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Combinations of gyroscopic forces and nonequilibrium activity has been explored recently in
rectifying energy in networks with complex geometries and topologies [Phys. Rev. X 10, 021036].
Based on this previous work, here we study the effect of added time-periodic modulations. Numerical
calculations show that the time-modulated network generates net energy transport between sites
and the surroundings, even in the absence of any temperature gradients. Combining path integral
formulation and diagrammatic expansion, we explain how such anomalous energy transport emerges,
and show how the transport pattern in complex networks can be connected to relatively simple local
structures.

I. INTRODUCTION

Pioneering studies on energy rectification have shown
how energy fluxes can be generated in the absence of tem-
perature biases [1–13]. Such principles can potentially be
applied to build nanoscale energetic rectifiers [6]. From a
theoretical perspective, energy transport is usually asso-
ciated with phonons, but these collective excitations are
more difficult to manipulate compared with single parti-
cles [6, 14]. Previous studies have exploited opportunities
provided by nonlinear interactions [4], athermal baths
[2], geometric phases from adiabatic modulations [5], or
quantum Floquet systems [15]. Using a combination of
parity-breaking metamaterials and nonequilibrium forc-
ing, our recent work [16] uncovered new rectification prin-
ciples which manifest as directed energy flows between
sites in network systems. Unlike many previous studies
that focused on transport between two terminals which
are linked directly [4] or through an asymmetric segment
[2–4], our setup placed all nodes and their connections
on a equal footing [11–13], thus enabled extending recti-
fication studies to networks with complex topologies and
geometries.

Based on our recent work [16], here we study the effect
of added time-periodic modulation. Our model system
is a class of spring-mass networks where each mass is
subject to time-modulated Lorentz force [17, 18] and is
immersed in an active bath [19]. Using numerical calcu-
lations, we show that the time-modulated system is able
to rectify energy fluxes between nodes and the bath. In
other words, our model can act as a many-body energy
pump despite the absence of temperature biases. As a
comparison, our previous unmodulated system [16] sup-
ports net energy transport between sites but not between
sites and baths. The modulation thus expands the tool-
box for manipulating energy transport in complex net-
works.

We capture the numerical results by developing an an-
alytic framework to understand the energy rectification
in complex networks under time-periodic modulations.
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We first expand the energy transport with respect to
the modulation amplitude using the Martin–Siggia–Rose
/ Janssen–De Dominicis–Peliti (MSR/JDP) path inte-
gral formalism [20–22], which reveals the mechanism for
energy pumping through a modulation-induced coupling
between different Fourier modes of the response function.
We further perform a diagrammatic expansion with re-
spect to the interaction strength using techniques we de-
veloped in Ref. [16], which provides a way to understand
rectification in complex networks in terms of rectifica-
tion in local subnetworks. Taken together, we demon-
strated modulation-induced energy pumping in complex
network systems, and developed a theoretical framework
to understand the mechanism and organization of the
energy rectification. The rectification principle improves
our understanding of energy transport and its control in
complex systems.

The remainder of this manuscript is organized as fol-
lows. In Sec. II, we introduce our time-modulated active
gyroscopic model, provide a microscopic definition for the
energy flux, and present numerical results. In Sec. III-V
we develop a theoretical framework for the energy flux
that combines path integral formalism and a diagram-
matic approach. In Sec. VI we utilize the rectification
principle to create flux patterns.

II. MODEL SYSTEMS AND ENERGY
PUMPING

The equation of motion for our modulated active gy-
roscopic network model (FIG. 1a) reads [16]

mv̇i = −kgzi +
∑
j

Fji − B̂(t)A1vi − γvi + ηi. (1)

We used zi ≡
(
xi yi

)T
to denote the displacement of par-

ticle i from its mechanical equilibrium position. Similarly
vi and ηi denote the velocity and the noise. −kgzi is an
on-site tethering force. The linearized spring force from
particle j to i is calculated as Fji = k(eTijzi+e

T
jizj)(−eij),

where eij is the unit vector that points from the equilib-
rium position of i to that of j. Time-modulated Lorentz

force is −B̂(t)A1vi = −B̂
(
vi,y −vi,x

)T
, where B̂ = eB
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FIG. 1. The model and energy flux in example networks.
(a) Schematic of the model, a spring-mass network where each
particle is subject to a time-modulated Lorentz-like force and
active bath. (b) Energy transferred during each period, Qi,
for networks with shape V and Y . Positive value corresponds
to net energy transferred from the bath to the node. Protocol
for B-field modulation is B(t) = sin 2πt/T , where T is the
period of modulation. (c) Energy flux for disordered network
subject to a step function protocol B(t) = 1 if t < T/2,
B(t) = −1 if t ≥ T/2. Numerical calculations were performed
with all parameters set to 1.

is the product of the electric charge e and the magnetic

field B, and the matrix A1 ≡
(

0 1
−1 0

)
. The last two

terms are the friction −γvi and an Ornstein-Uhlenbeck
(OU) colored noise ηi [19] from an active bath. The cor-
relation of the OU colored noise reads

〈
ηi(t)η

T
j (t′)

〉
= Iδij

γTa
τ
e−
|t−t′|
τ , (2)

where τ is the correlation time, Ta controls the variance
of the colored noise, and I is the identity matrix with
appropriate dimensions. The friction −γvi and the OU
noise ηi drive the system out of equilibrium via breaking
the fluctuation-dissipation relation. As a result of the
periodically modulated B-field, the system would reach
a time-periodic steady state.

The observable we focus on is the energy transport
between particles and baths at the time-periodic steady
state. For a system with pairwise interactions and on-site
potentials, the energy transferred from bath to particle i

in each period T , averaged over noise realizations, reads

Qi =

∫ T

0

dt 〈qi(t)〉 , qi(t) = −γvi(t)T vi(t)+vi(t)
T ηi(t).

