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We investigate the magnetic excitations in view of the recent reports suggesting that the spin-wave energy may
exhibit a significant dependence on the in-plane strain of a thin film of La2CuO4. The nature of dependence, as
we find, can be explained naturally within a two-orbital model based on the dx2−y2 and d3z2−r2 orbitals. In
particular, as the orbital-splitting energy between the dx2−y2 and d3z2−r2 orbitals increases with compressive
strain, the zone-boundary spin-wave energy hardens. However, the hardening persists only until the orbital
splitting reaches ∼ 2eV, beyond which there is no significant change. The behavior of zone-boundary spin-
wave energy is explained in terms of the extent of hybridization between one of the exchange-split dx2−y2 band
which is nearly half filled and the d3z2−r2 band. The role of second-order antiferromagnetic superexchange
process involving the inter-orbital hopping is also discussed.

PACS numbers:

I. INTRODUCTION

The origin of unconventional superconductivity has been
a recurrent theme since the discovery of high-Tc cuprates in
the late eighties [1–4]. The last decade has witnessed the dis-
covery of another large family of multiband superconductors
based on iron, which are also believed widely to be uncon-
ventional in nature [5, 6]. A striking similarity between the
two class of superconductors is that a long-range magnetic
order is exhibited by the parent compounds that gives way
to superconductivity on doping either holes or electrons [7].
Thus, the idea that the unconventional superconductivity may
be mediated by the spin fluctuations is strengthened further
and therefore the nature of such fluctuations can be the key to
the understanding of pairing mechanism.

The spin-wave excitations in the Mott-antiferromagnetic
phase of high-Tc cuprates show a more dispersive behav-
ior near the zone-boundary in comparison to the Heisen-
berg antiferromagnet with only nearest-neighbor exchange
coupling [8–12]. The deviation was explained by incorpo-
rating the exchange couplings beyond the nearest neighbor
in the Heisenberg model or by considering hopping beyond
the nearest neighbor in the one-orbital Hubbard model [13–
15]. Recent experiments based mainly on the resonant in-
elastic x-ray spectroscopy (RIXS) have unfolded several new
features which are difficult to explain within the one-orbital
model [16, 17]. One such remarkable feature is that the spin-
wave energy exhibits a variation of ∼ 60meV at the zone-
boundary upon subjecting a thin film of cuprate to a substrate-
induced strain. For instance, the spin-wave energy shows
hardening near the zone boundary with growing in-plain com-
pressive strain.

In the presence of in-plane strain, the orbital overlap [17,
18] and on-site Coulombic repulsion [18–21] can get affected.
The compressive strain enhances the orbital overlap, which re-
sults into an increase in the in-plane hopping parameters (t).
On the other hand, the separation between the two eg levels
also grows, which is expected to push the d3z2−r2 -band fur-
ther below the Fermi level so that the screening of the intra-

orbital Coulombic interaction (U ) for dx2−y2 orbital gets re-
duced resulting into an increase in U . However, U/t may
remain constant as suggested by a density-functional theory
(DFT) calculation and x-ray absorption spectrum (XAS) mea-
surement [17]. Consequently, the effective exchange coupling
J ≈ 4t2/U can increase in the limit of a very large U , which
has been linked to the hardening of zone-boundary spin-wave
energy. Since the separation between the two eg orbitals is di-
rectly affected by the in-plane strain, a study based on a model
incorporating d3z2−r2 -orbital can provide a more clear picture
about the origin of variation of zone-boundary spin-wave en-
ergy with orbital-splitting (OS), which is undertaken in the
current paper.

The importance of eg OS has been emphasized in several
recent works including the one which suggested that the dif-
ference between the superconducting transition temperature
across the high-Tc cuprates may depend on the eg-level sep-
aration. Particularly, the superconducting transition tempera-
ture was shown to increase with OS [22–25]. The eg OS (δ)
can range in between 1eV . δ . 2eV, whereas the splitting
between the two sets eg and t2g of orbitals is ≈ 2eV [2, 26–
31, 40]. Therefore, while the dx2−y2 orbital based one-orbital
model can describe the correlation effects for cuprates with a
larger eg splitting, it becomes necessary to include both the eg
orbitals for the cuprates with a smaller splitting. The evidence
from the angle-resolved photoelectron spectroscopy (ARPES)
experiments indicates a significant hybridization of bands lo-
cated not far from the Fermi level, which involves d3z2−r2
orbital [33, 34]. An important role of d3z2−r2 orbital was
also indicated in a recent work examining the spin-wave ex-
citations in the hole-doped La2CuO4 (LSCO) [16]. Presence
of this additional orbital may also be responsible for the sta-
bility of AFM state against hole doping resulting mainly from
the Hund’s first rule which demands the maximization of total
spin [35].

