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Abstract

We introduce effective form factors for one-dimensional lattice fermions with arbitrary phase
shifts. We study tau functions defined as series of these form factors. On the one hand we
perform the exact summation and present tau functions as Fredholm determinants in the ther-
modynamic limit. On the other hand simple expressions of form factors allow us to present the
corresponding series as integrals of elementary functions. Using this approach we re-derive the
asymptotics of static correlation functions of the XY quantum chain at finite temperature.
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1 Introduction

Exactly solvable one-dimensional quantum mechanical systems of interacting spins, bosons, and fermions
provide a unique platform for studying non-perturbative effects. The algebraic and coordinate Bethe ansatz
allow one to find the wave functions [1] and analytically address the thermodynamic properties of these
systems [2]. The matrix elements of physical operators can also be found analytically in many cases [3–6], but
the computation of correlation functions still remains quite challenging. For the vacuum correlation functions
there are effective numerical methods based on integrability [7]. The asymptotic behaviour of the correlation
functions can be investigated by means of effective field theory (Luttinger liquid) [8]. The origin of this
behavior has been linked to the finite-size scaling of the matrix elements computed by means of the Bethe
Ansatz [9–13]. For dynamical correlation functions based on this approach the corresponding effective field
theory bears the name of non-linear Luttinger liquid [14–16].

At finite temperature, or more generally at finite entropy (density of states), both the numerical and
field theory approaches experience some difficulties. In the numerical approaches one has to scan a much
larger portion of Hilbert space to saturate the sum rules, as the form-factors (matrix elements of the physical
operators) decay exponentially with the systems size contrary to the power-law decays at zero temperatures
(see for instance [17,18]). The field theory approach is based mainly on the linear spectrum for the soft modes
(low-energy excitations) which is valid only for very low temperatures [19,20].

A more rigorous approach was developed to evaluate finite temperature correlation function in integrable
lattice models of Yang–Baxter type, based on the Quantum Transfer Matrix (QTM) [21]. The notion of the
thermal form factor was introduced [22], which turned out to be useful for the asymptotic analysis of two-
point functions [22–24]. In the scaling limit, thermal form factors also arise axiomatically in the context of
Integrable Quantum Field Theory [25–33]. Less rigorous but numerically accurate approaches are based on
the thermodynamic limit of the form-factors and restricting summation to a finite number of particle-hole
pairs [34–37].

However, the complete understanding has not been achieved and recently the QTM methods were revisited
to address correlation function for the XX spin-chain [38–40]. Moreover, new systematic approaches for
correlation functions in the Ising model for low density [41] and in the Lieb–Liniger model for the strong-
coupling expansions [42] have been proposed. The generalization of Smirnov’s form factor axioms for the
thermodynamic states has been formulated in Ref. [43] and successfully applied to the reconstruction of the
generalized hydrodynamic description of the correlation functions [44,45].

In this work we develop a heuristic approach to address asymptotics of correlation functions at finite
density of states. Our main motivating example is the XY spin chain in a transverse magnetic field. On one
hand these systems were analyzed extensively in literature and the exact answers for spin-spin correlation
functions in terms of Toeplitz or Fredholm determinants are known. On the other hand the complexity of
excitation is the same as for generic systems. As we have mentioned above, this complexity is combinatorial in
nature and reflects the fact that each form factor for the thermal states is exponentially small so the number
of relevant form factors is exponentially large. This makes direct computation of the corresponding sum for
the correlation functions notoriously difficult and force researchers to focus at most on the two particle-hole
excitations [34–37], consider semiclassical approximations [46] or develop other approximation schemes [41,42].

We deal with this problem in a different manner. Namely, to describe the spin-spin correlation function
evaluated on a state with finite density of entropy (energy) we introduce effective form factors for the fermions
with the modified phase shift that absorbs information about the state and significantly simplifies combinatorics
of excitations making it essentially analogous to the zero-temperature case. Here we have to emphasize that
the expressions of form factors was inspired by the XX spin chain [47–50], rather than genuine spin form
factors in the Ising/XY models [51–55].

We focus on the static correlation functions for which we demonstrate that after complete summation of
the effective form factors series and taking the thermodynamic limit the answer can be presented in the form
of Fredholm determinants. The method of form factors summation of this type was pioneered in Ref. [56]
for the correlation functions in the impenetrable Bose gas model (see also [57]). For the proper choice of
the phase shift in the effective form factors the kernels in the Fredholm determinants differ from the exact
ones [50] by the exponentially small (in distance between spin operators) terms. Conversely, by first taking
the thermodynamic limit of the effective form factors and then performing their summation we manage to
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present the Fredholm determinants as integrals of elementary functions. This kind of asymptotic behavior for
models in the continuum (not the lattice) arises similarly from the solution of the Riemann–Hilbert problem for
operators acting on the whole real line [58]. This asymptotics was conjectured to be universal for correlation
functions of any gapless model of statistical mechanics at any temperature and for an arbitrary coupling
constant [59].

An important ingredient for our asymptotic analysis is the winding number of the state-dependent phase
shift ν(q) defined as the difference across the Brillouin zone, namely

ν(+π)− ν(−π) = δ ∈ Z. (1)

We recover the correlation length in the lattice version of the asymptotics in Ref. [59] at δ = 1 and additionally
give an analytic expression for the prefactor. For δ = 0 and δ = ±1 we derive asymptotic behavior for the
correlation function in the XY spin chain at finite temperature and compare it with the known answer [60].
Different winding numbers correspond to different values of the magnetic field and anisotropy. The winding
number |δ| ≥ 2 does not have a direct physical interpretation in this model, but we perform the asymptotic
analysis anyway and find the results consistent with the generalization of Szegő formulas [61]. Moreover, we
have observed a peculiar identity between Toeplitz determinants and Fredholm determinant of sine-kernel type
with finite rank, which, to the best of our knowledge, is new

det
(

1 + Ŝν + δV̂ν

)
− det

(
1 + Ŝν

)
= det

1≤j,k≤x
Tj−k, (2)

where the operators Ŝν and δV̂ν are generalized sine-kernels that act on L2([−π, π]) and are defined by their
kernels

Sν(p, q) =
e2πiν(p) − 1

2π

sin x(p−q)
2

sin p−q
2

, δVν(p, q) = −e
2πiν(p) − 1

2π
e−ix(p+q)/2e−i(p−q)/2, (3)

and

Tk = − 1

2π

π∫
−π

dϕ e−i(k+1)ϕ+2πiν(ϕ). (4)

Notice that the right hand side of Eq. (2) can be also be presented as a Fredholm determinant but with the
modified shifted ν(k) [62]. If ν(k) corresponds to the XY spin chain the explicit Fredholm determinants are
given in Eq. (74). For the same ν(k) the left hand side of Eq. (2) was obtained in [50] and the right hand side
in [60,63] (as Toeplitz determinant).

The paper is organized as follows. In Sec. 2 we define the tau function together with the effective form factors
and outline the derivation of the Fredholm determinant presentation resulting from the summation of form
factors. The details of this derivation are presented in Appendix A. In Sec. 3 we study the thermodynamic limit
of the form factors and argue for an explicit presentation of the form factors series as integrals of elementary
functions. All necessary technical results are given in Appendices B and C. Sec. 4 deals with the application
of the general formulas to the XY spin chain. In Sec. 5 we discuss connection of the general result to the
Toeplitz determinant and relations such as Eq. (2). Sec. 6 concludes the paper and offers an outlook.

2 Effective form factors

We start with the formal definition of the static correlation function (tau function), as a form-factor series

τ(x) ≡
∑
q

|〈k|q〉|2e
−ix(

N+1∑
i=1

ki−
N∑
i=1

qi)
, (5)

here the ordered set k = {k1, . . . , kN+1} consists of N + 1 distinct shifted momenta inside the Brillouin zone
(ki ∼ ki + 2πn, n ∈ Z) each being a solution of the transcendental equation

eikL = e−2πiν(k) (6)
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for a smooth function ν(k). This function plays the role of the phase shift and is assumed to be compatible
with the Brillouin zone structure, i.e.

ν(π)− ν(−π) = δ ∈ Z. (7)

The integer δ is the winding number (index). One can easily argue that the number of solutions of Eq. (6) is
L+ δ, each root defined up to O(1/L2) terms.

The set q = {q1, . . . , qN} is an ordered set of N distinct solutions of equation

eiqL = 1. (8)

Further we consider different values of N and L, provided that the sets q and k are not empty. For given
sets, motivated by the spin form factors for quantum XY chain written in the XXO basis [50], we postulate
the following form-factor

|〈k|q〉|2 = − 4L
N+1∏
i=1

(1 + 2π
L ν
′(ki))

(
N+1∏
i=1

eg(ki)/2 sinπνi
L

)2 N∏
i=1

e−g(qi)(detD)2, (9)

where detD is a trigonometric Cauchy type determinant that can be presented in two equivalent forms

detD =

∣∣∣∣∣∣∣∣∣
cot k1−q12 . . . cot kN+1−q1

2
...

. . .
...

cot k1−qN2 . . . cot kN+1−qN
2

1 . . . 1

∣∣∣∣∣∣∣∣∣ =

N+1∏
i>j

sin
ki−kj

2

N∏
i>j

sin
qj−qi

2

N+1∏
i=1

N∏
j=1

sin
ki−qj

2

. (10)

Furthermore, since we do not specify the specific operator we will sometimes refer to Eq. (9) as to the overlap,
and use this term interchangeably with form factor.

We assume that the index is of order δ ∼ O(1) as both the system size and the number of particles are
approaching the thermodynamic limit N →∞, L→∞ such that N/L = 1. In this case, the summation over
q can be performed exactly, similarly to Ref. [56] (see Appendix A). The result for the tau function reads

τ(x)
N→∞

= det(1 + V̂ + δV̂ )− det(1 + V̂ ), (11)

where the determinants are taken in the space L2(S1) and the corresponding operators are defined by their
kernels

V (k, q) =
sin2(πν(k))

4π
eg(k)e−i(k+q)x/2ei(k−q)/2

E(k)− E(q)

sin k−q
2

, (12)

δV (k, q) = − 2

π
sin2(πν(k))eg(k)e−i(k+q)x/2, k, q ∈ [−π, π) (13)

with

E(k) =

π∫
−π

dq

π
e−g(q)+iqx cot

q + i0− k
2

− 4ie−g(k)+ikx

e−2πiν(k) − 1
. (14)

The diagonal terms k = q are understood as in L’Hopital’s limiting procedure. Further, we impose the relation

e−g(k) = e−2πiν(k) − 1 (15)

to present tau function as

τ(x) = det(1 + Ŝν + δV̂ν + R̂)− det(1 + Ŝν + R̂) (16)

with Ŝν being a generalized sine-kernel

Sν(k, q) =
e2πiν(k) − 1

2π
ei(k−q)/2

sin x(k−q)
2

sin k−q
2

, δVν(k, q) = −e
2πiν(k) − 1

2π
e−ix(k+q)/2. (17)
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This way, the remainder R̂ = V̂ − Ŝν consists of integrals in Eq. (14), which are exponentially suppressed1 for
large and positive x. Let us call the tau function with discarded R̂ as τS , namely

τS(x) = det(1 + Ŝν + δV̂ν)− det(1 + Ŝν). (18)

This particular generalization of the sine-kernel is contained in the prefactor (e2πiν(k) − 1) and allows one
to describe a modification of the system from the vacuum state for which ν(q) is constant within the arc
k ∈ [−kF , kF ] and zero everywhere else, to the finite-entropy state, where, for instance, for the thermal state
of the fermionic system the prefactor would be proportional to the single-particle Fermi distribution function2.
In Sec. 4 we relate this type of kernel to the static spin-spin correlations in the XY chain. Then ν(k) will
depend not only on the state but also on the parameters of the model.

