arXiv:2012.02067v2 [hep-th] 7 Jun 2021

PREPARED FOR SUBMISSION TO JHEP

Holographic duality for Ising CFT with boundary

Andreas Karch,® Zhu-Xi Luo® and Hao-Yu Sun®

@ Department of Physics, University of Texas, Austin, TX 78712-1192, USA

b Kawli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030,
USA

E-mail: karcha@utexas.edu, zhuxi_luo@kitp.ucsb.edu,
hkdavidsun@Qutexas.edu

ABSTRACT: We extend the holographic duality between 3d pure gravity and the 2d Ising
CFT proposed in Ref. [1] to CFTs with boundaries. Besides the usual asymptotic boundary,
the dual bulk spacetime now has a real cutoff, on which live branes with finite tension, giving
Neumann boundary condition on the metric tensor. The strongly coupled bulk theory
requires that we dress the well-known semiclassical AdS/BCFT answer with boundary
gravitons, turning the partition function into the form of Virasoro characters. Using this
duality, we relate the brane tensions to the modular S-matrix elements of the dual BCFT
and derive the transformation between gravitational solutions with different brane tensions
under modular S action.
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1 Introduction

One out of several problems in the study of pure AdS3 gravity is the infinite Poincaré
series arising from the summation over semiclassical saddle points from Maloney and Wit-
ten |2]|, which requires extensive efforts to regularize. In the pioneering paper [1], the
study was extended into the quantum regime where the Brown-Henneaux central charge [3]
¢ = 3lqs/2Gy is of order one. The Virasoro minimal models are considered as the confor-
mal field theories dual to pure AdSs gravity. Interestingly, the summation becomes finite at
least for unitary cases. The main idea is as follows. From the foundational work by Brown
and Henneaux [3] we know that there are two copies of the Virasoro algebra with central



charge ¢ = 30 445/2G N on the asymptotic AdSs boundary. This indicates that, under cer-
tain assumptions, the Virasoro characters of the corresponding CFT should be the result
of a determination of the gravity partition function, which turns out to be given by the
summation of modular images of a “vacuum seed”, i.e., the vacuum conformal block of the
dual CFT, over a finite-index mapping class group representing the enhanced gauge sym-
metry at strong coupling. In particular, for ¢ = 1/2, one obtains a perfect match between
the Ising CFT and the gravity partition functions, except for a mysterious proportionality
constant, which persists in higher-genus in both handlebodies and nonhandlebodies [4, 5].
A similar match can be found for the tricritical Ising model, but is difficult to extend to
¢ > 7/10.

One may wonder whether using the Brown-Henneaux central charge formula is still jus-
tified at small values of ¢, which will get both perturbative and nonperturbative corrections
in 1/c. For example, [6] found that a one-loop correction to the Brown-Henneaux result
shifts ¢ by +13. The exact matching of the partition functions found in [1, 4, 5] seems to
suggest that the duality using the naive central charge matching is indeed valid , i.e., all
the corrections sum to zero. Following previous literature, we assume the validity of the
duality at ¢ = 1/2, which is supported by the calculations in this work.

One can wonder whether this equivalence of pure 3d gravity with ¢ = 1/2 and the Ising
model extends to spacetimes with genuine boundaries. In order to support field theories
with boundaries, the bulk theory has to be augmented with Randall-Sundrum (RS) branes
[7]. Tt is known that RS branes with tensions can be used to smoothly truncate the bulk
spacetime in order to yield the geometry dual to a CFT with a genuine boundary [8-12].
The brane introduces one more parameter into the theory, the brane tension. More precisely,
for every possible boundary condition, a different brane with different tension needs to be
introduced. Assuming the duality holds between the Ising BCFT and the bulk gravitational
theory with RS brane at ¢ = 1/2, three different kinds of branes are allowed, corresponding
to the three primary fields in the theory [13|. The brane tensions can then be fixed by
requiring that certain field theory quantities are correctly reproduced. They turn out to be
related to the CFT boundary entropies first introduced in [14].

In this paper, we propose an exact duality between the Ising model with boundaries and
a pure AdS3 bulk gravity with RS branes. We use the results for the CF'T partition function
on the disk, more precisely the boundary contribution to this partition function which is
given by the boundary entropy, to fix the free parameter in the bulk: the brane tension. We
then test the duality on cylinders, as tori truncated by one or two RS branes. Here we use
the leading-order results in the high and low temperatures to fix the asymptotic forms of
the gravitational partition function. While we do not explicitly perform the path integral
over the 2d boundary gravitons, the full partition function follows from the asymptotic
form by Virasoro symmetry. As a byproduct of our analysis, we also obtain a prediction
for the transformation properties of the gravitational partition function under modular S
transformations.

The organization of the rest of this paper is as follows. In section 2, we review the works
on establishing the duality between 3d pure Einstein gravity and 2d Ising CFT on torus [1]
and closed Riemann surfaces of arbitrary genus [4]. We also summarize the semiclassical



duality between AdS and boundary CFT (BCFT) and the partition function of BCFT on
an annulus. In section 3, we compute the bulk partition function dual to the Ising CFT
on the cylinder both in the high- and low- temperature limits and match with field theory
expectations. This section will be self-contained with regard to conventions and notations,
to facilitate experts who would like to skip the review section. In section 4 we show that
much of the structure we discovered for the Ising model carries over to general minimal
models. However, in some of these latter cases it is questionable whether there even exists
a simple duality between the CFT and pure gravity. Our analysis simply shows that the
general structure of the partition functions would allow an extension to BCFTs by inclusion
of RS branes if ever a gravity dual for these cases would be found. By assuming the validity
of the duality, we also make a prediction about how brane tensions would change under
modular S transformations.

2 Brief review of relevant concepts

In this section, we provide a short review of the Ising/gravity duality on closed manifolds,
a brief introduction to boundary conformal field theory (BCFT) as well as the AdS/BCFT
duality in the semi-classical regime.

2.1 Review of the Ising/gravity duality

In ref. [1], the exact duality between 2d Ising CFT and AdSs pure gravity on a hyperbolic
solid torus with ¢ = 30445/2G N = 1/2 is proposed by matching their partition functions
up to a proportionality constant. The quantum partition function in the bulk is obtained
as a sum over semi-classical saddle points (which are related to each other via SL(2,Z)
modular transformations), dressed by fluctuations of dynamical 2d boundary gravitons.
Since the theory is strongly coupled, there is no sense in which the latter sum can be done
perturbatively. It is one of the key assumptions of the proposal of [1] that this procedure
indeed accounts for the full bulk partition function.