In this paper, we investigate the role of OS between dx2−y2
and d3z2−r2 orbitals in the spin-wave excitations for the AFM
phase of the undoped cuprate. In order to achieve this goal,
we consider a two-orbital model based on both the eg orbitals.

ar
X

iv
:2

01
2.

01
99

9v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  3

 D
ec

 2
02

0



2

Our findings indicate that (i) the zone-boundary spin-wave
energy increases with the in-plane compressive strain in the
cuprates with a relatively smaller eg splitting such as LSCO, a
result in qualitative agreement with recent RIXS experiment.
(ii) However, it does not show any significant dependence on
strain for the cuprates with a larger splitting. (iii) The behavior
originates from the orbital mixing of the lower exchange-split
dx2−y2 band and a nearly flat d3z2−r2 band. This mixing gen-
erates additional exchange coupling based on a second order
inter-orbital superexchange process in addition to the intra-
orbital superexchange.

II. MODEL

We consider a Hamiltonian based on the two eg orbitals.
The delocalization-energy gain term is given by

HKE =
∑
ij

∑
µ,ν,σ

tµνij d
†
iµσdjνσ. (1)

tµνij s are the hopping matrix elements from the orbital µ at
site i to the orbital ν at site j, respectively. The operator d†iµσ
(diµσ) creates (destroys) an electron with spin σ at site i in the
orbital µ. The orbitals µ and ν are either of the Cu 3dx2−y2
and d3z2−r2 Wannier orbitals. The dx2−y2 Wannier orbital
arises due to 3dx2−y2 orbital of Cu and the bridging 2px/y
orbital of O located in between two Cu atoms in the CuO2

plane. d3z2−r2 Wannier orbital results from the Cu d3z2−r2
orbitals and 2pz orbital of O present in the apical position [23].

The orbital splitting between the eg orbitals dx2−y2 and
d3z2−r2 is given by

HOS =
δ

2

∑
i

(d†iγσdiγσ − d
†
iγ′σdiγ′σ), (2)

where γ and γ′ denote dx2−y2 and d3z2−r2 orbitals, respec-
tively. δ is the orbital splitting parameter, which is controlled
by the distance of the apical oxygen from the CuO2 plane. The
in-plane strain applied on a thin film can generate a modifica-
tion in both in-plane and out-of-plane lattice parameter, which
can introduce a change in the overall crystal-field effect. Con-
sequently, δ gets directly affected. The same has been indi-
cated by the XAS and RIXS measurements. The dd excita-
tions study based on the Cu L3 edge, shows that the center
of mass of dd excitations shift systematically towards higher
energy with increasing in-plane compressive strain. The de-
pendence of the position of the center of mass on the strain
parameter defined as ε = (a − a0)/a0 is nearly linear. This
may also imply a similar enhancement in the eg orbital split-
tings as a function of ε [17].

The standard on-site Coulomb interaction is given by

Hint = U
∑
i,µ

niµ↑niµ↓ + (U ′ − J

2
)
∑
i

niγniγ′

− 2J
∑
i

Siγ · Siγ′ + J
∑
i,σ

d†iγσd
†
iγσ̄diγ′σ̄diγ′σ.(3)
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FIG. 1: The orbital contents of electronic bands along the high-
symmetry directions in the two-orbital model when the orbital split-
tings (δ) are (a) 0.5eV and (b) 1.5eV. The orbital mixing is dominant
near (π, 0).

The intra- and inter-orbital Coulomb interaction (U and U ′)
terms are described by the first and second terms, respec-
tively, where niµσ = d†iµσdiµσ and niγ =

∑
σ d
†
iγσdiγσ

with σ =↑, ↓. The third term stands for the Hund’s cou-
pling between electrons of different orbitals, where Sliγ =∑
σσ′ d

†
iγσσ

l
σσ′diγσ.σls are the Pauli matrices with l =

x, y, z. The last term is the pair-hopping term.