(3)
The first term (−γvTi vi) measures the energy loss from
the particle to the bath due to friction or dissipation. The
second term (vTi ηi) measures the the energy gain for the
particle due to fluctuating forcing from the bath. Eq. (3)
is derived using stochastic energetics [23, 24] and a de-
tailed procedure is described in Appendix A in Ref. [16].

The immediate consequence of time-periodicity is that
the total energy transfer during each period is zero,∑N
i=1Qi = 0, where N is the number of particles in the

system. In nonequilibrium conditions, there seems to be
no further constraint on the value of each Qi, thus there
is possibility that individual Qi’s are nonzero. Nonzero
Qi’s mean that energy is rectified or pumped from some
sites to the others.

Starting from the linearized equations Eq. (1), we nu-
merically solve the time-dependent covariance matrix,
from which we calculate Qi [25, 26] (Appendix A).
FIG. 1b-c shows a collection of numerical results for
small and larger networks under two example protocols
for B(t), a sinusoidal function and a step function. We
see that there is energy pumping from some sites to the
others. A more detailed description of the average (but
not dynamical) picture is as follows, energy is transferred
from bath to particles labelled by Qi > 0, transmitted
through the bonds in the network and released from par-
ticles labelled by Qi < 0 to their surrounding bath. If
we were to view this phenomenon from the perspective of
conventional temperature-driven transport, we see that
although all particles are subject to the same bath or
environment, some sites appear as if they were hotter
(Qi > 0) or colder (Qi < 0).

Conventional transport theories cannot explain the
mechanism of such energy pumping. Moreover, the en-
ergy is pumped between multiple sites of the network,
contrasting conventional transports between only two
terminals. It would be beneficial to develop a theory
to capture such kind of transport between multiple sites,
and specifically, explain how the pumping depends on the
structure of complex networks.

III. THEORY OUTLINE: A TWO-STEP
PERTURBATION STRATEGY

We outline a two-step perturbation theory that aims
to explain the emergence of energy fluxes and the con-
nection of fluxes to local properties. Details of each step
will be discussed in the next two sections. This two-
step strategy is motivated by our recent work on net-
works under constant B-fields [16], where we developed
a diagrammatic approach as an efficient way to connect
transport behavior to local properties. However, the di-
agrammatic approach cannot directly be applied to the
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FIG. 2. Scaling of energy flux with respect to (a) ∆B and
(b) k in for the disordered network in FIG. 1c. We have
separated the modulation ∆B(t) into an amplitude part ∆B
and a time-dependent part. Each single curve is the scaling
for one node. Numerical calculations were performed with all
other parameters setting to 1.

time-modulated case here because its central quantity,
the response function, would be invalid.

To overcome this obstacle, in the first step, we treat
the time-modulation as a perturbation and relate the per-
turbed system to the unperturbed ones. We write the
time-modulated B-field as B(t) = B + ∆B(t), where
B is a time-independent reference field and ∆B(t) is
a time-periodic modulation with a perturbative ampli-
tude. Using the Martin–Siggia–Rose/Janssen–De Do-
minicis–Peliti (MSR/JDP) path integral formalism [20–
22], correlators under time-periodic system can be ex-
pressed in terms of correlators under a time-invariant
reference system. We will see in Eq. (15) that the re-
sponse matrix at different Fourier frequencies gets cou-
pled, which is the main mechanism behind the emergence
of the energy flux.

In the second step, we are ready to apply a diagram-
matic approach similar to Ref. [16]. We perform an ex-
pansion with respect to interactions or the spring con-
stant, and express the energy transfer as intuitive dia-
grams. These diagrams then enable us to relate the en-
ergy flux in complex networks to the structure of local
subnetworks.

Numerical results in FIG. 2 show that to the lowest
nonvanishing order Qi ∼ ∆B(t)2k3. These observations
suggest a goal for analytical efforts, which is to develop an
expression to the order of ∆B(t)2k3, explain why lower
order terms vanish, and more importantly explore prop-
erties of energy pumping on this nonvanishing order. We
also observed fluxes whose leading order terms are higher
than ∆B(t)2 or k3 in networks with higher symmetries.
These networks are special cases and thus are not our
focus.

IV. PERTURBATIVE EXPANSION IN THE
MODULATION: A MSR/JDP APPROACH

A. The MSR/JDP path integral formalism

The Martin–Siggia–Rose/Janssen–De Dominicis–Peliti
(MSR/JDP) path integral formalism [20–22, 27] is a pow-
erful framework for studying statistical properties, e.g.
the average of an observable O, of a stochastic trajectory
when compared with another trajectory. Applying to our
system, the former trajectory is one under modulated B-
field, in which the average is denoted as 〈O〉Bt , and the
latter is one under constant B-field, in which the average
is denoted as 〈O〉. The average 〈O〉Bt can be expressed
as a path integral

〈O〉Bt =

∫
DzDvDη ON

∏
t

δ(ż − v)δ(mv̇+

Kz + kgz + γv + B̂(t)Av − η)P[η],

(4)

where the Dirac-δ functions ensure that the equations of
motion are satisfied, P[η] is the probability of the noise,
and N is the normalization constant. We have expressed
the N -particle system using 2N -dimensional column vec-
tors, e.g. z =

∑
i |i〉 ⊗ zi, where |i〉 denotes the 2D sub-

space corresponding to particle i. The matrix K calcu-
lates inter-particle spring forces Fs due to particles’ dis-
placements, Fs = −Kz. The matrix A =

∑
i |i〉 〈i| ⊗A1.