The modular sum can be organized into a summation of the modular images of the grav-
itational partition function of the thermal AdS3 saddle Z,,. and the boundary graviton fluc-
tuations around it. One new feature of the work of ref [1] compared with the semi-classical
case [2] is that the summation is no longer over the infinite coset space (T)\SL(2,Z), where
(T') is the translation subgroup of SL(2,Z). (T') is generated by T = (1) 1 , which shifts
the modular parameter 7 of the asymptotic boundary torus by one and preserves the thermal
AdS3 saddle in the semi-classical case. In the quantum regime, the summation is instead
over I'.\SL(2,Z), where I'c, an finite-index subgroup of SL(2,Z) [15], is enlarged from
(T') and leaves the quantum partition function Z,,. invariant. The key player Z,,. is also
called the “vacuum seed”; and is argued to be equal to | X171<7')’2, the modulus square of the
Virasoro character of the identity primary of the Ising CFT. The result of the summation
yields the gravitational partition functions Zgray = 8 Z1sing. At this level, a similar duality
can be proposed for the tricritical Ising model with ¢ = 7/10, where Zgray = 48 Z4i1sing-



In ref. [4], the authors extended the duality to handlebodies. It is shown using
topological quantum field theory techniques that the gravitational partition function for
3laqs/2G N = 1/2 is again equal to that of the Ising CFT up to an overall finite constant
prefactor, which at genus two is 384, namely Zgay = 384Z14ing. Further extension to non-
handlebodies is achieved in [5], where non-handlebodies are systematically constructed. In
particular, for the twisted I-bundles whose conformal boundary is of genus two, it is shown
that Z1ig = 96 Zising.

2.2 Review of BCFT

1 + 1 dimensional CFTs on manifolds with boundaries were introduced by Cardy in [13].
They can be defined with any number of boundary components. For one boundary compo-
nent, the surface can be conformally mapped to the upper half-plane.

More interesting is the case with two boundary components, e.g., a cylinder/annulus,
where the conformally invariant boundary conditions a and b correspond to what we will
call the Cardy states |a) and |b). There is a one-to-one mapping between each of these
allowed boundary conditions and each primary operator of the CFT.

The cylinder is characterized by one dimensionless shape parameter §, the ratio of
circumference of the circle over the length L of the cylinder. One can write down the
corresponding partition function in either the closed (annulus) channel:

Zay(6) = (ale™ 1), (21)
or in the open (cylinder) channel:

Zap(8) = Try e 0Hab = Tryy P02 =3 " by, (q). (2.2)
h

The closed channel is interpreted as a theory on a circle of unit radius propagating over
a finite Euclidean time 1/6 between initial and final states characterized by |a) and |b).
The open channel gives the finite temperature partition function of the theory on the unit
interval with boundary conditions characterized by a and b and inverse temperature 5 = 0 L.
In (2.2), xx(q) is the Virasoro character of the irreducible representation® of highest weight h
(corresponds to the primary field of conformal dimension h) and g = e~™ . The last equality
is due to the decomposition of the Hilbert space into highest weight representations of the
Virasoro algebra,

"= n, 1V @V, (2.3)

h,h

where ny, j, are integers. The rank-three tensor nzb in (2.2) also takes values in Z, and their
values will be derived below.

Since the presence of the boundary ties the holomorphic sector of the CFT to the
anti-holomorphic sector only, the partition function is a linear, not bilinear, combination

h+(1—c)/24

4 rea) of a possibly reducible representa-

1 As opposed to the generic Virasoro character Xe,n(q) =
tion, where Dedekind’s eta function n(q) is defined in (C.2).



of Virasoro characters [16]. The dilatation operator is now Eo instead of Eo + Log. To
determine the boundary states, one imposes the constraint

La|B) =I_.|B). (2.4)

Because one can decompose the Hilbert space into vector spaces associated with conformal
primaries as in (2.3), we can define Ishibashi states [17, 18| as

=

dn(

)= |h,N;j>®|h,N;j>, (2.5)
N=0 j=1

where dj (V) is the dimension of the subspace of V}, at level? N, and |h, N; j),1 < j < d(N)
is an orthonormal basis for V.

The state |a) associated to boundary a is a linear combination of Ishibashi states.
By equating open-channel and closed-channel partition functions and using the modular
S transformation on Virasoro characters, one obtains the Cardy conditions on the allowed
boundary states |a):

gy = ZSZ‘I {al ")) {(([b),

(2.6)
(alh"))((h'|b) = Zshnab

These highly constraining equations enjoy unique solutions, Cardy states, for all diagonal
Virasoro minimal models?:

=3 Sy, (27)
ARVE 4

For each primary h in the CF'T, there is a corresponding conformal boundary condition,
i.e., allowed boundary state. Plugging (2.7) back into (2.6), one obtains

Shst,st,
nthu = Z lTv <28)
1 0

which is identical to the Verlinde formula [22] for the fusion coefficients N/, ,, such that
nZ/h// = Nf?’h”- (29)

For a recent nice and compact review, see [23| or chapter 11.3.2 of [16].

2Given |h) the highest-weight state such that Lo |hy = h|h), Z,kl L.y, |hy (0 < ki1 <---<kn)isan
eigenstate of Eo with eigenvalue h + k1 + - - - + ky, and its level is N :Z?zl k

3For a non-diagonal Virasoro minimal model which can be written as diagonal one in an extended
algebra, formulae are similar. For example in [19], 3-state Potts being diagonal in Ws algebra, enjoys a
similar formula in terms of W-Ishibashi states. The expression for general non-diagonal Virasoro minimal
models is a nontrivial generalization though, see [20]. For example, explicit Cardy states of the tricritical
3-state Potts model M(7,6) are in [21].



