
MULTIPLE SOLUTIONS FOR SOME
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Abstract. We consider a boundary value problem in a bounded domain involving a degenerate
operator of the form

L(u) = −div(a(x)∇u)

and a suitable nonlinearity f . The function a vanishes on smooth 1-codimensional submanifolds
of Ω where it is not allowed to be C2. By using weighted Sobolev spaces we are still able to find
existence of solutions which vanish, in the trace sense, on the set where a vanishes.
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1. Introduction

In this paper we are interested in the existence of “suitable” solutions for a degenerate nonlinear
elliptic equation of second order in a bounded and smooth domain in RN with homogeneous
Dirichlet boundary condition. More specifically the equation under study is driven by the operator

L(u) = −div(a(x)∇u)

where, a : Ω→ [0,+∞), among other assumptions, is a continuous function such that a(x) > 0 in
the whole Ω except for suitable 1−codimensional submanifolds contained in Ω where it vanishes.
Hence the ellipticity of L is broken somewhere in Ω. This kind of operator is also called degenerate
due to the fact that a−1 is unbounded.

Degenerate operators appear in many situations. Indeed it is known that many physical
phenomena are described by degenerate evolution equations, where the degeneracy can be due
to the vanishing of the time derivative coefficient or to the vanishing of the diffusion coefficient. In
this context there is a strong connexion between degenerate 2nd order differential operators and
Markov processes: roughly speaking these operators describe a diffusion phenomena of Markovian
particle which moves until it reaches the set where the absorption takes place and here the particle
“dies”. Because of this fact, degenerate equations are appropriate to describe fluid diffusion in
nonhomogeneous porous media taking into account saturation and porosity of the medium. For
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more applications and problems involving degenerate operators one can see e.g [1–4, 16] and the
references therein.

Mathematically speaking, for degenerate partial differential equations, i.e., equations with
various types of singularities in the coefficients, it is natural to look for solutions in weighted
Sobolev spaces. A class of weights, which is particularly well understood, is the class of Ap−weights
(or Muckenhoupt class) that was introduced by B. Muckenhoupt. The importance of this class is
that powers of distance to submanifolds of RN often belong to Ap (see [12]) and these weight have
found many useful applications also in harmonic analysis (see [19]). However there are also many
other interesting examples of weights (see [9] for p-admissible weights). For some references on this
subject see also [5–7,11], and for other applications of weighted Sobolev spaces see also [18].

To motivate the choice of the problem under study let us see the following example. Suppose
additionally that f : R → R is a continuous function such that f(s) = 0 if and only if s = 0.
Let Ω ⊂ RN , N ≥ 2 be a smooth and bounded domain and assume that a ∈ C1(Ω) is a positive
function with a−1(0) which is a regular connected submanifold compactly contained in Ω and such
that ∇a(x) = 0 for any x ∈ a−1(0). Consider the problem

(1.1) − div(a(x)∇u) = f(u) in D′(Ω).

Following [17] we say that u∗ ∈ D′(Ω) is a solution if u∗ ∈ C1(Ω) and the equation is satisfied
in the sense of distribution, i.e.∫

Ω
a(x)∇u∗∇ϕ =

∫
Ω
f(u∗)ϕ ∀ϕ ∈ C∞c (Ω).

But then from (1.1) it follows, that

−∇a(x)∇u∗ − a(x)∆u∗ = f(u∗) in D′(Ω)

and since f(u∗) and ∇a(x)∇u∗ are continuous functions, so is a(x)∆u(x) (note that a vanishes on
a null set) and we obtain

−∇a(x)∇u∗ − a(x)∆u∗ = f(u∗(x)) ∀x ∈ Ω.

From this identity we deduce

x ∈ a−1(0) =⇒ f(u∗(x)) = 0 =⇒ u∗(x) = 0.

In other words, for such a problem, the solution is zero whenever a is zero.

Motivated by this fact we study in this paper the existence of weak solutions for a degenerate
elliptic operator in a bounded domain with homogeneous Dirichlet boundary condition and with
the additional condition that our solutions are zero (in the sense of trace) on the set where a
vanishes. More specifically the problem under study is the following.