The modulated B-field can be decomposed into a
constant part and a (potentially perturbative) time-

varying part, B̂(t) = B̂ + ∆B̂(t). Contributions to
the path integral from these two parts can be sepa-
rated via the introduction of an auxiliary field iu =∑
i |i〉 ⊗ iui through δ(B̂Av + ∆B̂(t)Av + . . . ) ∝∫
du e−iu

T (B̂Av+... )e−iu
T (∆B̂(t)Av). Further notice that

when ∆B̂ = 0 the path integral Eq. (4) reduces to 〈O〉.
We get

〈O〉Bt =
〈
Oe−

∫
dt∆B̂tiu

TAv
〉
, (5)

where we have written the time variable in subscripts for
simplicity. In regimes where the amplitude of ∆B(t) is
small, the right hand side can be expanded,

e−
∫

ds∆B̂siu
TAv = 1−

∫
ds∆B̂siu

T
s Avs+

1

2

∫
dsds′ (∆B̂siu

T
s Avs)(∆B̂s′iu

T
s′Avs′)− . . .

(6)

In Eq. (5),(6), we have used the MSR/JDP framework to
express the average under modulated conditions in terms
of some other average under unmodulated conditions.

The observable we are interested in is the energy flux
from the bath to the particle, Eq. (3). To account for the
site index more conveniently, we use a projection opera-
tor Pi,

Pi = |i〉〈i| ⊗
(

1 0
0 1

)
, (7)
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and rewrite the flux quantity qi(t) as

qi(t) = −γ(Pivt)
TPivt + (Pivt)

TPiηt. (8)

Combining Eq. (8) with the expansion Eq. (6), we ob-
tain expressions for the pumped energy to different orders
in ∆B,〈

Q
(0)
i

〉
Bt

=

∫ T

0

dt 〈qi(t)〉 , (9)〈
Q

(1)
i

〉
Bt

= −
∫ T

0

dtds
〈
qi(t)∆B̂siu

T
s Avs

〉
, (10)〈

Q
(2)
i

〉
Bt

=
1

2

∫ T

0

dt dsds′
〈
qi(t)(∆B̂siu

T
s Avs)

(∆B̂s′iu
T
s′Avs′)

〉
. (11)

Here we write down the expansion to quadratic order be-
cause, as we will show in the next subsection, the zeroth
order and the linear order terms vanish.

To calculate the explicit expressions from Eq. (9)-(11),
one requires the evaluation of two-point correlators and
multi-point correlators. The two-point correlators can be
expressed in terms of spectral response function G+(ω)
for the reference system under constant B,

G±(ω) = [K + kgI ± iω(γI + B̂A)−mω2I]−1. (12)

The Fourier transform is defined as f̃(ω) =∫∞
−∞ dt f(t)e−iωt. The response function describes how

the system responds to fluctuations z̃(ω) = G+(ω)η̃(ω).
Explicit expressions of relevant two-point correlators are
presented in Appendix B 1. The multi-point correlators
can be written as combinations of two-point correlators
via Wick’s theorem [28].

To make our theory more general, we introduce a func-
tion h(ω) to describe a generic noise spectrum〈

η̃(ω)η̃(ω′)T
〉

= 2γTah(ω)2πδ(ω + ω′)I. (13)

For white noise, h(ω) is constant. For the OU colored
noise described in Eq. (2), h(ω) = 1/(1 + ω2τ2).

The time-periodic modulation ∆B̂(t) will be repre-

sented by its Fourier series with coefficients ∆B̃n,

∆B̂(t) =

∞∑
n=−∞

∆B̃ne
iωnt, ωn =

2πn

T
, (14)

where n = . . . ,−1, 0, 1, . . . and ∆B̃n = ∆B̃∗−n.

B. The zeroth and the linear order flux vanish

The zeroth order modulation corresponds to a con-
stant B-field. This case has been explored previously,
which showed that there is no net energy flux between

the bath and the particle,
〈
Q

(0)
i

〉
Bt

=
∫ T

0
dt 〈qi(t)〉 = 0

(Appendix C in Ref. [16]).

One may expect that the linear order flux also van-
ish, because sin-wave modulation and its opposite, − sin,
should result in the same periodic steady state. How-
ever, this argument does not account for modulations
that consist of multiple sinusoidal waves. Through ex-
plicitly calculating the linear order energy flux, we show
that different modes of modulation are decoupled, thus
the linear order term also vanish (Appendix B 2).

C. The quadratic order flux explains pumping
mechanism

There is no a priori reason for quadratic order energy

flux to vanish. Starting from the expression for
〈
Q

(2)
i

〉
Bt

,

Eq. (11), we calculate the six-point correlators and get
(details in Appendix B 3)

〈
Q

(2)
i

〉
Bt

= 4γTaT

∞∑
n=1

|∆B̃n|2
∫

dω

2π

{
ω2(ω + ωn)(h(ω + ωn)− h(ω))

Re[i trPiG
+(ω)AG+(ω + ωn)AG+(−ω)T ]

}
.

(15)

This theoretical expression can explain how energy
pumping is generated in the presence of the colored noise
and the modulation.

The role of the colored noise takes effect through the
factor h(ω+ωn)−h(ω). If the noise spectrum h(ω) is flat,
which corresponds to a white noise, this factor vanishes.
Only colored noise with non-flat spectrums can generate

a nonzero
〈
Q

(2)
i

〉
Bt

.

The role of modulated B-field is to induce cou-
plings between different modes of the response function,
which is manifest through the factor G+(ω)AG+(ω +
ωn)AG+(−ω)T . This is in contrast with the unmodu-
lated case where G+(ω) at different frequencies are un-
coupled, which leads to no pumping [16]. Thus the cou-
pling between different modes is one necessary mecha-
nism for energy pumping in our model.

