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Certain classes of strongly correlated systems promise high thermopower efficiency, but a full understanding
of correlation effects on the Seebeck coefficient is lacking. This is partly due to limitations of Boltzmann-
type approaches. One needs a formula for the thermopower that allows separate investigations of the kinetic
and potential energy contributions to the evolution with temperature and doping of the thermopower. Here we
address this issue by deriving for Hubbard-like interactions a formula for the thermopower that separates the
potential from the kinetic energy contribution and facilitates a better understanding of correlation effects on
the Seebeck coefficient. As an example, the thermopower of the one-band Hubbard model is calculated from
dynamical mean-field. For interactions in both the intermediate and strong correlation limit, the contributions
from kinetic and potential energy nearly cancel.

I. INTRODUCTION

The Seebeck coefficient, or thermopower, measures the
magnitude of an induced voltage in response to a temperature
difference. Materials with large thermoelectric power are of
great economic and environmental interest and can be utilized
in a wide range of applications, most notably for waste-heat
recovery. Hence, an efficient power generation technology
based on thermoelectric materials could be an important part
of the solution to today’s energy challenge. The key, though,
is finding thermoelectric materials with much higher conver-
sion efficiency than currently known thermoelectric materi-
als. To this end, strongly correlated electron systems have
shown promises. Indeed, it has been shown experimentally
that some materials, such as sodium cobalt oxide NaxCoO2,1

or narrow-gap semiconductors, such as FeSb2 (see2 and ref-
erences therein) possess unusually large thermopower, due in
part to strong electron interactions.

Fundamentally, thermoelectric current arises from particle-
hole (p-h) asymmetry. Electron interactions can influence p-h
asymmetry in several ways: By altering the electronic struc-
ture, by modifying the current matrix elements, or by intro-
ducing frequency- and momentum-dependent scattering rates
(relaxation times). This provides multiple reasons to investi-
gate systems with strong correlations to search for large ther-
mopower. One way to expand our understanding of interac-
tion effects on thermopower is to investigate how potential en-
ergy contributes to thermopower. Such a contribution may be
measured experimentally in a controlled setting, such as cold
atom systems that spatially-resolve double occupancy.3–6

At low-temperatures, electrical/heat currents are carried by
low-energy excitations. In weakly correlated systems, these
excitation are long-lived quasiparticles, allowing to use simple
versions of the Kubo formalism or semi-classical Boltzmann
theory7 to simulate transport properties. These approaches
have been successful for conventional thermoelectric materi-
als, which happen to be weakly correlated semiconductors.
In these systems, the heat carried by excitation is εk − µ,
where εk denotes single electron eigenenergy and µ is the
chemical potential. Therefore, this approach only accounts for
the kinetic energy contribution to thermopower. Boltzmann
transport theory cannot be used for strongly correlated mate-

rials because the underling assumptions, such as well-defined
quasi-particles, do not hold and also because it neglects the
potential energy contribution to thermopower.

The formula that is currently used for thermopower of cor-
related electrons is based on an extension of the Kubo formal-
ism for non-interacting systems: the heat carried by particle-
hole excitations is ω, their excitation energy measured with re-
spect to chemical potential. Interaction effects appear clearly
only in the width of spectral functions.8–11 Although, this for-
mula is usually derived for non-interacting systems and then
extended to interacting systems, one can argue that it should
be an exact formula for interacting systems as well since ω is
the many-body excitation energy of the p-h. Here, we show
that this is indeed the case by deriving many-body energy/heat
current operators and a formula for the electronic part of the
Seebeck effect that accounts for both kinetic and potential en-
ergy contributions to thermopower. Our formula allows to in-
vestigate separately interaction effects on thermopower in a
clearer and more quantitative manner.