Let Ω ⊂ RN , N ≥ 2 be a smooth and bounded domain, a ∈ C(Ω), a ≥ 0 and f ∈ C(R) are
functions satisfying:

(a1) a−1(0) = ∪kl=1Γl ⊂ Ω is the disjoint union of a finite number k of compact, connected,
without boundary and 1-codimensional smooth submanifolds Γl of RN ,

(a2) a ∈ A2 (the standard Muckenhoupt class) and 1/a ∈ Lt(Ω), for some t > N/2,
and

(f1) f has a strict local minimum in s = 0 with f(0) = 0, and there exists s∗ > 0 such that
f(s∗) = 0 and f > 0 in (0, s∗),

(f2) there exists γ = limt→0+ f(s)/t > 0 and aMj := maxx∈Dja(x) < γ/λ1(Dj), where λ1(Dj)

is the first eigenvalue of the Dirichlet Laplacian in Dj and Dj stands for any connected
component of Ω\a−1{0}.
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Consider the problem

(P)

{
−div(a(x)∇u) = f(u) in Ω,

u = 0 on ∂Ω ∪ a−1(0)

The requirement that u vanishes also on the set a−1(0) is motivated by the previous example.

A weak solution of (P) is a function u∗ ∈W 1,1
0 (Ω \ a−1(0)) ∩ L∞(Ω) such that∫

Ω
a(x)∇u∗∇ϕ =

∫
Ω
f(u∗)ϕ, ∀ϕ ∈ C∞c (Ω\a−1(0)).

Note that, since a ∈ C(Ω) and f ∈ C(R), the above identity makes sense. The choice of the space
W 1,1

0 (Ω \ a−1(0)) in place of the more common space H1
0 (Ω \ a−1(0)) is due to the fact that we do

not know if the gradient of the solution u∗ we find is in L2(Ω \ a−1(0)).

Before to continue, let us make few comments on the assumptions. First of all, note that we are
just assuming the continuity of a and, in contrast to our motivating problem (1.1), the function f
is also allowed to vanish in many points (assumption (f1)); however there is a relation of its first
right derivative in zero with the function a (assumption (f2)).

The class A2 which appears in assumption (a2) is the Muckenhoupt class. We prefer do not
recall the right definition here (see the next Section) but roughly speaking it gives a condition
on the summability of a and 1/a and it seems the right class to work with and define reasonable
weighted Sobolev spaces for such a problem.

Finally it is worth to say that assumption (a1) appeared also in [14] where the authors study
an operator of type div(A(x)∇u), for a suitable matrix A which can vanish. They are interested
actually in establishing Poincaré type inequalities for such a degenerate operator.

Remark 1. It is easy to exhibits example of functions a satisfying our assumptions. Let Ω = B2(0)
be the ball entered in 0 in RN , N ≥ 2 of radius 2.

Take a radial function whose profile in the radial variable has zeroes of order less then one, for
example

a(r) =

{
3
√

1− r2 if r ∈ [0, 1],√
(1− r)(r − 2) if r ∈ (1, 2].

Then it is easy to check that a ∈ A2, 1/a ∈ Lt(Ω) for any t ∈ [1, 2N) and then (a2) holds. The
function is of course not of class C1 where it vanishes.

Similarly, consider a function which is strictly positive in the center of the ball Ω and whose
radial profile is C1, with null derivative in the origin, and of type

a(r) =



smooth and positive if r ∈ [0, 1/5],

(r − 1)2√
|r − 1|

if r ∈ (1/5, 6/5],

smooth and positive if r ∈ (6/5, 11/5),

(r − 2)2√
|r − 2|

if r ∈ [11/5, 2].

It is easy to check that a ∈ A2, 1/a ∈ Lt(Ω) for any t ∈ [1, 2N/3) and then (a2) holds. Such a
function is C1 in all Ω, and C2 in Ω except where it vanishes.

Note however that functions that are C2 where they vanish are not allowed by our hypothesis.
Indeed, if a were positive and of class C2 in a neighbourhood of x0 ∈ Ω where a(x0) = 0, then by
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the Taylor expansion,

a(x) ≤ C|x− x0|2 in a neighbourhood Ux0 of x0.

It follows
1

a(x)N/2
≥ C

|x− x0|N
in Ux0

then 1/a /∈ LN/2(Ω) and hence (a2) cannot be satisfied.

To state our main result let us fix some notations.
Denote Γk+1 = ∂Ω. Let π0(Ω \ a−1(0)) be the usual quotient space of Ω \ a−1(0) under

the equivalence relation which identifies points that can be joint with a continuous arch. Then
χ := card π0(Ω \ a−1(0)) ≥ 1 gives the number of connected components of Ω \ a−1(0). Let us
write

χ =

m∑
i=1

ji, ji ∈ N, j1 ≥ 1,

where ji stands for the number of subdomains of Ω\a−1(0) whose boundary is made exactly
by i connected 1-codimensional submanifolds of RN . These domains are denoted with
A(i)

1 ,A(i)
2 , . . . ,A(i)

ji
. See the Figure 1 and Figure 2 for two examples in dimension two.

