−(1−s)
dτdtdzdv

+ δ1−s

∫ ∫

|z|<1

∫ 1

0

|η(v + tz)||v + tz|〈v′′ − δ(v + z)〉d−3+2s〈v′′ − δv〉d−1−2s

|z|d−1−(1−s)
dtdzdv

. δ1−s

∫

|z|<1

1

|z|d−1−(1−s)
dz.

For |z| ≥ 1 we instead have that

|ζ3(v + z, v′′)− ζ3(v, v
′′)|

≤ δη(v + z)

∫ 1

0
|(v′′ − tδ(v + z)) · (v + z)|〈v′′ − tδ(v + z)〉d−3+2sdt

+ δη(v)

∫ 1

0
|(v′′ − tδv) · v|〈v′′ − tδv〉d−3+2sdt.
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Thus, using again the compactness of the support of η, for all v′′ ∈ supp(χ),

∫
〈v′′ − δv〉d−1−2s

∫

|z|≥1

ζ3(v + z, v′′)− ζ3(v, v
′′)

δs|z|d−1+s
dzdv

≤ δ1−s

∫ ∫

|z|≥1

∫ 1

0

η(v + z)|(v′′ − tδ(v + z)) · (v + z)|〈v′′ − tδ(v + z)〉d−3+2s〈v′′ − δv〉d−1−2s

|z|d−1+s
dtdzdv

+ δ1−s

∫ ∫

|z|≥1

∫ 1

0

η(v)|(v′′ − tδv) · v|〈v′′ − tδv〉d−3+2s〈v′′ − δv〉d−1−2s

|z|d−1+s
dtdzdv

. δ1−s

∫

|z|≥1

1

|z|d−1+s
dz.

Regarding the second quantity in (B.1) we see that after a rescaling of all the variables v, v′ and
v′′ we get

∫

δsupp(χ)
〈δv〉d−1−2s

∣∣∣∣
∫
η(v′′ − v′)ζ2(δv′, δv′′)− η(v′′ − v)ζ2(δv, δv

′′)
δs|v − v′|d−1+s

dv′
∣∣∣∣ dv

′′.

We enlarge the domain of integration for v′′ to a fixed ball Br containing supp(χ). Since η has
compact support, we can find R > 0 large enough so that η(v′′ − v′) = η(v′′ − v) = 0 whenever
|v′|, |v| > R.

Following similar computations as above we deduce the following upper bound for the region
|v|, |v′| < R:

∫

Br

〈δv〉d−1−2s

∣∣∣∣∣

∫

|v′|<R

η(v′′ − v′)ζ2(δv′, δv′′)− η(v′′ − v)ζ2(δv, δv
′′)

δs|v − v′|d−1+s
dv′
∣∣∣∣∣ dv

′′

. δ1−s

∫

|z|<2R

1

|z|d−1−(1−s)
dz.

In the case of |v| < R and |v′| > R, we obtain an upper bound, up to a constant factor, given by

∫

Br

∣∣∣∣∣

∫

R/2<|v′|<2R

η(v′′ − v′)ζ2(δv′, δv′′)− η(v′′ − v)ζ2(δv, δv
′′)

δs|v − v′|d−1+s
dv′
∣∣∣∣∣ dv

′′

+

∫

Br

∣∣∣∣∣

∫

|v′|>2R

ζ2(δv, δv
′′)

δs|v − v′|d−1+s
dv′
∣∣∣∣∣ dv

′′

. δ1−s

(∫

|z|<R

1

|z|d−1−(1−s)
dz +

∫

|z|>2R

1

|z|d−1+s
dz

)
,

and similarly, for |v| > R/2 and |v′| < R we get the upper bounds

∫

Br

∣∣∣∣∣

∫

|v′|<R

η(v′′ − v′)ζ2(δv′, δv′′)− η(v′′ − v)ζ2(δv, δv
′′)

δs|v − v′|d−1+s
dv′
∣∣∣∣∣ dv

′′

. δ1−s

∫

|z|<3R

1

|z|d−1−(1−s)
dz,
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if R/2 < |v| < 2R, and for |v| > 2R,

∫

Br

〈δv〉d−1−2s

∣∣∣∣∣

∫

|v′|<R

η(v′′ − v′)ζ2(δv′, δv′′)
δs|v − v′|d−1+s

dv′
∣∣∣∣∣ dv

′′

. δ1−s 〈δv〉d−1−2s

(|v| − |R|)d−1+s
. δ1−s.

