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Synchronization is an important behavior that characterizes many natural and human made sys-
tems composed by several interacting units. It can be found in a broad spectrum of applications,
ranging from neuroscience to power-grids, to mention a few. Such systems synchronize because
of the complex set of coupling they exhibit, the latter being modeled by complex networks. The
dynamical behavior of the system and the topology of the underlying network are strongly inter-
twined, raising the question of the optimal architecture that makes synchronization robust. The
Master Stability Function (MSF) has been proposed and extensively studied as a generic framework
to tackle synchronization problems. Using this method, it has been shown that for a class of models,
synchronization in strongly directed networks is robust to external perturbations. In this paper, our
approach is to transform the non-autonomous system of coupled oscillators into an autonomous one,
showing that previous results are model-independent. Recent findings indicate that many real-world
networks are strongly directed, being potential candidates for optimal synchronization. Inspired by
the fact that highly directed networks are also strongly non-normal, in this work, we address the
matter of non-normality by pointing out that standard techniques, such as the MSF, may fail in
predicting the stability of synchronized behavior. These results lead to a trade-off between non-
normality and directedness that should be properly considered when designing an optimal network,

enhancing the robustness of synchronization.

I. INTRODUCTION

Systems in nature are often constituted by a large num-
ber of small parts that continuously interact with each
other [IL[2]. Although it might be possible to accurately
know the dynamics that characterize each of the indi-
vidual constituents, it is, in general, nontrivial to figure
out the collective behavior of the systems as a whole
resulting from the individual/local interactions. A rel-
evant example is provided by a system composed by an
ensemble of coupled non-linear oscillators, that behave
at unison driven by the non-local interaction, then the
system is said to be synchronized [2, B]. Synchroniza-
tion has been extensively studied in network science as
a paradigm of dynamical processes on a complex net-
work, mainly due to the essential role of the coupling
topology in the collective dynamics [I]. Its generic for-
mulation allowed researchers to use it to model several
applications, ranging from biology, e.g., neurons firing
in synchrony, to engineering, e.g., power grids [4]. The
ubiquity of synchronization in many natural or artificial
systems has naturally raised questions about the stabil-
ity and robustness of synchronized states [5H8]. In their
seminal work, Pecora & Caroll [9] introduced a method
known as Master Stability Function (MSF) to help un-
derstand the role that the topology of interactions has
on system stability. Assuming a diffusive-like coupling
among the oscillators, the MSF relates the stability of
the synchronous state to the nontrivial spectrum of the
(network) Laplace matrix; in particular, it has been

proven that the latter should lie in the region where the
Lyapunov exponent that characterizes the MSF takes
negative values [2 [I0]. For a family of models (e.g.,
Rossler, Lorenz, etc.) whose stable part of the MSF
has a continuous interval where the (real part of the)
Laplacian eigenvalues can lie, it has been proven that
they maximize their stability once the coupling network
satisfies particular structural properties. Such optimal
networks should be directed spanning trees and with-
out loops [, [6]. These networks have the peculiarity of
possessing a degenerate spectrum of the Laplacian ma-
trix and laying in the stability domain provided by the
Master Stability Function. The Laplacian degeneracy
is also often associated with a real spectrum or with
considerably low imaginary parts compared to the real
ones [1T}, 12].

The vast interest in complex networks in recent years
has also provided an abundance of data on empiri-
cal networked systems that initiated a large study of
their structural properties [I]. From this perspective, it
has been recently shown that many real networks are
strongly directed, namely they possess a high asym-
metry adjacency matrix [I3]. Most of these networks
present a highly hierarchical, almost-DAG (Directed
Asymmetric Graph) structure. This property poten-
tially makes the real networks suitable candidates for
optimally synchronized dynamical systems defined on
top of them. Another aspect which is unavoidably as-
sociated with the high asymmetry of real networks, is
their non-normality [13], namely their adjacency matrix