Our result states that the number of solutions of (P) is related to χ.

Theorem 1.1. Suppose that (a1),(a2), (f1), (f2) hold. Then, problem (P) has at least 2χ − 1
nonnegative (and nontrivial) weak solutions. More specifically, the number of positive solutions
with n bumps, n ∈ {1, . . . , χ}, is given by the binomial coefficient χ!

n!(χ−n)! .

We point out that we will use variational methods to prove our result and we will work in the
weighted Sobolev space H1

0 (Ω, a); so the solutions we find actually will belong to this space.

The paper is organised as follows. In the next Section 2 we recall some basic facts on weighted
Sobolev spaces to establish the framework of our problem. In Section 3 a suitable problem is solved
which will be the main ingredient to prove our main result in the last Section 4.

A(1)
1

<latexit sha1_base64="X7B65eHDvRHpIghJmXqnxT2kTnc=">AAACDHicbVC7TsNAEDzzJrwCNEhQnEiQoInsUIBEE6ChDBIhEUmI1pdNOOX80N0aCVnhE+AnKIGKDtHyDxT8C7ah4DXVaGZXOztuqKQh236zRkbHxicmp6ZzM7Nz8wv5xaVTE0RaYE0EKtANFwwq6WONJClshBrBcxXW3cFh6tcvURsZ+Cd0FWLbg74ve1IAJVInv1IstjygCwGK73diZ3gebzpbw2Kxky/YJTsD/0ucL1KoFG73umdr99VO/r3VDUTkoU9CgTFNxw6pHYMmKRQOc63IYAhiAH1sJtQHD007zj4Y8o3IAAU8RM2l4pmI3zdi8Iy58txkMk1rfnup+J/XjKi3246lH0aEvkgPkVSYHTJCy6Qa5F2pkQjS5MilzwVoIEItOQiRiFHSVS7pw/n9/V9yWi4526XycVLMAfvEFFtl62yTOWyHVdgRq7IaE+ya3bEH9mjdWE/Ws/XyOTpife0ssx+wXj8AbkWcWg==</latexit>

A(1)
2

<latexit sha1_base64="i1somy10kxX8aAInwnmw/iZJk+w=">AAACDHicbVC7TsNAEDzzJrwCNEhQnEiQQhPZoQCJJkBDGSTyEEmI1pcFTjk/dLdGQlb4BPgJSqCiQ7T8AwX/gh1SQGCq0cyudnbcUElDtv1hjY1PTE5Nz8xm5uYXFpeyyys1E0RaYFUEKtANFwwq6WOVJClshBrBcxXW3d5R6tevURsZ+Kd0E2Lbg0tfXkgBlEid7Fo+3/KArgQoftCJS/3zuOBs9/P5TjZnF+0B+F/iDEmunLvf755tPFY62c9WNxCRhz4JBcY0HTukdgyapFDYz7QigyGIHlxiM6E+eGja8eCDPt+KDFDAQ9RcKj4Q8edGDJ4xN56bTKZpzaiXiv95zYgu9tqx9MOI0BfpIZIKB4eM0DKpBnlXaiSCNDly6XMBGohQSw5CJGKUdJVJ+nBGv/9LaqWis1MsnSTFHLJvzLB1tskKzGG7rMyOWYVVmWC37IE9sWfrznqxXq2379Exa7izyn7Bev8Cb92cWw==</latexit>

A(3)
1

<latexit sha1_base64="OqoF0MUwd/ALERDg03qtS/hCeIk=">AAACDHicbVC7TgJBFJ3FN75QGxMtJoKJNmQXC01sUBtLTUSMgOTucMEJs4/M3DUhG/wE/QlLtbIztv6Dhf/iLlD4OtXJOffmnnvcUElDtv1hZcbGJyanpmeys3PzC4u5peVzE0RaYEUEKtAXLhhU0scKSVJ4EWoEz1VYdbtHqV+9QW1k4J9RL8SGBx1ftqUASqRmbrVQqHtA1wIUP2jGTv8q3trZ7hcKzVzeLtoD8L/EGZF8OX+/37pcfzxp5j7rrUBEHvokFBhTc+yQGjFokkJhP1uPDIYgutDBWkJ98NA04sEHfb4ZGaCAh6i5VHwg4veNGDxjep6bTKZpzW8vFf/zahG19xqx9MOI0BfpIZIKB4eM0DKpBnlLaiSCNDly6XMBGohQSw5CJGKUdJVN+nB+f/+XnJeKzk6xdJoUc8iGmGZrbINtMYftsjI7ZieswgS7ZQ/siT1bd9aL9Wq9DUcz1mhnhf2A9f4FcWucXA==</latexit>