• We analyze now the L2-norm of I4. Again by Young’s inequality we obtain the estimate

‖I4‖L2(Rd×Sd−1) . C‖(−∆θ)
s/2u‖L2(Rd×Sd−1),

with a constant depending on

(B.2)

sup
(y,v′′)∈supp(χ)

∥∥∥(σ(·)− σ(y))ξδ(y − ·)((−∆v)
s/2ηδ)(v′′ − ·)

∥∥∥
L1(Rd×Rd−1)

;

sup
(x,v)∈Rd×Rd−1

∥∥∥(σ(x)− σ(·))ξδ(· − x)((−∆v)
s/2ηδ)(· − v)

∥∥∥
L1(supp(χ))

.

Both terms above are O(δ1−s), since for all x, y ∈ R
d,

‖(σ(·) − σ(y))ξδ(y − ·)‖L1(Rd), ‖(σ(x) − σ(·))ξδ(· − x)‖L1(Rd) . δ

and for all v ∈ R
d−1 and v′′ ∈ supp(χ),

‖((−∆v)
s/2ηδ)(v′′ − ·)‖L1(Rd−1), ‖((−∆v)

s/2ηδ)(· − v)‖L1(supp(χ)) . δ−s.

• We write I3 as follows

I3 = σ(y)〈v′′〉d−1+2sχ(y, v′′)
∫
ξδ(y − x)

u(x, v′)
〈v′〉d−1

×
∫ ηδ(v − v′)

(
〈v′〉2s − 〈v′〉d−1

〈v〉d−1−2s

)
− ηδ(v′′ − v′)

(
〈v′〉2s − 〈v′〉d−1

〈v′′〉d−1−2s

)

|v − v′′|d−1+2s
dvdv′dx.

Thus, we obtain the estimate

‖I3‖L2(Rd×Sd−1) ≤ C‖u‖L2(Rd×Sd−1),

for a constant depending on

(B.3)

sup
v′′∈supp(χ)

∥∥∥∥∥∥

∫ ηδ(v − ·)
(
〈·〉2s − 〈·〉d−1

〈v〉d−1−2s

)
− ηδ(v′′ − ·)

(
〈·〉2s − 〈·〉d−1

〈v′′〉d−1−2s

)

|v − v′′|d−1+2s
dv

∥∥∥∥∥∥
L1(Rd−1)

;

sup
v′∈Rd−1

∥∥∥∥∥∥

∫ ηδ(v − v′)
(
〈v′〉2s − 〈v′〉d−1

〈v〉d−1−2s

)
− ηδ(v′′ − v′)

(
〈v′〉2s − 〈v′〉d−1

〈·〉d−1−2s

)

|v − ·|d−1+2s
dv

∥∥∥∥∥∥
L1(supp(χ))

.

By rescaling v, v′ and v′′ and after a change of variables the integrand takes the form

∫ ηδ(v′′ + z − v′)
(
〈v′〉2s − 〈v′〉d−1

〈v′′+z〉d−1−2s

)
− ηδ(v′′ − v′)

(
〈v′〉2s − 〈v′〉d−1

〈v′′〉d−1−2s

)

|z|d−1+2s
dz

=
1

2

∫
ζ4(v

′′ + z, v′) + ζ4(v
′′ − z, v′)− 2ζ4(v

′′, v′)
δ2s|z|d−1+2s

dz
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for ζ4(v, v
′) = η(v − v′)

(
〈δv′〉2s − 〈δv′〉d−1

〈δv〉d−1−2s

)
. We also notice that for v′′ ∈ Br (see definition

above), since η has compact support, the integrand is compactly supported as a function of z and
v′. Therefore, we set R > 0 so that such support is contained |z|, |v′| < R. We have that