II. POTENTIAL AND KINETIC ENERGY
CONTRIBUTION IN THERMOPOWER

Transport coefficients like the electrical conductivity σ, and
the thermoelectric power S are related to response functions
Lijαβ defined as

Lij(iνn) =
1

βV

∫ β

0

eiνnτ 〈TτJi(τ) · Jj(0)〉. (1)

There Jαi is the α component of the particle current (i =
1) or thermal current (i = 2), V is the volume, β =
1/kBT , and Tτ denotes the time ordering operator. The re-
tarded response functions that determine the transport coeffi-
cients are obtained by analytic continuation iνn → ν + i0+

from Aij(ν) ≡ =Lij(ν)/ν. In particular, the frequency-
dependent electrical conductivity and the Seebeck coefficient
are given, respectively, by σ = e2A11(ν) and S(ν) =
−(kB/eT )A12(ν)/A11(ν), where kB is Boltzmann’s con-
stant, and e is the elementary charge. The DC limit is obtained
by taking the limit ν = 0.
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Using exact forms for current and heat operators of a one- band model with Hubbard interaction, we obtain the following
equation for L12(iνn)12

L12
αα(iνn) ' − 1

2βV

∑
kσ

∑
ωm

(
vαkGkσ(iωm + iνn)Λk(iωm, iνn)vαkGkσ(iωm) + (νn ↔ −νn)

)
Λk(iωm, iνn) ≡ εk − µ+ Σkσ(iωm + iνn)/2 + Σkσ(iωm)/2, (2)

where Λk(iωm, iνn)vαk is the heat-current vertex; as seen
from the explicit form of Λk(iωm, iνn), the interaction ef-
fects on the energy vertex is captured by adding a suitable
portion of the self-energy to the kinetic energy. This is sim-
ilar to what we have shown for orbital magnetization.13 In
Eq. (2), Gkσ(iωm) denotes the interacting propagator and
vαk = ∂εk/∂kα the velocity. The vertex correction effects
can be included by replacing vαk in the heat-current vertex by
−∂G−1

kσ/∂kα. We do not address the question of vertex cor-
rections in this paper. The interacting propagator is given by

Gkσ(iωm) = [iωm + µ− εk − Σkσ(iωm)]−1, (3)

where εk denotes non-interacting electron dispersion and Σ is
the electron self-energy.

Equation 2 is equivalent to the currently used formula for
thermopower,8–10 at least in the limit where vertex corrections
can be neglected. This can be seen as follows: the heat vertex

in Eq. (2) can be rewritten as

[i(ωm + νn)−G−1
kσ (iωm + iνn)]/2 + [iωm −G−1

kσ (iωm)]/2.
(4)

Upon replacing this form of the heat vertex in the equation
for L12, terms coming from inverse Green’s functions sim-
plify one of the two Green’s function so that the remaining
terms proportional to Gkσ(iωm) can be neglected after Mat-
subara frequency summation and analytic continuation. In-
deed, they are purely real and frequency independent. There-
fore, the above equation is equivalent to the currently used for-
mula that uses i(ωm + νn/2) for the heat vertex.8 However,
our formula allows us to separate kinetic and potential energy
contributions to the Seebeck effect, and to study how each
contribution is impacted by temperature and doping. Further-
more, although we do not take into account vertex corrections
here, we would like to emphasize that the two formalisms may
yield different results once vertex corrections are taken into
account. In this case, one cannot simply neglect the contri-
butions from the inverse of the Green’s function. However,
considering vertex corrections is beyond the scope of this pa-
per14.

After analytic continuation, we obtain the following expres-
sion for A12(ν)12

A12(ν) =− π

V

∑
kσ

∫
dω

(
vαkAkσ(ω + ν)[εk − µ+ <Σkσ(ω + ν)/2 + <Σkσ(ω)/2]vαkAkσ(ω)

)
(nF (ω + ν)− nF (ω)

ν
)

− π

2V

∑
kσ

∫
dω

(
vαk<Gkσ(ω + ν)Bkσ(ω + ν)vαkAkσ(ω)

)
(nF (ω + ν)− nF (ω)

ν
)

− π

2V

∑
kσ

∫
dω

(
vαkAkσ(ω + ν)Bkσ(ω)vαk<Gkσ(ω)

)
(nF (ω + ν)− nF (ω)

ν
), (5)

where we defined the spectral weights for the Green’s function
and self-energy respectively by Akσ(ω) = (−1/π)=Gkσ(ω)
and Bkσ(ω) = (−1/π)=Σkσ(ω). The quantity nF is the
Fermi function.15 A11(ν) is given by a formula similar to the
first line of Eq. 5, except that the expression in square bracket
is replaced with the identity.10