Another important concept in BCFT is the boundary entropy, or the logarithm of g-
function, first proposed by [14]. In the thermodynamic limit where 6 = §/L is very small,
only ground states of H contribute to (2.1):

Zap ~ (al0)(0]b)e™/, (2.10)
and the thermodynamic entropy simplifies to

Sabzggg—an 35 —i—ga—l—gb, (2.11)
where g, = In((a|0)) and g, = In((b|0)) are called boundary entropies. As can be observed
from this equation, the boundary entropies for different boundary components decouple.
Similar to Zamolodchikov’s c-function [24] for the 2d bulk, boundary entropies are proved
to be monotonic under RG flows [25, 26]. The boundary entropy is a property of a single
boundary and can already be extracted from studying the theory on the disk.

2.3 Review of AdS/BCFT

One natural question is then: what is the possible gravitational theory dual to CFT living
on bordered surfaces? According to the AdS/BCFT correspondence [8-12] the bulk dual to
a BCFT is gravity with branes. In particular in [11, 12| Takayanagi and his collaborators
calculated the semi-classical limit of gravitational saddle-point partition functions, and
showed how to extract the boundary entropy of the dual BCFT, which we will review
below.

The spacetime N in AdS/BCFT has genuine boundareis @), in addition to the usual
asymptotic (conformal) boundary M. The dynamical degrees of freedom are Einstein grav-
ity and branes that terminate the spacetime. The combined action is

Z V=h(K - T,), (2.12)

N 7TGN

where K = WK, is the trace of the extrinsic curvature K,, = V,n, for an outward
unit normal vector n to each boundary, and R and A < 0 are Ricci scalar and cosmological
constant, respectively. We allowed for branes with different tensions T, corresponding to the
different allowed boundary conditions in the CFT. Since these allowed boundary conditions
correspond to the primary operators in the dual CFT, they are labeled by the same label
a. In a given solution, not all allowed branes need to be present. In fact, since we will be
only discussing disk and annulus, all our solution employ either one or two branes.

Away from the brane sources the equations of motion are just the vacuum Einstein’s
equation. The stress tensor of the brane (), imposes

Ky — by K = 8tGNT (2.13)

at the end of spacetime. Here
2 41
TQanv _ Qa 2.14
Oy (2.14)




On an AdSy foliation of AdSg11

p
cl:s?wsd+1 = dp* + cosh? %ds%dsd, (2.15)

where —oco < p < 00, the cutoff surface @, is located at p = p, > 0, one finds that

d—1.. d-1 P
T, = K= tanh ——=* 2.16
d lads L ads (2.16)

which will be a universal formula.

The simplest case of AdS/BCFT is the one where the brane @ is topologically a disk
and anchors on a circle on the asymptotic boundary M in the upper half-space model. In
fact, we can write down a bulk geometry of this type for every brane with tension 7T, in our
theory, corresponding to the various disk partition functions with boundary conditions a
that one can evaluated in the dual BCFT. [11] calculates the semi-classical partition function
for the CFT on the disk. From these semi-classical disk partition functions one can extract
a relation between the brane tensions and the corresponding boundary entropies:

@ T,/
= Zf(*; =3 arctanh s_AciS.

The important point here is that in order to match the disk partition functions, the input

Ya (2.17)

parameters T, in our bulk action are completely determined.

The next interesting topology is the annulus or cylinder. There are two geometries with
branes that can realize a cylinder on the boundary.* From the bulk point of view, we want
to study the system at finite temperature. There are two such solutions. Both are locally
AdSs and their topology are solid tori. The first is thermal AdS3 and is expected to give
the dominant saddle at low temperatures. If we take the boundary cylinder to be realized
by an interval in the non-compact x direction times the circle parametrized by Euclidean
time 7 this metric reads

ds* = Chas <d7’2 + d—ZQ + h(z)dm2> (2.18)
22 h(z) ’ '

where h(z) = 1 — (2/20)?, and 27z is the spatial periodicity. In this geometry the cycle
that is contractible in the bulk is the spatial = direction. Correspondingly, the only way
to have a consistent brane configuration in the bulk is to have a single brane smoothly
connect the two boundaries of the interval, since the brane can not end in the bulk unless it
is wrapping a vanishing cycle. As a consequence, this connected solution only exists when
both boundaries are described by the same boundary condition, since one and the same
brane connects both.

The explicit solution for this configuration has been found in [11, 12], the exact form
is not relevant here. The total action turns out to be

mco

Ip=-"2
E 247

(2.19)

“In [11] a third bulk solution, also with disconnected branes, was found that relies on standard Poincaré
coordinates in AdSs. In appendix B we show that this is, in fact, not a new configuration, but just the high
temperature solution rewritten in different coordinates



Interestingly, the contribution from the boundary/brane @ cancels and so the action for this
solution is completely independent of the brane tension, or in other words it is completely
independent on which boundary condition we chose, as long as it is the same on both
boundaries of the cylinder. This feature is in agreement with the behavior of boundary
entropy of a 2d CFT on a very long cylinder [27].

The second saddle is the BTZ black hole, dominant at high temperatures. The metric
is given by

ds® = Eégs <f(z)d7'2 + ;l(zj) + d$2> ; (2.20)

where f(z) =1— (z/zg)?. This time the Euclidean time 7 is compactified on a circle with
period 27z so the BCFT temperature is § = 27wzp. Note that 7 cycle is contractible since
f(z2) = 0 when z = zpy. So this time the branes wrapping the Euclidean time direction
can smoothly end at z = zy and we can have a disconnected configuration with different
branes ending on the two ends of the interval. Correspondingly, this configuration is allowed
even when we impose different boundary conditions on the two ends of the interval. The
branes ()1 with tension T, and ()9 with tension T} are perpendicular to the spatial slice
and separated by Ax = 7wzg. In this case the total action turns out to be

e

&
I%b = Il;zdry + Igdry + Ty = *6 (arctanh(ﬁAdSTa) + arctanh(ﬁAdSTb)) — 5 (2.21)

Note that this expression agrees with the universal form (2.11).

In the holographic setting of [11] there is a sharp first-order phase transition between
the two saddles. This is an artefact of the large central charge limit. We already saw
in the previous section that the full cylinder partition function is a smooth function of §.

So the two saddles will always both contribute at finite central charge.’?

However, as we
will see in detail, the leading contribution at high and low temperatures respectively will
come from the corresponding saddles. Furthermore, working at ¢ = 1/2 means that we
will have to move beyond the simple semi-classic answer of [11] and account for quantum
fluctuations. We will argue that the form of these fluctuations is completely fixed by the

conformal symmetry of the problem.