III. METHOD

The mean-field decoupling of various interaction terms in
Eq. 1 originating from the Coulombic interaction yields the
following mean-field Hamiltonian [36]

Hk =
∑
kσ

Ψ†kσ

[
ĥ(k) + N̂ sgnσ̄M̂

sgnσ̄M̂ ĥ(k + Q) + N̂

]
Ψkσ, (4)

for the (π, π) AFM state in the momentum space. Ψ†kσ =

(d†k1σ, d
†
k2σ, d

†
k1̄σ

, d†
k2̄σ

) with d†
kl̄σ

= d†k+Qlσ and Q =

(π, π). The elements of the 2×2 matrix ĥk are given by

h11(k) = −2t1(cos kx + cos ky) + 4t2 cos kx cos ky

− 2t3(cos 2kx + cos 2ky)

h12(k) = h21(k) = 2t4(cos kx − cos ky)

+ 2t5(cos 2kx − cos 2ky)

h22(k) = −2t6(cos kx + cos ky), (5)

where the hopping parameters are t1 = 0.452, t2 = 0.0895,
t3 = 0.0705, t4 = 0.171, t5 = 0.0248, t6 = 0.113 with
the unit being eV. t1, t2 and t3 are the nearest, next-nearest
and next-next-nearest neighbor intra-orbital hopping param-
eters for the dx2−y2 orbitals. t4 and t5 are the nearest and
next-next-nearest neighbor inter-orbital hopping parameters.
t6 is the nearest neighbor intra-orbital hopping parameter for
the d3z2−r2 orbitals.
M̂ and N̂ are 2×2 matrices with the elements given in

terms of the interaction parameters, charge densities and mag-
netization. 2Mll = Umll + J

∑
l 6=mmmm and 2Mlm =

Jmlm + (U − 2J)mml. Also, 2Nll = Unll + (2U −
5J)

∑
l 6=m nmm and 2Nlm = Jnlm + (4J − U)nml. The

self-consistent mean-field order parameters, i.e. charge den-
sity and magnetization are given by nµν =

∑
kσ〈d

†
kµσdkνσ〉

and mµν =
∑

kσ〈d
†
k+Qµσdkνσ〉sgnσ.



3

 0.76

 0.8

 0.84

 0.6  1.2  1.8  2.4  3
δ(eV)

(a)

U = 2.85eV
J = 0.2U
n = 3.0

mx
2
-y

2

-0.04

-0.02

 0

 0.6  1.2  1.8  2.4  3
δ(eV)

(b) m3z
2
-r

2

 1

 1.02

 1.04

 0.6  1.2  1.8  2.4  3
δ(eV)

nx
2
-y

2 (c) 

 1.96

 1.98

 2

 0.6  1.2  1.8  2.4  3
δ(eV)

n3z
2
-r

2 (d) 

FIG. 2: Magnetizations for the orbitals (a) dx2−y2 and (b) d3z2−r2

show opposite behavior as a function of the OS. It increases for the
former while decreases in magnitude for the latter when the OS is
increased. Note that a negative m3z2−r2 indicates that the magne-
tization is oriented in a direction opposite to mx2−y2 . At the same
time, the orbital-resolved charge density (a) nx2−y2 decreases and
(b) n3z2−r2 increases.

In order to study the spin-wave excitations in the AFM
state, we calculate the transverse spin susceptibility

χ+−
αβ,µν(q,q′, iωn) =

T

∫ 1/T

0

dτeiωnτ 〈Tξ[S+
αβ(q, τ)S−νµ(−q′, 0)]〉. (6)

within the two-orbital model. Here, q,q′ = q or q +
Q. The components of the spin operators are given by
Siαβ(q) =

∑
k

∑
σσ′ d†ασ(k + q)σiσσ′dβσ′(k). σi are Pauli

matrices while the subscripts σ, σ′ =↑, ↓. Using the mean-
field Hamiltonian described by Eq. 4, the bare Green’s func-
tions G↑αµ(k, iωn) can be obtained. The transverse-spin sus-
ceptibility for the AFM state in the random-phase approxima-
tion is calculated as