3 Thermodynamic limit and direct summation of form factors

3.1 Winding number δ = 1

In the previous section, we considered the summation of the form factor series and subsequent taking of the
thermodynamic limit. This leads to the presentation of the tau function as a Fredholm determinant. The
essence of this derivation, which is outlined in Appendix A, is that each momentum qi ∈ q was treated
independently. In this section, we focus more on the detailed structure of the ordered sets q in the sum of
Eq. (5). The total number of solutions of the equation eiqL = 1 inside the Brillouin zone is L, which can be
presented as

qj =
2π

L

(
−L+ 1

2
+ j

)
, j = 1, 2, . . . , L. (19)

As we have already pointed out above, the number of solution of Eq. (6), depends on the winding number δ.
In particular, for δ = 1 there exist exactly L+ 1 solutions inside the Brillouin zone

kj =
2π

L

(
−L+ 1

2
+ j − νj

)
, νj = ν(kj) ≈ ν(qj), j = 1, 2, . . . , L+ 1. (20)

If we choose the set k = {k1 . . . , kL+1} in Eq. (5) then summation over q will only involve one term
q = {q1, . . . qL}. In the large L limit the corresponding overlap reduces to a constant which is slightly
counterintuitive from the orthogonality catastrophe point of view [65]. The explicit value of this constant is
given by Eq. (213). The difference of momenta in Eq. (5) can be evaluated in the large L limit as

∆P ≡
L+1∑
i=1

ki −
L∑
i=1

qi ≈ π −
π∫
−π

ν(q)dq. (21)

Combining these observations together we obtain explicit equality for the Fredholm determinants in Eq. (11),
and approximation for the generalized sine-kernel

τS(x) ≈ τ(x) = exp

−iπx+ ix

π∫
−π

ν(q)dq − 1

2

π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)− (q − k)/2π

2 sin q−k
2

]2
 . (22)

It is interesting to note that only the periodic (i.e. having winding number δ = 0) part of ν(q) has entered the
final answer.

1We assume that exp(−2πiν(q)) is an analytic function within some vicinity of the real line.
2See, for instance the discussion in Appendix A in Ref. [64].
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3.2 Winding number δ = 0

For δ = 0 we proceed similarly to the previous subsection. This time however the maximal possible number
of the ki ∈ k is L, so the maximal set q consists of N = L − 1 momenta. There are exactly L such sets and
they can be parameterized by the position of the “hole”

q(a) = {q1, . . . , qa−1, qa+1, . . . , qL}, a = 1, 2, . . . , L. (23)

The overlap is given by

|〈k|q(a)〉|2 =
A[qa]eg(qa)

L

[
Γ(L− a+ 1− νa)Γ(a+ νa)

Γ(L− a+ 1− ν+)Γ(a+ ν+)

]2(
π + qa
π − qa

)2ν+−2νa

. (24)

The derivation can be found in Appendix C.3 along with the explicit expression for A[qa] (see Eq. (227)). For
a ∼ L and L− a ∼ L the last two factors cancel each other, which yields the following explicit expression

|〈k|q(a)〉|2 =
e−2πiνa − 1

L
exp

−1

2

π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)

2 sin q−k
2

]2

−
π∫
−π

ν(q) cot
q − qa + i0

2
dq

 . (25)

On a technical side, we have used a variation of Sokhotski–Plemelj formula

−
∫ π

−π
ν(q) cot

q − k
2

dq =

∫ π

−π
ν(q) cot

q − k + i0

2
dq + 2πiν(k), (26)

to transform the integral in the exponential. For a ∼ 1 and L− a ∼ 1, the overlap is still O(1/L), so we can
replace the sum in tau function Eq. (5) by an integral

τ(x) = e
−ix

L∑
j=1

(kj−qj) L∑
a=1

|〈k|q(a)〉|2e−ixqa = T0(x)Y0(x) (27)

with

T0(x) = exp

ix π∫
−π

ν(q)dq − 1

2

π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)

2 sin q−k
2

]2
 , (28)

and

Y0(x) =

π∫
−π

dk

2π
(e−2πiν(k) − 1)e−ikx exp

− π∫
−π

ν(q) cot
q − k + i0

2
dq

 . (29)

Equivalently we may re-write Y0(x) as a contour integral in the variable z = eik

Y0(x) =
1

2πi

∮
C>

dz

z
(e−2πiν(k) − 1)z−xS(z), (30)

where the contour C> is a circle centered at the origin with slightly larger than unit radius and

S(z) = exp

i π∫
−π

dq ν(q)
z + eiq

z − eiq

 . (31)

We assume that ν(q) is non-singular in the region of integration, thus S(z) is holomorphic outside the unit
circle on the Riemann sphere, so the asymptotic for large positive integers x is defined by the analytic behavior
of ν(k) in the upper-half plane. For example, if e−2πiν(k) is a meromorphic function (of z = eik) outside the
unit circle in the complex plane having simple poles at z1, z2, . . . , with 1 < |z1| < |z2| < · · · , then for large x
the leading contribution comes from the smallest pole

Y0(x) ≈ −z−x−1
1 S(z1) resz=z1 e

−2πiν(k), z = eik. (32)

6
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Applying this formula together with Eq. (28), we have an asymptotic expression for the sine-kernel Fredholm
determinant for δ = 0

τS(x) ≈ τ(x) ≈ −T0(x)

zx+1
1

S(z1) resz=z1 e
−2πiν(k). (33)

Remark. Notice that even for δ = 1 one could have chosen k = {k1, . . . kL}. This would not affect the
derivation of the Fredholm determinants, but instead of one term in the form factor series as in the previous
section, we still get a sum of L terms. Using Appendix C.3 and specifically Eq. (229), we obtain

τ(x) = e
−ix

L∑
j=1

(kj−qj) L∑
a=1

|〈k|q(a)〉|2e−ixqa

= τδ=1(x)

L∑
a=1

eixπ−ixqa
sin2(πνa)

π2

e2F (qa)+g(qa)

e2F (π)+g(π)

[
Γ(L− a+ 1− νa)Γ(a+ νa)

Γ(L− a+ 2− ν+)Γ(a+ ν+)

]2

. (34)

Here, by τδ=1(x) we mean the r.h.s of Eq. (22). Notice that contrary to the δ = 0 scenario, the middle parts
a ∼ L and L− a ∼ L, are suppressed as 1/L2, so their contributions are negligible as L→∞. The soft-modes
at the edges a� L and L− a� L now start to play more important role because the corresponding overlaps
are O(1). The prefactor in front of the Gamma functions simplifies to one and the whole series reads

τ(x) = τδ=1(x)
sin2(πν−)

π2

L∑
a=1

[
Γ(L− a+ 1− νa)Γ(a+ νa)

Γ(L− a+ 2− ν+)Γ(a+ ν+)

]2

+O(1/L). (35)

In order to compute this sum in the L→∞ limit we expand it at the edges and then perform the summation
of the simplified expression extending the upper limit to infinity. Namely, the asymptotics

Γ(L− a+ 1− νa)Γ(a+ νa)

Γ(L− a+ 2− ν+)Γ(a+ ν+)
=

{
(a+ ν−)−2 , a� L

(L− a− ν−)−2 , L− a� L
, (36)

leads to

τ(x)

τδ=1(x)
=

sin2(πν−)

π2

( ∞∑
a=1

1

(a+ ν−)2
+

∞∑
a=0

1

(a− ν−)2

)
=

sin2(πν−)

π2

∞∑
a=−∞

1

(a+ ν−)2
= 1. (37)

This way we restore the correct result even in the different formulation of the form-factor series.

3.3 Negative winding number δ < 0

Let us consider δ = 1 − n for positive integers n ∈ Z>. The maximal number of solutions of Eq. (6) is
` = L+ δ. We choose all of them to comprise our set k

k = {k1, . . . k`}, ki =
2π

L

(
−L+ 1

2
+ i− νi

)
. (38)

The set qa1,...an is obtained from the complete set q in Eq. (19) by the omission of the “particle” (creating a
“hole”) at positions qai

qa1,...an = {q1, . . . q̂a1 , . . . q̂an , . . . qL}. (39)

The total difference of momenta for such a state reads

∆Pa1,...an =
∑̀
i=1

ki −
L∑
i=1

qi +

n∑
i=1

qai ≈ δπ −
π∫
−π

ν(q)dq +

n∑
i=1

qai . (40)

7
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The corresponding overlap is analyzed thoroughly in Appendix C.4 for ai ∼ L, L − ai ∼ L. It gives the
following contribution to the tau function (5)

e−ix∆Pa1,...an |〈k|qa1,...an〉|2 = Aδ[ν]

n∏
i>j

(
2 sin

qai − qaj
2

)2 n∏
i=1

Yai , (41)

where

Aδ[ν] = exp

ix π∫
−π

ν(q)dq − ixδπ − 1

2

π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)− (q − k)δ/(2π)

2 sin q−k
2

]2
 (42)

and

Ya = −4
sin2(πν(qa))

L
exp

−ixqa + g(qa)−−
π∫
−π

dq
(
ν(q)− δ q

2π

)
cot

q − qa
2

 . (43)

In order to evaluate the tau function we proceed similarly to Ref. [66,67] (see also [68]). First, we notice that
one can present the product of sines in (41) as Vandermonde determinants

n∏
i>j

(
2 sin

qai − qaj
2

)2

=

n∏
k>j

(
eiqak − eiqaj

)(
e−iqak − e−iqaj

)
= det

1≤j,k≤n
(ei(j−1)qak ) det

1≤j,k≤n
(e−i(j−1)qak ) = εj1...jnεj′1...j′ne

i(j1−j′1)qa1 . . . ei(jn−j
′
n)qan , (44)

where εj1...jn is a completely antisymmetric tensor; the summation over repeated indices is implied. This
expression is an almost factorized, so in the second step we render summation over qai to be independent,
namely ∑

qa1<···<qqn

=
1

n!