3 Duality for the Ising BCFT

In this section, we will match the semi-classical gravity partition functions in [11] with the
leading terms of the BCFT results at different limits. We will focus on the case where
the Brown-Henneaux central charge is 1/2, such that the corresponding BCFT is the Ising
theory. The following notations will be used: 1,1, o label the three primary fields in the 2d
Ising CFT with conformal dimensions 0,1/2,1/16, respectively. Since there is a bijection
between the Cardy states and the bulk primary fields [23|, we will denote the boundary
states using 1,1, 0 as well.

5Strictly speaking, modular invariance always forces us to sum over all saddles. However, in the large

central charge ¢ limit, each saddle contributes as e~

, where S5 encodes the action of the saddle. Con-
sequently, what appears as a smooth function at finite ¢ from the sum over saddles, at large ¢ degenerates

into a non-differentiable function that is dominated by a single saddle for each set of parameters.



3.1 Disk Partition Function

As reviewed in section 2, in the semi-classical regime, the AdS/BCFT duality suggests a
relationship between the brane tension and boundary entropy (2.17). This relation can
already be extracted from studying the theory on the disk. If our conjectured duality is
true in the quantum regime of ¢ = 30445/2GNn < 1, then a similar relation should hold.
In particular, for the half-space model the with a single brane, we expect the boundary
entropy to be

o = garctanh(z nasTh). (3.1)

Here £ 445 is the AdS radius which we fix to be 1 from now on, T is the RS brane tension
for boundary condition a, and log g, is the boundary entropy in the BCFT with boundary
condition a. In particular for ¢ = 1/2, we have

Ty =Ty = —tanh(6log2), T, =0. (3.2)

The boundary state associate with o corresponds brane to a tensionless brane. The other
two tensions are degenerate and negative.

Negative tension branes are problematic if we think of them as fluctuating objects.
The worldvolume scalar (or radion) representing transverse motion of the brane would have
a negative kinetic term; the energy of the brane would be unbounded from below as the
surface of the brane becomes arbitrarily rough. The way to avoid this is to declare the
brane not to be an fluctuating object, but merely is a fixed defect that carries energy
density which can deform the spacetime around it. Examples of such defects are orbifolds
in string theory, which are fixed planes of a symmetry projection that removes states from
the spectrum odd under the symmetry. It is quite common to require RS branes to be
non-fluctuating orbifolds (as in the original RS1 model [28]), so this is not an unreasonable
solution. While the zero tension brane (and the positive tension branes we will find in the
tricritical Ising generalization) could in principle be fluctuating objects, self-consistency of
the constructions seems to require to treat all branes on an equal footing and so we will
treat all branes as not fluctuating.

3.2 Cylinder in the low-temperature limit

In the low-temperature limit, the dominant solution to the Einstein equation is that of
the thermal AdS3 (shorthand notation TAdS). Since we defined § as the ratio between the
circumference and the height of the cylinder®, the low-temperature case corresponds to
large §. In [11], the leading contribution to the TAdS partition function is found in the

semi-classical regime to be

ZTAAS _ m0/48 | _ o148 L (3.3)

where in the second equality we have parametrized ¢ = e~ ™ € R.
Now we turn to the BCFT perspective. For convenience, let us reproduce (2.2):

Zan(q) = > _ mixn(),
h

SQur § here is same as 1/ (Az - Tgerr) in [11, 12].



namely, all Z,;’s are linear combinations of different characters. In the low-temperature

h=1/48 where h

limit, ¢ is small and the leading term in the series expansion for x,(q) is ¢
is the conformal weight of the primary field h. Since h is non-negative, the contribution of
x1(q) is always dominant in the summation above whenever it is present. Consequently, we

will be interested in the Z,’s such that ngb is nonzero. This only happens when a = b:
Z5" = 6ap x1(q) + O(q*/*) = 6o ¢/ + O(¢*/%9). (3.4)

Equations (3.3) and (3.4) exhibit a match. It is thus attempting to conjecture that
the match extends beyond the low-temperature limit: at Brown-Henneaux central charge
¢ = 3laqs/2G N = 1/2, the gravitational partition function for a cylinder with two branes is
equal to the BCFT partition function on the cylinder at the same central charge. In other
words, there is AdS/BCFT duality in the quantum regime of ¢ = 1/2. The appearance of
dap in (3.4) also allows for a gravitational interpretation: For the TAdS saddle on a solid
torus, Euclidean time is along the longitude direction, i.e., the constant time slices are disks.
Since the RS brane cuts through a constant time slice, we are led to a bagel-like cut of the
torus into two annuli, and the boundary conditions for corresponding boundaries of both
annuli must be the same. We will revisit this claim in section 3.4 after the high-temperature
discussions.

We note that the arguments in this subsection can be straightforwardly generalized to
all diagonal Virasoro minimal models, which will be discussed in section 4.

3.3 Cylinder in high-temperature limit

To completely pin down the partition functions for different boundary conditions, we move
on to the case of a cylinder with general (meaning not necessarily equal) boundary condi-
tions, and study the high-temperature limit where the BTZ black hole solutions are favored.
Ref. [11, 12] computed the case where the two branes on the cylinder have the same tension.
The partition function separates into three decoupled contributions from the bulk and two

boundaries. Slight generalization of their results leads to

ZBTZ — o9ab ¢7/120 | . = abg=1/48 4 (3.5)

—47/6 and it is small when § is small (same as in Footnote 6). The constants

where ¢ = e
Jap satisfy
9ab = Ja + 9o, (3.6)
and g,, gy are as in equation (3.1).
On the BCFT side, since ¢ is close to 1 from below, it is no longer justified to take
the leading term in the g-expansion for the characters. Instead, we perform the modular S

transformation and expand in terms of §:

Xn(@) = Shwxw (@) = Smg " + 0(g"*). (3.7)
h/

Recall that in the order of basis {1,v, 0}, the S-matrix of the Ising theory is

1 1 V2
S=—1 1 —/2]. (3.8)
V2 V2 0

~10 -



This leads to, at leading order,

1 1 1
51 VA8 oy ~ 54 VA8 Ny~ —=g 18, (3.9)

X1~ ﬁ

The corrections are of order O(G—23/43). Using (2.2), the partition functions are then of the
form

Zilzi;gh = edab g1/ L O(g23/48), (3.10)

where again g.,, = g4 + gp and
g1 =gy = —log V2, g, =0. (3.11)

Comparing with the gravity calculations, we observe a perfect match if the constants ggu
in equation (3.5), factorized as gqp = go + gp, are identified with the boundary entropies of
the BCFT (3.11). This serves as a nontrivial check of our starting point (3.1) in the disk

case.

