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A basic diagnostic of entanglement in mixed quantum states is known as the partial transpose
and the corresponding entanglement measure is called the logarithmic negativity. Despite the great
success of logarithmic negativity in characterizing bosonic many-body systems, generalizing the
partial transpose to fermionic systems remained a technical challenge until recently when a new
definition that accounts for the Fermi statistics was put forward. In this paper, we propose a way
to generalize the partial transpose to anyons with (non-Abelian) fractional statistics based on the
apparent similarity between the partial transpose and the braiding operation. We then define the
anyonic version of the logarithmic negativity and show that it satisfies the standard requirements
such as monotonicity to be an entanglement measure. In particular, we elucidate the properties of
the anyonic logarithmic negativity by computing it for a toy density matrix of a pair of anyons within
various categories. We conjecture that the subspace of states with a vanishing logarithmic negativity
is a set of measure zero in the entire space of anyonic states, in contrast with the ordinary qubit
systems where this subspace occupies a finite volume. We prove this conjecture for multiplicity-free
categories.

I. INTRODUCTION

Characterizing quantum systems based on their en-
coded entanglement and quantifying the amount of en-
tanglement in terms of a computable measure is a basic
yet fundamental question across various fields of physics
research from quantum information to condensed mat-
ter [1–5] and high energy theory [6–8].

Consider a product Hilbert space HA ⊗ HB of
two parties A and B. The bipartite entanglement
of a pure state |Ψ〉 in such Hilbert space is mea-
sured in terms of von Neumann entanglement entropy
S1(ρA) = −Tr(ρA ln ρA) or Rényi entanglement en-
tropies Sn(ρA) = lnTr(ρnA)/(1 − n), where ρA =
TrB(|Ψ〉 〈Ψ|) is the reduced density matrix of subsystem
A after partially tracing overHB and n is a positive num-
ber. S(ρA) = S(ρB) characterizes the amount quantum
entanglement between the two parties.

Despite the importance of the von Neumann entangle-
ment entropy as a diagnosis for many-body quantum pure
states, it fails to correctly quantify the bipartite entan-
glement in mixed states, when the state of the composite
system is described by a density matrix ρ. Addressing
the issue of quantifying mixed-state entanglement is not
only of interest from a basic research point of view, for
example when one wants to identify multi-partite entan-
glement, but also for practical purposes because of the
ubiquity of mixed states in nature, i.e., we almost al-
ways deal with open quantum systems in laboratory. The
challenge is that even other entanglement quantities de-
fined based on the von Neumann entanglement entropy
to quantify entanglement in mixed states such as the mu-
tual information I(A : B) = S1(ρA) + S1(ρB)− S1(ρAB)
does not work since it does not distinguish between quan-

tum and classical correlations. For instance, there exists
a large family of classically correlated states called sepa-
rable, while their mutual information is non-vanishing.

A candidate test for quantum entanglement in mixed
states is the partial transpose (PT) criterion [9–15], which
is a diagnosis for non-separable states. The partially
transposed density matrix can then be used to con-
struct the logarithmic negativity (LN) as a measure of
entanglement in mixed states [16–18]. Logarithmic neg-
ativity has been shown to be useful in studying var-
ious many-body quantum systems including harmonic
oscillator chains [19–27], quantum spin models [28–37],
(1+1)d conformal and integrable field theories [38–53],
topologically ordered phases of matter [54–59], and in
out-of-equilibrium dynamics [60–70], as well as holo-
graphic theories [71–74] and variational [75–78] and ran-
dom states [79–83]. There are also experimental pro-
posals to measure moments of the partially transposed
density matrix with ion traps and cold atoms [84–87].

In this paper, we take steps to propose a way to
quantify mixed state entanglement in anyonic systems
where unlike the aforementioned (bosonic) systems the
local operators do not necessarily commute. Anyons are
quasi-particles with fractional statistics which are build-
ing blocks of a topological quantum computer [88]. In
this regard, our proposal for an anyonic entanglement
measure here can be useful in characterizing states in
topological quantum computing. Our idea is based on a
natural generalization of the PT to anyonic density ma-
trices and inspired by the observation that PT may be
viewed as a partial time-reversal transformation, where
the arrow of time is reversed for one subsystem with re-
spect to that of the other subsystem.

For general anyon models, we find that the process of
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reversing the arrow of time can be plausibly formulated in
terms of a half-braid in the diagrammatic approach. We
further demonstrate how such a construction works for
several examples of entangled anyonic states. As we will
see, similar to the ordinary LN, the anyonic logarithmic
negativity (ALN) captures exclusively anyonic correla-
tions, i.e., it is an entanglement monotone and vanishes
for separable states where there is no non-trivial charge
line connecting the two subsystems. These properties
are clearly in contrast with the anyonic generalizations
of von Neumann entropy which captures all correlations
between the two subsystems. In this regard, the ALN
shares some similarity with the anyonic charged entan-
glement entropy introduced in Ref. [89]. Lastly, as a
byproduct, we find that the phase factors appearing in
the PT of Ising category lead to a sign factor identical to
that of fermionic systems which was found in Ref. [90].