Another flux property related to the modulation is that
contributions from different terms in the Fourier series of
∆B(t) are independent, which can be seen from the sum-

mation
∑∞
n=1 |∆B̃n|2(· · · ). As a consequence, we only

need to discuss the flux from each mode of ∆B(t). Then
the flux for arbitrary modulation protocols can be ob-
tained by weighted combinations of the individual modes.
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FIG. 3. Two useful properties of the diagrams. The starting
and ending site is labeled in green. (a) If there is no loop on a
site, then the diagram is equivalent to a simplified one where
all other branches on the site are removed. (b) Diagrams
consisting of only loops vanish. The symbol n in the figure
represents an arbitrary number.

V. FURTHER EXPANSION IN THE
INTERACTION: A DIAGRAMMATIC

APPROACH

A. Diagrammatic expansion and two useful
properties

Having explained the mechanism of energy pumping,
we now study detailed properties of the flux, in partic-
ular, the relationship between flux pattern in a complex
network and the structure of local subnetworks. When
interactions are weak, it can be expected that the flux for
a node mainly depends on its immediate surroundings.
The diagrammtic approach provides a tool to explicitly
find such dependence.

Starting from the expression Eq. (15), we expand the
response functions with respect to small k into products
of the noninteracting part (matrix G+

∣∣
k=0

) and the in-

teracting part (matrix K). Due to the pairwise spring-
mediated interactions, the matrix K has a block struc-
ture, which depends on the topology and the geometry
of the network. Further expansion based on the blocks
results in terms that can be pictorially represented as
diagrams and are closely related to the network struc-
ture. Diagrams for the energy flux between site i and
the bath are paths that start from i, iteratively step to
bonded neighbors or to the site itself, finally ends at site
i. Diagrams with |l| steps correspond to mathematical
expression that are on the order of k|l|, which we will
denote as |l|’s order diagrams. In the small-k regime a
lower-order diagram contributes more to the flux. The
mathematical expression corresponding to each diagram
is lengthy, which we present in Appendix C 1.

We point out two useful properties of the diagrams.
The first property is that if there is no loop on a site,
then the diagram is equivalent to a simplified one where
all other branches on the site are removed (FIG. 3a, Ap-
pendix C 1). The second property is that for diagrams
consisting of solely loops, their value vanish (FIG. 3b,
Appendix C 2). As we saw from numerical results in
FIG. 2, energy fluxes scale as k3. Using the two proper-
ties described above, we will show in the following two
subsections why lower order diagrams vanish and how

FIG. 4. Second order diagrams vanish. (a) Diagrammatic
expansion of the energy flux on the order of k2. Diagrams
with only loops are eliminated. From property one, these
i→ j → i diagrams are equivalent to the 1→ 2→ 1 diagram
in a two-node network. (b) In the two-node network, the sum
of diagram 1→ 1→ 1 and diagram 1→ 2→ 1 is zero. Using
property two, the diagram 1→ 2→ 1 vanish.

the third order diagrams reveal an explicit relationship
between fluxes in complex networks and local structures.

B. The first and the second order diagrams vanish

The first order diagrams means those with only one
step. The only possible first order diagrams are those
with one loop on the node. According to the second
property, all first order diagrams vanish.

Second order diagrams also vanish for the following
reason. The second order diagrams for site i have the
form i → j → i, where j’s are the bonded neighbors
(FIG. 4a, diagrams with only loops are eliminated). Us-
ing property one, these diagrams are equivalent to the
diagram 1 → 2 → 1 in a network that consists of only
two nodes, 1 and 2. From symmetry, the flux in the two-
node network is zero. At the k2 level, this means that
the sum of a looped diagram and a 1 → 2 → 1 diagram
is zero (FIG. 4b). Thus, the 1 → 2 → 1 diagram and
equivalently i→ j → i diagrams vanish.

C. The third order diagrams reveal connection
between flux and local properties

The third order diagrams do not vanish in general.
Investigation of the third order diagrams shows how the
flux in a complex network can be represented using local
properties.

In FIG. 5a, we write down all diagrams for a node in
arbitrary networks. The network fragment in FIG. 5a is
representative of all possible connections surrounding a
node i, which include bondings between i and its neigh-
bors j’s, bondings between two of its neighbors, and
bondings between its neighbors and other nodes in the
network. The flux on the generic node i from the third
order equals to the sum of all third order diagrams.

All third order diagrams can be classified into three
classes and then simplified using property one. The
first class of diagrams contain a loop on node i, such
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FIG. 5. Third order diagrams for a node in arbitrary networks. (a) All third order diagrams for the node labeled in green.
The number in circles labels the order in the path. (b) These diagrams or their partial sums can be classified into three groups
and then simplified. The third order flux of the labeled node is equal to the sum of fluxes of corresponding nodes in trimmed
subnetworks and fluxes of triangle diagrams.

as i → i → j → i, i → j → i → i. The sum of all class
one diagrams is equal to the third order flux of node i
in a trimmed subnetwork centered around i, where all
neighbors of j and all connections between j’s are re-
moved. The second class of diagrams contain a loop on
node j, e.g. i → j → j → i. Each diagram in class
two is equal to the flux of node i in a trimmed subnet-
work centered around j. The third class of diagrams are
triangles that contain arrows between bonded j’s, e.g.
i → j1 → j2 → i. The above classification shows an
explicit relation between fluxed in complex networks and
local properties, which is depicted in FIG. 5b.

If a network does not contain any triangular connec-
tions, then its flux can be obtained by summing over
trimmed subnetworks of the first two classes. A con-
sequence is that we can simply reconstruct the flux in
large-scale networks from small subnetworks. FIG. 6 is a
numerical demonstration that such reconstructed fluxes
match well with the original ones.