3.4 The full quantum partition function

So far we have argued that the AdS/BCFT calculations reproduce correctly the high and
low temperature limits of the BCFT partition function Z,,(d). In order to reproduce the
full partition function, we have to sum over fluctuations around these semiclassical saddles
arising from boundary gravitons. That is, the full quantum mechanical partition function
is a double sum over all classical saddles, and for each saddle the weight is obtained not just
from the action of the classical saddle itself, but also from summing up the contribution
from all boundary graviton fluctuations around it. In the limit of a large central charge,
the action of the saddles itself is of order ¢, so the subdominant saddle is exponentially (in
c¢) suppressed. At any given set of parameters, only the contributions from high and low
temperatures matter. As we mentioned above, this gives rise to the sharp phase transitions
familiar from holographic studies [12]. Furthermore, the large central charge suppresses
fluctuations including those from boundary gravitons. In our case, since ¢ = 1/2, we
never get such a sharp transition. We should always sum over all saddles and include all
fluctuations. While it would be interesting to explicitly work out the contribution of these
fluctuations, we note that the general form of the partition function is fixed by the Virasoro
symmetries of the problem — (2.2) is fixed by the underlying conformal invariance. In
particular, the full a dependence has to appear via characters xp(¢). The only dynamical
information are the coefficients ngb. We can fix these coefficients from our results obtained in
the extremely high and low temperature limits, where the semiclassical analysis in terms of
high- and low-temperature saddles applies. Our low and high temperature calculations show
that we reproduce the right structure and fix these coefficients (to be 0 or 1) from the saddle
point analysis alone. The sum over saddles together with the boundary gravitons then, by
symmetry, will have to reproduce the full Ising partition function. We here emphasize that
we always assume RS branes are free of 2d boundary gravitons (small diffeomorphisms),
consistent with the non-fluctuating nature of branes as stated near the end of section 3.1.
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4 General Virasoro minimal models

In this section, we turn to the general correspondence between diagonal minimal model
BCFTs and pure gravity in AdSs. A duality was only conjectured to be true in [1] for
the Ising and the tricritical Ising model, with the latter running into difficulties at higher
genus [4]. Here we will show that if a theory of gravity can be found to reproduce the
partition function of the Virasoro minimal model on any closed surface, the extension of
the duality between a gravitational bulk with RS branes and BCF'T on the asymptotic
boundary is straightforward. In particular, a general formula relating the brane tension
with the modular S-matrix in the corresponding BCFT will be presented and the case of
tricritical Ising will be studied in detail.

4.1 Low-temperature limit

For a general Brown-Henneaux central charge ¢ < 1, the leading low-temperature contri-
bution to the thermal AdSs partition function is now [11],

ZTAS = g2y (4.1)

where again ¢ = e~™. The leading term in the small-q series expansion for y,(gq) is qh—e/24,

Since h is non-negative, we still find that the contribution of the vacuum block xi(gq) with
h1 = 0 is always dominant whenever it is present in the summation. Consequently, we will

be interested in the Z,;’s such that ngb is nonzero. This only happens when a = b:
Z(ll(;)w _ 5ab X1<Q) + O(qh*fc/24) — 5ab qfc/24 + O(qh*fc/24)' (4.2)

Here h, is the smallest positive conformal weight in the CF'T.

The match between equations (4.1) and (4.2) suggests that if a duality between a theory
of gravity and a diagonal minimal model” with the same central charge can be found, the
bulk can be augmented to be a BCFT by the inclusion of the appropriate RS branes.

4.2 High-temperature limit

In the high-temperature limit, in a BCFT with central charge ¢, the series expansion of ¢

gives:

(@) = S 7 + 0(g" ). (4.3)
This leads to the following partition functions

Zyth = et 4 O(gh eI, (4.4)

where again g, = ga + g» and [14, 27|

ga =log (Soa/v/So0) = log (da/VD). (4.5)

Here d, = Soa/Soo is the quantum dimension for a and D =/}, d? is the total quantum
dimension. Compared with the gravitational computation in |[11], we identify

6 dg
T, = tanh| —lo . 4.6
(10 2) (1.6)

This relation can also be derived once again from the disk.

"The assumption of being diagonal under the Virasaro algebra is important to obtain the form (2.2).
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4.3 Modular S transformation

In this part, we will predict the transformation of the gravitational partition function under
the modular S-action based on the conjectured duality with BCFT.
Under the SL(2,Z) transformation S, the BCFT partition functions change as

Zap(S - q) Znab Xu(S-q) =Y nly S xw(q)- (4.7)
o

In the first two expressions, the S’s are in the two-dimensional fundamental representation,
while in the last expression, S is in the conformal block basis. Alternatively, the transformed
partition function can be written as a linear combination of various Z.’s with different
boundary conditions:

ab S q Zfab cd (48)
These coefficients f’s have the following form

fa = Znab (Son)>Sk nily. (4.9)
Ik

One can show that (4.9), when plugged into (4.8), reduces to (4.7). The details are presented
in appendix A.

Equation (4.9) describe the transformation properties of the gravitational partition
function under modular S action, which is a new result of the duality. The other generator
of T of SL(2,7), however, is not well-defined in the case with branes, as there is only one
real parameter ¢ in the partition function, instead of two in the solid torus case. Hence,
unlike in in |2, 29|, there is no “summation over geometry” over Z, the mapping class group
of an annulus/cylinder.

The relation (4.8) is interesting since it states that upon performing an S transformation
in the bulk of a gravitational solution with a given set of branes, the result arises as a non-
trivial sum over several configurations employing different branes.

