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We provide strong evidence that the asymptotically free (1 + 1)-dimensional nonlinear O(3) sigma model can
be regularized using a quantum lattice Hamiltonian, referred to as the “Heisenberg comb”, that acts on a Hilbert
space with only two qubits per spatial lattice site. The Heisenberg comb consists of a spin-half antiferromagnetic
Heisenberg-chain coupled antiferromagnetically to a second local spin-half particle at every lattice site. Using
a world-line Monte Carlo method, we show that the model reproduces the universal step-scaling function of
the traditional model up to correlation lengths of 200 000 in lattice units and argue how the continuum limit
could emerge. We provide a quantum circuit description of time evolution of the model and argue that near-term
quantum computers may suffice to demonstrate asymptotic freedom.

Formulating quantum field theories (QFTs) so that they can
be implemented on a quantum computer has become an active
area of research recently [1-10]. One of the first steps in this
process is to construct a suitable lattice quantum Hamiltonian
that acts on a Hilbert space realized by n qubits at each lattice
site where n is small. For bosonic quantum field theories,
including gauge theories, an exact realization of the canonical
commutation relation [¢,, m,] = id, ,, forces n to be infinite.
For this reason, all traditional formulations of lattice QFT's
with bosonic degrees of freedom need reformulation to be
solvable on a digital quantum computer. A simple way to
proceed is to truncate the infinite dimensional Hilbert space to
an n-qubit subspace while preserving the long distance physics.
Universality suggests that long distance physics can often be
preserved at critical points after truncation if the symmetries
of the model are preserved. Examples of universality can
be found in studies of quantum spin models [11, 12]. The
idea of universality was emphasized recently in the context of
studying sigma models using quantum computers in Ref. [13].
The procedure of constructing a n-qubit lattice Hamiltonian
for studying a QFT can be viewed as an extra regularization
necessary for quantum computation and was referred to as
“qubit regularization” of the QFT in Refs. [14, 15].

As with any form of regularization, a procedure to define
the continuum limit of the n-qubit model is necessary. How
this limit emerges is not obvious in the n-qubit model, at
least when n remains finite. A common technique followed
by many groups is to approach the continuum limit using the
naive procedure of making n large, which takes us back to
the traditional theory [6, 16—19]. An interesting unanswered
theoretical question is whether all QFTs can in principle be
obtained using suitable continuum limits of n-qubit models
where n remains finite and, if so, what is the minimal value of
n necessary for each QFT?

In this Letter, we show that the asymptotically free 1 + 1-
dimensional O(3) nonlinear sigma model, described in Eu-
clidean time 7 by the continuum action

1
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FIG. 1. A pictorial representation of the Heisenberg comb whose
Hamiltonian is given in Eq. (2). The asymptotically free QFT de-
scribed by Eq. (1) is reproduced in the limit .J/.J, — oco.

with n(z,7) € O(3), can be regularized successfully using the
2-qubit-per-site Hamiltonian

H= Z Jp Hii 6,20+ Hiy, 41,1 2

which we illustrate pictorially in Fig. 1 and refer to as the
Heisenberg comb. The continuum limit emerges when J/.J, —
oo. Note that n(z, 7) in Eq. (1) is a classical 3-vector field of
unit magnitude, while H; ) (j,b) = Sia - Sjp is the standard
Heisenberg interaction between spin-half operators S; , and
S; s, where 7, j label one-dimensional spatial lattice sites and
a,b =1, 2 label the 2-qubit spaces.

The idea of qubit regularization of field theories is not new
and was introduced many years ago in the D-theory formula-
tion of field theories [20, 21]. The challenge is to search the
space of all n-qubit lattice Hamiltonians in d spatial dimen-
sions to discover the correct quantum critical point where the
original continuum quantum field theory in d+ 1 space-time di-
mensions is recovered. The fine tuning to the quantum critical
point would then naturally define the procedure to obtain the
continuum limit of the n-qubit model. Qubit regularization of
conformal field theories that emerge naturally at second order
quantum critical points between two different phases are easy
to construct with finite values of n. In this case, one has to just
preserve the important symmetries of the original QFT and
tune a single relevant parameter to the correct quantum critical
point. While this technique is well known in the literature, the



approach has found new applications recently [22].