A satisfies the condition AAT # AT A [12]. The non-
normality can be critical for the dynamics of networked
systems [I3HI8]. In fact, in the non-normal dynamics
regime a finite perturbation about a stable state can un-
dergo a transient instability [I2] which because of the
non-linearities could never be reabsorbed [13] [14]. The
effect of non-normality in dynamical systems has been
studied in several contexts, such as hydrodynamics [19],
ecosystems stability [20], pattern formation [21], chem-
ical reactions [22], etc. However, it is only recently that
the ubiquity of non-normal networks and the related dy-
namics have been put to the fore [I3HI8]. In this paper,
we will elaborate on these lines showing the impact of
non-normality on the stability of a synchronous state.
We first show that a strongly non-normal network has,
in general, a spectrum very close to a real one and that
this in principle should imply a larger domain of pa-
rameters for which stability occurs, for systems with a
generic shaped MSF. For illustration purposes, we will
consider the Brusselator model [23] 24], a two-species
system with a discontinuos interval of stability in the
MSF representation. We will also examine the limiting
cases of our analysis to two simple network models [25],
namely a (normal) bidirected circulant network and a
(non-normal) chain, both with tunable edge weights in
such a way to allow a continuous adjustment respec-
tively of the directedness and non-normality.

The MSF relies on the computation of the (real part
of the maximum) Lyapunov exponent, and thus in the
case of time-dependent systems, it does not possess the
full predictability power it has in the autonomous case
(fixed point in/stability). For this reason, we will use
a homogenization method, whose validity is limited to
a specific region of the model parameters, allowing us
to transform the linearized periodic case problem into
a time-independent one [26]. This way, we remap our
problem to an identical one studied in the context of
pattern formation in directed networks where spectral
techniques provide significant insight [25] 27]. Such an
approach allows us on one side to assess the quantitative
evaluation of the role of the imaginary part of the Lapla-
cian spectrum in the stability problem. On the other
it permits the use of numerical methods, such as the
pseudo-spectrum [I2] in the study of the non-normal
dynamics. To the best of our knowledge, this is the
first attempt to use such techniques in the framework of
time-varying systems, being the theory of non-normal
dynamical systems limited so far to autonomous sys-
tems [12]. As expected, the non-normality plays against
the stability of the synchronized ensemble of oscillators.
Furthermore, a high non-normality translates to a high
spectral degeneracy, which brings to a large pseudo-
spectrum, indicating a high sensibility towards the in-
stability.

Clearly, the directionality and the non-normality
stand on two parallel tracks regarding the stability of

synchronized states and their robustness. As a conclu-
sion of our work, we show that the most optimal design
should be looked at as a trade-off between a high and
low directionality /non-normality. Such choice should
depend either on the magnitude of perturbation or the
ratio directed vs. non-normal of the network structure.

II. OPTIMAL SYNCHRONIZATION:
DIRECTED VS. NON-NORMAL NETWORKS

We consider a network constituted of N nodes (e.g.,
the idealized representation of a cell), and we assume a
metapopulation framework, where the species dynamics
inside each node is described by the Brusselator model,
a portmanteau term for Brussels and oscillator. It has
been initially introduced by Prigogine & Nicolis to cap-
ture the autocatalytic oscillation [23] phenomenon, re-
sulting from a Hopf bifurcation curve in the parameter
plane. This will be the framework we will consider in
the following, neglecting thus the fixed point regime.
Specie can migrate across nodes with a diffusion-like
mechanism. In formulae, this model translates to a
reaction-diffusion set of equations:

N
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(1)
where ¢; and v; indicate the concentration of the two
species per node, D, Dy are their corresponding dif-
fusion coefficients, and b, ¢ are the model parameters.
The coupling is represented by the matrix W, whose
non-negative entries W;; represent the strength of the
edge pointing form node j to node i. The entries of the
Laplacian matrix £ are given by L;; = Wi; — ki"6;;
where k" = > y W;; stands for the incoming degree of
node ¢, i.e. the number of all the entering edges into
node i. We want to emphasize here that many other
coupling operators are also possible; nevertheless, most
of them will reduce at the linear level to a Laplacian in-
volving the differences of the observable among coupled
nodes [2], i.e., Zjvzl ﬁij.ﬁj = Z;V:;L Wij(a:j — xi). This
form ensures that the coupling is in action only when
the observable assume different values in two coupled
nodes.