4.4 An example: the Tricritical Ising model

Now let us look at a specific example other than Ising CFT. The next simplest unitary
minimal model is tricritical Ising. Its six primary fields are

X1, Xe» Xés Xe's  Xor  Xo's (410)

with conformal dimensions:

1 3 3 3 7
07 10’ = 57 on’ 1p0 (411)

107 57 27 80" 16
respectively. The complete set of fusions rules is listed in [16] and all the fusion coefficients
are either 0 or 1, which can be seen from the Verlinde formula and the fact (2.9). Explicit
form of characters written in terms of generalized theta functions are written down in

appendix C.

~13 -



In ref. [1], the authors showed that Ising and tricritical Ising CFTs are possible dual to
the bulk with corresponding AdS radii £ 445, as these are the only two theories with unique
modular invariants. Further in [4], for an arbitrary higher-genus asymptotic boundary, the
partition function of the bulk which is presumably dual to the tricritical Ising theory results
in an infinite number of summands in the modular sum. The appropriate regularization
over the mapping class group of ¥, with g > 1 is unknown [4, 30]. However, here we only

focus on the case where the parent spacetime is a solid torus.

4.4.1 The low-temperature limit

At low temperature where the parent spacetime is the thermal AdSs3, again we have same
boundary conditions on both “sides” of a single brane performing the “bagel cut”. According
to (C.8), in this limit all possible annulus partition functions with same boundary conditions
are the same to the leading order:
T = Zoror ~ X1 ~ q—7/240 — Tm8/240
T — le = X1~ q77/2407
o (4.12)

ZO'O' ~ X1~ q77/2407

Lgtg ~ X1~ q77/240'

They agrees with the semi-classical result of Iy as in (2.19) of [12], with Brown-Henneaux
central charge ¢ = 7/10. Again, this suggests a potential duality between AdSs and tricrit-
ical Ising CFT. We now further investigate this possibility.

4.4.2 The high-temperature limit

In this the high-temperature case, the parent bulk is a BTZ black hole. Because now ¢
is large, in order to expand the proposed partition functions in terms of ¢, we perform a

—47 /6

modular S transformation again. Now ¢ = e is small when § is small, and to the

leading order we have

Xn(@) =D S xn (@) ~ G (Sho + Sne@"/ ™ + Sner @*/° + Sper @ + Sng@*/* + Sor /'),
h/

(4.13)
So at leading order:

52 ~_c/24 _ 52 77/308
~ Xe' ™~ T = = —=€ )
X1~ X \/5(] /5
S1 ~_c/24 _ S1 _77/306
~ 5~y — = —€ y
X€ XE \/5(] \/5
Yo ~ \/581670/24 _ V251 o 7m/306 (4.14)
g \/g \/g I
Yoo ~ V253 G — V255 o T/308
7 5
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All the possible partition functions in (C.8) are now

S1+ s2
ZEE = Ze’e’ = Zeel f\/7677"/3067

S1
Zee” = Zle’ = ZE’E" = Zle N\/5€77F/306

52
ZG”E” g le ~ ZlEN Nﬁe'ﬁr/%&

2
ZGO' = o N\/;(Sl + 52)677"/3057

_V2s: o Tm/306

V5 ’
L2511 252 7r/305
V5 ’

281 o
7.0 ~% o 77/306

282 T
Dot o N%(i? /308
V289 o 77/308
\/5 )

)

)

Legt = Lergt = Lgnng = Lenngt = Loy (415)

ZO'U
)
)

Zla’
where s1 and so are entries of the modular S-matrix reviewed in appendix C. According to

our proposition (4.4) on the form of leading term in partition functions, gravitational g,’s
can be solved by boundary entropies of BCFT:

1 1+ 1
= ;1 — — 10 — —_—
gﬁ gE 4 g 4 2\/5 bl
11 (1 1>
g =g =-log|<-—-—=),
47\8 85 (4.16)
1

1 1
s =-log (=~ — ——
gO’ 4 Og <2 2\/5)?
Jo = log(2\/§cos (g)) + 91,

which exactly agree with the already known values of boundary entropy for the purely 2d
tricritical Ising CFT [31]. The four different RS brane tensions can be easily computed
using (3.1).

5 Discussion

In this work, we demonstrated that the duality between pure gravity in AdSs and the
Ising CF'T can be extended to conformal field theories with boundaries. There are several
interesting questions that should be addressed in the future.

For one, one could wonder whether an extension to higher central charges can be found.
Since in AdS/BCFT, there is no Poincaré series, but only two terms, upon summing over
geometries, we do not encounter the difficulty of regularizing an infinite sum. Hence, in
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principle, any rational CFT with ¢ > 1 (even irrational CFTs, as long as the modular S-
matrix is well-defined, such as Liouville field theory [32] and logarithmic CFT [33]) would
allow branes with certain finite tensions extending into the bulk. Of course this is a moot
point unless a dual for the CFTs on closed manifolds can be constructed, but it is encour-
aging to note that no new constraints arise from the case with boundary. The last fact is
expected, because in BCEFT, only a Zy subgroup (generated by S) of the original SL(2,7)
modular symmetry is preserved, so we get less restrictive constraints.

We only studied the case of the CFT partition function on a disk and a cylinder. A
general orientable 2d manifold 3, with boundaries is characterized by two nonnegative
integers, the genus g and the number of boundaries b. Our two cases correspond to (g,b) =
(0,1) and (0,2). Extensions to higher g and b would be interesting. These more complicated
geometries might allow us to connect to recent work on the gravitational determination of
CFT correlation functions, which have been studied in e.g., [34].

It would be also interesting to see if our analysis can be generalized to interfaces con-
necting several CFTs rather than just boundaries. Such interface CFTs have a much richer
structure of allowed boundary conditions and it would be illuminating to see if they can be
reproduced from a putative holographic dual.

Last but not least, it would be interesting to explicitly perform the path integral over
boundary gravitons, possibly by using a modified version of the heat kernel in [35] on 3-
manifolds with genuine boundary components set by RS branes. We deduced the result
based on the structure of the partition function that is forced upon us by the conformal
symmetry of the problem, but we would presumably learn something about quantum gravity
in the presence of RS branes if we were to be able to redo this calculation explicitly in the
gravity theory.
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A Proof of equation (4.9)

In this appendix, we show that (4.9), combined with (4.8), gives (4.7).