∣∣ζ4(v′′ + z, v′) + ζ4(v
′′ − z, v′)− 2ζ4(v

′′, v′)
∣∣ ≤ ‖∇2ζ4‖∞|z|2

and the desired estimates follow after showing that ‖∇2ζ4‖∞ . δ2. With this in mind, we first
observe that

∣∣∣∣〈δv
′〉2s − 〈δv′〉d−1

〈δv〉d−1−2s

∣∣∣∣ . δ2
∫ 1

0

|v + t(v′ − v)|
〈δ(v + t(v′ − v))〉d+1−2s

|v − v′|dt . δ2,

in the support of the integrand. We also have that on the same support,

∣∣∣∣∇v

(
〈δv′〉2s − 〈δv′〉d−1

〈δv〉d−1−2s

)∣∣∣∣ ,
∣∣∣∣∇

2
v

(
〈δv′〉2s − 〈δv′〉d−1

〈δv〉d−1−2s

)∣∣∣∣ . δ2.

• For I2 we see that for |v′′| > R with R > 0 large enough so the support of χ is contained in
the ball BR/2 ×BR/2, then

|I2| . 〈v′′〉d−1+2s

∫
(
(ξδ⊗ηδ∗u)(y,v)

〈v〉d−1−2s − (ξδ⊗ηδ∗u)(y,v′′)
〈v′′〉d−1−2s

)
χ(y, v)

(|v′′| −R/2)d−1+2s
dv

.

∫

BR/2

(
(ξδ ⊗ ηδ ∗ u)(y, v)

〈v〉d−1−2s
− (ξδ ⊗ ηδ ∗ u)(y, v′′)

〈v′′〉d−1−2s

)
dv

.

∫

BR/2

|(ξδ ⊗ ηδ ∗ u)(y, v)|dv + |(ξδ ⊗ ηδ ∗ u)(y, v′′)|,

and consequently,

∫

Rd×Bc
R

|I2(y, v′′)|2
dydv′′

〈v′′〉2(d−1)

.

∫

BR/2×Bc
R

∣∣∣∣∣

∫

BR/2

|(ξδ ⊗ ηδ ∗ u)(y, v)|dv + |(ξδ ⊗ ηδ ∗ u)(y, v′′)|
∣∣∣∣∣

2
dydv′′

〈v′′〉2(d−1)
. ‖u‖L2(Rd×Sd−1).

On the other hand, noticing that

(ηδ ⊗ ηδ ∗ u)
〈v〉d−1−2s

=

∫
ηδ(v′)w(v − v′)dv′ +

∫
ηδ(v − v′)u(v′)

(
1

〈v〉d−1−2s
− 1

〈v′〉d−1−2s

)
dv′,
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and denoting ζ5(v, v
′) = ηδ(v − v′)

(
1

〈v〉d−1−2s − 1
〈v′〉d−1−2s

)
, we have that

∫

Rd×BR

|I2(y, v′′)|2
dydv′′

〈v′′〉2(d−1)

.

∫

BR/2×BR

〈v′′〉4s
∣∣∣∣∣∣

∫
(
(ξδ⊗ηδ∗u)(y,v)

〈v〉d−1−2s − (ξδ⊗ηδ∗u)(y,v′′)
〈v′′〉d−1−2s

)
(χ(y, v)− χ(y, v′′))

|v − v′′|d−1+2s
dv

∣∣∣∣∣∣

2

dydv′′

.