∑
qa1

· · ·
∑
qan

. (45)

This immediately allows us to write the tau function (5) in the thermodynamic limit

τ(x) = det
1≤j,k≤n

[Yδ(x+ j − k)] exp

ix π∫
−π

νδ(q)dq −
1

2

π∫
−π

dq

π∫
−π

dk

[
νδ(q)− νδ(k)

2 sin q−k
2

]2
 , (46)

where νδ(q) ≡ ν(q)− (q + π)δ/(2π) has zero winding number and Yδ(x) stands for

Yδ(x) =

π∫
−π

dq

2π

(
e−2πiν(q) − 1

)
exp

−i(x− δ)q + iδπ −
π∫
−π

dkνδ(k) cot
q − k + i0

2

 . (47)

The integral has been transformed using identities such as Eq. (26) to facilitate finding asymptotic behavior
at large positive x. Indeed, the exponential is an analytic function, so after the proper deformation of the
integration contour it can be dropped. This way, we demonstrate that, in fact, Yδ(x) depends only on νδ(x),
namely

Yδ(x) =

π∫
−π

dq

2π
e−2πiνδ(q) exp

−ixq − π∫
−π

dkνδ(k) cot
q − k + i0

2

 . (48)

Let us emphasize that Eq. (46) gives the exact answer for the Fredholm determinants (11). The asymptotic
behavior for large x will give also asymptotics for the generalized sine-kernel determinants (18). Similar to
the treatment of the δ = 0, the asymptotic expansion of Yδ(x) is connected with analytic properties of ν(q).
Let us assume that the first n leading terms are given by

Yδ(x) = A1e
−κ1x + · · ·+Ane

−κnx + o(e−κnx), |κi| ≤ |κi+1|. (49)

8
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Then the leading order of the determinant reads

det
1≤j,k≤n

[Yδ(x+ j − k)] ≈
n∏
i=1

Aie
−κix

n∏
i>j

(
2 sinh

κi − κj
2

)2

. (50)

For n = 1 we reproduce the results from the previous subsection.

3.4 Positive winding numbers δ > 1

For δ > 1, similar to δ = 1, we can keep the maximal available number of ki ∈ k, so the r.h.s sum in Eq. (5)
consists of one term, which is of order O(1/L). This means that the corresponding Fredholm determinants
in Eq. (11) vanish identically. The reason for this can already be seen before going into the thermodynamic
limit. Namely, first we notice that the matrix Aij in Eq. (129) can be considered on the full set of momenta
k = {k1, . . . , kL+δ}, which will not change the determinant’s limiting value

lim
L→∞

det
1≤i,j≤L+δ

Aij = det(1 + V̂ ). (51)

But since Aij has the form of Eq. (127) which can be schematically written as

Aij =

L∑
k=1

ϕqk(ki)φqk(kj) (52)

for some functions ϕ and φ. This means that the rank of this matrix is maximally L and addition of the rank
one matrix δV can increase the rank to at most L+ 1. Therefore, for δ > 1

det(1 + V̂ ) = det(1 + V̂ + δV̂ ) = 0. (53)

The corresponding determinants with sine-kernels are not zero i.e. det(1 + Ŝν) 6= 0. In this case we see that
even though the difference between V̂ and Ŝν is exponentially small, it cannot be neglected, contrary to the
cases for δ ≤ 1. To estimate the difference between the Fredholm determinants with two different trace class
operators one can use Eqs. (4.1) and (4.2) in [69]. These estimates in our case are in fact too rough as they
also exclude discarding terms for δ ≤ 1, even though numerically we can check that this operation is still legit.
We found the following rule of thumb to neglect the exponential corrections for the kernel: the correction
should vanish faster than the resulting determinant. For δ > 1 this rule is violated, so to find the asymptotics
we modify the definition of the tau function by considering summation over k in Eq. (5) instead of q, namely

τ−(x) =
∑
k

|〈k|q〉|2e
−ix(

N+1∑
i=1

ki−
N∑
i=1

qi)
, (54)

where the overlaps keep their form (9) but with the modified relation between ν(q) and g(q), namely

e−g(q) = e2πiν(q) − 1. (55)

In the thermodynamic limit this sum transforms into Fredholm determinants (see Appendix A)

τ−(x) = det(1 + V̂− + δV̂−) + (Γ− 1) det(1 + V̂−) (56)

with

V−(k, q) =
e2πiν(k) − 1

4π
eix(q+k)/2+i(q−k)/2E−(k)− E−(q)

sin k−q
2

, Γ =

π∫
−π

dk

2π
e−ixk(1− e−2πiν(k)), (57)

δV−(k, q) =
e2πiν(k) − 1

2π
(E−(q)− iΓ/2) (E−(k) + iΓ/2) eix(q+k)/2, (58)

9
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E−(q) =

π−i0∫
−π−i0

dk

4π
e−ixk(e−2πiν(k) − 1) cot

k − q
2

+ ie−ixq. (59)

For large x > 0, we notice that Γ is exponentially suppressed and E−(q) ≈ ie−ixq, so τ−(x) transforms
into a generalized sine kernel Fredholm determinant Eq. (18) up to terms exponentially small in x. The
corresponding asymptotics can be obtained in a way similar to δ < 0, however instead of summation over
“holes” qa we will have summation over extra particles ka. We demonstrate how it works for δ = 2. In this
case the set q consists of L elements and the set k of L+ 1 elements, which we parameterize by the omission
one of the L+ 2 momenta from the all possible solutions of Eq. (6). Namely,

k(a) = {k1, . . . , ka−1, ka+1, . . . , kL+2}, a = 1, 2, . . . , L+ 2. (60)

The relative momentum of this state in the thermodynamic limit reads as

∆P =
∑
k∈k(a)

k −
L∑
i=1

qi = 2π − ka −
π∫
−π

ν(q)dq. (61)

The corresponding overlaps are given in Appendix C.2. Taking the thermodynamic limit we obtain the
following presentation suited for the asymptotic analysis when x→ +∞

τ−(x) = A−

π∫
−π

dk

2π
(e−2πiν(k) − 1) exp

ik(x+ 2) +

π∫
−π

(
ν(q)− q

π

)
cot

q − k − i0
2

dq

 , (62)

A− = exp

−1

2

π∫
−π

dq

π∫
−π

dk

(
ν(q)− ν(k)− (q − k)/π

2 sin q−k
2

)2
 . (63)

For δ > 2 one can obtain similar determinant representation as for τ−(x) in Eq. (46).
Even though we have constructed τ−(x) to address positive indices δ > 1 it is possible to describe δ < 1

by the previous choice of g(k) Eq. (15) and considering x < 0.

4 Quantum XY spin chain and its correlation functions

In this section we consider an application of the general results obtained in the previous sections to the
derivation of large distance asymptotics of thermal spin-spin correlation functions of the quantum XY spin
chain. The quantum XY spin chain in a transverse field is defined by the Hamiltonian [63,70]

HXY = −1

2

L∑
m=1

(
1 + γ

2
σxmσ

x
m+1 +

1− γ
2

σymσ
y
m+1 + hσzm

)
, (64)

where a periodic boundary condition for the spin operators is assumed σαL+1 = σα1 , γ is an anisotropy parameter,
and h is the strength of the magnetic field. The Hamiltonian HXY of XY model can be considered as an
anisotropic deformation of the Hamiltonian HXX of XX model, corresponding to γ = 0. The Hamiltonian HXX

can be diagonalized in two steps: Jordan–Wigner transformation to fermionic operators and a Fourier transform
to momenta representation. To diagonalize the Hamiltonian HXY an additional Bogoliubov transformation is
needed [50,63,70] specified by the angle θ(p):

eiθ(p) =
h− cos(p) + iγ sin(p)

E(p)
, E(p) =

√
(h− cos(p))2 + γ2 sin2(p). (65)

10
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Figure 1: (left panel): the dependence of Bogoliubov angles on momentum for three different points in h−γ-
plane: h = 0.7, γ = 0.3 (δ = 1) – red solid, h = 1.1, γ = 0.3 (δ = 0) – black dashed, h = 0.5, γ = −0.1 (δ = 0)
– blue dotted; (right panel): three regions in h−γ-plane corresponding to δ = ±1 (ferromagnetic phase with
γ ≷ 0) and δ = 0 (paramagnetic phase ).

Here E(p) stands for the spectrum of the effective Dirac fermions Ap, and the Hamiltonian HXY reduces to
the free-fermionic one, namely

HXY =
∑
p

E(p)
(
A+
p Ap − 1/2

)
. (66)

We skip the details of the fermions boundary conditions as they are not important in the thermodynamic
limit. We focus on the following spin-spin correlation function at finite temperature

G(m) ≡
〈
σxm+1σ

x
1

〉
T

=
Tr
(
σxm+1σ

x
1 e
−βHXY

)
Tr (e−βHXY)

. (67)

It is the most interesting two point correlation function as the others are either trivial in the thermodynamic
limit: 〈σxm+1σ

y
1 〉T = 0, can be expressed in terms of elementary functions as 〈σzm+1σ

z
1〉T (see Ref. [60]),

or related to G(m) after the change γ → −γ as 〈σym+1σ
y
1 〉T . We follow Ref. [50] to present G(m) in the

thermodynamic limit as Fredholm determinants (m > 0):

G(m) = det(1 + Ŵ + δ̂W )− det(1 + Ŵ ), (68)

where the operators Ŵ , δ̂W are integral operators on L2([−π, π]) with the kernels given by

W (p, q) = − 1

π
e
i(p−q)

2
sin m(p−q)

2

sin p−q
2

ωF (q), δW (p, q) =
1

π
exp
−im(p+ q)

2
ωF (q), (69)

ωF (q) =
1

2

(
1− eiθ(q) tanh

βE(q)

2

)
. (70)

In this form we immediately observe that G(m) can be identified with τS(m) defined in Eq. (18) with the
appropriate choice of ν(q), which can be read off from the prefactor in front of the sine-kernel

e2πiν(k) = 1− 2ωF (k) = eiθ(k) tanh
βE(k)

2
. (71)

This way, to find the large m asymptotics we approximate G(m) by τ(m) from Eq. (11) and use results for form
factor series obtained in the previous sections. The analysis depends on the winding number δ = ν(π)−ν(−π),
which can be read off from the following form of the phase shift

ν(k) =
θ(k)

2π
+

1

2πi
log tanh

βE(k)

2
. (72)
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Figure 2: The exact values of the correlation function G(m) (red dots) and its large distance asymptotics
(blue solid curves). The left panel corresponds to h = 0.47, γ = 0.25, β = 1.5, and δ = +1. The right panel
corresponds to h = 0.47, γ = −5.0, β = 1.5, and δ = −1.

The winding number is governed by the Bogoliubov angle θ(π) − θ(−π) = 2πδ. The possible values of δ
are δ = 0,±1 depending on the anisotropy parameter γ and the magnetic field h (see Fig. 1 for the typical
behaviour of the Bogoliubov angle and the phase diagram).

Notice also that Eq. (72) implies that the integral entering the asymptotic formulas can be presented as∫ π

−π
dq ν(q) = πδ +

1

2πi

∫ π

−π
dq log tanh

βE(q)

2
. (73)

In Fig. 2 we plot exact values for the correlation function G(m) (red dots) and compare them with the
asymptotic formulas written explicitly below (blue curves). We see that large m asymptotics gives reasonable
approximation even for m ∼ 1. In fact, to get any visual discrepancy we had to consider large negative
anisotropies in the ferromagnetic phase (δ = −1 and γ < −1). It turns out that in this case the asymptotic
formulas for non-integer m acquire nonzero imaginary part, which is discarded in the plot. For integer points
the imaginary part is equal to zero. Below we analyze each case separately and present analytical formulas for
the asymptotics. These expressions turn out to be in accordance with the results of Ref. [60] but have a more
compact form.