It is natural to define the kinetic and the potential energy
contributions to the Seebeck effect by decomposing the en-

ergy vertex as, Λk ≡ ΛK.E.k + ΛP.E.k , where, measuring en-
ergy with respect to the renormalized chemical potential, we
find

ΛK.E.k ≡ εk − µ+ <Σkσ(0), (6)

ΛP.E.k ≡ Σkσ(iωm + iνn)/2 + Σkσ(iωm)/2−<Σkσ(0).
(7)

The corresponding terms in the analytically continued expres-
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sion are rather easy to identify by focusing first on the kinetic
energy part Eq. (6). Although it is not possible to measure
these contributions individually, except perhaps in cold-atom
experiments that can access spatially-resolved double occu-
pancy 4,5, their theoretical study allows a deeper understand-
ing of their interplay, as we shall see. We move on to applica-
tions of this formula.

III. RESULTS

A. Model

We apply Eq. 2 and Eq. 5 to a system described by the
single-band Hubbard model as an example that will illustrate
the separate effects of kinetic and potential energy on ther-
mopower. The Hamiltonian on a square lattice reads

H = −
∑
ij,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓. (8)

We take the values of the hopping parameters for lanthanum
copper oxyde from Ref.16. The first, second and third nearest-
neighbour hopping are t1 = 190 meV, t2 = −0.12t1 and
t3 = 0.06t1. We consider two values for Hubbard interac-
tion: U = 6t1 and U = 16t1. For U = 6t1, system is mod-
erately correlated while for U = 16t1 it undergoes a phase
transition to a Mott phase at half-filling. We solve this model
using dynamical mean field theory (DMFT) 17 with an exact-
diagonalization solver18–20. We investigate the Seebeck effect
as a function of temperature and hole-doping for these two
cases.

B. General Considerations

In normal metals, the Seebeck coefficient scales as S '
(kBT/EF )(kB/e), where EF denotes the Fermi energy.
Hence, the thermopower of normal metals is linear in tem-
perature and vanishes at T = 0. In semiconductors, however,
both entropy and the density of the mobile carriers (conse-
quently the electrical conductivity) vanish at zero temperature
and the Seebeck coefficient is determined by the relative rate
of decrease in these two vanishing quantities and can acquire
large values upon approaching T = 0.21 Similarly, the electri-
cal conductivity of a lightly doped Mott system depends non-
trivially on temperature. Hence, one way to obtain a large
Seebeck coefficient is to design a strongly correlated system
in which electrical conductivity decreases faster than entropy
upon decreasing temperature. This might be achievable for a
lightly-doped Mott system, at least, at a finite range of doping
values.

As mentioned earlier, the Seebeck coefficient is sensitive to
the particle-hole asymmetry around the chemical potential in
the spectral functions (or density of states), in the current ma-
trix elements (velocity matrices) and in the energy-dependent
scattering rates.11,22–25 These quantities are not independent
of each other. Consider our model in the absence of inter-
action. The density of states has a van-Hove singularity at
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FIG. 1. Seebeck coefficient (in unit of kB/e) as a function of den-
sity for several temperatures. The inset shows the kinetic and the
potential contribution to the thermopower at T = 0.006 eV. The in-
teraction strength is U = 6t1.

electron density n ' 0.8 or at hole doping p ' 0.2.16 For
electron densities smaller than 0.8, the chemical potential, µ,
lies below the van-Hove singularity, hence, the number of
states above the Femi level is much larger than the one be-
low. This inequality reverses for electron densities larger than
0.8. Therefore, with constant current matrix elements (veloci-
ties) and relaxation time, one expects a sign change in Seebeck
coefficient once the chemical potential passes the van-Hove
singularity energy. However, velocities are not constant and
can partially compensate for the asymmetry in the density of
states, shifting Seebeck’s sign change to higher electron den-
sities. In the following, in part for this reason, the Seebeck
coefficient is negative on a wider range of dopings than ex-
pected from the density of states.

C. Intermediate Correlations

Figure 1 shows the Seebeck coefficient as a function of den-
sity for several temperatures and U = 6t1. It is electron-like
with a maximum absolute value around n = 0.8, resulting
from a minimum in electrical conductivity and a plateau in
A12 around this density (not shown).