∫

BR/2×BR

〈v′′〉4s
∣∣∣∣∣

∫ (
(ξδ ⊗ ηδ ∗ w)(y, v) − (ξδ ⊗ ηδ ∗ w)(y, v′′)

)
(χ(v)− χ(v′′))

|v − v′′|d−1+2s
dv

∣∣∣∣∣

2

dydv′′

+

∫

BR/2×BR

〈v′′〉4s
∣∣∣∣
∫

(χ(y, v) − χ(y, v′′))

×
(∫
ξδ(y − x)ζ5(v, v

′)u(x, v′)dxdv′ −
∫
ξδ(y − x)ζ5(v

′′, v′)u(x, v′)dxdv′
)

|v − v′′|d−1+2s
dv

∣∣∣∣∣

2

dydv′′

. ‖(−∆v)
s/2(ξδ ⊗ ηδ ∗ w)‖2L2

+

∫

BR/2×BR

∣∣∣∣
∫
ξδ(y − x)

(∫ ∫ |ζ5(v, v′)− ζ5(v
′′, v′)|

|v − v′′|d−1+2s−1
|u(x, v′)|dv′dv

)
dx

∣∣∣∣
2

dydv′′

. ‖ξδ ⊗ ηδ‖2L1‖(−∆v)
s/2w‖2L2

+

∫

BR/2×BR

∣∣∣∣
∫ ∫ |ζ5(v, v′)− ζ5(v

′′, v′)|
|v − v′′|d−1+2s−1

|u(y, v′)|dv′dv
∣∣∣∣
2

dydv′′

. ‖(−∆v)
s/2w‖2L2

+

∫

BR/2×BR

∣∣∣∣
∫ (∫ |ζ5(v, v′)− ζ5(v

′′, v′)|
|v − v′′|d−1+2s−1

〈v′〉d−1dv

) |u(y, v′)|
〈v′〉d−1

dv′
∣∣∣∣
2

dydv′′

. ‖(−∆θ)
s/2u‖2L2 + C‖u‖L2(Rd×Sd−1),

with C depending on both:

sup
v′′∈BR

∫ ∫ |ζ5(v, v′)− ζ5(v
′′, v′)|

|v − v′′|d−1+2s−1
〈v′〉d−1dvdv′;

sup
v′∈Rd−1

∫

BR

∫ |ζ5(v, v′)− ζ5(v
′′, v′)|

|v − v′′|d−1+2s−1
〈v′〉d−1dvdv′′.

We need to make sure that these quantities do not diverge as δ → 0. Indeed, rescaling all three
variables v, v′ and v′′, we get

∫ ∫ |ζ5(v, v′)− ζ5(v
′′, v′)|

|v − v′′|d−1+2s−1
〈v′〉d−1dvdv′

=

∫ ∫
∣∣∣η(v − v′)

(
1

〈δv〉d−1−2s − 1
〈δv′〉d−1−2s

)
− η(v′′ − v′)

(
1

〈δv′′〉d−1−2s − 1
〈δv′〉d−1−2s

)∣∣∣
δ2s−1|v − v′′|d−1+2s−1

〈δv′〉d−1dvdv′.
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The numerator above is bounded by

|v − v′′|
∫ 1

0
|∇η(v′′ + t(v − v′′)− v′)|

∣∣∣∣
1

〈δ(v′′ + t(v − v′′))〉d−1−2s
− 1

〈δv′〉d−1−2s

∣∣∣∣ 〈δv
′〉d−1dt

+ δ|v − v′′|
∫ 1

0
|η(v′′ + t(v − v′′)− v′)| δ |v′′ + t(v − v′′)|

〈δ(v′′ + t(v − v′′))〉d+1−2s
〈δv′〉d−1dt

. δ|v − v′′|
∫ 1

0
(|∇η(v′′ + t(v − v′′)− v′)|+ |η(v′′ + t(v − v′′)− v′)|)dt,

which implies that the quantities above are O(δ2(1−s)).
We conclude this section with the estimation of ‖I1‖L2 . We see that

‖I1‖2L2 .

∫ (
(ξδ ⊗ ηδ ∗ u)(y, v′′)

〈v′′〉d−1

((−∆v)
sχ)(y, v′′)

〈v′′〉d−1−4s

)2

dydv′′

.

∥∥∥∥
(ξδ ⊗ ηδ ∗ u)(y, v′′)

〈v′′〉d−1

∥∥∥∥
2

L2

∥∥∥∥
((−∆v)

sχ)(y, v′′)
〈v′′〉d−1−4s

∥∥∥∥
2

∞
.