VI. UTILIZING LOCAL BUILDING BLOCKS
TO CREATE COMPLEX PATTERNS OF

ENERGY TRANSPORT

The connection between flux in a network and in its
local subnetworks can be exploited to create complex pat-
terns of energy transport. If we assume that the energy
in the bath diffuses slowly, the energy fluxes then can

FIG. 6. Energy fluxes reconstructed from local subnetworks
match well with the original ones. (a) Fluxes calculated from
the full network. (b) Fluxes calculated from local subnetworks
then combined according to reconstruction rules. Parameters
are set to 1 except that ∆B̂ = 0.1, k = 0.1.

lead to temperature change, which means that our setup
could potentially be used to engineer temperature inho-
mogeneities using homogeneous modulations.

The objective can be posed as follows, given a grid of
unconnected nodes and a target pattern, design connec-
tions between the nodes such that the consequent flux
pattern matches a target one. From the relation be-
tween flux in complex networks and its local structures
(Sec. V C), we can inversely use the local subnetworks
as building blocks. The building blocks are networks
with one central node and a number of evenly-separated
branches. FIG. 7a shows that the flux of the central node
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FIG. 7. Creating target flux patterns by exploiting the
connection between flux in a network and in its local subnet-
works. (a) Flux of network with branches. (b) Constructed
network and its flux pattern that mimics a grayscaled book.
The modulation is a step-function modulation where the pe-
riod is taken to infinite. All fluxes are calculated from direct
numerical methods. All parameters are set to 1 except that
k = 0.05.

increases in its magnitude as the number of branches in-
creases. Based on the observed relation between the flux
and the number of branches, we can create connections
simply by considering the difference between the degree
of a node and degrees of its neighbors. Consider a tar-
get line drawing that consists of white background and
darker lines, we first highlight nodes corresponding to
darker pixels in the pattern. Then we create connections
between the highlighted nodes and the non-highlighted
ones. The degree of a highlighted node is set by the
darkness of its corresponding pixel. Connections to non-
highlighted nodes are random, but their average degree
is smaller than that of the highlighted ones. We avoid
connections between highlighted nodes or between un-
highlighted nodes, in order to avoid influence from tri-
angle diagrams. Note that the connections built from
this strategy can be long-ranged in space. In FIG. 7b
we demonstrate the pattern of a grayscaled book con-
structed through the above strategy. It may be possible
to achieve a broader range of patterns and/or avoid long-
ranged connections using other strategies.

VII. CONCLUSION

In conclusion, we have constructed an active gyro-
scopic network model where the B-field is modulated in
a time-periodic manner. We numerically demonstrated
that our model is able to rectify energy transport be-
tween nodes and baths in the absence of any tempera-
ture biases. Importantly, by combining the MSR/JDP
formalism and our diagrammatic approach, we formu-
late a connection between flux pattern in complex net-
works and the flux pattern in local subnetworks. Such
connection enables us to understand and control energy
pumping in arbitrary complex networks. The combined
MSR/JDP and diagrammatic approach can in principle
be applied to calculate generic correlators for perturbed
linear networks with arbitrary geometry and topology.
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Appendix A: Numerical calculation of energy flux
from time-dependent covariance matrix

We first consider the evolution of our active gyroscopic
network under a constant B-field. Then numerically ap-
proximate the time-varying B-field by discretizing it into
short segments, each under a constant B.

Under constant B-field, the evolution of our system
as described in the extended space X = {z, v, η} obeys
linear dynamics. Here the Ornstein-Uhlenbeck colored
noise is treated by the evolution [19]

τ η̇i = −ηi +
√

2γTaξi. (A1)

For a general linear stochastic equation with time-
independent drift µ and diffusion factor σ,

dX = µdt+ σdW, (A2)

its steady-state covariance matrix C =
〈
XXT

〉
can be

numerically solved from the matrix equation −(µC +
CµT ) = σσT [25, 26]. The evolution of the covariance
C(t) starting from an initial state C0 reads

C(t) = C + eµt(C0 − C)eµ
T t. (A3)

From C(t) we can extract the energy flux, qi(t) =
−γvTi vi + vTi ηi, and subsequently calculate its time inte-
gral.

Our numerical procedure to calculate Qi is as follows.
Given a protocol B(t), we discretize it into short seg-
ments in time. In each segment the B-field is constant
and is evaluated at the starting time of that segment.
Consequently, the covariance matrix in each segment can
be calculated using Eq. (A3). The evolution C(t) for pro-
tocol B(t) can thus be solved by combining results from
all segments. We choose a starting C0 to be the steady
state under constant B(0), evolve C(t) for many periods
until C(nT )−C(nT+T ) is smaller than target numerical
precision, which indicates that the time-periodic steady
state is achieved. Then evolve C(t) from this steady state
and calculate the pumped energy Qi. The source of nu-
merical errors mainly come from discretization. Numer-
ical calculations are performed using Mathematica with
custom code.
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Appendix B: Perturbative expansion in modulated
B-field

1. Two-point correlators expressed in terms of the
response function

Correlators relevant to calculating
〈
Q

(1)
i

〉
Bt

and〈
Q

(2)
i

〉
Bt

involve vt, ηt, iut (but not zt). In this appendix,

we express the relevant two-point correlators in terms of
the response function G+(ω).

Correlators that do not involve the auxiliary field iut
can be calculated directly. We show an example calcula-
tion of the correlator

〈
vtv

T
s

〉
,

〈
vtv

T
s

〉
=

∫
dω

2π
eiω(t−s)(iω)(−iω)2γTah(ω)G+(ω)G−(ω)T

(B1)

=

∫
dω

2π
eiω(t−s)iωTah(ω)(G+(ω)−G−T (ω)),

(B2)

where to reach the second line we have used G−T −G+ =
2iωγG+G−T [29].