Z ab Cd_zznab (Son) Sh ncd Zed

c,d c,d h,h!

= Z Mg SOh Sh/ Z Xhn" Z czlincc,l/)
h,h! h! c,d

= Z an(SOh)ZS}}LLI Z X' Z Z Schdexh’ SycSdeyh”/SxOSyO
h,h' R ed T,y

= Z n, SOh Sh Z Xh' Z th’ yh!! Z S:):csyc Z Sa:dSyd /SxOSyO
h h/ h//

= 0y (Son)*SE > xw Z St Sy Oy / Sz0Syo,
h,h! h' T,y

(A.1)

where in the third line we have used the Verlinde formula. In the last line, we use the
fact that the S-matrix is symmetric and squares to identity for Virasoro minimal models.
Continuing the analysis,

Z Zeg =Y ni(Son)?SI > xu Z Sent S/ (S20)

= 7
= Z n’ (Son) Z > Swiaxn Z SanSi )/ (Sx0)?
= Zn (Son)? ii Shra XnOna/ (Sz0)? (A.2)
= Z n, ; Sh hXhu
— Z nl SE X

Y

In the third line we have again used the fact that S-matrix is symmetric and squares to
identity. The last line is obtained by redefining h” — h’. We observe that this is exactly
(4.7).

B Equivalence of disconnected brane configurations for the annulus

In the bulk of the paper, we considered two geometries dual to a BCFT on the annulus, the
high temperature phase corresponding to two disconnected branes in the BTZ black hole
background of (2.20), or the low temperature phase corresponding to a single connected
brane in thermal AdS3 with metric (2.18). In [12] a third configuration of disconnected
branes has been presented in section 3.1 therein. It is the goal of this appendix to show
that this putative third solution is just the high temperature BTZ background rewritten in
different coordinates.
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The putative third configuration is obtained by considering Euclidean AdS3 in Poincaré

patch coordinates:
£2
2 AdS 32 2 2

A trivial solution for the embedding of an RS brane in this geometry corresponding to a
BCFT with planar boundary is given by X « Z, a half-plane anchored on the T-axis, where
the constant of proportionality depends on the brane tension. By a conformal transforma-
tion, one can obtain from this the solution for the BCFT on a disk D of radius rp. The
embedding of the corresponding RS brane is given by the equation

T? + X% 4 7% - 25, 2rp = 1%, (B.2)

where s, = sinh(p,) encodes the brane tension, and p, is as defined in (2.16). Using the
inversion isometry® of AdSs one can obtain both solutions where the spacetime removed is
the outside or the inside of the disk D (with positive or negative brane tension). It is now
easy to put together two such branes @ and @', of opposite orientations with different disk
radii 7p and 77, in such a way that one keeps only the annulus between the two circular
boundaries D and 9D’. In [12] this surface was treated as yet another valid configuration
for the annulus. Here we want to show that this is just the high temperature BTZ phase
in different coordinates.

To see this, first recall that locally the BTZ black hole is just AdSs. Therefore, a
coordinate change must exist that takes the Poincaré coordinates to the BTZ coordinates
in (2.20). To see this change of coordinates, it is best to connect both coordinate systems
to the isometric embedding space R*! with coordinates Xy, X, X2, and X3 with metric
dS? = —dX? + dX? + dX2 + dX2 in terms of which (Euclidean) AdSs is given by the
hyperboloid of one sheet Xg - X2 - X2 X% = €,2Ads- For simplicity, we set £445 = 1 for
the remainder of this appendix. The parametrization of the embedding space coordinates
in terms of the Poincaré coordinates is well known:

_i 2 2 2 _
X0_2Z(Z +X°+T7+1), Xi=

T X 1
- o=, X — (Z2+X*+T%-1).

T 27
(B.3)
Plugging this into the flat embedding space metric yields (B.1). The BTZ black hole is given
by what in higher dimensions is the hyperbolic slicing of AdSs. The embedding coordinates

this time are parametrized as

X : T
Xo _coshzy Xy _ [ 22singg
ZH z zy 22z
: ioh & 5 T
Xy _ sinhzy Xo _ [ 2% (B.4)
- 1) - 2 . .
ZH z ZH 2fy 2

This yields the BTZ metric of (2.20) when plugging into the flat embedding space metric.

8Given by z — x/2%, t — t/Z% and z — 2/Z?, where 2% = 2% 4 2 + 22,
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In the BTZ coordinates, the embedding of a single RS brane associated with the disk
on the conformal boundary is given by [12]

x(2) = zp arcsinh(cgz) + g (B.5)

where ¢y encodes the brane tension® and x is an integration constant. Once again, we can
get the annulus by considering the disconnected union of two such branes with different
xg, taking care that it is the region between the branes that is kept. Let us start with
xg = 0. By comparing the expression for X3 in the two parametrizations, we can see that
the brane embedding for the disk in BTZ coordinates given by (B.5) in terms of the Poincaré
coordinates reads

Z2 4+ X2 4+T? - 2Zcy=1 (B.6)

which is indeed of the form (B.2) with rp = 1. To get the general z( case!”

, we need
to look at a linear combination of the equation of X3 and Xy to again find the form of
(B.2), but this time with rp = cosh(zg) — sinh(zp). So, lo and behold, we do indeed
find that these putative novel solutions to (B.2) are just the high temperature solutions to
(B.5) in a different coordinate system. The same is obviously true for putting together two

disconnected branes of this form separated by a distance Ax = mzg.

There is another less straightforward way to see that the two disconnected concentric
branes are equivalent to the two parallel branes along the meridian in the solid torus rep-
resenting a BTZ black hole. The ordinary BTZ solid torus is constructed from identifying
two ends of a hyperbolic cylinder (possibly with a twist) by an one-generator loxodromic

7 = <<g q91>> C SL(2,C) (B.7)

where |g| < 1, as in [2]. The same solid torus can be equivalently constructed from iden-

discrete subgroup

tifying fundamental regions'' of two hemispheres centered at the origin in the Poincaré
upper-space along the radial direction, so that the line segment connecting two North Poles
becomes the (outer) horizon, as shown in [36, 37|. In our case, the two concentric branes
Q and Q' centered at Z = s, in the beginning of this appendix can be viewed as the two
hemispheres before identification, and we simply stop there, then it would be brought to the
open cylinder cut off by two RS branes in (2.20) via a suitable coordinate transformation,
upon which the separation between two North Poles becomes Ax right above (2.21). The
center at s, above (or below) the origin tells if both ends of the cylinder are concave (or
convex), since ) and @' have opposite orientations in the Poincaré patch (B.1).