A(3)
2

<latexit sha1_base64="YcbTp5n5jCSlTOpfh+jIB10ICxk=">AAACDHicbVC7TgJBFJ3FF+ILtTHRYiKYYEN2odDExkdjqYmIEZDcHS46YfaRmbsmZoOfoD9hqVZ2xtZ/sPBf3EUKFU91cs69ueceN1TSkG1/WJmx8YnJqex0bmZ2bn4hv7h0aoJIC6yJQAX6zAWDSvpYI0kKz0KN4LkK627vIPXr16iNDPwTugmx5cGlL7tSACVSO79SLDY9oCsBiu+140r/Ii5VN/vFYjtfsMv2AHyUOENS2C3c73TO1x6P2vnPZicQkYc+CQXGNBw7pFYMmqRQ2M81I4MhiB5cYiOhPnhoWvHggz7fiAxQwEPUXCo+EPHnRgyeMTeem0ymac1fLxX/8xoRdbdbsfTDiNAX6SGSCgeHjNAyqQZ5R2okgjQ5culzARqIUEsOQiRilHSVS/pw/n4/Sk4rZadarhwnxeyzb2TZKltnJeawLbbLDtkRqzHBbtkDe2LP1p31Yr1ab9+jGWu4s8x+wXr/AnMDnF0=</latexit>

Figure 1. Example of a domain (with one grey hole) where a−1(0) =
∑3

i=1 Γi.
In this case χ = 4, j1 = 2, j2 = 0, j3 = 2.
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A(1)
1

<latexit sha1_base64="X7B65eHDvRHpIghJmXqnxT2kTnc=">AAACDHicbVC7TsNAEDzzJrwCNEhQnEiQoInsUIBEE6ChDBIhEUmI1pdNOOX80N0aCVnhE+AnKIGKDtHyDxT8C7ah4DXVaGZXOztuqKQh236zRkbHxicmp6ZzM7Nz8wv5xaVTE0RaYE0EKtANFwwq6WONJClshBrBcxXW3cFh6tcvURsZ+Cd0FWLbg74ve1IAJVInv1IstjygCwGK73diZ3gebzpbw2Kxky/YJTsD/0ucL1KoFG73umdr99VO/r3VDUTkoU9CgTFNxw6pHYMmKRQOc63IYAhiAH1sJtQHD007zj4Y8o3IAAU8RM2l4pmI3zdi8Iy58txkMk1rfnup+J/XjKi3246lH0aEvkgPkVSYHTJCy6Qa5F2pkQjS5MilzwVoIEItOQiRiFHSVS7pw/n9/V9yWi4526XycVLMAfvEFFtl62yTOWyHVdgRq7IaE+ya3bEH9mjdWE/Ws/XyOTpife0ssx+wXj8AbkWcWg==</latexit>

A(1)
2

<latexit sha1_base64="i1somy10kxX8aAInwnmw/iZJk+w=">AAACDHicbVC7TsNAEDzzJrwCNEhQnEiQQhPZoQCJJkBDGSTyEEmI1pcFTjk/dLdGQlb4BPgJSqCiQ7T8AwX/gh1SQGCq0cyudnbcUElDtv1hjY1PTE5Nz8xm5uYXFpeyyys1E0RaYFUEKtANFwwq6WOVJClshBrBcxXW3d5R6tevURsZ+Kd0E2Lbg0tfXkgBlEid7Fo+3/KArgQoftCJS/3zuOBs9/P5TjZnF+0B+F/iDEmunLvf755tPFY62c9WNxCRhz4JBcY0HTukdgyapFDYz7QigyGIHlxiM6E+eGja8eCDPt+KDFDAQ9RcKj4Q8edGDJ4xN56bTKZpzaiXiv95zYgu9tqx9MOI0BfpIZIKB4eM0DKpBnlXaiSCNDly6XMBGohQSw5CJGKUdJVJ+nBGv/9LaqWis1MsnSTFHLJvzLB1tskKzGG7rMyOWYVVmWC37IE9sWfrznqxXq2379Exa7izyn7Bev8Cb92cWw==</latexit>