To calculate correlators that involve the auxiliary field,
we first need to review the connection between the aux-
iliary field and the response of the system. Consider an
unmodulated system that is perturbed by an external
force f(t),

mv̇ = −Kz − γv − B̂Av + η + f. (B3)

The MSR/JDP result can be obtained by simply replac-

ing −∆B̂Av in Eq. (5) by f , which reads

〈O〉f =
〈
Oe

∫
dtiuT f

〉
. (B4)

The correlators can then be related to the response,

〈Oiui,s〉 =
δ

δfi,s
〈O〉

∣∣∣∣
f→0

, (B5)

〈Oiui,siui′,s′〉 =
δ

δfi,sδfi′,s′
〈O〉

∣∣∣∣
f→0

, (B6)

where we have expressed the component of the vector
f, iu explicitly. From the above expressions we see that
these correlators are connected to responses to an exter-
nal perturbation, for which reason the auxiliary field iu
is also called a response field. For our linear reference
system, such response can be expressed in terms of the
response function G+(ω).

The two-point correlators needed to calculate

〈
Q

(1)
i

〉
Bt

and
〈
Q

(2)
i

〉
Bt

are summarized as follows

〈
vtv

T
s

〉
=

1

2γ
(
〈
vtη

T
s

〉
+
〈
vsη

T
t

〉T
), (B7)〈

vtη
T
s

〉
= 2γTa

∫
dω

2π
eiω(t−s)iωh(ω)G+(ω), (B8)〈

ηtη
T
s

〉
= 2γTa

∫
dω

2π
eiω(t−s)h(ω), (B9)〈

vtiu
T
s

〉
=

∫
dω

2π
eiω(t−s)iωG+(ω), (B10)〈

ηtiu
T
s

〉
= 0, (B11)〈

iutiu
T
s

〉
= 0. (B12)

2. Linear order perturbation in modulation

In this appendix, we derive the linear order energy flux
with respect to modulation of the B-field. We show that
this contribution vanishes.

From Eq. (10),(8), the linear order energy flux reads〈
qi(t)

(1)
〉
Bt

= −
∫

ds∆B̂s

{
〈−γ(Pivt)

TPivtiu
T
s Avs〉

+ 〈(Pivt)TPiηtiuTs Avs〉
}
. (B13)

Using the Wick’s theorem for four-point correlators,〈
aT bcT d

〉
= tr

〈
abT

〉
tr
〈
cdT
〉

+ tr
〈
acT

〉 〈
dbT
〉

+

tr
〈
adT

〉 〈
cbT
〉
, (B14)

the first and the second term in Eq. (B13) are reduced
to,

−γ
〈
(Pivt)

TPivtiu
T
s Avs

〉
= −γ(trPi

〈
vtv

T
t

〉
trA

〈
vsiu

T
s

〉
+ 2 trPi

〈
vtiu

T
s

〉
A
〈
vsv

T
t

〉
),

(B15)〈
(Pivt)

TPiηtiu
T
s Avs

〉
= trPi

〈
vtη

T
t

〉
trA

〈
vsiu

T
s

〉
+ trPi

〈
vtiu

T
s

〉
A
〈
vsη

T
t

〉
.

(B16)

The sum of the first terms on both RHS vanishes because

(−γ trPi
〈
vtv

T
t

〉
+ trPi

〈
vtη

T
t

〉
) = 〈qi(t)〉 = 0. (B17)

The sum of the second terms on both RHS can be
simplified to − trPi

〈
vtiu

T
s

〉
A
〈
vsη

T
t

〉T
using Eq. (B7).

Plugging in expressions for correlators presented in Ap-
pendix B 1, we get〈
qi(t)

(1)
〉
Bt

= 2γTa

∫
dω

2π

dω′

2π
ds
{

∆B̂se
i(ω−ω′)(t−s)

(iω)(iω′)h(ω′) tr
[
PiG

+(ω)AG+(ω′)T
]}
.

(B18)
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Integration over s can be written with the Fourier
transform of ∆B,∫

ds∆B̂se
i(ω−ω′)(t−s) = ∆B̃(ω − ω′)ei(ω−ω

′)t. (B19)

We then integrate over t. Since ∆B̂(t) is a periodic
function with period T , it can be expanded in discrete
Fourier modes,

∆B̂(t) =

∞∑
n=−∞

∆B̃ne
iωnt, ωn =

2πn

T
, (B20)

∆B̃(ω) =
∑
n

∆B̃n2πδ(ω − ωn), (B21)

with the property ∆B̃n = ∆B̃∗−n. The integration over t
reads∫ T

0

dt eiωnt =

{
T, if ωn = 0

1
iωn

(eiωnT − 1) = 0, if ωn 6= 0
(B22)

= Tδn,0. (B23)

We introduce an auxiliary function

f1(ω, ω′) = 2γTa(iω)(iω′)h(ω′) tr
[
PiG

+(ω)AG+(ω′)T
]
.

(B24)

The linear order energy flux at time instant t reads〈
qi(t)

(1)
〉
Bt

=

∫
dω

2π

dω′

2π
∆B̃(ω − ω′)ei(ω−ω

′)tf1(ω, ω′)

(B25)

=
∑
n

∫
dω

2π
∆B̃ne

iωntf1(ω, ω − ωn),

(B26)

which shows that different modulation modes, ∆B̃n, are
decoupled.

After time integration the result reads

〈
Q

(1)
i

〉
Bt

=

∫ T

0

dt
〈
qi(t)

(1)
〉
Bt

(B27)

= T

∫
dω

2π
∆B̃0f1(ω, ω) (B28)

= 2γTaT

∫
dω

2π

{
∆B̃0h(ω)(iω)2

tr
[
PiG

+(ω)AG+(ω)T
]}

= 0. (B29)

This result shows that the only contribution is the
zero-frequency mode of ∆B̂(t), thus the flux should
vanish. The mathematical proof is as follows, since
G+(ω)TPiG

+(ω) is a symmetric matrix and A is an an-
tisymmetric matrix, the trace of their product is zero.