The inset of Fig. 1 shows the kinetic and the potential
contributions to the thermopower, as defined in Eq. (6)
and Eq. (7), as a function of density for T = 6 meV. Each
component is much larger than the Seebeck effect itself, but
because they have different signs, their sum is a comparatively
small number. In this intermediate regime of interactions,
U = 6t1, and high hole-doping, the kinetic energy contribu-
tion is negative and its absolute value is larger than that of the
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FIG. 2. Seebeck coefficient (in units of kB/e) as a function of den-
sity for several temperatures. The inset shows the kinetic and the
potential contribution to the thermopower at T = 0.006 eV. The in-
teraction strength is U = 16t1.

potential energy. Hence, the kinetic energy contribution and
the total thermopower have similar signs. Upon approaching
half-filling, the absolute value of both components initially in-
creases and then decreases for n > 0.8. The opposite sign of
the potential contribution can be understood intuitively: in an
electron-like thermopower setup, as we have here, there are
more electrons on the cold side, therefore there are more dou-
bly occupied sites there. Due to this density gradient of doubly
occupied sites they move toward the warmer side, transferring
energy back to that side.

D. Strong Correlations

Figure 2 shows the strongly correlated case U = 16t1. The
system is then in a Mott phase at half-filling. At high hole-
doping, the thermopower is electron-like and again its mag-
nitude is maximum at densities around 0.8. Closer to half-
filling, the absolute value of the thermopower has a shallow
minimum around doping p = 1−n =' 0.05 for T = 6 meV,
a minimum that is washed away at larger T . At lightly hole-
doping region, upon approaching the top of the lower Hubbard
band, the thermopower quickly changes sign. Increasing tem-
perature, the sign change happens at larger hole doping (see
T = 0.04 eV, the tendency is present for smaller T ). The inset
of Fig. 2 shows the kinetic and potential contributions to the
Seebeck effect. Similar to the preceeding subsection, at high
doping the kinetic energy contribution determines the sign of
the thermopower. The absolute values of these contributions
increase upon approaching half-filling before they quickly de-
crease and change sign, in close vicinity of half-filling (not

shown). The sign changes don’t occur at the same density.

IV. SUMMARY

In summary, we introduced a practical many-body ap-
proach for the calculation of the thermopower of interacting
systems. Our formula separates the potential energy contribu-
tion to the Seebeck effect from its kinetic energy contribution,
allowing for physical insight of the interaction effects. We
found large cancellations between potential and kinetic energy
contributions, with potential energy dominating only close to
half-filling in the doped Mott insulator regime. A direct ex-
tension of Eq. 2 to the transport coefficient L22, entering in
the definition of the thermal conductivity, can be done.
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Appendix A: Derivation

This appendix contains a detailed derivation of the ther-
mopwer formula, along with its analytic continuation.

1. Particle and heat current operators

In order to calculate the response function Lij , we have to
find the proper expressions for the particle current J and the
energy current JE , the latter being related to the heat current
JQ by JQ = JE − µJ where µ is the chemical potential.

Consider a real-space representation for the Hamiltonian of
a single band Fermi-Hubbard system

H =
∑
i

hi =
∑
iδσ

(tδ/2)(c†i+δσciσ + c†iσci+δσ)

+
∑
i

Uni↑ni↓, (A1)

where δ denotes nearest neighbour bonds.
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a. Particle current

The particle current is found as the time derivative of a par-
ticle position operator RN defined as

RN =
∑
i

Rini, (A2)

J = −i[RN , H] = −i
∑
ij

Ri[ni, hj ]. (A3)

Calculating the commutator using Eq. A1 yields the following
expression for the particle current

J = −i
∑
iδσ

(tδ/2)(Ri+δ −Ri)(c
†
i+δσciσ − c

†
iσci+δσ).