A(1)
3

<latexit sha1_base64="khRzgNw27JR0rmzrcYetJej5qSM=">AAACDHicbVC7TgJBFJ3FN75QGxMtJoKJNmQXC01sUBtLTUSMgOTucMEJs4/M3DUhG/wE/QlLtbIztv6Dhf/iLlD4OtXJOffmnnvcUElDtv1hZcbGJyanpmeys3PzC4u5peVzE0RaYEUEKtAXLhhU0scKSVJ4EWoEz1VYdbtHqV+9QW1k4J9RL8SGBx1ftqUASqRmbrVQqHtA1wIUP2jGO/2reMvZ7hcKzVzeLtoD8L/EGZF8OX+/37pcfzxp5j7rrUBEHvokFBhTc+yQGjFokkJhP1uPDIYgutDBWkJ98NA04sEHfb4ZGaCAh6i5VHwg4veNGDxjep6bTKZpzW8vFf/zahG19xqx9MOI0BfpIZIKB4eM0DKpBnlLaiSCNDly6XMBGohQSw5CJGKUdJVN+nB+f/+XnJeKzk6xdJoUc8iGmGZrbINtMYftsjI7ZieswgS7ZQ/siT1bd9aL9Wq9DUcz1mhnhf2A9f4FcXWcXA==</latexit>

A(3)
1

<latexit sha1_base64="OqoF0MUwd/ALERDg03qtS/hCeIk=">AAACDHicbVC7TgJBFJ3FN75QGxMtJoKJNmQXC01sUBtLTUSMgOTucMEJs4/M3DUhG/wE/QlLtbIztv6Dhf/iLlD4OtXJOffmnnvcUElDtv1hZcbGJyanpmeys3PzC4u5peVzE0RaYEUEKtAXLhhU0scKSVJ4EWoEz1VYdbtHqV+9QW1k4J9RL8SGBx1ftqUASqRmbrVQqHtA1wIUP2jGTv8q3trZ7hcKzVzeLtoD8L/EGZF8OX+/37pcfzxp5j7rrUBEHvokFBhTc+yQGjFokkJhP1uPDIYgutDBWkJ98NA04sEHfb4ZGaCAh6i5VHwg4veNGDxjep6bTKZpzW8vFf/zahG19xqx9MOI0BfpIZIKB4eM0DKpBnlLaiSCNDly6XMBGohQSw5CJGKUdJVN+nB+f/+XnJeKzk6xdJoUc8iGmGZrbINtMYftsjI7ZieswgS7ZQ/siT1bd9aL9Wq9DUcz1mhnhf2A9f4FcWucXA==</latexit>

A(5)
1

<latexit sha1_base64="GfXymbWl73utBE306lTYrTN+YxQ=">AAACDHicbVBNLwNRFH3js+qr2EhYvGglbJoZIiQ2xcayEqXRVnPn9bZevPnIe3ckzaR+An/CEis7sfUfLPwXM60F5axOzrk399zjhkoasu0Pa2R0bHxiMjOVnZ6ZnZvPLSyemSDSAisiUIGuumBQSR8rJElhNdQInqvw3L0+Sv3zG9RGBv4pdUNseNDxZVsKoERq5pYLhboHdCVA8YNm7PQu442dzV6h0Mzl7aLdB/9LnG+SL+Xv91sXq4/lZu6z3gpE5KFPQoExNccOqRGDJikU9rL1yGAI4ho6WEuoDx6aRtz/oMfXIwMU8BA1l4r3Rfy5EYNnTNdzk8k0rRn2UvE/rxZRe68RSz+MCH2RHiKpsH/ICC2TapC3pEYiSJMjlz4XoIEIteQgRCJGSVfZpA9n+Pu/5Gyr6GwXt06SYg7ZABm2wtbYBnPYLiuxY1ZmFSbYLXtgT+zZurNerFfrbTA6Yn3vLLFfsN6/AHSRnF4=</latexit>

Figure 2. Example of a domain (with two grey holes) where a−1(0) =
∑4

i=1 Γi.
In this case χ = 5, j1 = 3, j2 = 0, j3 = 1, j4 = 0, j5 = 1.

Notations. As a matter of notations, in all the paper we denote with Wm,p(Ω) the usual Sobolev
spaces. Whenever p = 2 we use the notation Hm(Ω). Finally H1

0 (Ω) is the closure of the test
functions with respect to the norm in H1(Ω). Other notations will be introduced whenever we
need.