In contrast, qubit regularization of asymptotically free the-
ories like QCD and the nonlinear sigma model given in Eq. (1)
is much more challenging, especially when n is finite and fixed.
This is the central topic of our Letter. In this case, in addition
to preserving the symmetries of the QFT, one has to discover
the critical point with the correct marginally relevant coupling
that preserves the physics at all length scales from the infrared
(IR) to the ultraviolet (UV). The IR is usually characterized by
a physical correlation length &, while the UV is characterized
by a minimum lattice size L,;, < ¢ at which the universal
physics of the QFT can be observed using the lattice theory,
where even L.,;, is much larger than the lattice spacing. In
the D-theory formulation, this marginal operator is obtained
through the size of an extra spatial dimension [23]. It has
been shown that asymptotic freedom in the two-dimensional
CP(N —1) models can be reproduced when the size of this ex-
tra dimension grows [24, 25]. Since the size of the extra dimen-
sion naturally increases the number of qubits per spatial lattice
site, one can say that asymptotic freedom in the traditional
D-theory approach can be obtained if n is allowed to grow.

In this Letter, we explore whether asymptotic freedom may
be achieved even with a fixed value of n by discovering the
correct marginally relevant coupling not related to an extra
dimension. We show this explicitly in the case of the asymp-
totically free two-dimensional nonlinear O(3) QFT described
by Eq. (1). Traditionally, this theory is regularized using the
lattice Euclidean action

S=-k Y o ¢ 3)
(i,3).a

where 7, 7 now label space-time lattice sites on a square lat-
tice and ¢¢ (e = 1,2, 3) are the three components of a unit
vector associated with the lattice site ¢. The continuum limit
is obtained when x — co. Here we will argue that the same
continuum physics can also be obtained using the Heisenberg-
comb Hamiltonian discussed above.

The question of whether 2-qubit models can reproduce the
physics of the traditional model has been partially explored
previously. The first exploration was performed in traditional
lattice field theory using a Nienhuis-type action that can be
viewed as a space-time lattice formulation of a 2-qubit Hamil-
tonian [26]. Evidence was provided that a step-scaling function
similar to that for the traditional model is reproduced at two
different renormalized couplings. However, it was suggested
that the continuum limit may not be reachable using such an ap-
proach. More recently, a 2-qubit Hamiltonian was constructed
by truncating the traditional infinite Hilbert space Hamiltonian
onto the 2-qubit subspace [27]. The mass gap of the model
was computed using tensor-network methods. While in the tra-
ditional model the mass gap would vanish as the bare coupling
was lowered, i.e., K — 00, the authors found that the mass gap
did not vanish as the bare coupling was lowered in the 2-qubit
model. The authors also showed that, as the number of qubits
per lattice site was increased, the mass gap quickly reduced,
suggesting that more qubits will be necessary to recover the
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FIG. 2. The value of 3 chosen for each value of L during calculations
of £(L) in the Heisenberg comb at various values of J. The inset
shows a similar plot for the symmetric ladder (circles) and asymmetric
ladder (squares). While 3(L) depends on J in the Heisenberg comb,
it does not depend on J, for the parameters we have explored in the
symmetric and asymmetric ladders.

original theory. It is important to note that both of the above
studies focused on a very specific class of Hamiltonians moti-
vated by the traditional Hamiltonian. A more systematic search
of the model space was never carried out.

Since the SO(3) C O(3) symmetry plays an important
role in the physics, we can narrow the search to the space
of 2-qubit models invariant under this symmetry. The phase
diagram of these models is quite rich with several phases and
quantum critical points separating them [28]. In particular,
there are at least five distinct phases: phase A, where the two
qubits form local spin singlets and the spin-triplet excitations
are massive; phase B, where the spin triplets dominate
and form a ferromagnet; phase C, where the spin triplets
on neighboring sites form singlets and break translation
invariance spontaneously; phase D, where spin triplets form
a massive topological phase also referred to as the Haldane
phase [29-32]; and phase E where the long distance physics
is a critical gapless phase described by level-one SU(3)
Wess-Zumino-Witten (WZW) conformal field theory [33].
Such a rich phase structure already suggests that previous
studies could have missed the asymptotically free fixed point.

One way to parameterize the space of 2-qubit models is to
begin with spin-half ladders whose Hamiltonian takes the form

H = Z Ip Hz1),(@,2) T J1 Hiw,1),(0+1,1)
x

+ Jo Hi oy (z41,2), (4

with three tunable couplings. When J;,, < 0 and large com-
pared to J; and J5, we can access the physics of spin-1 chains.
In these chains, when Ji, Jo < 0, we obtain the ferromagnetic
phase B. On the other hand, when Ji, Jo > 0, we can access
the physics of antiferromagnetic spin-1 chains, which is the