The results of Sec. 5 allow us to present the difference of the determinants in Eq. (68) as a single determi-
nant, namely

G(m) = det(1 + Ŵ1), (74)

where Ŵ1 is an integral operator on L2([−π, π]) with the generalized sine-kernel given by

W1(p, q) =
e2πiν1(p) − 1

2π

sin m(p−q)
2

sin p−q
2

= −
ei(θ(p)−p) tanh βE(p)

2 + 1

2π

sin m(p−q)
2

sin p−q
2

, (75)

ν1(p) = ν(p)− p+ π

2π
. (76)

This result is a particular case of the relation (107) with (104).

4.1 Paramagnetic phase h > 1 (δ = 0)

We start our consideration with relatively large magnetic field h > 1. For zero temperature such values of h
correspond to the paramangetic phase, while for finite temperature the corresponding ν(q) has zero winding
number δ = 0. This way, we use formula (33) to find asymptotic behavior of the correlation function G(m) at
large m, namely

G(m) = τS(m) ≈ −T0(m)z−m−1
1 S(z1) resz=z1 e

−2πiν(k), z = eik. (77)

12
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where T0(m) and S(z) are given by (28) and (31), respectively. The point z1 is the position of the pole of
e−2πiν(k) outside unit circle with minimal absolute value. To find z1 we factorize

Q(z) = E2(k) = (h− cos k)2 + γ2 sin2 k =
1− γ2

4z2
(z − x−)(z − x+)(z − y−)(z − y+), (78)

x± =
h−

√
h2 + γ2 − 1

1± γ
, y± =

h+
√
h2 + γ2 − 1

1± γ
, (x±)−1 = y∓. (79)

The exponent of the angle θ(k) of Bogoliubov transformation can also be presented in a factorized form, which
leads to

e−2πiν(k) = e−iθ(k) coth
βE(k)

2
= − 2z

1 + γ

√
Q(z) coth

β
√
Q(z)

2

(z − x+)(z − y+)
. (80)

It useful to present
√
Q(z) coth β

2

√
Q(z) as an infinite product

√
Q(z) coth

β

2

√
Q(z) =

2

β

∏∞
n=1

(
1 + β2Q(z)

(2n−1)2π2

)
∏∞
n=1

(
1 + β2Q(z)

(2n)2π2

) . (81)

Notice that in such a form the branch cut singularities disappear manifestly. Moreover, the analysis of the
poles of e−2πiν(k) is now a straightforward task, from which we conclude that the smallest (by the absolute
value) pole outside the unit circle is z1 = y+ for all non-zero temperatures. Therefore using Eq. (80) and Eq.
(81) we obtain

resz=y+ e
−2πiν(k) = − 2

β

y+√
h2 + γ2 − 1

. (82)

Finally, taking into account (73) for δ = 0, the asymptotics reads

G(m) ≈ Ae−m/ξ, (83)

where

ξ−1 = log y+ −
1

2π

π∫
−π

dq log tanh
βE(q)

2
, y+ =

h+
√
h2 + γ2 − 1

1 + γ
, (84)

A =
2

β
√
h2 + γ2 − 1

exp

−1

2

π∫
−π

dq

π∫
−π

dp

[
ν(q)− ν(p)

2 sin q−p
2

]2

+ i

π∫
−π

dq ν(q)
y+ + eiq

y+ − eiq

 . (85)

The sign of the magnetic field h is irrelevant since it can be flipped by the conjugation of the Hamiltonian
with σx acting in each site. Therefore below we consider 0 < h < 1.

4.2 Ferromagnetic phase h < 1, γ > 0 (δ = 1)

In the ferromagnetic phase h < 1 with positive anisotropy γ > 0 we use the asymptotics (22) and the integral
(73) for δ = 1 to obtain

G(m) ≈ Ae−m/ξ, (86)

with

ξ−1 = − 1

2π

π∫
−π

dq log tanh
βE(q)

2
, (87)

A = exp

−1

2

π∫
−π

dq

π∫
−π

dp

[
ν(q)− ν(p)− (q − p)/2π

2 sin q−p
2

]2
 . (88)
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Figure 3: The inverse correlation length (left panel) and the prefactor (right panel) for different values of
magnetic field h. Blue solid curves correspond to Eq. (87) [Eq. (88)] for h < 1 and Eq. (84) [Eq. (85)] for
h > 1, for the left [right] panels, respectively. The orange line shows formal use of Eq. (87) for the region
h > 1.

For particular values of the parameters we plot exact correlation function G(m) and its asymptotics (86) in
the left panel of Fig. 2.

Note that even though formulas for the correlation length in different parameter regions Eq. (84) and
Eq. (87) look different, the transition h < 1 and h > 1 is analytic in h. The same is true for prefactors A
given by Eq. (85) and Eq. (88) (see the corresponding plots in Fig. 3). This reflects the fact that at finite
temperature in one dimensional systems with short-range interactions phase transitions are absent and the
physical observables are smooth functions of system parameters. This observation was used in Ref. [71] to
obtain correct expressions for the correlation length and prefactor for the Ising model in the scaling limit.

4.3 Ferromagnetic phase h < 1, γ < 0 (δ = −1)
In this region of parameters, the correlation function G(m) is given by Eq. (46) for n = 2. We will need the
large m asymptotics of Y−1(m), which for h2 + γ2 6= 1 is given by

Y−1(m) ≈ A1e
−κ1m +A2e

−κ2m, (89)

where, as seen from Eq. (79),
κ1 = log x+, κ2 = log y+, (90)

A1 =
2

β

1√
h2 + γ2 − 1

1

x+
S−1(x+), A2 = − 2

β

1√
h2 + γ2 − 1

1

y+
S−1(y+), (91)

S−1(z) = exp

i π∫
−π

dq

(
ν(q) +

π + q

2π

)
z + eiq

z − eiq

 . (92)

Therefore Eq. (50) becomes∣∣∣∣ Y−1(m) Y−1(m+ 1)
Y−1(m− 1) Y−1(m)

∣∣∣∣ ≈ 16

β2(1− γ)2
S−1(x+)S−1(y+)e−m(log x++log y+). (93)

Finally, the large distance asymptotic for G(m) following from (46) is

G(m) ≈ Ae−m/ξ, (94)
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where

ξ−1 = log x+ + log y+ −
1

2π

π∫
−π

dq log tanh
βE(q)

2
, (95)

A =
16

β2(1− γ)2
S−1(x+)S−1(y+) exp

−1

2

π∫
−π

dq

π∫
−π

dp

[
ν(q)− ν(p) + (q − p)/(2π)

2 sin q−p
2

]2
 . (96)

In the case when h2 +γ2 = 1 we have x+ = y+ and the derivation is changed slightly (in particular, Y−1(m) ≈
(B + Cm)e−m log x+) however the final formula for the asymptotic of G(m) is the same. Notice that for non-
integer values of m the right hand side of Eq. (94) becomes a complex valued function. We plot the typical
behaviour of G(m) and the real part of its asymptotics in (94) in the right panel of Fig. 2.

5 Relation to Toeplitz determinants

The traditional approach to the correlation functions in the XY spin chain is in presenting them via Toeplitz
determinants [60,63]. Asymptotic analysis of these structures can be performed by means of the Szegő theorem
[72, 73] and its generalization3 by Hartwig and Fisher [61]. Let us comment on how similar structures can
appear within our effective form factors approach. In addition to tau functions (5) and (54) that contained
different number of “particles” in bra- and ket- states, we define

τ0(x) =
∑
q

|〈p|q〉|2e
−ix

(
N∑
i=1

pi−
N∑
i=1

qi

)
, (97)

where the quasi momenta q are solutions of eiqL = 1, while p are solutions of the following equation

eipL = e−2πiω(p). (98)

Here for convenience we have chosen a different notation for the phase shift. We focus on the case of non-
positive winding numbers for this function i.e. ω(π) − ω(−π) ≤ 0. The corresponding form factors read

|〈p|q〉|2 =

N∏
i=1

egω(pi)−gω(qi)

N∏
i=1

(1 + 2π
L ω
′(pi))

(
N∏
i=1

sinπω(pi)

L

)2
N∏
i>j

sin2 pi−pj
2

N∏
i>j

sin2 qj−qi
2

N∏
i,j=1

sin2 pi−qj
2

. (99)

The summation in Eq. (97) can be performed using techniques developed in Appendix A, which together with
the identification

e−gω(p) = e−2πiω(p) − 1 (100)

leads to the Fredholm determinant expression of τ0

τ0(x) = det(1 + V̂ω), V̂ω = Ŝω + R̂ω, (101)

where

Sω(p, q) =
e2πiω(p) − 1

2π

sin x(p−q)
2

sin p−q
2

, Rω(p, q) =
e2πiω(p) − 1

4π
e−i(p+q)x/2

rω(p)− rω(q)

sin p−q
2

, (102)

rω(k) =

π∫
−π

dq

4π
(e−2πiω(q) − 1)eiqx cot

q + i0− k
2

. (103)

3Here we focus only on the smooth symbols with the only “singularity” given by the non-trivial winding number

15



Submission SciPost Physics

Notice that definitions of the kernels of V̂ and Ŝν differ from their analogues introduced in Sec. 2 by the
conjugation with diagonal matrices, which does not change the value of the determinant. Comparing overlaps
(9) and (99) (see Appendix C.5) we conclude that imposing the following relation between ν(q) and ω(q)

ω(q) = ν(q)− q + π

2π
≡ ν1(q), (104)

we obtain exact equality for the tau functions, namely

det
(

1 + V̂ν + δV̂ν

)
− det

(
1 + V̂ν

)
= det

(
1 + V̂ν1

)
. (105)

Here the finite rank contribution is modified due to the conjugation with the diagonal matrices

δVν(p, q) = −e
2πiν(p) − 1

2π
e−i(x+1)p/2e−i(x−1)q/2. (106)

Similar relations can be obtained between τ−(x) and τ0(x) for δ > 1. For large positive x, functions rω(x) are
exponentially small, so Eq. (107) holds for the generalized sine-kernels Ŝν .

det
(

1 + Ŝν + δV̂ν

)
− det

(
1 + Ŝν

)
= det

(
1 + Ŝν1

)
. (107)

In fact we can easily demonstrate that this relation is true for any positive integer x. To do so we will clarify
the relation between Fredholm and Toeplitz determinants (cf. [62,74]). It is convenient to deform slightly the
kernel by the set of functions a0(p), a1(p), ..., ax−1(p)

Saν (p, q) =
e2πiν(p) − 1

2π

x−1∑
n=0

an(p)ein(q−p). (108)

For ai(q) = 1 one can easily see that we recover the kernel of Ŝν up to conjugation with diagonal matrices,
which does not affect the value of the determinant

det
(

1 + Ŝν

)
= det

(
1 + Ŝa

) ∣∣∣
a0=a1=...ax−1=1

. (109)

Furthermore, we can treat Ŝa as a product of two rectangular matrices

Ŝa = AB, Aqn = eiqn, Bnp =
e2πiν(p) − 1

2π
an(p)e−inp. (110)

Then using the fact that det (1 +AB) = det (1 + BA) we obtain a relation between the Fredholm determinant
and determinant of matrix x by x, namely

det
(

1 + Ŝa
)

= det
0≤n,m≤x−1

(δnm + Tnm) , Tnm =

π∫
−π

dq

2π
an(q)(e2πiν(q) − 1)e−i(n−m)q. (111)

For an = 1 the matrix Tnm transforms into the Toeplitz one, namely

det
(

1 + Ŝa
)

= det
0≤n,m≤x−1

cn−m, ck =

π∫
−π

dq

2π
e2πiν(q)e−ikq. (112)

In order to account for the finite rank we notice that because rank-one contributions are at most linear in the
determinant expansion, we can present

det
(

1 + Ŝν + δV̂ν

)
− det

(
1 + Ŝν

)
=

∂

∂α
det
(

1 + Ŝν + αδV̂ν

) ∣∣∣
α=0

. (113)
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To account for the finite α one must choose a0(q) = 1− αe−ixq and an(q) = 1 for n ≥ 1, therefore

det
(

1 + Ŝν + αδV̂ν

)
= det

(
1 + Ŝa

)
= det



c0 − αcx c−1 − αcx−1 . . . c−x+1 − αc1
c1 c0 . . . c−x+2

. . .