The reason for choosing such a model, as mentioned
earlier, is mainly due to the discontinuous interval of
the stability domain provided by the MSF of the prob-
lem (as it can be noticed in the inset of Fig. [3| a)).
To proceed with the stability analysis, we first need to
identify the homogeneous periodic solution, ¢*(¢) and
1™ (t), hereby called the synchronized manifold and then
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Figure 1. The network toy models for the case of a normal bidirectional circulant network, panel a), and a non-normal
bidirectional chain, panel b). ¢) Normalized Henrici’s departure from non-normality as a function of tunning parameter e
for the non-normal model. We observe that starting from 0, the network is symmetric, and the non-normality increases as
the weight of the reciprocal edges decreases, taking the maximal value of non-normality in the limit when ¢ = 0. In this

case, the Laplacian spectrum is degenerate.

to linearize the system around this. Let us introduce the
perturbations for the i—th node by d¢; and dv);, then the
linearized equations describing their evolution are given
by:

d(8,:) -
dtl = | fp:0i; + Dy E 1:%- 0pj + fu, 00
pan
d(5¢) =
g = 9ei0%i+ |90 + Dy ;:1 Lij| 0
Vi=1,...,N,

(2)

where the partial derivatives are given by f,, = —(b+
1)+ 206" (00" (1), fo = cp™(£)2, g, = b— 20" (1067 (1),
and gy, = cp*(t)?. Notice that the partial deriva-
tives of the reaction part are evaluated on the synchro-
nized manifold. This translates into a time-dependent
Jacobian matrix due to the periodicity of the solu-
tions and thus to a non-autonomous linear system. To
make a step forward let us introduce the following com-
pact notation; let x = (§p1,...,60N,6¢1,...,00N5)T
be the 2N-dimensional perturbations vector, D the
diagonal diffusion coefficients matrix and J(t) the
time-dependent Jacobian matrix, hence Eq. can be
rewritten as

x=(Jt)+DoL)x, (3)

where ® is the coordinatewise multiplication operator.
Then we proceed by diagonalizing the linearized system

using the basis of eigenvectors of the network Laplace
operator £. Notice that this is not always possible be-
cause the Laplacian matrix of directed networks might
not have linearly independent eigenvectors. We will as-
sume such a basis to exist for the time being, and we
will consider such an issue again when discussing the
non-normal case. Denoting by £ the transformed per-
turbations vector, Eq. becomes

E=(Tt)+DOA)E, (4)

where A denotes the diagonal matrix of the Laplacian
eigenvalues. The (real part of the) largest Lyapunov ex-
ponent of Eq. , known in the literature as the Master
Stability Function [1L 2} [9, [10], is thus a function of the
eigenvalues A. Let us stress that the study of the sta-
bility of a general non-autonomous system is normally
not possible through the classical spectral analysis, and
one has therefore to resort to the MSF.

Before proceeding in the quest for the optimal net-
work topological features that minimize the MSF, we
will introduce two simple network models, shown in
Fig. for which we can tune the directionality and
the non-normality acting on a single parameter. In the
first case, Fig. a), we consider a bidirectional circulant
network, i.e., a network whose adjacency matrix is cir-
culant [28], made by two types of links, one of weight 1
forming a clockwise ring and the other winding a coun-
terclockwise ring of tuneable weights €. The latter can
vary in the interval € € [0, 1] exploring in this way the
possible topologies from a fully symmetric case when
e = 1 to a totally mono-directed network when ¢ = 0.
Since such a network is circulant, the adjacency ma-
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Figure 2. a) MSF for the Brusselator model with b = 2.5, ¢ = 1 (limit cycle regime), D, = 0.7, Dy, = 5 on a circulant
network of 20 node; A, indicates the the Laplacian’s eigenvalues, of which we plot only the real part. In this setting the
system should remain stable after a perturbation: in fact, when the network is symmetric (¢ = 0), the discrete MSF (black
dots) lies on the continuous one (magenta line); however, when we introduce an asymmetry in the topology as £ decreases
(red and blue dots), the MSF reaches the instability region, and the system loses synchronization. b) The equivalent
rapresentation in the complex domain where the instability region is shaded magenta and the discrete Laplacian spectrum
is denoted by the symbols. For the network topology with at least one eigenvalue that lies in the instability region, the

synchronized state is lost.