(A4)

Note that (Ri+δ −Ri) = δ.

b. Energy current

Similarly, the energy current is given by the time derivative
of an energy position operator RE defined as

RE =
∑
i

Rihi, (A5)

JE = −i[RE , H] = −i
∑
ij

Ri[hi, hj ]. (A6)

By decomposing the energy current into a kinetic energy
part and a potential energy part we get

JK.E.E = −i
∑
i,σ

∑
δδ′

(tδtδ′/4)

× (Ri+δ+δ′ −Ri+δ + Ri+δ′ −Ri)

× (c†i+δ+δ′σciσ − c
†
iσci+δ+δ′σ). (A7)

For the potential energy part, we obtain

JP.E.E = −i
∑
i,σ

∑
δ

(tδU/2)(Ri+δ −Ri)

× (c†i+δσciσ − c
†
iσci+δσ)ni+δσ̄. (A8)

2. Correlation function

Having the explicit form of the current operators, L12(iνn)
coefficient can be written as

L12(iνn) =
1

βV

∫ β

0

eiνnτ 〈TτJ(τ) · JQ(0)〉

=
1

βV

∫ β

0

eiνnτ 〈TτJ(τ) · JK.E.Q (0)〉

+
1

βV

∫ β

0

eiνnτ 〈TτJ(τ) · JP.E.Q (0)〉. (A9)

a. Kinetic contribution

Since we neglect vertex corrections, we use Wick’s theorem
for the kinetic energy contribution in L12 coefficient, obtain-
ing

1

βV

∫ β

0

eiνnτ 〈TτJ(τ) · JK.E.Q (0)〉 =

1

βV

∫ β

0

eiνnτ
∑
ijσ

∑
δδ′δ′′

(tδtδ′tδ′′/8)

(Ri+δ −Ri) · (Rj+δ′+δ′′ −Rj+δ′ + Rj+δ′′ −Rj)(
Gj,i+δ,σ(−τ)Gi,j+δ′+δ′′,σ(τ)

−Gj+δ′+δ′′,i+δ,σ(−τ)Gi,j,σ(τ)

−Gj,i,σ(−τ)Gi+δ,j+δ′+δ′′,σ(τ)

+Gj+δ′+δ′′,i,σ(−τ)Gi+δ,j,σ(τ)

)
, (A10)

where we neglect time independent terms. Transforming back
to the Fourier space representation one finds

1

βV

∫ β

0

eiνnτ 〈TτJα(τ) · Jα,K.E.Q (0) =

− 1

βV

∑
kσ

∑
ωm

(
vαkGkσ(ωm)[εk − µ]vαkGkσ(ωm + νn)

)
,

(A11)

where we used v−k = −vk with vk = i
∑

δ δtδ exp(ik · δ).

b. Potential contribution

The potential energy contribution is

〈TτJ(τ) · JP.E.Q (0)〉 = −
∑
ij

∑
δδ′

∑
σσ′

(tδtδ′U/4)

× [(Ri+δ −Ri) · (Rj+δ′ −Rj)](
〈Tτ c†i+δσ(τ)ciσ(τ)c†j+δ′σ′(0)cjσ′(0)nj+δ′σ̄′(0)〉

−〈Tτ c†i+δσ(τ)ciσ(τ)c†jσ′(0)cj+δ′σ′(0)nj+δ′σ̄′(0)〉

−〈Tτ c†iσ(τ)ci+δσ(τ)c†j+δ′σ′(0)cjσ′(0)nj+δ′σ̄′(0)〉

+〈Tτ c†iσ(τ)ci+δσ(τ)c†jσ′(0)cj+δ′σ′(0)nj+δ′σ̄′(0)〉
)
.

(A12)

There are different ways to contract the expectation values
in the Eq. A12 as a two points and a four points correlation
function. For example the first braket on the right hand side of
the Eq. A12 can be contracted as follows if we keep c†i+δσ(τ)
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in the two-point correlation functions:

〈Tτ c†i+δσ(τ)ciσ(τ)〉〈Tτ c†j+δ′σ′(0)cjσ′(0)nj+δ′σ̄′(0)〉

+〈Tτ c†i+δσ(τ)cjσ′(0)〉〈Tτ ciσ(τ)c†j+δ′σ′(0)nj+δ′σ̄′(0)〉

+〈Tτ c†i+δσ(τ)cj+δ′σ̄′(0)〉〈Tτ ciσ(τ)c†j+δ′σ′(0)cjσ′(0)c†j+δ′σ̄′(0)〉
(A13)

or as follows if we keep c†j+δ′σ′(0) in the two-point correla-
tion functions:

〈Tτ ciσ(τ)c†j+δ′σ′(0)〉〈Tτ c†i+δσ(τ)cjσ′(0)nj+δ′σ̄′(0)〉

+〈Tτ c†j+δ′σ′(0)cjσ′(0)〉〈Tτ c†i+δσ(τ)ciσ(τ)nj+δ′σ̄′(0)〉
(A14)

Since spin is conserved by the Hamiltonian, note that
〈Tτ c†j+δ′σ′(0)cj+δ′σ̄′(0)〉 = 0 due to opposite spins. We
write the first bracket the Eq. A12 as summation of Eqs. A13
and A14 divided by two.