. .
. . . .

. . .
cx−1 cx−2 . . . c0


. (114)

Since we are looking only to the terms linear in α, we can leave only terms that are proportional to α in the
first row. Moreover we can replace this row with the last one. This way we obtain

∂

∂α
det
(

1 + Ŝν + αδV̂ν

) ∣∣∣
α=0

= (−1)x det



c1 c0 . . . c−x+2

c2 c1 . . . c−x+3

. . .

. .
. . . .

. . .
cx cx−1 . . . c1


= det

0≤n,m≤x−1
c̃n−m, (115)

where

c̃k = −
π∫
−π

dq

2π
e2πiν(q)e−i(k+1)q =

π∫
−π

dq

2π
e2πiν1(q)e−ikq. (116)

Here we see the shift ν(q) → ν1(q) as predicted from the finite size scaling of the form factors in Eq. (104).
This shift together with Eq. (112) completes the proof of Eq. (107).

Let us also comment on how results of Sec. 3.3 reproduce Hartwig and Fisher asymptotic behaviour
(Theorem 4 in Ref. [61]). As νδ(q) has zero winding number we can expand it as

νδ(q) =
−1

2πi

∞∑
n=−∞

kne
iqn. (117)

Then the integral in the exponential in Eq. (48) can be evaluated as

−
π∫
−π

dp νδ(p) cot
q − p+ i0

2
=

π∫
−π

dp

2π

ei(q+i0) + eip

ei(q+i0) − eip
∞∑

n=−∞
kne

ipn = −k0 − 2

∞∑
n=1

eiqnkn. (118)

In this derivation we used that |ei(q+i0)| < 1 and expanded the denominator as a geometric series. Substituting
this result back into Eq. (48) we immediately see that Yδ(x) = lx, where the Fourier modes lm are defined
through the relation

exp

( ∞∑
n=1

(
k−ne

−iqn − kneiqn
))

=

∞∑
m=−∞

lme
imq. (119)

Finally, expressing double integral in the asymptotic expression Eq. (46)

−1

2

π∫
−π

dq

π∫
−π

dp

[
νδ(q)− νδ(p)

2 sin q−p
2

]2

=

∞∑
n=1

nknk−n, (120)

we obtain the statement of Theorem 4 in Ref. [61].
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6 Summary and Outlook

In this work we have introduced the form factors (overlaps) to simulate the static correlation functions for
the states with finite entropy. The state was determined by the phase shift function ν(q). For the traditional
approaches dealing with the finite entropy states is notoriously difficult but for our approach it is rather
advantageous situation, since almost all available quantum numbers are occupied which tremendously simplifies
the computation of form factor series. This allows us, in particular, to re-derive known asymptotics for the
static two point correlators in the XY spin chain and present them in a more compact form. We hope that
the simplicity of this approach will make it possible to obtain the full asymptotic expansion at large distances.

Apart from the thermal state we can apply our approach to the states resulting from the long time evolution
after a quench [75–80], to models of 1D anyons [81–86], or mobile impurity models [64, 87, 88]. This can be
done by the appropriate modification of the phase shift function. We will discuss it elsewhere.

It is interesting to note that ν(q) is apparently connected with the auxiliary functions that appears in the
Quantum Transfer Matrix (QTM) approach and specifies the Bethe roots for QTM [38–40, 89]. It would be
interesting to completely clarify connection between these two approaches.

The correlation functions at zero temperature (entropy) can be formally accounted by the jump discontinu-
ities in ν(q), which can also be treated by the form factor summation developed for the critical models [11,13].
In this case the role of the lattice is not essential and the exponential asymptotic behaviour is expected to be
replaced by a power-law, which can be obtained from the proper modification of the generalized sine-kernels
(see section 9 in Ref. [90]). To address dynamical correlation functions we must modify appropriately the form
factors and the spectral factor e−i

∑
kix → e−i

∑
(kix−ε(ki)t). The detailed constructions and extraction of the

asymptotic behavior is another intriguing direction for future research. However we can already anticipate
that for the space-like region, i.e. when the saddle point of the expression kx − ε(k)t is outside the Brillouin
zone, the asymptotic analysis remains largely unchanged, which can be immediately seen in the asymptotics
of Ref. [59]. For the time-like region the main problem will be that a suitable ν(q) might have a jump discon-
tinuity which leads to additional power-law behavior (c.f. Ref. [91]). Finally, there will be extra 1/

√
t terms

connected to the saddle point contributions indicated by the non-linear Luttinger theory [14–16].

Acknowledgements
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A Summation of form factors and determinant formula

In this appendix, we derive formula (11) presenting tau function in the thermodynamic limit as a difference
of two Fredholm determinants.

We consider solutions in the large L limit and choose k to fill a Fermi Sea, namely

ki =
2π

L

(
−N

2
+ i− 1− νi

)
, i = 1, . . . , N + 1, (121)

where νi ≡ ν(ki). For simplicity, we choose N to be even.
First, we identically rewrite the overlap as (note, detD = det D̃)

|〈k|q〉|2 = −4L

N+1∏
i=1

Ωi

(
N+1∏
i=1

eg(ki)/2 sinπνi
L

)2 N∏
i=1

e−g(qi) detD det D̃ (122)
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D =


cot k1−q12 − i . . . cot kN+1−q1

2 − i
...

. . .
...

cot k1−qN2 − i . . . cot kN+1−qN
2 − i

1 . . . 1

 , D̃ =


cot k1−q12 + i . . . cot kN+1−q1

2 + i
...

. . .
...

cot k1−qN2 + i . . . cot kN+1−qN
2 + i

1 . . . 1

 , (123)

Ωi =
1

1 + 2πν′(ki)
L

. (124)

Then using standard linear algebra manipulations we rewrite the static tau function as

τ(x) = det(A+ δA)− detA (125)

with

δAij = −4Ωi
L

sin2(πνi)e
g(ki)e−i(ki+kj)x/2, (126)

Aij = Ωi
sin2(πνi)

L2
eg(ki)e−i(ki+kj)x/2

∑
q

eiqx−g(q)
(

cot
q − ki

2
− i
)(

cot
q − kj

2
+ i

)
, (127)

where summation over q is happening over the whole Brillouin zone

q ∈
{

2π

L

(
−L− 1

2
+ j − 1

)
, j = 1, . . . , L

}
. (128)

For i 6= j we present

Aij = Ωi
sin2 πνi

2L
eg(ki)e−i(ki+kj)x/2ei(ki−kj)/2

c(ki)− c(kj)
sin

ki−kj
2

(129)

with

c(ki) =
2

L

∑
q

eiqx−g(q) cot
q − ki

2
. (130)

This sum can be rewritten as a contour integral and evaluated at large L, namely, choosing contour γ running
around qi and avoiding any other singularities of the integrand we obtain

c(ki) =

∮
γ

dq

π

e−g(q)+iqx

eiqL − 1
cot

q − ki
2

. (131)

Further, we deform the contour into the rectangle that encapsulates interval [−π, π]. The vertical parts of this
rectangle cancel and we are left with two lines above and below the real axis along with the contribution from
the pole at q = ki

c(ki) =

 π−i0∫
−π−i0

−
π+i0∫
−π+i0

 dq

π

e−g(q)+iqx

eiqL − 1
cot

q − ki
2
− 4ie−g(ki)+ikix

eikiL − 1
. (132)

Here we assume that the imaginary shift i0 is chosen to be larger then Im ki = O(1/L). In this form we
immediately see that, in the limit L→∞, the values of c(k) at points ki are equal to the values of the E(ki)
for the analytic function E(k) given by

E(k) =

π+i0∫
−π+i0

dq

π
e−g(q)+iqx cot

q − k
2
− 4ie−g(k)+ikx

e−2πiν(k) − 1
. (133)
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Using E(k) we can obtain values also for some vicinity of ki, which allow us to effectively “omit” solving Bethe
equations (6). Performing similar computation for the diagonal components we arrive at

Aii = eg(ki)−ikix
Ωi sin(πνi)

2

L2

∑
q

eiqx−g(q)

sin2 q−ki
2

. (134)

The sum can be evaluated in the same way as in Eq. (131):

Aii = Ωi

(
1 +

(x+ ig′(ki))(e
2πiν(ki) − 1)

L

)
+ eg(ki)−ikix

Ωi sin(πνi)
2

2L

π∫
−π

dq

π

e−g(q)+iqx

sin2 q+i0−ki
2

. (135)

Equivalently, using definition (133), we can present

Aii = Ωi

(
1 +

2πν′(ki)

L

)
+ eg(ki)−ikix

Ωi sin(πνi)
2

2L
2E′(ki). (136)

So recalling definition of (124) we obtain for generic i and j

Aij = δij +
sin2(πνi)

2L
eg(ki)e−i(ki+kj)x/2ei(ki−kj)/2

E(ki)− E(kj)

sin
ki−kj

2

+O(1/L2), (137)

where for i = j the second term is understood in the L’Hopital rule sense. Similarly we obtain for the finite
rank contribution

δAij = − 4

L
sin2(πνi)e

g(ki)e−i(ki+kj)x/2 +O(1/L2). (138)

In this form we are at the position to take limit L → ∞, and taking into account that ki is quantized in the
units 2π/L, arrive at the Fredholm determinants (11).