ˆ̄χ(q, iωn) = (1̂− χ̂(q, iωn)Û)−1χ̂(q, iωn), (7)

where 1̂ is a 8 × 8 identity matrix and Û is a block-
diagonal interaction matrix with the elements of both the
blocks being identical. ˆ̄χ(q, iωn) and χ̂(q, iωn) are 8 ×
8 matrices, which is evident from the structure of Eq. 6.
Note that each element of the susceptibility matrix χ̂(q, iωn)
contains χαβ,µν(q,q, iωn) =

∑
k,iω′

n
G↑αµ(k + q, iω′n +

iωn)G↓νβ(k, iω′n) when q′ = q as well as the terms arising
due to the Umklapp processes. The physical spin susceptibil-
ity using the appropriate elements of the ˆ̄χ(q, iωn) is given by
χ̄ph(q, iωn) =

∑
αµ χ̄αα,µµ(q,q, iωn) [37].
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FIG. 3: Predominant orbitals in all the four reconstructed bands of
the AFM state along the high-symmetry directions for δ = (a) 0.5eV,
(b) 1.5eV, (c) 2.0eV and (d) 3.0eV. A significant orbital mixing in the
lower exchange-split band and d3z2−r2 dominated band is present
for δ ≈ 2eV.

IV. RESULTS AND DISCUSSION

Fig. 1 shows the electronic dispersions in the two-orbital
model for the OS (a) δ = 0.5eV and (b) 1.5eV. There is
no mixing of dx2−y2 and d3z2−r2 orbitals in the bands along
the (0, 0)-(π, π) direction as h12(k) vanishes identically. The
mixing is maximum near (π, 0) in the vicinity of Van Hove
singularity because h12(k) attains it’s maximum value at the
same point. In other directions, the orbital mixing is mod-
erate. As the OS increases, the two bands are increasingly
orbitally polarized and they become almost completely polar-
ized for δ ≈ 1.5eV and beyond. In the limit of very small
eg splitting the bands will resemble to that of the monolayer
manganites [38].

Fig. 2 shows the charge densities and magnetic order pa-
rameters for the orbitals dx2−y2 and d3z2−r2 as a function
of OS in the AFM state. The total charge density n = 3.0
is fixed throughout the paper unless stated otherwise, which
corresponds to the scenario with nearly half-filled dx2−y2 or-
bital and completely filled d3z2−r2 orbital. The charge den-
sity nx2−y2 in the dx2−y2 orbital decreases while n3z2−r2 in-
creases as the OS increases, which results from the constraint
that the total charge density is fixed while the electrons will
occupy the low-energy states first. However, nx2−y2 > 1 by
≈ 2% even if δ ≈ 1.5eV a value greater than what is consid-
ered widely acceptable for LSCO. Thus, the d3z2−r2 orbital
is not completely filled and therefore can play an important
role in the spin-wave excitations to be discussed below. The
magnetization mx2−y2 in the dx2−y2 orbital increases contin-
uously with a rise in the OS. This is mainly a consequence of
the fact that the double occupancy diminishes as the OS in-
creases. On the other hand, the magnitude of m3z2−r2 drops
as the double occupancy increases.

Fig. 3 shows the reconstructed band in the AFM state for
various OSs. Unlike the dx2−y2 band, the exchange splitting
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for d3z2−r2 dominated band is small because d3z2−r2 orbitals
are nearly doubly occupied. For δ = 0.5eV, the d3z2−r2 dom-
inated bands are located in between the exchange-split dx2−y2
bands. Moreover, the mixing of orbitals in the bands are mini-
mal. But the separation between the relatively narrow d3z2−r2
band and the lower-exchange split dx2−y2 band decreases with
the rise in OS. This results in an increased mixing of the two
orbitals in the three low lying bands. With further rise in the
OS, the orbital mixing maximizes and thereafter it decreases
so that there are almost completely polarized two upper bands
dominated by the dx2−y2 orbital and two lower bands domi-
nated by the d3z2−r2 orbital as shown in Fig. 3(d).