Step scaling function: Spin ladders
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Step scaling function: Heisenberg comb
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FIG. 3. Universal step-scaling function F'(z) = £(2L)/¢(L) as a function of z = &(L)/L. The dark line in both plots is this function
reproduced from [34], where it was calculated using the traditional model defined by Eq. (3). The dashed line is the function F'(z) =
2(1 — 0.0276/2% — 0.00258/2*), computed in Ref. [34] using perturbation theory near the asymptotically free fixed point. The left plot shows
results for (1) a symmetric ladder (J; = J> = 1; J, = 0.10,0.20) and (2) an asymmetric ladder (J; = 1, Jo = 0.5; J, = 0.05,0.10). The
right plot shows results for the Heisenberg comb at J; = J = 3, 5,10; J2 = 0;J, = 1. Each data point is constructed using two calculations,

one at lattice size L and another at 2L, with 12 < L < 256.

starting point to accessing phases C, D and E. When J,, = 0, it
is well known that each of the two decoupled spin-half chains
describe the long distance physics of

Sn] = /dex {%928“11 -O,n + %n- (0rn x &En)}
&)

at @ = m [35]. This theory is known to be critical and described
by the k = 1 SU(2) WZW theory [36-38]. When J, > 0,
6 is constrained to be zero, and the IR physics of Eq. (1) is
reproduced [39]. So it is likely that there exists a critical point
in the three parameter space of (J1, J2, Jp) with J, > 0 that
reproduces both the UV and IR physics of Eq. (1) correctly.
In particular three critical points seem interesting candidates
to explore: (1) the symmetric ladder where J; = Jo = 1 and
Jp — 07T, (2) the asymmetric ladder J; > J, and Jp — ot,
and (3) the Heisenberg comb J, = 0, J, = 1, and J; =
J — 0o. We will show below that the Heisenberg comb is the
correct 2-qubit model.

In order to study whether the traditional model and the 2-
qubit model quantitatively reproduce the same physics in the
continuum limit, we need to match the two theories at all
physical scales from the IR to the UV. Asymptotically free
theories are massive, and the correlation length ¢ defined by
the mass gap sets the natural IR length scale. In order to probe
the UV physics we put the system in a small box of physical
size L < &. In fact, one can use a suitably defined finite size
correlation length £(L) even in the UV such that {(L — oo) =
. One definition of such a length scale is the second moment

definition [40], £(L) = [\/(Go/G1) — 1]/[2sin(7/L)] where
G = (D) o)) €27/ (©)
(@0)

A quantitative way to probe all physical scales from the UV
to the IR using &(L) is the universal step-scaling function
F(z) = &(2L)/&(L), where z = £(L)/L. This function is
a signature of the asymptotically free QFT. It probes the IR
physics for z — 0 and the UV physics for z — oo, where it can
computed using perturbation theory. For the traditional lattice
model defined in Eq. (3), F'(z) was computed long ago [34].
Here we compute F(z) for the spin-ladder models defined in
Eq. (4) using well established continuous time Monte Carlo
methods [41-43]. In particular, there is no sign problem for
the models we study here [44].

The calculations described focus on a few specific points in
the phase space of spin ladders. In particular, we consider the
symmetric ladder with J; = J, = 1 at J, = 0.20, 0.10, the
asymmetric ladder with J; =1, J, = 0.5 at J,, = 0.10, 0.05,
and the Heisenberg comb with J, =0,J, = 1,at J; = J =
3,5,10. To compute (L), we replace Eq. (6) with

G = %/dTZTr (O, )0(0,0)e= ] ei2ntel L, (7)

where O(z,7) = ™ [(=1)*(SZ, — SZ,)]le” ™ is the usual
Heisenberg operator in imaginary time 7, Z = Tr(e=#H) is
the thermal partition function, and £ is the inverse temperature.



We note that, on each lattice site, O creates the z component
of the triplet from the singlet and vice versa. The (—1) is
required to capture the antiferromagnetic nature of the long
distance physics. We study lattice sizes in the range 12 <
L < 512. In a Hamiltonian formulation, spatial correlation
functions, Eq. (7), will, in general, be different from temporal
correlation functions:

G = % / dTZﬁ[O(x,T)O(Qo)e—ﬂH} e2mkT/B 1 (8)

where, as in the traditional model, Eq. (3), these two are identi-
cal on square lattices due to space-time rotational symmetry.
In our calculations, we tune  as a function of L to make
G, ~ Gy. These fine-tuned values of B are plotted as a func-
tion of L in Fig. 2, which shows that for each of our studies
B/ L becomes a constant for large L, as expected in a relativis-
tic theory.

Our results for F'(z) in the qubit models are shown in two
plots in Fig. 3, along with results from the traditional model
recreated from [34]. In the left plot, we show our results for
the symmetric ladder and the asymmetric ladder. These results
show that neither of these models reproduce the traditional
model in the UV, although they are SO(3) symmetric and
massive in the IR. Thus, the spin ladders may be described
by Eq. (1) in the IR [39], but in the UV they are most likely
described by two decoupled £ = 1 SU(2) WZW conformal
field theories, as one might expect. In fact, for small values of
Jp the mass gap in the symmetric case is known to increase
linearly as 0.41(1).J, implying that J,, is not the marginally
relevant coupling we are looking for [45].