3. Quadratic order perturbation in modulation

In this appendix, we derive the expression for the
quadratic order energy flux with respect to modulation
of the B-field, Eq. (15) in the main text. We also perform
sanity checks that the energy balance is satisfied and that
flux vanishes if the modulation is constant.

We start from expressions Eq. (11),(8), and get the
quadratic order energy flux at time t,〈
qi(t)

(2)
〉
Bt

=
1

2

∫
dsds′

〈
(−γ(Pivt)

TPivt + (Pivt)
TPiηt)

(∆Bsiu
T
s Avs)(∆Bs′iu

T
s′Avs′)

〉
.

(B30)

This expression involves six-point correlators, which emit
15 terms using the Wick’s theorem. However, many of
these terms will turn out to vanish, which greatly simpli-
fies the calculation.

Our first task is to identify these vanishing terms. The
quadratic order perturbation can be expanded as∫

dt
〈
qi(t)

(2)
〉
Bt

=
1

2

∫
dtdsds′∆B̂s∆B̂s′

[
〈qi(t)〉〈

iuTs Avs
〉 〈
iuTs′Avs′

〉
+
〈
qi(t)iu

T
s Avs

〉
c

〈
iuTs′Avs′

〉
+〈

iuTs Avs
〉 〈
qi(t)iu

T
s′Avs′

〉
c

+
〈
qi(t)iu

T
s Avsiu

T
s′Avs′

〉
c

]
,

(B31)

where subscript “c” means the terms are “connected”
inside the same trace. The first term vanishes due to
〈qi〉 = 0. The second and the third term vanish due to∫

dt
〈
qi(t)

(1)
〉
Bt

= 0. Now we only need to consider the

last term which involves trace connecting all six points.
These terms have the form〈

aT bcT deT f
〉
c

= tr
〈
acT

〉 〈
dfT
〉 〈
ebT
〉

+

tr
〈
acT

〉 〈
deT

〉 〈
fbT

〉
+ tr

〈
adT

〉 〈
cfT

〉 〈
ebT
〉

+

tr
〈
adT

〉 〈
ceT
〉 〈
fbT

〉
+ tr

〈
aeT

〉 〈
fdT

〉 〈
cbT
〉

+

tr
〈
aeT

〉 〈
fcT

〉 〈
dbT
〉

+ tr
〈
afT

〉 〈
edT

〉 〈
cbT
〉

+

tr
〈
afT

〉 〈
ecT
〉 〈
dbT
〉
.

(B32)

Applying the above form and notice that some two-point
correlators are zero, the expression for the quadratic or-
der energy flux Eq. (B31) simplifies to〈

qi(t)
(2)
〉
Bt

=

∫
dsds′∆Bs∆Bs′

{
tr
[
Pi
〈
vtiu

T
s

〉
A
〈
vsη

T
s′
〉
A
〈
ius′v

T
t

〉 ]
−

tr
[
Pi
〈
vtiu

T
s

〉
A
〈
vsiu

T
s′
〉
A
〈
vtη

T
s′
〉T ]}

.

(B33)

We next plug in explicit expressions for the two-point
correlators Eq. (B7)-(B12) and integrate over s, s′ and t.
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We get

〈
Q

(2)
i

〉
Bt

= 2γTaT

∞∑
n=−∞

|∆B̃n|2
∫

dω

2π

{
iω2(ω − ωn)(h(ω − ωn)− h(ω))

trPiG
+(ω)AG+(ω − ωn)AG+(−ω)T

}
.

(B34)

It can be shown that the ωn term and the −ωn term
form a complex conjugate pair. From this property and
Eq. (B34), we reach the final expression for the quadratic
order energy flux Eq. (15) in the main text.

Appendix C: Further perturbative expansion in
interaction

1. Procedure and result of the diagrammatic
approach

The diagrammatic approach is built on an expansion of
the response function. We first review the diagrammatic
expansion of a single response function [16], then combine
the three response functions and other parts in Eq. (15)
or Eq. (B34) to get the diagrammatic expression for the
energy flux.

In the small-k regime, the response function G+(ω)
(Eq. (12)) can be expanded as

G+ =
1

(G+|k=0)−1 +K
=
∑
|l|=0

G+|k=0

[
(−K)G+|k=0

]|l|
(C1)

The noninteracting part G+|k=0 is block diagonal,
G+|k=0 =

∑
i |i〉 〈i| ⊗ g+(ω). Here g+(ω) is the 2 × 2

response matrix for a single noninteracting node, which
manifests as a rotation matrix of a complex angle αω,

g+(ω) =
1

k0,ω
(I cosαω −A1 sinαω), (C2)

k0,ω =

√
(kg + iωγ −mω2)2 − (ωB̂)2, (C3)

cosαω =
1

k0,ω
(kg + iωγ −mω2), (C4)

sinαω =
1

k0,ω
iωB̂. (C5)

The interacting part K consists of blocks

(−K)ii = 〈i| (−K) |i〉 =
∑
j,j 6=i

(−eijeTij), (C6)

(−K)ji = 〈j| (−K) |i〉 = eije
T
ij , (C7)

where eij denotes the unit vector that points from the
equilibrium position of i to that of j.

We insert resolution of identity I =
∑
i |i〉 〈i| into the

expansion Eq. (C1). As an example,

〈i|G+|k=0(−K)G+|k=0(−K)G+|k=0 |j〉 =∑
m

g+(ω)(−K)img
+(ω)(−K)mjg

+(ω). (C8)

For block (−K)im to be nonzero, either site i and site m
are bonded, or m = i. Likewise for block (−K)mj . These
constraints on path i → m → j can be conveniently
addressed using diagrams: first draw the network, label
the nodes i and j, then identify nodes m’s that satisfy
the constraints.