Similarly, we can perform summation for τ−(x) defined in Eq. (54). Instead of Eq. (125) we obtain the
following

τ−(x) = det(A+ δA) + (Γ− 1) detA, (139)

where

Aij =
1

L2
e−g(qi)+ix(qi+qj)/2

∑
k

eg(k)−ixk sin2 πν(k)

1 + 2π
L ν
′(k)

(
cot

k − qi
2
− i
)(

cot
k − qj

2
+ i

)
, (140)

δAij =
4

L
F+(qi)F−(qi), Γ = − 4

L

∑
k

eg(k)−ixk sin2 πν(k)

1 + 2π
L ν
′(k)

, (141)

F±(q) = e−
g(q)
2 +ix q2

1

L

∑
k

eg(k)−ixk sin2 πν(k)

1 + 2π
L ν
′(k)

(
cot

k − q
2
± i
)
. (142)

Here
∑
k

means sum over all L + δ nonequivalent (mod 2π) solutions of Eq. (6), which can be presented as a

contour integral
1

L

∑
k

f(k)

1 + 2πν′(k)
L

=

∮
C

dk

2π

f(k)

eikL+2πiν(k) − 1
, (143)

where the contour C runs around poles of the denominator only and avoids and singularities of f(k). Then
the derivation goes along the lines as for τ(x). Namely, for i 6= j we present

Aij =
1

2L
e−g(qi)+ix(qi+qj)/2ei(qi−qj)/2

c(qi)− c(qj)
sin

qi−qj
2

, (144)

where now instead of Eq. (130)

c(q) =
2

L

∑
k

eg(k)−ikx sin2(πν(k))

1 + 2πν′(k)
L

cot
k − q

2
. (145)
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In the thermodynamic limit this function can be replaced by E(q), which does not depend on the system size

c(q) ≈ E−(q) =
1

π

π+i0∫
−π+i0

dk eg(k)−ixk sin2 πν(k) cot
k − q

2
− 4i

eg(q)−ixq sin2 πν(q)e−2πiν(q)

1− e−2πiν(q)
. (146)

For positive x it is much more convenient to rewrite this function as

E−(q) =
1

π

π−i0∫
−π−i0

dk eg(k)−ixk sin2 πν(k) cot
k − q

2
− 4ieg(q)−ixq sin2 πν(q)

(
1 +

e−2πiν(q)

1− e−2πiν(q)

)
. (147)

Now if we relate
e−g(q) = e2πiν(q) − 1, (148)

this function transform into

E−(q) =

π−i0∫
−π−i0

dk

4π
e−ixk(e−2πiν(k) − 1) cot

k − q
2

+ ie−ixq. (149)

For large positive x the integral can be neglected. For diagonal components we obtain

Aii = 1 +
1

L
e−g(qi)+ixqiE′−(qi). (150)

Function Γ can be written as

Γ =

π∫
−π

dk

2π
e−ixk(1− e−2πiν(k)). (151)

It is also exponentially suppressed for x → +∞. The finite rank contribution is easily evaluated taking into
account that

F±(q) =
e−g(q)/2+ixq/2

2
(E−(q)∓ iΓ/2) . (152)

After all these transformations one readily obtains the result Eq. (56) in the thermodynamic limit.

B Lemmas about products

In this appendix, we study products that appear in the overlaps. In this section we assume that ν(q) is a
smooth function on the segment [−π, π] and assign its values in specific points as νj , namely

νj = ν(qj), qj =
2π

L

(
−L+ 1

2
+ j

)
, ν− = ν(−π), ν+ = ν(π), δ ≡ ν+ − ν−. (153)

First we consider constant function ν(q) = ν = const.

Lemma B.1. The following product formula is valid

BL(ν) ≡
L−1∏
j=1

sin π(j−ν)
L

sin πj
L

=
sin(πν)

L sin πν
L

. (154)

In the limit L→∞ this product simplifies to

BL(ν) ≈ sin(πν)

πν
. (155)

The denominator is equal to
L−1∏
j=1

sin
πj

L
=

L

2L−1
. (156)
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Proof. We can rewrite identically the left hand side as

BL(ν) =

L−1∏
j=1

sin π(j−ν)
L

sin πj
L

= e−iπν
L−1
L

L−1∏
j=1

e
2πi
L j − e 2πiν

L

e
2πi
L j − 1

. (157)

Taking into account that
L−1∏
j=1

(
z − e2πij/L

)
=
zL − 1

z − 1
, (158)

we obtain

BL(ν) =
sin(πν)

L sin πν
L

. (159)

Further, we proceed with the generic function ν(q).

Lemma B.2. For an integer 0 ≤ A ≤ L − 1, the following asymptotic approximation in the limit L → ∞ is
valid

BA,L[ν(q)] ≡
A∏
j=1

sin
π(j−νj)

L

sin πj
L

≈ LνA Γ

[
A+ 1− ν1, L−A

A+ 1, 1− ν1, L−A+ νA

]
exp

qA∫
−π

f(q) dq , (160)

where

Γ

[
a1, a2, . . . ap
b1, b2, . . . bq

]
=

Γ(a1)Γ(a2) . . .Γ(ap)

Γ(b1)Γ(b2) . . .Γ(bq)
, (161)

f(q) = −ν(qA)

π − q
+

ν−
π + q

+
ν(q)

2
tan

q

2
. (162)

Proof. First, we introduce the modified product

B̃A,L[ν(q)] =

A∏
j=1

sin
π(j−νj)

L

sin πj
L

1

1− νj
j

1

1 +
νj
L−j

=

A∏
j=1

Γ(1 + j
L )

Γ(1 +
j−νj
L )

Γ(2− j
L )

Γ(2− j−νj
L )

. (163)

Due to this modification, it is enough to expand log B̃A,L[ν(q)] up to the linear terms in νj since higher orders
will be of order O(1/L), namely

log B̃A,L[ν(q)] =

A∑
j=1

νj

(
1

j
− 1

L− j
− 1

L
cot

πj

L

)
+O(1/L). (164)

Taking into account (153) we transform the sum into an integral

log B̃A,L[ν(q)] =

qA∫
−π

ν(q)

(
1

q + π
− 1

π − q
+

1

2π
tan

q

2

)
dq. (165)

The rest of the product can be evaluated in a similar manner. First, we identically transform

A∏
j=1

(
1− νj

j

)(
1 +

νj
L− j

)
= Γ

[
A+ 1− ν1, L+ νA, L−A
A+ 1, 1− ν1, L, L−A+ νA

] A∏
j=1

(
1− νj

j

)(
1 +

νj
L−j

)
(

1− ν1
j

)(
1 + νA

L−j

) (166)

22



Submission SciPost Physics

The logarithm of the remaining product can be expanded only up to linear in ν terms to capture finite terms
in L→∞ limit, namely

log

A∏
j=1

(
1− νj

j

)(
1 +

νj
L−j

)
(

1− ν1
j

)(
1 + νA

L−j

) = −
qA∫
−π

dq
ν(q)− ν(−π)

q + π
+

qA∫
−π

dq
ν(q)− νA
π − q

(167)

Combining this result with (165) and using Stirling’s formula we obtain the desired result (160).

Remark 1. For A = L− 1, using Stirling’s approximation for Gamma functions we obtain

L−1∏
j=1

sin
π(j−νj)

L

sin πj
L

≈ Lν+−ν−

Γ(1 + ν+)Γ(1− ν−)
exp

π∫
−π

dq

(
π(ν+ − ν−) + q(ν+ + ν−)

q2 − π2
+
ν(q)

2
tan

q

2

)
. (168)

. Remark 2. For A ∼ L and L−A ∼ L the prefactor can be simplified as

Γ

[
A+ 1− ν1, L+ νA, L−A
A+ 1, 1− ν1, L, L−A+ νA

]
=

1

Lν1
1

Γ(1− ν1)

1

(A/L)ν1(1−A/L)νA
. (169)

The next lemma is a simple corollary of the previous one.

Lemma B.3. The following asymptotic expression is valid as L→∞

Za ≡ sin2 πνa
L

L∏
j 6=a

sin2 π(j−a−νj)
L

sin2 π(j−a)
L

≈ L2δ−2 sin2(πνa)Γ

[
a+ νa, L− a+ 1− νa
a+ ν+, L− a+ 1− ν−

]2

e2F (qa), (170)

where

F (qa) =

π∫
qa

(
− ν+

2π + qa − q
+

νa
q − qa

− ν(q)

2
cot

q − qa
2

)
dq

+

qa∫
−π

(
ν−

2π + q − qa
+

νa
q − qa

− ν(q)

2
cot

q − qa
2

)
dq. (171)

Proof. First, we identically present this product as

Za = sin2 πνa
L

a−1∏
j=1

sin2 π(j+νa−j)
L

sin2 πj
L

L−a∏
j=1

sin2 π(j−νj+a)
L

sin2 πj
L

. (172)

Then using Lemma (B.2) and Stirling’s formula we obtain

Za ≈ L2δ−2 sin2(πνa)Γ

[
a+ νa, L− a+ 1− νa
a+ ν+, L− a+ 1− ν−

]2

e2F (qa) (173)

with

F (qa) =

∫ −qa
−π

dq

(
− ν+

π − q
+
ν(qa)

π + q
+
ν(qa + q + π)

2
tan

q

2

)
−

−
∫ qa

−π
dq

(
− ν−
π − q

+
ν(qa)

π + q
+
ν(qa − q − π)

2
tan

q

2

)
. (174)

Changing variables we obtain the desired statement.
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Further, we proceed with double products.

Lemma B.4. For δ ≥ 0 the following asymptotic expansion is valid in the limit L→∞

Z ≡
L∏
i=1

i−1∏
j=1

sin π
L (i− j − νi + νj)

sin π(i−j)
L

≈ A
Lδ2/2

, (175)

where the L independent prefactor A reads

A = G(1 + δ)(2π)−
δ(δ+1)

2 exp

δ
2
− δF (π)−

π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)− δ(q − k)/(2π)

4 sin q−k
2

]2
 (176)

with F (π) is defined in Eq. (171) and G(x) stands for Barnes G-function defined by the functional relation
G(x + 1) = Γ(x)G(x). Notice that function ν(q) − δq/2π has zero winding number so the integrals in the
exponential are well defined.