In contrast to spin ladders, when F(z) is computed in the
Heisenberg comb, it matches the traditional model well for
all values of L > L,;n. When J = 3,5, 10, we find that, in
lattice units, Lyin ~ 30,100,400 and £ ~ 25,600, 200 000,
respectively. We observe that the UV scale L,,;, increases with
J, and in the limit J — oo the asymptotically free critical point
is recovered. From Wilson’s renormalization group perspective,
after blocking to a scale of L,,;;,, the 2-qubit model turns into
an n-qubit model where n = 2L,;,,. The traditional infinite
Hilbert space of the continuum asymptotically free fixed point
is recovered in the J — oo limit.

Note that we define the physics of the Heisenberg comb by
setting J, = 1, J; = J and study the limit J — oo. We could
have instead set J; = 1 and J, = 1/.J and obtained the same
physics. However, this would force us to study asymmetric
lattices since now the values of 3 in Fig. 2 would need to
be multiplied by J. One way to understand our choice is to
recognize that the value of J,, sets a UV energy scale for our
problem. The physics of Eq. (1) only emerges at temperatures
much smaller than J,. Soitis natural in the qubit regularization
to set J, = 1 and study the physics at large values of J; = J.

An important motivation for discovering a qubit regular-
ization with a finite n is the ability to study the real time
evolution of the QFT on a quantum computer. The simplicity
of the Heisenberg-comb Hamiltonian allows us to implement
the Trotterized time-evolution operator of the theory using

(X!a) R X (X!a)
input output

FIG. 4. Quantum circuit implementing "W Ha) (@0 T/ o
two qubits (x, a) and (y, b) with exactly three entangling gates and
one single-qubit gate. The first and second lines represent the qubits
(z,a) and (y,b). The phase rotation P and the X -rotation Rx (¢)
are defined in Eq. (11). The angle ¢ = J,t/2 for terms in H; and
¢ = Jt/2 for terms in H2 and Hs.

a short-depth quantum circuit. To construct this, we write
the Hamiltonian as a sum of three commuting terms: H =
J;,,Hl + J(H2 + Hg) where H, = ZiEI H(z,l),(x,2)7 Hy =
2ies, Hawe) e,y and Hy = 3050, Hiy 1), 20+1,0),
where z. are even sites and x,, are odd sites. Using the standard
Trotter approach, we can then write

672-Ht — efi.]letefiJHztef’iJHgt 4 O(tQ) (9)

In the computational basis, that is, the |4-) basis for each spin,
we can view the Hamiltonian H ,, 4),(y.») as @ 2-qubit operator
whose matrix elements are given by a 4 x 4 matrix. The
corresponding time-evolution operator e~/ [H(w.a).cv.1)+1/4]¢
(with an additional global phase that can be easily undone)
takes the form

671'Jt/2 0 0 0
0 cos (Jt/2) —isin(Jt/2) 0 (10)
0 —isin (Jt/2) cos(Jt/2) 0
0 0 0 e—th/Q

This unitary transformation can be implemented using two
controlled NOT gates, one controlled unitary gate that im-
plements the X -rotation Rx (¢) and one single-qubit phase
rotation P(¢), given by

cos¢ —ising (e 0
—ising cos¢ ] » P(o) = ( 0 1)'
(11

Rx(¢) =

The quantum circuit that implements the full unitary transfor-
mation in Eq. (10) is given in Fig. 4. The simplicity of this
circuit suggests that near-term quantum computers may suffice
to simulate dynamics for short times. An interesting first step
is to show that the critical point in question is asymptotically
free using a quantum simulator. Similar experiments have been
done for other models on a variety of platforms [46—48].

The interesting question for the quantum computation of
asymptotically free theories like QCD is whether it is better to
regulate the theory using a small number of qubits per lattice
site and show that asymptotic freedom emerges dynamically



in the usual continuum limit, or use a formulation with a large
number of qubits per lattice site that approximates the classical
model as is normally done. This work on the O(3) model
demonstrates that asymptotic freedom does not necessarily
require an infinite dimensional local Hilbert space in a lattice
model, although intuition might lead us to believe this is
necessary. By suitably adjusting the lattice size L as J is
increased to approach the continuum limit, one can stay on
the universal scaling curve and thus deduce the properties of
the continuum theory. The question remains: which approach
is more efficient to implement on a quantum computer? Here
we have shown that the quantum circuit for the Heisenberg
comb is simple, but whether the growth of complexity with
lattice size eventually makes the other approach more efficient
remains to be investigated.
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