2. Some well known facts

In this section we will give some preliminary facts on suitable weighted Sobolev spaces we will
use later. For more details and applications of weighted Sobolev spaces, which is the right context
to study degenerate elliptic operators, we refer the reader to [6, 8, 11–13,15], for instance.

Along this section

1. Ω ⊂ RN is a smooth and bounded domain, and

2. h : Ω→ [0,+∞) satisfies

sup

(
1

|B|

∫
B
h(x)

)(
1

|B|

∫
B
h(x)

− 1
p−1

)p−1

≤ C, p > 1,

where the supremum is taken over all the balls B ⊂ Ω. In other words, h belongs to the
so called Muckenhoupt class Ap (see [15]). The right hand side of the inequality above is
known as the Ap-constant of h.

For each p ≥ 1, Lp(Ω, h) is the Banach space of all measurable functions u : Ω→ R, for which

|u|Lp(Ω,h) =

(∫
Ω
h(x)|u|p

)1/p

<∞.

Whenever h is in the Ap class, Lp(Ω, h) ⊂ L1
loc(Ω) and then it makes sense to speak about weak

derivatives and Sobolev spaces. By definition, the weighted Sobolev space H1(Ω, h) is the set of
functions u ∈ L2(Ω, h) such that the (weak) derivatives of first order are all in L2(Ω, h). The
(squared) norm in H1(Ω, h) is

‖u‖2H1(Ω,h) =

∫
Ω
h(x)

(
|∇u|2 + |u|2

)
.
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It can be proved that H1(Ω, h) is the closure if C∞(Ω) with respect to the previous norm. As
usual, H1

0 (Ω, h) is the closure of C∞c (Ω) with respect to the norm defined by

(2.1) ‖u‖2H1
0 (Ω,h) =

∫
Ω
h(x)|∇u|2.

Both H1(Ω, h) and H1
0 (Ω, h) are Hilbert spaces containing the positive and negative parts of

each of their elements (see [6, Corollary 2.1]). Since h may vanish somewhere on Ω, the weighted
Sobolev spaces are not isomorphic the the “usual” ones.

Theorem 2.1. (The weighted Sobolev inequality) There exists positive constants CΩ and δ, such
that for all u ∈ C∞c (Ω) and 1 ≤ θ ≤ N/(N − 1) + δ,

|u|L2θ(Ω,h) ≤ CΩ|∇u|L2(Ω,h).

See [6, Theorem 1.3] for a proof. In particular from this results it hods that the quantity defined
in (2.1) gives a norm on H1

0 (Ω, h) equivalent to ‖ · ‖H1(Ω,h).
The next result is also well known (see [12, Theorem 2.8.1]).

Theorem 2.2. If un → u in Lp(Ω, h), 1 < p < ∞, then there exists a subsequence {unk} and a
function v ∈ Lp(Ω, h) such that

(i) unk(x)→ u(x), nk →∞, h− a.e. on Ω;

(ii) |unk(x)| ≤ v(x), h− a.e. on Ω.

Finally, we will enunciate a compact embedding type result for the weighted Sobolev spaces
H1(Ω, h). See e.g. [8] for the details.

Theorem 2.3. (Compact embeddings) Let 1 ≤ s ≤ r < Nq/(N − q), q ≤ 2 and

K(h) = max

{
|h− 1

2 |
L

2q
2−q (Ω)

, |h 1
s |
L

rs
r−s (Ω)

}
<∞.

Then, the space H1(Ω, h) is compactly embedded in Ls(Ω, h).

3. Preliminaries: a problem (possibly) degenerate on the boundary

In this section, for future reference, we consider the following elliptic problem

(PD)

{
−div(b(x)∇u) = f(u) in D,

u = 0 on ∂D,

where D ⊂ RN is a smooth, open and bounded domain, b ∈ C(D), b(x) > 0 for x ∈ D, b ∈ A2 and
1/b ∈ Lt(D), t > N/2 and f which satisfies (f1) and (f2) (with of course Ω replaced by D and a by
the function b). The operator L(u) = −div(b(x)∇u) is called also b−elliptic.

A weak solution for (PD) is a function u∗ ∈W 1,1
0 (D) ∩ L∞(D) such that

(3.1)
∫
D
b(x)∇u∗∇v =

∫
D
f(u∗)v, ∀v ∈ C∞c (D).