The first term on the left is estimated by noticing that
∥∥∥∥
(ξδ ⊗ ηδ ∗ u)(y, v′′)

〈v′′〉d−1

∥∥∥∥
2

L2

=

∥∥∥∥
∫
ξδ(y − x)ηδ(v′′ − v)〈v〉d−1

〈v′′〉d−1

u(x, v)

〈v〉d−1
dxdv

∥∥∥∥
2

L2

≤ C‖u‖2L2(Rd×Sd−1),

for a constant depending on

sup
v′′∈Rd−1

∫
ηδ(v′′ − v)〈v〉d−1

〈v′′〉d−1
dv = sup

v′′∈Rd−1

∫
η(v′′ − v)〈δv〉d−1

〈δv′′〉d−1
dv . ‖η‖L1 ;

and similarly

sup
v∈Rd−1

∫
ηδ(v′′ − v)〈v〉d−1

〈v′′〉d−1
dv′′ . ‖η‖L1 .

On the other hand,
∣∣∣∣
((−∆v)

sχ)(y, v′′)
〈v′′〉d−1−4s

∣∣∣∣ =
1

〈v′′〉d−1−4s

∫ |χ(y, v′′ + z) + χ(y, v′′ − z)− 2χ(y, v′′)|
|z|d−1+2s

dz

≤
(

sup
v′′,z∈Rd−1

|∇2
zχ(y, v

′′ + z)|
〈v′′〉d−1−4s

)∫
1

|z|d−1−2(1−s)
dz

+

(
sup

v′′,z∈Rd−1

|χ(y, v′′ + z)|
〈v′′〉d−1−4s

)∫
1

|z|d−1+2s
dz.

Therefore,
∥∥∥ ((−∆v)sχ)(·)

〈·〉d−1−4s

∥∥∥
∞
<∞.

Appendix C. Estimates for h(v, v′)

We recast h(v, v′) as

(C.1)
h(v, v′) = 〈v〉〈v′〉 − v · v′ − 1 = 〈v〉〈v′〉 − 1

2
(|v|2 + |v′|2) + 1

2
|v − v′|2 − 1

=
1

2
|v − v′|2 − 1

2

(
〈v〉 − 〈v′〉

)2
.
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This directly gives

(C.2) h(v, v′) ≤ 1

2
|v − v′|2.

On the other hand, denoting p(v′) = 〈v′〉, one realizes that it satisfies

|∇p(v′)| ≤ |v′|
〈v′〉 =

√
1− 1

〈v′〉2 .

Therefore,

|p(v′)− p(v)| ≤
(∫ 1

0

√
1− 1

〈v + t(v′ − v)〉2 dt
)
|v′ − v|.

If ρ = |v − v′| > |v| we see that

∫ 1

0

√
1− 1

〈v + t(v′ − v)〉2 dt ≤
∫ 1

0

√
1− 1

1 + 2(1 + t2)ρ2
dt

≤
√
2ρ√

1 + 2ρ2

∫ 1

0

√
1 + t2dt <

(
t
√
1 + t2

2
+

1

2
ln
(
t+

√
1 + t2

))∣∣∣∣∣

1

0

=
1√
2

(
1− 1√

2
ln(1 +

√
2)

)
,

which is strictly positive (this follows from the inequality ln(1 + x) < x for x > 0) and smaller
than 1. This implies

|p(v′)− p(v)| ≤ 1√
2

(
1− 1√

2
ln(1 +

√
2)

)
|v′ − v|.

Similarly, if now we set ρ = |v| > |v′ − v|, the same computations leads us to conclude that there
is c ∈ (0, 1) such that

|p(v′)− p(v)| ≤ c|v − v′|, ∀v, v′ ∈ R
d−1.

Then, from the above, (C.1), and (C.2), we conclude that

(C.3)
β

2
|v − v′|2 ≤ h(v, v′) ≤ 1

2
|v − v′|2,

for β =

(
1− 1

2

(
1− 1√

2
ln(1 +

√
2)
)2)

∈ (0, 1).