Now we apply the diagrammatic approach to energy
flux for site i, Eq. (15) or Eq. (B34). Each term in the
expansion of the energy flux can be represented as a di-
agram, or a path l : i = l0 → l1 → · · · → l|l|−1 → l|l| = i,
where |l| is the length of the path. Consecutive nodes in
the path either has to be bonded or they are the same
node. The path has to start and end at node i because the
existence of the projection operator Pi. The three G+’s
dictates that path l needs to be partitioned into three seg-
ments with lengths {|l|1, |l|2, |l|3} (|l|1 + |l|2 + |l|3 = |l|),
and each segment sets how each G+ is expanded.

Taken together, the diagrammatic expression of〈
Q

(2)
i

〉
Bt

can be written as a sum over paths,

〈
Q

(2)
i

〉
Bt

= Ta

∞∑
n=1

T |∆B̃n|2
∑
l

k|l|fi,n;l, (C9)

fi,n;l =
∑

|l|1+|l|2+|l|3=|l|

fi,n;l;|l|1,|l|2,|l|3 . (C10)

fi,n;l denotes the mathematical expression for path
l. fi,n;l;|l|1,|l|2,|l|3 denotes the expression for partition
{|l|1, |l|2, |l|3}, which reads

fi,n;l;|l|1,|l|2,|l|3 = 2 Re

∫
dω

2π
ω(ω + ωn)

(
h(ω + ωn)

− h(ω)
)

tr
{
M [(−K)g+(ω)]l|l|1+|l|2→···iA

M [g+(ω + ωn)(−K)]l|l|1→···l|l|1+|l|2
g+(ω + ωn)A

M [g+(−ω)T (−K)]i→···l|l|1 (g+(−ω)T − g+(ω))
}
.

(C11)

Symbol M [·] denotes the expression for a segment of the
path,

M [(−K)g+(ω)]l0→l1→···→ln = (−K)ln,ln−1
g+(ω) · · ·

(−K)l2,l1g
+(ω)(−K)l1,l0g

+(ω), (C12)

M [g+(ω)(−K)]l0→l1→···→ln = g+(ω)(−K)ln,ln−1 · · ·
g+(ω)(−K)l2,l1g

+(ω)(−K)l1,l0 . (C13)

From Eq. (C9),(C10),(C11), we obtain the procedure
to write down energy flux for site i on the order of k|l|

as follows. Firstly, draw all possible closed paths with
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length |l| that starts from node i, iteratively navigates to
its bonded neighbors or to itself for |l| steps, and ends
at node i. Secondly, for each path l, find all partitions
{|l|1, |l|2, |l|3}, and calculate fi,n;l;|l|1,|l|2,|l|3 according to
Eq. (C11). Finally, sum up all partitions to get fi,n;l

(Eq. (C10)), then sum up all paths to obtain
〈
Q

(2)
i

〉
on

the k|l| order (Eq. (C9)).
Path l and its corresponding mathematical expression

fi,n;l can be presented as diagrams. An arrow i → j in
the diagram corresponds to (−K)ji mathematically, and
as a result, if i 6= j, the contribution from this arrow is
independent of the other neighbors of i or j (Eq. (C7)).
If i = j, however, neighbors of i cannot be removed be-
cause they do affect the value of i → i through (−K)ii
(Eq. (C6)). As a result, if a diagram contains no loops
on some node j, the diagram is equal to a trimmed dia-
gram where we remove all neighbors of j except for those
appear in the path. This basic property helps to simplify
the diagrams without explicit calculations of fi,n;l.

2. Diagrams that consist of only loops vanish

For diagrams with only loops, the expression M [·] sim-
plifies to multiplication of the same matrix. Denoting
(−K)ii = Mi, fi,n;l;|l|1,|l|2,|l|3 reads

fi,n;l;|l|1,|l|2,|l|3 = fMi,1(|l|1, |l|2, |l|3)− fMi,2(|l|1, |l|2, |l|3),

(C14)

fMi,1(|l|1, |l|2, |l|3) = 2 Re

∫
dω

2π
ω(ω + ωn)

(
h(ω + ωn)

− h(ω)
)

tr
{

(Mig
+(ω))|l|3A(g+(ω + ωn)Mi)

|l|2

g+(ω + ωn)A(g+(−ω)TMi)
|l|1g+(−ω)T

}
, (C15)

fMi,2(|l|1, |l|2, |l|3) = 2 Re

∫
dω

2π
ω(ω + ωn)

(
h(ω + ωn)

− h(ω)
)

tr
{

(Mig
+(ω))|l|3A(g+(ω + ωn)Mi)

|l|2

g+(ω + ωn)A(g+(−ω)TMi)
|l|1g+(ω)

}
. (C16)

From the above definitions, it is straightforward to
prove the following three relations,

fMi,1(|l|1, |l|2, |l|3) = fMi,2(|l|1 + 1, |l|2, |l|3 − 1), (C17)

fMi,1(|l|1, |l|2, 0) = −fMi,1(|l|2, |l|1, 0), (C18)

fMi,2(0, |l|2, |l|3) = −fMi,2(0, |l|3, |l|2). (C19)

With these relations, fi,n;l can be shown to be zero,

fi,n;l =
∑

|l|1+|l|2+|l|3=l

{
fMi,1(|l|1, |l|2, |l|3)− fMi,2(|l|1, |l|2, |l|3)

}
(C20)

=

l−1∑
|l|1=0

l−1−|l|1∑
|l|2=0

fMi,1(|l|1, |l|2, l − |l|1 − |l|2)+

l∑
|l|1=0

fMi,1(|l|1, l − |l|1, 0)−
l∑

|l|2=0

fMi,2(0, |l|2, l − |l|2)

l∑
|l|1=1

l−|l|1∑
|l|2=0

fMi,2(|l|1, |l|2, l − |l|1 − |l|2)

= 0. (C21)

Thus diagrams consist of only loops vanish.
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