Observe that b may eventually be zero somewhere on the boundary ∂D.
We will find the solution of (PD) working in the space H1

0 (D, b). Note that such a space is
contained into W 1,2t/(1+t)

0 (D), where t > N/2 is given in (a2), and then 2t/(1 + t) > 1. Indeed, for
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u ∈ H1
0 (D, b) we have, by the Hölder inequality,∫

D
|∇u|2t/(t+1) =

∫
D

(
1

bt/(t+1)

)
(bt/(t+1)|∇u|2t/(t+1))

≤
∣∣∣∣1b
∣∣∣∣t/(1+t)

Lt(D)

‖u‖2t/(1+t)

H1
0 (D,b)

<∞

and hence H1
0 (D, b) ↪→ W

1,2t/(1+t)
0 (D). As it follows by the next proof, the solution will be also

bounded.
The main result of this section is as follows.

Theorem 3.1. Under the previous assumptions, problem (PD) has at least a nonnegative and
nontrivial weak solution.

Proof. Due to the possibly degenerate structure of the problem, the suitable functional setting to
treat (PD) is the weighted Sobolev space H1

0 (D, b). Let J : H1
0 (D, b)→ R be the functional

J(u) =
1

2

∫
D
b(x)|∇u|2 −

∫
D
F∗(u) =:

1

2
‖u‖2H1

0 (D,b) − ψ(u),

where F∗ is the primitive of

f∗(s) =

 f(−β∗) if s ∈ (−∞,−β∗],
f(s) if s ∈ (−β∗, s∗),
0 if s ∈ [s∗,∞),

for some β∗ > 0 such that f > 0 in [−β∗, 0).
Observe that J is well defined in H1

0 (D, b). In fact, since f∗ is bounded, we have

(3.2)
∫
D
|F∗(u)| ≤ C

∫
D
|u|,

for some positive constant C. On the other hand, by Hölder inequality and being b ∈ A2

(3.3)
∫
D
|u| =

∫
D

1

b1/2
(b1/2|u|) ≤

∣∣∣∣1b
∣∣∣∣1/2
L1(D)

‖u‖H1
0 (D,b) <∞,

for all u ∈ H1
0 (D, b). Moreover, since f∗ is continuous, J ∈ C1.

Observe that J is coercive. Indeed, from (3.2) and (3.3) we deduce

J(u) ≥ 1

2
‖u‖2H1

0 (D,b) − C
∣∣∣∣1b
∣∣∣∣1/2
L1(Ω)

‖u‖H1
0 (Ω,b).

To prove that J is weakly lower semicontinuous, it is enough to note that if un ⇀ u in H1
0 (D, b),

then, by (a2) and being b ∈ C(D) the number K(b) in Theorem 2.3 is finite if we choose

q =
2t

t+ 1
, s = 2, r ∈

(
2,

2Nt

N(t+ 1)− 2t

)
.

Therefore, by the compact embedding, we get

un → u in L2(D, b).

From Theorem 2.2, up to a subsequence, there exists g ∈ L2(D, b) such that

un(x)→ u(x) and |un(x)| ≤ g(x), b− a.e. in D.

Since b is positive in D, we obtain

un(x)→ u(x) and |un(x)| ≤ g(x), a.e. in D.
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Consequently,
F∗(un(x))→ F∗(u(x)) a.e. in D

and
|F∗(un(x))| ≤ C|un(x)| ≤ Cg(x) a.e. in D.

On the other hand, from (a2)∫
D
|g(x)| =

∫
D

1

b(x)1/2
(b(x)1/2|g(x)|) ≤

∣∣∣∣1b
∣∣∣∣1/2
L1(D)

|g|L2(D,b) <∞,

showing that g ∈ L1(D). Then by using the Lebesgue dominated convergence theorem, we conclude
that

ψ(un) =

∫
D
F∗(un)→

∫
D
F∗(u) = ψ(u).

Thus, ψ is weakly continuous and, consequently, J is weakly lower semicontinuous in the Hilbert
space H1

0 (D, b). Let u∗ : Ω→ R a minimum point of J . Since J is C1,∫
D
b(x)∇u∗∇v =

∫
D
f∗(u∗)v, ∀v ∈ H1

0 (D, b),

showing that u∗ is a weak solution of (PD).
Now we are going to prove that u∗ is nontrivial. For that, it is enough to realise that J takes

negatives values. Indeed let e1 be a positive eigenfunction associated to the first eigenvalue λ1(D)
of Laplacian operator in D with homogeneous Dirichlet boundary condition and consider

1

s2
J(se1) =

1

2
‖e1‖2H1

0 (D,b) −
∫
D

F∗(se1)

(se1)2
e2

1,

for each s > 0. By (f2), de L’Hospital rule and Lebesgue dominated convergence theorem, by
passing to the limit as s→ 0+, we obtain

lim
s→0+

1

s2
J(se1) =

1

2

∫
D

(
b(x)− γ

λ1(D)

)
|∇u|2 < 0.