In addition, h(v, v + z) satisfies the following inequality for |v| < R and |z| < 1:

(C.4)

∣∣∣∣
1

h(v, v + z)α
− 1

h(v, v − z)α

∣∣∣∣

.

∣∣h(v, v + z)α−1 + h(v, v − z)α
∣∣

h(v, v + z)αh(v, v − z)α−1

∣∣∣(〈v〉 − 〈v + z〉)2 − (〈v〉 − 〈v − z〉)2
∣∣∣

.
1

|z|2(α+1)

∣∣∣(〈v〉 − 〈v + z〉)2 − (〈v〉 − 〈v − z〉)2
∣∣∣

.
1

|z|d−1+2s+2
|〈v + z〉 − 〈v − z〉| |2〈v〉 − 〈v + z〉 − 〈v − z〉| .

1

|z|d−1+2s−1
,

for a constant depending on R.
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Appendix D. Subelliptic estimates

In this appendix we use results from [1] to obtain subelliptic regularity for a kinetic equation
with singular scattering kernel of fractional order. We consider

(D.1) ∂tf + v · ∇xf =

∫

Rd

k(t, x, v, z)(f(v + z)− f(v))dz + g, t ∈ R, x ∈ R
d, v ∈ R

d,

for a kernel given by

(D.2) k(t, x, v, z) = a(t, x)
〈v〉s〈v + z〉s

h(v, v + z)
d−1
2

+s
, with h(v, v + z) =

1

2
|z|2 − 1

2
(〈v〉 − 〈v + z〉)2,

and with a(t, x) a continuous and positive function, bounded from below by a positive constant.
We prove the following:

Theorem D.1. Let f be a smooth solution to (D.1)-(D.2) with compact support contained in a
bounded set Ω ⊂ R× R

d ×Bρ for some small ρ > 0. Then,

‖(−∆v)
sf‖L2 + ‖(−∆x)

s
1+2s f‖L2 ≤ Ck,Ω

(
‖g‖L2 + ‖f‖L2 + ‖(−∆v)

s/2f‖L2

)
.

Proof. We rewrite equation (D.1) in the following form

(D.3) ∂t + v · ∇xf + ã(t, x, v)(−∆v)
sf = g̃,

with ã(t, x, v) =
(

2
β

) d−1
2

+s
〈v〉2sa(t, x) and, denoting α = d−1

2 + s, a source term given by

g̃ = g + 〈v〉sa(t, x)
∫

(f(v + z)− f(v))(〈v + z〉s − 〈v〉s)
h(v, v + z)α

dz

+ 〈v〉2sa(t, x)
∫

(f(v + z)− f(v))

(
1

h(v, v + z)α
− 1

(β2 |z|2)α

)
dz.

Furthermore, since f(t, x, v) is compactly supported, we can assume without loss of generality that
ã is of the form b2(t, x, v)χ(t, x, v) + a−, for b2(t, x, v) = (ã(t, x, v)− ã−), χ smooth and compactly
supported, and ã− = inft,x,v ã(t, x, v) > 0 constant. This can be seen by following an application
of Jensen’s inequality when integrating over the region |v| > R≫ ρ. In fact,

∫

|v|>R
|〈v〉2s(−∆v)

sf |2dv =

∫

|v|>R
〈v〉4s

(∫

|z|<ρ

|f(z)|
|v − z|d−1+2s

dz

)2

dv

.

∫

|z|<ρ
|f(z)|2

(∫

|v|>R

〈v〉4s
(|v| − ρ)2(d−1)+4s

dv

)
dz . ‖f‖2L2 .