Proof. To find the thermodynamic limit of Z we rewrite it as Z = Y1Y2e
Rδ with

Y1 =

L∏
i=1

i−1∏
j=1

sin π
L (i− j − νi + νj)

sin π(i−j)
L

1− i−j
L

1− i−j−(νi−νj)
L

e
νi−νj
L−i+j =

=

L∏
i=1

i−1∏
j=1

cos
π(νi−νj)

L

1 +
νi−νj

L(1− i−jL )

(
1−

tan
π(νi−νj)

L

tan π(i−j)
L

)
e
νi−νj
L−i+j , (177)

Y2 =

L∏
i=1

i−1∏
j=1

(
1 +

δ

L− i+ j

)
e−

δ
L−i+j

L∏
i=1

i−1∏
j=1

(
1 +

νi − νj − δ
L− i+ j + δ

)
e−

νi−νj−δ
L−i+j+δ , (178)

Rδ =

L∑
i=1

i−1∑
j=1

(
νi − νj − δ
L− i+ j + δ

+
δ

L− i+ j
− νi − νj
L− i+ j

)
. (179)

The factors are designed in such a way that terms O(νn) for n > 2 do not contribute in L → ∞ case. In
particular, we used that

L−1∑
j=1

cot
πj

L
= 0. (180)

So keeping only quadratic terms we obtain

log Y1 =

L∑
i=1

i−1∑
j=1

π2

2L2
(νi − νj)2

(
1

π2

(
1− i− j

L

)−2

− 1

sin2 π(i−j)
L

)
(181)

and taking L→∞

log Y1 =
1

8

π∫
−π

dq

q∫
−π

dk(ν(q)− ν(k))2

(
4

(2π − q + k)
2 −

1

sin2 q−k
2

)
. (182)

Similarly

log

L∏
i=1

i−1∏
j=1

(
1 +

νi − νj − δ
L− i+ j + δ

)
e−

νi−νj−δ
L−i+j+δ ≈ −1

2

π∫
−π

dq

q∫
−π

dk

(
ν(q)− ν(k)− δ

2π − q + k

)2

. (183)
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The first part of the product in Y2 (by grouping terms with the same i− j) can be presented as

W (δ) ≡
L∏
i=1

i−1∏
j=1

(
1 +

δ

L− i+ j

)
e−

δ
L−i+j =

L−1∏
j=1

[(
1 +

δ

j

)j
e−δ

]
. (184)

We consider an additional expression

W0(δ) ≡
L−1∏
j=1

(
1 +

δ

j

)
=

Γ(L+ δ)

Γ(1 + δ)Γ(L)
. (185)

Differentiating it by δ we obtain
d logW (δ)

dδ
= −δ d logW0(δ)

dδ
. (186)

For large L we can approximate

W0(δ) ≈ Lδ

Γ(1 + δ)
. (187)

Solving Eq. (186) with initial condition logW (δ = 0) = 0 we obtain

logW (δ) ≈ −δ
2

2
logL+

δ∫
0

z
d log Γ(1 + z)

dz
dz. (188)

Finally, let us find L→∞ expression for Rδ defined in Eq. (179). First we identically transform it into

Rδ =

L∑
i=1

(νi − νL)SL−i+1 −
L∑
i=1

(νi − ν1)Si. (189)

Si =

L−1∑
j=i

(
1

j + δ
− 1

j

)
=

d

dε
log

Γ(L+ ε+ δ)Γ(i+ ε)

Γ(L+ ε)Γ(i+ ε+ δ)

∣∣∣
ε=0

. (190)

From the form of Eq. (189) one can conclude that as L→∞ the non-vanishing contributions to the sum will
come from indices i = O(L). Therefore, using Stirling’s formula we can present Si as

Si ≈
d

dε
log

(
L+ ε

i+ ε

)δ ∣∣∣
ε=0

= δ

(
1

L
− 1

i

)
. (191)

Therefore Rδ ≈ δR with

R = lim
L→∞

(
L∑
i=1

(νi − νL)

(
1

L
− 1

L− i+ 1

)
−
L−1∑
i=1

(νi − ν1)

(
1

L
− 1

i

))
=

=

π∫
−π

dq(ν(q)− ν(π))

(
1

2π
− 1

π − q

)
−

π∫
−π

dq(ν(q)− ν(−π))

(
1

2π
− 1

π + q

)
. (192)

So far we have proved that

Z ≈ L−δ
2/2eCδ . (193)

with

Cδ = δR+

δ∫
0

z
d log Γ(1 + z)

dz
dz +

1

2

π∫
−π

dq

q∫
−π

dk

(
2δ(ν(q)− ν(k))− δ2

(2π − q + k)
2 − (ν(q)− ν(k))2

4 sin2 q−k
2

)
. (194)
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Further, we can use
δ∫

0

z
d log Γ(1 + z)

dz
dz =

δ(δ + 1)

2
− δ

2
log(2π) + logG(1 + δ), (195)

where G(x) is Barnes G-function. The final answer is obtained by tedious but straightforward manipulations
with integrals.

In the next lemma we address a similar double product for negative winding numbers δ < 0.

Lemma B.5. Let us define ` = L+ δ, with δ < 0, then the following asymptotic behavior is valid as L→∞
(here we still assume that |δ| � L)

Z ≡
∏̀
i=1

i−1∏
j=1

sin π
L (i− j − νi + νj)

sin π(i−j)
L

≈ Lδ
2/2(2π)−(δ2+δ)/2eδ/2

G(1− δ)
exp

− π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)− δ(q − k)/(2π)

4 sin q−k
2

]2
 .

(196)

Proof. We present this product as a ratio Z = Z1/Z2 with

Z1 =
∏̀
i=1

i−1∏
j=1

sin π
L (i− j − νi + νj)

sin π(i−j)
`

, Z2 =
∏̀
i=1

i−1∏
j=1

sin π(i−j)
L

sin π(i−j)
`

. (197)

We can identically transform Z1 as

Z1 =
∏̀
i=1

i−1∏
j=1

sin π
` (i− j − [νδ]i + [νδ]j)

sin π(i−j)
`

, (198)

where [νδ]i = νi(1 + δ/L)− δi/L. In thermodynamic limit this expression correspond to the following function

νδ(q) = ν(q)− δ π + q

2π
. (199)

This function has zero winding number, so applying the previous lemma, we obtain

Z1 = exp

− π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)− δ(q − k)/(2π)

4 sin q−k
2

]2
 . (200)

Similarly, we can evaluate Z2. We present it as

Z2 =
∏̀
i=1

i−1∏
j=1

sin π
`

(
i− j + δ(i−j)

L

)
sin π(i−j)

`

. (201)

This corresponds to the positive phase shift ν(q) = −δq/(2π) = |δ|q/(2π), and allows us to use previous lemma
once again and obtain

Z2 =
G(1− δ)(2π)(δ2+δ)/2e−δ/2

`δ2/2
. (202)

Here we used that F (π) = −|δ| log(2π) for ν(q) = |δ|q/(2π) (see Eq. (171)). Finally, Eqs. (200) and (202)
immediately lead to the statement of the lemma.

C Orthogonality catastrophe on the lattice

Here using results from Appendix B we evaluate the overlaps in Eq. (9).
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C.1 Winding number δ = 1

For δ = 1 there exist L+ 1 solutions of Eq. (6)

kj =
2π

L

(
−L+ 1

2
+ j − νj

)
, νj = ν(kj), j = 1, 2, . . . , L+ 1. (203)

We use all of them in Eq. (9) and set q = {q1, . . . qL} with

qj =
2π

L

(
−L+ 1

2
+ j

)
, j = 1, 2, . . . , L. (204)

To evaluate Eq. (9) in thermodynamic limit L → ∞, we first we transform identically the determinant (10)
as

(detD)2 =

L∏
i>j

sin2 ki−kj
2

sin2 qi−qj
2

×
L∏
j=1

sin2 kL+1−kj
2

sin2 kL+1−qj
2

×
L∏
i=1

∏L
j 6=i sin2 qi−qj

2

L∏
j=1

sin2 ki−qj
2

. (205)

We analyze this expression term by term. The last product can be written down using Eqs. (19) and (20) as∏L
j 6=i sin2 qi−qj

2

L∏
j=1

sin2 ki−qj
2

=
1

sin2 πνi
L

L−1∏
j=1

sin2 πj
L

sin2 π(j−νi)
L

=
L2

sin2 πνi
. (206)

In the last step, we used Lemma (B.1). The next product can be evaluated employing similar transformations
and using Lemma (B.2), namely

L∏
j=1

sin2 kL+1−kj
2

sin2 kL+1−qj
2

=
sin2 πδ

L

sin2 πν+
L

L−1∏
j=1

sin2 π
L (j − ν+ + νL+1−j)

sin2 πj
L

L−1∏
j=1

sin2 πj
L

sin2 π(j−ν+)
L

≈ π2L2

sin2 πν+

exp

 π∫
−π

dqf1(q)

 ,

(207)
where ν+ = νL+1 and δ = ν+ − ν1 = ν(π)− ν(−π) = 1 and

f1(q) =
2

q − π
+ (ν(π)− ν(−q)) tan

q

2
. (208)

Notice that
π∫
−π

dqf1(q) = 2F (π) = 2F (−π) (209)

with F (q) defined in Eq. (171). Contrary to the expression (206), Eq. (207) is asymptotic as L→∞. Finally,
the first double product in Eq. (205) can be evaluated using Lemma (B.4).

L∏
i>j

sin2 ki−kj
2

sin2 qi−qj
2

=

L∏
i=1

i−1∏
j=1

sin2 π
L (i− j − νi + νj)

sin2 π(i−j)
L

≈ A
2

L
. (210)

Where A is defined in Eq. (176). The rest of the product in Eq. (9) can be evaluated for generic δ

L+1∏
i=1

(
1 +

2π

L
ν′(ki)

)
≈ exp

 π∫
−π

ν′(q)dq

 = eδ, (211)

L∏
i=1

eg(ki)−g(qi) ≈ exp

− π∫
−π

g′(q)ν(q)dq

 = exp

2πi

π∫
−π

ν(q)ν′(q)

e2πiν(q) − 1
dq

 =
(
1− e−2πiν+

)δ
, (212)
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where in the last part we have used the relation between g(q) and ν(q) Eq. (15) and assumed that ν(k) has a
non-vanishing imaginary part. Combining all factors together in Eq. (9) we obtain

|〈k|q〉|2 = 4π2A2e2F (π)−1 = exp

−1

2

π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)− (q − k)/2π

2 sin q−k
2

]2
 . (213)

C.2 Winding number δ = 2

For δ > 1 computation of the overlaps goes in the similar manner as in the previous section. Namely, first we
consider overlap with the set k̃ = k1, . . . kL+1 with kj defined in Eq. (203). There instead of Eq. (207) we will
have

L∏
j=1

sin2 kL+1−kj
2

sin2 kL+1−qj
2

=
L2

sin2(πν+)

π2L2δ−2

Γ(δ)2
e2F (π), (214)

with F (π) defined in Eq. (171). Further, Eq. (210) we will replaced accordingly to Lemma (B.4)

L∏
i>j

sin2 ki−kj
2

sin2 qi−qj
2

=

L∏
i=1

i−1∏
j=1

sin2 π
L (i− j − νi + νj)

sin2 π(i−j)
L

≈ A
2

Lδ2
. (215)

Taking into account Eqs. (211) and (212), for the corresponding function g(k) (see Eq. (55) ) we find the
thermodynamic form for the overlap

|〈k̃|q〉|2 =
G(δ)2

L(δ−1)2

(1− e2πiν+)δ−1

(2π)(δ−1)(δ+2)
e−2F (π)(δ−1) exp

−1

2

π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)− δ(q − k)/2π

2 sin q−k
2

]2
 . (216)

The overlaps for other sets k can be obtained from this one. We further focus on δ = 2, in this case there are
exacly L+ 2 sets k parametrized by the omission of one of the solutions of Eq. (6), namely

k(a) = {k1, . . . , ka−1, ka+1, . . . , kL+2}, a = 1, 2, . . . , L+ 2. (217)

With this notations k(L+2) = k̃. Now let us consider ratio of the excited overlap

|〈k(a)|q〉|2

|〈k̃|q〉|2
= eg(π)−g(ka)

L+1∏
j=1

sin2 kL+2−kj
2

L+2∏
j 6=a

sin2 ka−kj
2

= eg(π)−g(ka)

sin2 π
L sin2 2π

L

L−1∏
j=1

sin2 π
L (j − νj+2 + ν+)

a−1∏
j=1

sin2 π(j−νa+νa−j)
L

L+2−a∏
j=1

sin2 π(j−νj+a+νa)
L

. (218)

Using Lemma (B.2) for a ∼ L, L− a ∼ L we obtain

|〈k(a)|q〉|2

|〈k̃|q〉|2
= (2π)4 exp

2F (π) +−
π∫
−π

(
ν(q)− q

π

)
cot

q − ka
2

dq

 . (219)

Combining this result with Eq. (216) for δ = 2, the overlap can be written as

|〈k(a)|q〉|2 = −e
2πiν(k) − 1

L
exp

−π∫
−π

(
ν(q)− q

π

)
cot

q − ka
2

dq − 1

2

π∫
−π

dq

π∫
−π

dk

(
ν(q)− ν(k)− (q − k)/π

2 sin q−k
2

)2
 .