Fig. 4 shows the spin-wave excitation energy calculated by
using imaginary part of χ̄ph(q, iωn) as a function of δ along
the high-symmetry direction. We have chosen the intra-orbital
Coulomb interaction parameter U = 2.85eV, Hund’s coupling
J = 0.2U and δ ≈ 1eV so that the spin-wave excitations
shows a good agreement with the neutron-scattering experi-
ments for LSCO. It is worthwhile to note that there may a
non-negligible magnon-self energy correction due to coupling
of spin degree of freedom with charge and orbital degree of
freedom [42].

Earlier, the necessity of a similar range of U was stressed
in the one-orbital model for different cuprates [8, 13, 14].
The estimates by studies based on the LDA + DMFT or the
photoemission spectroscopy also yields a similar value of U
∼ 3eV [40, 41]. For this range of on-site Coulomb interac-
tion parameter, the magnetization mx2−y2 ∼ 0.9 in a self-
consistent meanfield theory, which is significantly larger than
the experimental estimates 0.55µB . However, by going be-
yond the meanfield level, it can be shown that the correction to
the meanfield sublattice magnetization originating due to the
spin fluctuations may yield a reduction up to 40% [43]. This
brings the sublattice magnetization to a value very close to
what is observed experimentally. It is true that the corrections
to the sublattice magnetization were obtained only within the
one-orbital model, it is though not unreasonable to expect that
the magnitude of correction will be of a similar order even in
the two-orbital model.

More importantly, the zone-boundary excitations show a
significant dependence on the OS. In particular, we find that
the zone-boundary spin-wave energy increases with the OS
within the range 0.5eV . δ . 2.0eV. The growth is mono-
tonic at the high symmetry point (1/2, 0). Beyond δ ∼ 2.0eV,
the zone-boundary spin-wave energy starts decreasing but the
rate of decline is comparatively smaller than the rate of rise
noted for δ .2.0eV.

The hardening of zone-boundary spin-wave energy also
implies an enhancement in the effective exchange coupling,
which in turn may indicate a more stable AFM state. The sta-
bilization may result from the presence of an additional chan-
nel for lowering of energy, which is specific to the two-orbital
models. While in the one-orbital model, there is only a single
channel for the second order super-exchange interaction, sev-
eral channels for the second order exchange interactions are
possible in the two-orbital models.

The zone-boundary hardening of the spin-wave excitation
energy occurs because of the virtual process involving the
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FIG. 4: Spin-wave excitations along the high-symmetry directions.
Zone-boundary spin-wave energy shows a significant dependence on
the orbital splitting between dx2−y2 and d3z2−r2 orbitals within the
range 0.5eV. δ .2.0eV, while there is only a weaker dependence
beyond δ =2.0eV.

hopping of a d3z2−r2 electron to a neighboring dx2−y2 orbital
and then returning back, which is possible as the inter-orbital
hopping is non zero. More specifically, when the magnetic
moments are considered oriented along the z-direction as in
the current paper, an additional antiferromagnetic exchange
coupling can be generated because an ↑-spin d3z2−r2 electron
from a site with ↑-spin dx2−y2 electron can hop to the dx2−y2
orbital at a nearest-neighbor site occupied already by a ↓-spin
electron and then return back to it’s original position.

The energy of the ↑-spin d3z2−r2 electron at it’s original
site is ≈ U +U ′ − J . The d3z2−r2 orbital is doubly occupied
therefore there is a contribution of U due to the intra-orbital
Coulomb interaction. Similarly, there is also a contribution of
U ′ due to the inter-orbital Coulomb interaction. Further, the
energy is lowered by J because of the Hund’s coupling be-
tween the ↑-spin d3z2−r2 and dx2−y2 electrons at the original
site.

When the ↑-spin d3z2−r2 electron transfers to the dx2−y2
orbital at the neighboring site, it’s Coulombic energies are U
and 2U ′ due to the intra- and inter-orbital interactions, respec-
tively. There is no contribution from the Hund’s coupling term
because d3z2−r2 is almost doubly occupied. Thus, the total
Coulombic energy at the new site is ≈ U + 2U ′ + δ, where
we have also incorporated the fact that dx2−y2 and d3z2−r2
orbitals are separated by the energy δ because of the orbital
splitting.