We then take a cut-off function χ, with compact support satisfying Ω ⊂ supp(χ) ⊂ R×R
d−1×BR,

and write

ã(t, x, v)(−∆v)
sf = (ã(t, x, v) − ã−)(−∆v)

sf + ã−(−∆v)
sf

= (b2(t, x, v)χ(t, x, v) + ã−)
∫

(f(v)− f(v + z))

|z|d−1+2s
dz

+ b2(t, x, v)(1 − χ(t, x, v))

∫
(f(v)− f(v + z))

|z|d−1+2s
dz.
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Therefore, f satisfies the equation

∂t + v · ∇xf + (b2χ+ ã−)(−∆v)
sf = G̃,

for a source G̃ given by

G = g̃ + b2(t, x, v)(1 − χ(t, x, v))

∫
(f(v)− f(v + z))

|z|d−1+2s
dz,

which we claim it satisfies

‖G‖L2 . ‖g‖L2 + ‖f‖L2 + ‖(−∆v)
s/2f‖L2 + ρ‖(−∆v)

sf‖L2 .

For this, it only remains to estimate the norm of the two integral terms in the definition of g̃.
Let us write g̃ = g0 + g1 + g2 with g0 = g. For the second summand, we see that in the region
|v| > R≫ ρ, we repeat some computations above in order to get

∫

|v|>R
|g1(v)|2dv =

∫

|v|>R

(
〈v〉sa(t, x)

∫ |f(v + z)|(〈v + z〉s − 〈v〉s)
|z|d−1+2s

dz

)2

dv

.

∫

|z|<ρ
|f(z)|2

(∫

|v|>R

〈v〉4s
(|v| − ρ)2(d−1)+4s

dv

)
dz . ‖f‖2L2 .

For |v| < R, the estimate follows by noticing that g1(v) satisfies

|g1(v)| .
∫

|z|<1

|f(v + z)− f(v)|
|z|d−1+2s−1

dz +

∫

|z|>1

|f(v + z)− f(v)|
|z|d−1+2s

dz.

Therefore, using Hölder’s inequality, and Jensen’s inequalities for the finite measures |z|−(d−1+2s)dz
in |z| > 1, we obtain

∫

|v|<R
|g1(v)|2 dv .

∫

|v|<R

(∫

|z|<1

|f(v + z)− f(v)|
|z|d−1+2s−1

dz

)2

dv +

∫

|v|<R

(∫

|z|>1

|f(v + z)− f(v)|
|z|d−1+2s

dz

)2

dv

.

∫

|v|<R

(∫

|z|<1

|f(v + z)− f(v)|2
|z|d−1+2s

dz

)(∫

|z|<1

1

|z|d−1−(1−s)

)
dv

+

∫

|v|<R

∫

|z|>1

|f(v + z)− f(v)|2
|z|d−1+2s

dzdv . ‖(−∆v)
s/2f‖2L2 + ‖f‖2L2 .

We now estimate g2(v), which we rewrite as

(D.4)

g2(v) =
〈v〉2sa(t, x)

2

∫
(f(v + z) + f(v − z)− 2f(v))

(
1

h(v, v + z)α
− 1

(12 |z|2)α

)
dz

− 〈v〉2sa(t, x)
2

∫
(f(v + z)− f(v))

(
1

h(v, v + z)α
− 1

h(v, v − z)α

)
dz.

We then split the integration in two and write g2(v) = g>2 (v)+g
<
2 (v), with each summand associated

to the respective region of integration |z| > 1 and |z| < 1. The integrals in g>2 (v) are easily bounded
by ‖f‖L2 and it thus remains to analyze g<2 (v).

We next decomposes g<2 (v) = g<2,1(v)+g
<
2,2(v) following (D.4). We notice that for g<2,2(v) we can

repeat the trick of restricting the estimate to |v| < R for some R≫ ρ, since otherwise, the compact
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support of f allows to estimate the L2-norm of those integrals by ‖f‖L2 . Then, the remaining part
(i.e. for |v| < R) is bounded by a constant factor times

∫

|z|<1
|f(v + z)− f(v)|

∣∣∣∣
1

h(v, v + z)α
− 1

h(v, v − z)α

∣∣∣∣ dz.

It follows directly from (C.4) that

|g<2,2(v)| .
∫

|z|<1

|f(v + z)− f(v)|
|z|d−1+2s−1

dz, for all |v| < R,

and consequently

‖g<2,2(v)‖L2 . ‖(−∆v)
s/2f‖L2 + ‖f‖L2 .