trix will be normal, a property that is inherited by the
Laplace operator. On the contrary, if we remove two re-
ciprocal links, respectively, of weights 1 and ¢, we obtain
instead a non-normal network, as depicted in Fig. [1]b).
In this case, the adjacency matrix is non-normal [12], a
feature also reflected on the Laplacian matrix. Even in
this case, we can tune the non-normality by varying the
¢ parameter in the unitary interval as for the previous
case, this can be appreciated from the results shown in
Fig.|l|¢) where we report the normalized Henrici index,
a well-known proxy of non-normality, as a function of €.
The main advantage of using the above network models
is the existence of a basis of eigenvectors for the Lapla-
cian matrix. In the first network model, this is due
to the normality of the graph Laplacian, while in the
second one it is because of the tridiagonal form of the
coupling operator [29]. This property is essential for the
applicability of the MSF analysis, which is impossible
otherwise.

A. The case of normal directed networks

We start by considering the bidirected circular network
and studying the linear stability of the synchronized
state using the MSF analysis. The results shown in
Fig. [2| a), indicate that the network topology increas-
ingly contrasts the stability of the synchronous manifold
when the directionality increases. In fact, when the

MSF computed for the directed network is compared
to the symmetric case used as reference line (the con-
tinuous magenta curve), we can always observe larger
values, which moreover increase as € decreases (for the
same fixed Laplacian eigenvalue). Because of the cir-
culant property of the Laplace matrix, its spectrum
can be explicitly computed [25] Aq = 1+ ¢+ (1 +
g)cos(2am/N) + i(1 — ¢)sin(2an/N). One can easily
notice that for ¢ = 0, the spectrum distributes uni-
formly onto the unitary circle centered at (1,0) as also
shown in Fig. [2[ b) in blue stars. On the other side,
when ¢ = 1, the network turns symmetric, making the
spectrum real.

The MSF formalism ultimately relies on the maxi-
mum Lyapunov exponent, which despite having proved
its validity in ruling out the chaotic behavior of dynami-
cal system [3], remains grounded on numerical methods.
To improve our analytical understanding of the prob-
lem, we proceed by transforming Eq. into an au-
tonomous one, allowing in this way to deploy the spec-
tral analysis tools. This method is part of the broader
set of homogenization methods that aim at averaging
a time-dependent system to obtain a time-independent
one [26]. Such methods have been found useful also
for the stability analysis of synchronized states [32] [33].
The resulting autonomous version of the MSF is some-
times referred to as the dispersion relation [2I]. The
mathematical validity of the proposed approximation is
grounded on the Magnus series expansion truncated at
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Figure 3. a) The comparison of the MSF and dispersion relation for the Brusselator with model parameters b = 3, ¢ = 1.8,
D, =0.7, Dy, = 5. We depict in magenta the MSF of the system in a limit cycle regime and cyan the dispersion relation
of the averaged autonomous system. Inset: Similar comparison for a set of parameters where the instability occurs. Notice
also the lack of continuity of the stability interval of eigenvalues. b) The same representation in the complex domain. We
see that for the chosen values of the parameters, the two approaches give an excellent agreement in predicting the instability

interval.

the first order [33]; hence, the set of model parameters
for which we expect a good agreement with the original
model corresponds to the case when higher-order terms
are negligible. For more details, the interested reader
should consult [33]. In formula, it translates to

T
J(t)—)(J)T:%/O J(r)dr. (5)

Remarkably, as shown in Fig. 3] this approximation
yields qualitative results in excellent agreement with
the original model for a specific range of parameters.
An alternative to this approach is to apply a pertur-
bative expansion near the bifurcation point, obtaining
this way the time-independent Ginzburg-Landau nor-
mal form [34]. However, the effectivity of the latter
method is exclusively limited to parameters values very
close to the stability threshold. In this sense, our ap-
proach is more general, both from allowing a larger set
of parameters where the method remains valid, and at
the same time, it is independent of the choice of the
model compared to previous works [35]. The passage
to an autonomous system is also essential in explain-
ing the effect of the imaginary part of the Laplacian
eigenvalues in the newly obtained stability function, the
dispersion relation. It has been rigorously shown in
[25, 27] that the dispersion relation increases propor-
tional to the magnitude of the imaginary part of the
spectrum. We already observed similar results for the
case of the MSF presented in Fig.[2l We can in this way
conclude that the averaging method sheds light on the
role of the directed topology in the destabilization of a

synchronized regime.