Thus, for s > 0 small enough, we have J(u∗) ≤ J(se1) < 0, showing that u∗ is nontrivial.
It follows from (f1) and the definition of f∗ that by choosing v = u−∗ := min{u∗, 0} in (3.1), we

have ∫
D
b(x)|∇u−∗ |2 =

∫
D
f∗(u∗)u

−
∗ ≤ 0.

Since b > 0, we conclude that ∇u−∗ = 0 a.e. in D. Therefore u−∗ = c a.e. in D, for some c ∈ R.
Finally, from u∗ ∈ H1

0 (D, b), we have that u−∗ = 0 and u∗ = u+
∗ := max{u∗, 0} ≥ 0. To conclude

that u∗ ≤ s∗, it is enough to choose v = (u∗ − s∗)
+ in (3.1) and reasoning in a similar way.

Therefore f∗(u∗) = f(u∗), concluding the proof. �

4. Proof of Theorem 1.1

Finally we are ready to treat the problem

(P)

{
−div(a(x)∇u) = f(u) in Ω,

u = 0 on ∂Ω ∪ a−1{0}
and prove Theorem 1.1.

To take advantage of the degeneracy of a in order to prove existence of multiple solutions to
problem (P), we will divide the proof in two steps. In the first one will be considered a suitable
class of problems (Pi,l) with diffusion operator involving coefficients degenerating on the boundary
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of the domain where the problem is settled, that is, for each i ∈ {1, . . . ,m} and l ∈ {1, . . . , ji}, we
will look for weak solutions of the problem

(Pi,l)

{
−div(a(x)∇u) = f(u) in A(i)

l ,
u = 0 on ∂A(i)

l .

In the second one, the solutions obtained for (Pi,l) will be used to construct solutions to (P),
which have different numbers of positive bumps.

Step I: Existence of χ one-bump weak solutions to (Pi,l).

It follows from (a1) that each set A(i)
l is a bounded domain of RN with a smooth boundary, on

which function a can be zero. Consequently, Step I is a straightforward consequence of hypotheses
(a2),(f1),(f2) and Theorem 3.1 in previous Section. Let us call ui,l the one-bump weak solution
obtained to (Pi,l).

Step II: Existence of 2χ − 1 nonnegative (and nontrivial) weak solutions to (P).

Let us consider the extensions ũi,l of ui,l to Ω, that is,

ũi,l(x) =

{
ui,l in A(i)

l ,
0 in Ω\A(i)

l .

Since 0 ≤ ui,l ≤ s∗, ui,l ∈ H1
0 (A(i)

l , a|A(i)
l

) and

∫
A(i)
l

|∇ui,l| =
∫
A(i)
l

(
1

a(x)1/2

)
(a(x)1/2|∇ui,l|) ≤

∣∣∣∣1a
∣∣∣∣1/2
L1(A(i)

l )

‖ui,l‖2
H1

0 (A(i)
l ,a|

A(i)
l

)

<∞,

where in the last inequality we have used the Holder inequality. It is clear that ũi ∈ W 1,1
0 (Ω) ∩

L∞(Ω). Moreover, since a ∈ C(Ω) and A(i)
l ⊂ Ω\a−1{0}, if v ∈ C∞c (Ω\a−1{0}) then v|

A(i)
l

∈

H1
0 (A(i)

l , a|A(i)
l

). Thus, since ui,l is a weak solution of (Pi,l), for all v ∈ C∞c (Ω\a−1{0}):

∫
Ω
a(x)∇

∑
i,l

ũi,l

∇v =
∑
i,l

∫
A(i)
l

a(x)∇ui,l∇(v|
A(i)
l

) =
∑
i,l

∫
A(i)
l

f(ui,l)v|
A(i)
l

=

∫
Ω
f

∑
i,l

ũi,l

 v,

where the summation
∑

i,l runs over all the possible combinations of indexes i, l, so as to include
all the connected components of Ω\a−1{0}, showing that ũi,l is a nonnegative and nontrivial weak
solution of (P) for each i ∈ {1, . . . ,m} and l ∈ {1, . . . , ji}. Since the sum of n of the previous weak
solutions ũi,l (2 ≤ n ≤ χ) is still a solution of (P) (by (a1)), the result follows. Observe finally
that, arguing as in Section 3, the solutions found are in H1

0 (Ω, a).
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