The second braket on the right hand side of the Eq. A12 can
be contracted as follows:

−1

2

(
〈Tτ c†i+δσ(τ)ciσ(τ)〉〈Tτ c†jσ′(0)cj+δ′σ′(0)nj+δ′σ̄′(0)〉

+〈Tτ c†i+δσ(τ)cj+δ′σ′(0)〉〈Tτ ciσ(τ)c†jσ′(0)nj+δ′σ̄′(0)〉

+〈Tτ c†i+δσ(τ)cj+δ′σ̄′(0)〉〈Tτ ciσ(τ)c†jσ′(0)cj+δ′σ′(0)c†j+δ′σ̄′(0)〉

+〈Tτ ciσ(τ)c†jσ′(0)〉〈Tτ c†i+δσ(τ)cj+δ′σ′(0)nj+δ′σ̄′(0)〉

+〈Tτ c†jσ′(0)cj+δ′σ′(0)〉〈Tτ c†i+δσ(τ)ciσ(τ)nj+δ′σ̄′(0)〉
)

(A15)

The first terms of Eqs. A13 and A15 are time independent,
so we neglect them. The third term in the Eqs. A13 can be
contracted more to obtain

δσ,σ̄′〈Tτ c†i+δσ(τ)cj+δ′σ(0)〉〈Tτ ciσ(τ)c†j+δ′σ(0)〉

〈Tτ c†j+δ′σ̄(0)cjσ̄(0)〉. (A16)

This term cancels out with the third term in the Eq. A15
that has 〈Tτ c†jσ̄(0)cj+δ′σ̄(0)〉 instead of 〈Tτ c†j+δ′σ̄(0)cjσ̄(0)〉.
These two expectation values are equal for a system in equi-
librium. The last term in the Eqs. A14 is also cancelled out by
the last term in the Eqs. A15 for a similar reason.

Hence, the only surviving terms are the second, and fourth.

Keeping these terms, Eq. A12 becomes

−
∑
ij

∑
δδ′

∑
σ

(tδtδ′U/8)[(Ri+δ −Ri) · (Rj+δ′ −Rj)](
〈Tτ c†i+δσ(τ)cjσ(0)〉〈Tτnj+δ′σ̄(0)ciσ(τ)c†j+δ′σ(0)〉

+〈Tτ ciσ(τ)c†j+δ′σ(0)〉〈Tτnj+δ′σ̄(0)c†i+δσ(τ)cjσ(0)〉

−〈Tτ c†i+δσ(τ)cj+δ′σ(0)〉〈Tτnj+δ′σ̄(0)ciσ(τ)c†jσ(0)〉

−〈Tτ ciσ(τ)c†jσ(0)〉〈Tτnj+δ′σ̄(0)c†i+δσ(τ)cj+δ′σ(0)〉

−〈Tτ c†iσ(τ)cjσ(0)〉〈Tτnj+δ′σ̄(0)ci+δσ(τ)c†j+δ′σ(0)〉

−〈Tτ ci+δσ(τ)c†j+δ′σ(0)〉〈Tτnj+δ′σ̄(0)c†iσ(τ)cjσ(0)〉

+〈Tτ c†iσ(τ)cj+δ′σ(0)〉〈Tτnj+δ′σ̄(0)ci+δσ(τ)c†jσ(0)〉

+〈Tτ ci+δσ(τ)c†jσ(0)〉〈Tτnj+δ′σ̄(0)c†iσ(τ)cj+δ′σ(0)〉
)

(A17)
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We use the following equation for the Hubbard model

−U〈Tτniσ̄(τ ′)ciσ(τ ′)c†jσ(τ)〉 =∫
dτ ′′

∑
l

Σil,σ(τ ′ − τ ′′)Glj,σ(τ ′′ − τ)