9¢p has the same sign as the brane tension.

OThere is only the case with 29 = 0 in [11, 12], but the zo # 0 situation is crucial for two separated
branes in our BTZ case.

1The opening angle around z-axis is determined by the length of the inner horizon. For a non-rotating
BTZ, the regions to be identified are two entire hemispheres.

~19 —



C Data of both tricritical Ising CFT and BCFT

In this appendix, out of convenience, we collect results on modular data for the tricritical
Ising CFT, and enumerate fusion coeflicients for BCF'T. We then list all Ishibashi and Cardy
states, and their corresponding boundary entropy, as well as partition functions consistent

with those boundary conditions.

In the convention of [1], and in the same order as (4.10), the Virasoro characters of

irreducible representations M, s corresponding to six primaries arel?:

1 1 B 2
Xl,l(T) = Kl,l(T) - Kl,fl(T) = 7(7_) Z (q 12 (60— 1)? q120(60”+11) ) ,
N ne”L
1 3 1 2
x3.3(7) = K33(7) — K3, 3(7) = v > (q40(20" D7 — g1 (60 +33) ) ,
U neZ
1 2 1 2
X2,3(T) = Ko3(1) — Ko _3(7) = 7(7_) Z (q 5 (15n—2)? — qT20 (60n+28) > ,
U neZ (C 1)
1 .
X13(7) = K1 3(1) — K1 _3(1) = & Z (q%(GOn 13)2 _ q%(60n+23) ) 7
n(t
neL
1 1 2
X2.2(7) = Koo(1) — Ko _o(1) = e Y (q 30(30n-1) _ 5 (60n+22)? > 7
neL
alr) = Kralr) = Kicalr) = 2 35 (aml0n 1 = giohen?),
T neZ
where Dedekind’s eta function n(7) is defined as
o0
DETEE | (YD) (C.2)
n=1
where ¢ = €2™7 and 7 is the modular parameter of the torus.
Their small ¢ expansions are [16]
xi1(@) =00+ g+ P+ P+ 2 + 267 + 45 + .. ),
X3,3q q17/240(1+q+q2+2q3+3q4+4q5+6q6+),
x23(q) = ¢+ g+ 2% + 2¢° + 4" +5¢° +7¢° + ..., )

X2,2(¢ :q1/120(1+q+2q2—|—3q3—|—4q4—|—6q5—|—8q6+...),

(q)
(q)
(q)
X1,3(Q) :(]353/240(1_|_q_‘_(]2_{_2(]3_‘_3(]4_‘_4(]5_‘_6(]6_‘_“.)7
(q)
(@) = ¢"" (1 + g+ ¢* +2¢° + 3¢* +4¢° + 6¢° +...).

12x23, x1,3 and 1,2 here are x3,2, X3,1 and x2,1 in [16], respectively.
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The modular S-matrix in the basis (4.10) is

\@Sl \/582

52 S1 s1 52
81 —S82  —82 81 V2sy —V/2s1
1 S1 —S89 —S2 S1 —\/552 \/581

S=— ,
Vi sz s s1 sy —V2s1 —V2sy

V281 V283 —v/2s2 —V2s1 0 0
V2sy =281 V281 —V2s2 0 0

where s; = sin (27/5) and sp = sin (47/5).
Considering its BCFT, where all ¢ = €™ in (C.1)-(C.3) are changed into ¢ = =™
as in (3.3), there are six possible boundary conditions in terms of Cardy states written in

terms of Ishibashi states:

i) =cC
|€// C

/

|o

)
)
)
l€)
)
)

C
€y =C

lo

where C =

10)) + 81350} + 812) + 1) + V2155 + V2610
10)) + ¢185)) + 912} +13) — V215 - V20l )|

VEC[10)) — 6450 +612)) — 13))]

67(0)) = 6755 — 0T + 613D — V2SI + V2o 3]
6710)) = 671 185)) — 67D + G213 + V2650 — V2o 1G],

V20 [¢%10) + 67 Y &5)) — o7 E)) — 713N,
sin(7/5)/v/5 and ¢ = \/cos(/5).

The coefficients in the annulus partition function (2.2) are:

nge = nﬁ; = n;/ = ni, = TLE;// = TLS/E/ = nSE/ = n:/E// = ngueu = 1,
NGy = Ny = Ny = Ny = Ny = Ny = Ny = Ny = 1,

nga = TLZ.O. = T’LZ.IO. = nirl;' = ngo’ - ngo’ = ng’o’ - nif,’la’ = 17

nZO - 1a

(C.5)

(C.6)

and we emphasize again that acoording to (2.9), nﬁ,h,/ here is equal to N,’;/h,,, the fusion

coefficients in the Verlinde formula.

Incidentally, the dictionary between primaries and boundary conditions is as follows

[31] (and [38,

39] cited therein)'3

L: |4,
e: |0+),
¢ |-0),
e |-),
o: |d),
o 0) .

(C.7)

13Note that conventions in [31] and [38] agree, but in [39] the identifications of |04-) and |—-0) to the left
column are opposite, and same for |+) and |—).
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The notations in the right column have their roots in the order parameter (o), the expecta-
tion value of the leading spin field, on the boundary. “+”, “—", “0” respectively mean “up”,

“down” and “zero” spin, and “d” stands for “degenerate”, namely “(—0+)

7

Finally, all possible annulus partition functions are

Zee = Zee =X0 + Xe's

Zee’ =Xe + Xes
Zee” = ZOe’ =Xe¢'>
Zeen = Zpe =Xe>

Zenen = 200 =X0;
Zeo = Lo =Xo + Xo
Zeg) = Zero) = Zeng = Zeog' = Zoo =Xo
Zoo =X0 + Xe + Xe + X,

Zgo! =Xe + X'
Zotor =X0 + Xe
Zoer =Xe,
Zoo' =Xo;

where we suppressed all of their argument, i.e., the modular parameter ¢ of the annulus.
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