Such a process leads to the antiferromagnetic exchange
coupling Jint ≈ −4t24/(δ + U ′ + J) = −4t24/(δ + U − J),
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where t4 is the inter-orbital hopping parameter and U =
U ′ + 2J in accordance with the rotational symmetry of the
Hamiltonian. The contribution of this term is negligible when
the lower exchange-split dx2−y2 band and d3z2−r2 band don’t
mix much as is the case when the OS is either very small (∼
0.5eV) or too large (∼ 3.0eV). However, at the intermediate
value of δ ∼ 2eV, the contribution is significant as the or-
bital mixing is non-negligible. Note the presence of δ in the
denominator of Jint, which explains a faster rise in the zone-
boundary spin-wave energy for a smaller OS within the range
0.5eV . δ . 2.0eV and a slower decline beyond δ ∼ 2.0eV
for a larger OS.

Fig. 5 shows the zone-boundary spin-wave excitations ω
at X ≡ (1/2, 0) and R ≡ (3/4, 1/4) as a function of δ. Both
show almost a linear growth up to δ ≈ 2.0eV, thereafter
they don’t show much variation. The region with a nearly
linear dependence shows a very good qualitative agreement
with the observed zone-boundary spin-wave excitations in the
samples subjected to the in-plane strain. We have also plot-
ted the effective-exchange coupling determined from the ap-
proximate relation Jeff = ωX/2Z, where the renormaliza-
tion factor resulting from the self-energy correction is Z =
1.2 [14, 16]. As the exchange coupling displays a nearly lin-
ear dependence on the in-plane compressive strain, our find-
ing suggests that the eg orbital splitting δ may also exhibit a
nearly linear dependence on the in-plane strain.

V. SUMMARY AND CONCLUSIONS

The spin-wave excitations in the cuprates has been largely
explored within a one-orbital model. In a recent work, the
two-orbital model was invoked to explain the difference be-
tween the superconducting-transition temperature across dif-
ferent cuprates using the fluctuation-exchange approximation
which incorporates the spin-spin correlations [22–25]. An in-

direct implication of the above result is that the spin-wave ex-
citations in different phases including the AFM may also show
dependence on the OS induced by the in-plain stress.

The strain in the layered cuprates affects not only the over-
lap integral between the orbitals at neighboring sites but it
can also lead to a non negligible modification in the on site
Coulombic interaction. The net possible impact of the inter-
play between the aforementioned consequences on the spin-
wave excitations is yet to be fully understood. However, the
most significant impact of in-plain strain perhaps is on the
extent of orbital mixing for the bands either located near or
far from the Fermi surface. As illustrated through the cur-
rent work, even if we ignore the modification in overlap in-
tegral and Coulomb interaction, the two-orbital model suc-
cessfully describes the experimental observations in terms of
orbital mixing present in various bands.

Our study is focused at zero doping where the cuprates
show only the antiferromagnetic order. On doping holes, the
long-range magnetic order is lost. However, the nature of
leading order local magnetic-exchange couplings are expected
to show a weak dependence on doping. The higher spin-wave
excitation energy for a larger δ may indicate an enhancement
in the exchange coupling which will remain true even on dop-
ing holes. As found, the spin-wave excitation energy increases
with δ for a realistic range so does the magnetic-exchange
coupling. Therefore, the high energy spin-fluctuations would
help to increase the superconducting transition temperature
Tc. However, this is true only for those cuprates for which
δ . 2eV. The cuprates such as HgBa2CuO4 has a relatively
larger δ & 2eV. According to our calculation, the spin-wave
excitation energy does not increase on increasing δ near 2eV.
Thus, by applying in-plane compressive strain we may not be
able to increase TC of HgBa2CuO4 except for the lower eg
split cuprates such as La2CuO4 [22–24].

In summary, we have explored the spin-wave excitations in
the undoped AFM state of cuprates within a two-orbital model
based on dx2−y2 and d3z2−r2 orbitals. Our investigation re-
veals that the zone-boundary spin-wave energy hardens with
an increase in the orbital splitting for the range 0.5eV . δ .
2.0eV. The result, besides providing a plausible explanation
for the recent observations in RIXS measurements, empha-
sizes also on the importance of d3z2−r2 orbital in the cuprates
with smaller eg splitting.
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