−U〈Tτnjσ̄(τ ′)ciσ(τ)c†jσ(τ ′)〉 =∫
dτ ′′

∑
l

Gil,σ(τ − τ ′′)Σlj,σ(τ ′′ − τ ′) (A18)

to rewrite the first, fourth, fifth, and eighth term on the right
hand side of the Eq. A17 as a multiplication of a Green’s func-
tion and a self-energy. We conjecture that the remaining terms

should decompose similarly. To support this, consider another
contraction on the four point correlation function of the sec-
ond term. It gives

(U〈nj+δ′σ̄〉)Gj,i+δ,σ(−τ) = <Σkσ(∞)Gj,i+δ,σ(−τ),
(A19)

which is a multiplication of a Green’s function and a self-
energy. In order to use same level of approximation for all
terms in the right hand side of the Eq. A17, we do not em-
ploy this latter extra contraction. Instead, we use the above
equations for these terms as well. We test numerically that
this conjecture gives the right temperature dependence of the
Seebeck effect for a system in Fermi liquid regime.

Therefore, we obtain

∑
ij,l

∑
δδ′

∑
σ

∫
dτ ′′(tδtδ′/8)[(Ri+δ −Ri) · (Rj+δ′ −Rj)](

Gi,l,σ(τ − τ ′′)Σl,j+δ′,σ(τ ′′)Gj,i+δ,σ(−τ) +Gi,j+δ′,σ(τ)Σj,l,σ(−τ ′′)Gl,i+δ,σ(τ ′′ − τ)

−Gj+δ′,i+δ,σ(−τ)Gi,l,σ(τ − τ ′′)Σl,j,σ(τ ′′)− Σj+δ′,l,σ(−τ ′′)Gl,i+δ,σ(τ ′′ − τ)Gi,j,σ(τ)

−Gi+δ,l,σ(τ − τ ′′)Σl,j+δ′,σ(τ ′′)Gj,i,σ(−τ)−Gi+δ,j+δ′,σ(τ)Σj,l,σ(−τ ′′)Gl,i,σ(τ ′′ − τ)

+Gj+δ′,i,σ(−τ)Gi+δ,l,σ(τ − τ ′′)Σl,j,σ(τ ′′) + Σj+δ′,l,σ(−τ ′′)Gl,i,σ(τ ′′ − τ)Gi+δ,j,σ(τ)

)
. (A20)

Transforming back to the Fourier space representation one
finds the potential energy contribution as

1

βV

∫ β

0

eiνnτ 〈TτJα(τ) · Jα,P.E.Q (0) = − 1

2βV

∑
kσ

∑
ωm(

vαkGkσ(ωm + νn)[Σkσ(ωm + νn)/2

+ Σkσ(ωm)/2]vαkGkσ(ωm) + (νn ↔ −νn)

)
, (A21)

The summation of Eq. A11 and Eq. A21 gives the final re-

sults for the L12(iνn) as

L12
αα(iνn) = − 1

2βV

∑
kσ

∑
ωm

(
vαkGkσ(ωm + νn)

× [εk − µ+ Σkσ(ωm + νn)/2 + Σkσ(ωm)/2]

vαkGkσ(ωm) + (νn ↔ −νn).

)
, (A22)

Note that the term resulting from νn ↔ −νn is equal to the
term written explicitly. However, in numerical calculations
with a finite frequency cutoff it is better to use the above form.

3. Analytic continuation: result

Analytic continuation can be done by employing the spec-
tral representation of the Green’s function and the self-energy

Gkσ(iωm) =

∫
dω

Akσ(ω)

(iωm − ω)
, (A23)

Σkσ(iωm)−<Σ(∞) =

∫
dω

Bkσ(ω)

(iωm − ω)
, (A24)

where Akσ(ω) = (−1/π)=Gkσ(ω) and Bkσ(ω) =
(−1/π)=Σkσ(ω).