Finally for g<2,1(v), we take a smooth cutoff χ supported inside {|v| < 2ρ}, and χ = 1 in {|v| ≤ ρ},
and split the coefficient 〈v〉2sa(t, x) = a1(t, x, v) + a2(t, x, v), with a1(t, x, v) = χ(v)〈v〉2sa(t, x).
When estimating the norm of g<2,1(v), we obtain an integral associated to each coefficient a1 and

a2. For the latter, the associated integral is easily bounded by Cρ‖f‖L2 as we have done before
(now taking R = 2ρ), for a constant that increases as ρ→ 0. For a1 we have that

‖χ(v)g<2,1(v)‖2L2

=

∫ (
a1(t, x, v)

∫

|z|<1
(f(v + z) + f(v − z)− 2f(v))

(
1

h(v, v + z)α
− 1

(12 |z|2)α

)
dz

)2

dv

=

∫ (∫

|z|<1
f̂(η)(eiη·z + e−iη·z − 2)

∫
e−iη·va1(t, x, v)

(
1

h(v, v + z)α
− 1

(12 |z|2)α

)
dvdz

)2

dη.

We first notice that due to the compact support of a1(t, x, v) as a function of v, which is contained
in the ball |v| < 2ρ, we have that

∣∣∣∣∣

∫
e−iη·va1(t, x, v)

(
1

h(v, v + z)α
− 1

(12 |z|2)α

)
dv

∣∣∣∣∣ .
ρ2

|z|2α .

This follows from the fact that the above difference inside the parentheses is bounded (up to a
constant factor) by |v|2/|z|2α.

We split the integration in ‖χ(v)g<2,2(v)‖2L2 into several regions. For |η| < 1, we simply estimate

|eiη·z + e−iη·z − 2| . |η|2|z|2 ≤ |z|2,
which allows us to bound the integral on this region by a constant times ‖f‖2L2 . For 1 < |η| < 1/|z|,
we use the the inequality |eiη·z + e−iη·z − 2| . |η|2|z|2, and

|η|2
∫

|z|<1/|η|

1

|z|2α−2
dz . |η|2s.

Finally, for |η| > 1/|z| and δ ∈ (0, 2s), we have that |z|−2α ≤ |η|2s−δ/|z|d−1+δ and

|η|2s−δ

∫

1/|η|<|z|<1

1

|z|d−1+δ
dz . |η|2s−δ 1

tδ

∣∣∣
t=1

t=1/|η|
. |η|2s.

With the aids of the previous inequalities and Jensen’s inequality, we obtain

‖χ(v)g<2,1(v)‖2L2 . ρ2
∫

|f̂(η)|2(1 + |η|2s)dη . ρ2
(
‖f‖2L2 + ‖(−∆v)

sf‖2L2

)
.
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In summary, we have deduced the estimate

‖g2(v)‖L2 . Cρ‖f‖L2 + ‖(−∆v)
s/2f‖L2 + ρ‖(−∆v)

sf‖L2 .

We then apply Theorem 1.2 from [1] and obtain

‖(−∆v)
sf‖L2 + ‖(−∆x)

s
1+2s f‖L2 ≤ Ck

(
‖G̃‖L2 + ‖f‖L2

)
,

where if f is assumed to have a sufficiently small support, then we can absorb the term ρ‖(−∆v)
sf‖L2

in the upper bound with the left hand side and conclude that

‖(−∆v)
sf‖L2 + ‖(−∆x)

s
1+2s f‖L2 ≤ Ck,ρ

(
‖g‖L2 + ‖f‖L2 + ‖(−∆v)

s/2f‖L2

)
.

�

Remark D.2. From the previous theorem and its proof we also obtain that
∥∥∥∥
∫

Rd

k(t, x, v, z)(f(v + z)− f(v))dz

∥∥∥∥
L2

. ‖f‖L2 + ‖(−∆v)
s/2f‖L2 + ‖(−∆v)

sf‖L2 .
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