B. The case of non-normal directed networks

The analysis performed in the previous section has been
based on the study of the linearized system, in some
cases, however, such analysis is not sufficient to under-
stand the outcome of the nonlinear system. In Fig. []
we consider again the MSF computed for the directed
chain previously introduced (panel b) of Fig. [[)). From
Fig.|4]b) one might naively conclude that the system will
synchronize, since the MSF is non-positive for all values
of Re(Ay). Moreover, the spectrum is completely real
(see panel b)) and thus there cannot be any contribution
from the imaginary part of the spectrum. However a di-
rect inspection of the orbit behavior (panel c)) clearly
shows that the system does not synchronize. Once the
system is defined on a symmetric support, the synchro-
nized behavior is recovered (panel d)). This diversity of
behavior is related to the non-normal property of the
considered network, indeed it has been recently proved
that such structural property can strongly alter the
asymptotic behavior of networked systems [36]. A finite
perturbation about a stable equilibrium goes through a
transient amplification (see Fig. 4| d)) proportional to
the level of non-normality before it is eventually reab-
sorbed in the linear approximation [I2], while in the
full non-linear system the finite perturbation could per-
sist indefinitely. Up to now, this analysis has been lim-
ited to the case of autonomous systems; in this paper
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Figure 4. Desynchronization in a non-normal network. The parameters for the Brusselator model are as follows b = 2.5,
¢c=1,D, =0.7, Dy =5 on the (directed chain) non-normal network of 20 nodes with € = 0.1 of Fig. |1/ b). As it can
be observed from panels a,) and b), respectively, for the MSF and the stability region, the set of parameters is such that
the MSF is neatly stable. Nevertheless, the instability occurs as shown by the pattern evolution in panel ¢) at odd with
the outcome that would have been expected from the symmetrized version. Such a result is strong evidence of the role
of the network non-normality in the nonlinear dynamics of the system under investigation. The mechanism that drives
the instability in the non-normal linearized regime manifests in the transition growth of the perturbations vector x(t) eq.
, the blue curve in panel d), before the system relaxes to the oscillatory state of the equilibrium. Such growth might
transform in a permanent instability for the nonlinear system u(t) = [¢(t), ¥ (¢)], red curve.

for the first time we extend it to the periodic time-
dependent case making use of the homogenization pro-
cess. This explains the permanent instability, shown in
Fig. [ causing the loss of stability for the synchronized
state.

The non-normal dynamics study cannot be straight-
forwardly tackled with the analytical methods of the lo-
cal stability, mostly because the instability occurs in a
highly nonlinear regime. Such condition require a global
analysis that can be obtained using the numerical tech-
nique based on a spectral perturbation concept known
as the pseudo-spectrum. For a given matrix A the lat-