We obtain =L12(ν)
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=L12(ν) =− π

V

∑
kσ

∫
dω

(
vαkAkσ(ω + ν)[εk − µ+ <Σkσ(ω + ν)/2 + <Σkσ(ω)/2]vαkAkσ(ω)

)
(nF (ω + ν)− nF (ω))

− π

2V

∑
kσ

∫
dω

(
vαk<Gkσ(ω + ν)Bkσ(ω + ν)vαkAkσ(ω)

)
(nF (ω + ν)− nF (ω))

− π

2V

∑
kσ

∫
dω

(
vαkAkσ(ω + ν)Bkσ(ω)vαk<Gkσ(ω)

)
(nF (ω + ν)− nF (ω)), (A25)

where we used the Kramers-Kroning relation for the Green’s
function and the self-energy, i.e.,

<Gkσ(ω) = P
∫
dω′

Akσ(ω′)

ω − ω′
, (A26)

<Σkσ(ω)−<Σ(∞) = P
∫
dω′

Bkσ(ω′)

ω − ω′
(A27)

Note that =L12(ν) is an odd function of ν. Finally, one can
obtaine A12(ν) ≡ =L12(ν)/ν by dividing the Eq. A25 by ν.

4. Derivation of the analytic continuation formula

Equation A25 can be derived as follows. After replacing
spectral representations of the Green’s function and self en-

ergy in Eq. A22, we encounter the following integrals

∫
dω1 dω2 dω3Akσ(ω1)Bkσ(ω2)Akσ(ω3)

× Si(ν, ω1, ω2, ω3), (i = 1, 2) (A28)

where on the imaginary axis

S1(iνn,ω1, ω2, ω3) =
1

β

∑
ωm

1

i(ωm + νn)− ω1

1

i(ωm + νn)− ω2
· 1

iωm − ω3
,

S2(iνn,ω1, ω2, ω3) =
1

β

∑
ωm

1

i(ωm + νn)− ω1

1

iωm − ω2
· 1

iωm − ω3

The summation over fermionic Matsubara frequency can be done as follows: If we write S(iνn) = ( 1
β )
∑
ωm

F (ωm), then
S(iνn) =

∑
i rinF (zi), where zi is a simple pole of F (z), ri is the corresponding residue and nF is Fermi-Dirac distribution

with, as usual, nF (ω ± iνn) = nF (ω). Therefore, we obtain

S1(iνn,ω1, ω2, ω3) = (
1

ω1 − ω2
)(

1

ω1 − iνn − ω3
) nF (ω1)

+ (
1

ω2 − ω1
)(

1

ω2 − iνn − ω3
) nF (ω2) + (

1

ω3 + iνn − ω1
)(

1

ω3 + iνn − ω2
) nF (ω3), (A29)

S2(iνn,ω1, ω2, ω3) = (
1

ω1 − iνn − ω2
)(

1

ω1 − iνn − ω3
) nF (ω1)

+ (
1

ω2 + iνn − ω1
)(

1

ω2 − ω3
) nF (ω2) + (

1

ω3 + iνn − ω1
)(

1

ω3 − ω2
) nF (ω3). (A30)

Note that in the case ω1 = ω2 for S1, the ω1 pole is a second-order pole. Nevertheless, the summation of the first two terms
on the right hand side give the correct result for a second order pole. A similar argument is valid for S2. The next step is to
convert to a retarded function (iνn → ν + i0+). Employing the identity,

1

ω − ω0 ± i0+
= P 1

ω − ω0
∓ iπδ(ω − ω0), (A31)
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the imaginary parts of Si(ν) are

=S1(ν, ω1, ω2, ω3) = (
πnF (ω1)

ω1 − ω2
)δ(ω1 − ν − ω3) + (

πnF (ω2)

ω2 − ω1
)δ(ω2 − ν − ω3)

−P(
πnF (ω3)

ω3 + ν − ω1
)δ(ω3 + ν − ω2)− P(

πnF (ω3)

ω3 + ν − ω2
)δ(ω3 + ν − ω1), (A32)

=S2(ν, ω1, ω2, ω3) = P(
πnF (ω1)

ω1 − ν − ω2
)δ(ω1 − ν − ω3) + P(

πnF (ω1)

ω1 − ν − ω3
)δ(ω1 − ν − ω2)

−(
πnF (ω2)

ω2 − ω3
δ(ω2 + ν − ω1)− (

πnF (ω3)

ω3 − ω2
)δ(ω3 + ν − ω1) (A33)
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