(220)
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C.3 Winding number δ = 0

Let us study thermodynamic limit of the overlap (9) in the case N = L − 1, which is especially useful for
δ = 0. Below, however, for the sake of generality, we will keep δ ≥ 0. Our goal is to evaluate Za defined via

|〈k|q(a)〉|2 ≡ eg(qa)Za. (221)

We use notations (20) and (19) to label the momenta and Eq. (23) for q(a) . Let detD(a) be the determinant
in Eq. (10) that corresponds to the set q(a). It explicitly reads as

detD(a) =

L∏
i>j

sin
ki−kj

2

L∏
i>j
i,j 6=a

sin
qj−qi

2

L∏
i=1

L∏
j=1
j 6=a

sin
ki−qj

2

. (222)

We can present it identically as

L∏
i=1

(
sinπνi
L

)2

(detD(a))2 =

L∏
i=1

i−1∏
j=1

sin2 ki−kj
2

sin2 qi−qj
2

×
L∏
i=1

(
sinπνi
L

)2
∏L
j 6=i sin2 qi−qj

2

L∏
j=1

sin2 ki−qj
2

× sin2 πνa
L

∏
j 6=a

sin2 kj−qa
2

sin2 qj−qa
2

(223)
The last part of this product is nothing but Za in Eq. (170), the middle part is equal to 1 due to to Lemma

(B.1), while the first part can evaluated with Lemma (B.4) and gives A2/Lδ
2

. Overall we have4

L∏
i=1

(
sinπνi
L

)2

(detD(a))2 ≈ A
2e2F (qa)

Lδ2−2δ+2
sin2(πνa)

[
Γ(L− a+ 1− νa)Γ(a+ νa)

Γ(L− a+ 1− ν−)Γ(a+ ν+)

]2

, (224)

where F (qa) is given by Eq. (171).
Taking into account Eqs. (211) and (212), we obtain

Za = −4(1− e−2πiν+)δ
A2e2F (qa)−δ

L(δ−1)2
sin2(πνa)

[
Γ(L− a+ 1− νa)Γ(a+ νa)

Γ(L− a+ 1− ν−)Γ(a+ ν+)

]2

. (225)

For δ = 0 we can rewrite this expression as

Za =
A[qa]

L

[
Γ(L− a+ 1− νa)Γ(a+ νa)

Γ(L− a+ 1− ν+)Γ(a+ ν+)

]2(
π + qa
π − qa

)2ν+−2νa

, (226)

A[qa] = −4 sin2(πνa) exp

−1

2

π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)

2 sin q−k
2

]2

−−
π∫
−π

ν(q) cot
q − qa

2
dq

 , (227)

where the integral is understood as the principal value.
For δ = 1 we can rewrite this expression as

Za = 4 sin2(πνa)(e−2πiν+ − 1)A2e2F (qa)−1

[
Γ(L− a+ 1− νa)Γ(a+ νa)

Γ(L− a+ 2− ν+)Γ(a+ ν+)

]2

. (228)

Using expression (209) and (176) we obtain

Za =
sin2(πνa)

π2
(e−2πiν+ − 1)|〈k|q〉|2e2F (qa)−2F (π)

[
Γ(L− a+ 1− νa)Γ(a+ νa)

Γ(L− a+ 2− ν+)Γ(a+ ν+)

]2

(229)

with |〈k|q〉|2 given by Eq. (213).

4Recall that νa ≡ ν(qa).
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C.4 Negative winding number δ < 0

Following Sec. (3.3) we fix δ = 1− n with n ∈ Z≥, ` = L+ δ, the set k = {k1, . . . k`} is given as

ki =
2π

L

(
−L+ 1

2
+ i− νi

)
, i = 1, 2, . . . `, (230)

the set qa1,...an is obtained from the complete set q in Eq. (204) by the omission of the “particle” at position
qai

qa1,...an = {q1, . . . q̂a1 , . . . q̂an , . . . qL}. (231)

The determinant (10) in (9) after certain restructuring of the factors and employing Lemma (B.1) reads

∏̀
i=1

(
sinπνi
L

)2

(detD)2 =
∏̀
i=1

L∏
j=1

sin2 ki−qj
2∏L

j 6=i sin2 qi−qj
2

×

∏̀
i>j

sin2 ki−kj
2

L∏
i>j

i,j 6=a1,...,an

sin2 qj−qi
2

∏̀
i=1

L∏
j=1

j 6=a1,...,an

sin2 ki−qj
2

=

∏̀
i>j

sin2 ki−kj
2∏̀

i>j

sin2 qi−qj
2

×

∏̀
i>j

sin2 qi−qj
2

L∏
i>j

sin2 qj−qi
2∏̀

i=1

L∏
j=1
j 6=i

sin2 qi−qj
2

×
n∏
i>j

sin2 qai − qaj
2

×
n∏
i=1

Z̃ai (232)

with

Z̃a =

∏̀
i=1

sin2 ki−qa
2

L∏
i6=a

sin2 qi−qa
2

. (233)

The first factor in this expression can be evaluated via Lemma (B.5)

∏̀
i>j

sin2 ki−kj
2∏̀

i>j

sin2 qi−qj
2

=
Lδ

2

(2π)−(δ2+δ)eδ

G(1− δ)2
exp

−1

2

π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)− δ(q − k)/(2π)

2 sin q−k
2

]2
 . (234)

The second factor reads

∏̀
i>j

sin2 qi−qj
2

L∏
i>j

sin2 qj−qi
2∏̀

i=1

L∏
j=1
j 6=i

sin2 qi−qj
2

=

L∏
i>j>`

sin2 qi − qj
2

=

n−1∏
i=1

i−1∏
j=1

sin2 π(i− j)
L

≈
(π
L

)(n−2)(n−1) n−1∏
i=1

i−1∏
j=1

(i− j)2

=
(π
L

)(n−2)(n−1) n−1∏
i=1

i−1∏
j=1

j2 =
(π
L

)(n−2)(n−1) n−1∏
i=1

Γ(i)2 =
(π
L

)(n−2)(n−1)

G(n)2 =
(π
L

)δ(δ+1)

G(1− δ)2.

(235)

We evaluate Z̃a in Eq. (233) for a ∼ L and L− a ∼ L. We complete Z̃a to the full product Za in Eq. (170)
and approximate it as

Z̃a =
Za

L∏
j=`+1

sin2 π(j−a−νj)
L

≈ Za(
cos qa2

)2|δ| . (236)
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To approximate further Za in Eq. (170) we notice that

LδΓ

[
a+ νa, L− a+ 1− νa
a+ ν+, L− a+ 1− ν−

]
≈
( a
L

)νa−ν+ (
1− a

L

)ν−−νa
=

(
π + qa

2π

)νa−ν+ (π − qa
2π

)ν−−νa
. (237)

Further, we can simplify F (qa) using that in the principal value

−
π∫
−π

dqq cot
q − qa

2
= 4π log

∣∣∣2 cos
qa
2

∣∣∣ . (238)

So thermodynamic limit for Z̃a reads

Z̃a = 4|δ|
sin2(πνa)

L2
exp

−−π∫
−π

dq
(
ν(q)− δ q

2π

)
cot

q − qa
2

 . (239)

The remaining factors in Eq. (9) can be evaluated with the help of Eqs. (211) and (212)

∏̀
i=1

eg(ki)
∏

qi∈qa1,...an
e−g(qi)

∏̀
i=1

(
1 + 2π

L ν
′(ki)

) =

∏̀
i=1

eg(ki)−g(qi)
L∏

i=`+1

e−g(qi)
n∏
i=1

eg(qai )

∏̀
i=1

(
1 + 2π

L ν
′(ki)

) = (−1)δe−δ
n∏
i=1

eg(qai ). (240)

Finally, the overlap (9) in the thermodynamic limit can be written as

|〈k|qa1,...an〉|2 = exp

−1

2

π∫
−π

dq

π∫
−π

dk

[
ν(q)− ν(k)− δ(q − k)/(2π)

2 sin q−k
2

]2
 n∏
i>j

(
2 sin

qai − qaj
2

)2 n∏
i=1

Yai (241)

with

Ya = −4
sin2(πνa)

L
exp

g(qa)−−
π∫
−π

dq
(
ν(q)− δ q

2π

)
cot

q − qa
2

 . (242)

C.5 Overlaps for τ0

Now let us consider how overlaps defined in Eq. (99) scale with the system size for δ ≤ 0. Similarly, to the
previous sections we can present solutions of Eq. (98) as

pi =
2π

L

(
−L+ 1

2
+ j − ωj

)
, j = 1, . . . , ` = L+ δ. (243)

We use maximally allows set for p, namely

p = {p1, . . . p`} (244)

and states q are parametrized by the set of n = |δ| holes as previously

qa1,...an = {q1, . . . q̂a1 , . . . q̂an , . . . qL}. (245)
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Similar to Eq. (232) using Lemma (B.1) the overlap (99) can be presented as

|〈p|qa1,...an〉|2 =

∏̀
i=1

eg(pi)−g(qi)
n∏
i=1

eg(qai )−g(π)

∏̀
i=1

(
1 + 2π

L ω
′(pi)

)
∏̀
i>j

sin2 pi−pj
2∏̀

i>j

sin2 qi−qj
2

×

∏̀
i>j

sin2 qi−qj
2

L∏
i>j

sin2 qj−qi
2∏̀

i=1

L∏
j=1
j 6=i

sin2 qi−qj
2

×
n∏
i>j

sin2 qai − qaj
2

×
n∏
k=1

∏̀
i=1

sin2 pi−qak
2

L∏
i 6=ak

sin2 qi−qak
2

. (246)

This way, using formulas from the previous subsection (C.4), we see that overlap |〈p|qa1,...an〉|2 is identical to
Eqs. (241), (242), upon the identification ν → ω and δ to be changed from by ν(π)− ν(−π)→ ω(π)−ω(−π).
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