ter is defined as 0(As) = o (A + E), for all ||E|| < ¢
for where o(-) represents the spectrum and || || a given
norm. The package EigTool [37] allows us to compute
and draw in the complex plane the level curves of the
pseudo-spectrum for a given value of €. Although the
pseudo-spectrum is not sufficient to fully explain the
system behavior, it is certainly of great utility in esti-
mating the role of non-normality in the dynamics out-
comes. In particular, in panel b) of Fig. We report level
curves of the pseudo-spectrum for three different values
of the parameter ¢ representing the reciprocal links of
the directed chain. Notice that by increasing the non-
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Figure 5. a) The pseudo-spectral description of the stability of the directed chain of 20 nodes for the Brusselator model
with b = 2.5, ¢ =1.12, D, = 0.7, Dy, = 5, and an initial condition perturbation of the average magnitude 6 = 0.1. We show
the pseudo-spectra for three different values of the control parameter € for the chain network, emphasizing the considerably
large difference between the pseudo-spectra regions and the spectrum of the Laplacian matrix. Inset: the pseudo-spectra
for many other values of the perturbation magnitude ¢ for the chain with € = 0.1. Notice that although the eigenvalues do
not lie inside the instability region due to the lack of an imaginary part, the pseudo-spectra might do. b) The comparison
between the expected outcome as predicted from the MSF and the actual outcome as measures by the standard deviation
of the desynchronized pattern. The stability basin (shaded grey) projected onto the limit cycle plane for the non-normal
case, panel ¢1) and the symmetrized (normal) one, panel c2), calculated over 300 different initial conditions (of the same
averaged magnitude) and a perturbation whose maximum magnitude varies from 1073 to 1. Inset: In the y-axis we plot
the points of limit cycle we perturb and in the z-axis the magnitude of the perturbation; the colormap gives the fraction of
orbits that conserve the synchronized regime. It can be clearly noticed that the attraction basin for the non-normal network
is strongly reduced, though not at the same amount compared to where the perturbation occurs.

normality of the toy network, the pseudo-spectrum will
also increase the chances of intersection with the insta-
bility region. In panel d) of Fig. [5| we have shown a
comparison between a proxy of the presence of a syn-
chronized state, i.e. the standard deviation S [3§] of the
asymptotic orbit behavior and the MSF demonstrating
a clear different behavior. For all the considered values
of € the MSF is always negative suggesting a stable syn-
chronized state, on the other hand S becomes positive

and large for small enough ¢, testifying a loss of syn-
chronization. The dependence on the different values
of the initial conditions is further shown in panels ¢;)
and c¢2). As expected, the instability is more probable
for both larger values of non-normality and magnitude
of the initial conditions. In particular, it can be ob-
served that the synchronization basin of attraction is
strongly reduced for the non-normal network compared
to the normal one, and moreover its width varies along



the limit cycle, implying that desynchronization will de-
pend also on the point at which the perturbation starts.

III. CONCLUSIONS

In this paper, we have studied the quest for the opti-
mal conditions ensuring the stability of synchronization
dynamics in directed networks. Such conditions deter-
mine the design of a networked system that makes the
synchronization regime as robust as possible. Previ-
ous results have proven that a strictly directed topol-
ogy is necessary for the synchronized state’s robust-
ness. Based on the well-known Master Stability Func-
tion, it has been shown that directed tree-like networks
are optimal for models with a discontinuos interval of
the Laplacian spectrum in the stability range of MSF.
Here, we have extended such results proving that they
are generally independent of the dynamic model. Using
an averaging procedure, we transformed the problem
from a time-dependent (non-autonomous) to a time-
invariant (autonomous) one. This method allows to
prove that networks whose Laplacian matrix exhibits a
spectrum that lacks an imaginary part are the most op-
timal. In general, the loss of synchronization increases
with the magnitude of the imaginary part of the spec-
trum. Secondly, recent findings have shown that real-
world networks present strong directed traits, resulting
in a strong non-normality. This latter feature can play
a very important role in the linear dynamics influenc-
ing the local stability of the synchronized state through
a strong transient amplification of the perturbations.
We have extended the idea of non-normal dynamics to

the case of non-autonomous synchronization dynam-
ics, revealing how network non-normality can drive the
system to instability, thus increasing the understand-
ing of synchronization in complex networks. We have
also numerically quantified the effect of non-normality
in driving the instability through the pseudo-spectrum
technique. In conclusion, we have analytically and nu-
merically demostrated that there is no compelling recipe
for optimal network architecture in order to conserve
the synchronized state, but rather a trade-off between
the network directedness and its non-normality. We are
aware that the interesting outcomes of the interaction of
structrural non-normality networks with the fascinating
synchronization phenomenon require deepper and fur-
ther investigation (e.g. synchronization basin). In this
sense, with this work we aim to initiate a new direction
of research of the synchronization problem.
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