The rest of this paper is organized as follows: In Sec. II,
we provide background materials about the partial trans-
pose and anyonic states and entanglement. In Sec. III, we
explain how PT can be implemented in the diagrammatic
approach and derive an expression for the ALN of an any-
onic analogue of a dimer state. Next in Sec. IV, we dis-
cuss various conditions which an entanglement measure
of anyon models must satisfy and show that the proposed
ALN fulfills them all. In Sec. V, we explicitly calculate
the ALN of the anyon dimer for the Fibonacci anyons,
as well as some special cases of the su(2)k, and su(3)k
theories. Finally, we finish our paper by several closing
remarks on outstanding issues and new avenues for future
research in Sec. VI. Some details of our calculations and
background information are provided in five appendices.

II. PRELIMINARIES

This section is intended as a brief review of the partial
transpose in ordinary bosonic and fermionic systems and
the entanglement in anyonic systems.

A. Review of bosonic and fermionic partial

transpose

As mentioned earlier, separable states are classical
states which cannot be used to generate Bell pairs that
are used in quantum key distribution or quantum tele-
portation protocols. They take the general form

ρ =
∑

i,j

pijρ
(i)
A ⊗ ρ

(j)
B with pij ≥ 0, (2.1)

where {ρ(i)A } and {ρ(j)B } are sets of local density matri-
ces [91]. As these states are purely classical by construc-
tion, any faithful measure of entanglement must give zero
when computed for them.

The PT of a state

ρ =
∑

ijkl

ρijkl
∣∣e(i)A , e

(j)
B

〉〈
e
(k)
A , e

(l)
B

∣∣, (2.2)

written in a local orthonormal basis {
∣∣e(k)A

〉
,
∣∣e(j)B

〉
} is de-

fined by exchanging the indices of subsystem A (or B) as
in

ρTA =
∑

ijkl

ρijkl

∣∣∣e(k)A , e
(j)
B

〉〈
e
(i)
A , e

(l)
B

∣∣∣ . (2.3)

We note that ρTA is a Hermitian operator, and hence all
its eigenvalues are real. The PT test is to check whether
or not ρTA contains any negative eigenvalues. A sepa-
rable state by definition is not affected by the PT, i.e.,
it remains positive semi-definite even after PT. On the
other hand, a given state which has negative eigenvalues
after PT (e.g. Bell states) cannot be a separable state.
In this regard, PT test provides a necessary condition for
separability [92].
The negative eigenvalues of the partially transposed

density matrix can be used to construct the logarithmic
negativity (LN) [16–18],

E(A : B) = ln
∥∥ρTA

∥∥
1
, (2.4)

where ‖X‖1 = Tr
√
XX† is the trace norm (or one-

norm). The PT is trace preserving, meaning that–
although some eigenvalues are negative–the overall sum
adds to one. Since ρTA is Hermitian, the trace norm is
simply the sum of the absolute value of eigenvalues of
ρTA . Therefore, existence of negative eigenvalues implies
a non-zero LN.
It is worth recapitulating the difference between the

bosonic and fermionic PTs [93–95] at this point. Con-
sider a bipartite Fock space of fermions where a state
in this Hilbert space is denoted by

∣∣{nj}j∈A, {nj}j∈B
〉

where nj = 0, 1 are occupation numbers. Using this ba-
sis to represent density matrices, the transformation rule
for the partial transpose is given by [90, 95],

(∣∣{nj}A, {nj}B
〉〈
{n̄j}A, {n̄j}B

∣∣
)TA

= (−1)φ({nj},{n̄j})
∣∣{n̄j}A, {nj}B

〉〈
{nj}A, {n̄j}B

∣∣,

where the phase factor is

φ =
[(τA + τ̄A) mod 2]

2
+ (τA + τ̄A)(τB + τ̄B), (2.5)

and τs =
∑
j∈s nj , and τ̄s =

∑
j∈s n̄j are the number

of occupied modes in the segment s = A,B. The sign
factor turns out to be an essential difference between the
bosonic PT (which is applied to spin chains, harmonic
chains, qubits, etc.) and the fermionic PT, especially
when it comes to partition functions of fermionic sys-
tems with a fixed spin structure [95, 96]. Although the
fermionic PT can be derived as the only definition consis-
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tent with operator algebras in fermionic systems (see for
instance Ref. [95]), there was little physical intuition as to
where this phase factor comes from. As we will see later
in this paper, the sign factor can be reproduced if we de-
fine PT in terms of braiding of the underlying Majorana
fermion wordlines. Before delving into details of anyon
models, we refer an interested reader to Appendix A,
where we uncover a close similarity between the fermionic
PT of a density matrix of a Majorana dimer state and
the exchange operator of two vortices in a px+ ipy chiral
superconductor.

B. Anyonic state and entanglement

Our goal in this part is to adapt the standard notions
of entanglement entropy, discussed in Introduction, to
anyon models. We begin by reviewing some terminology
regarding anyonic states (pure or mix) and the notion of
entanglement in that context [89, 97, 98].
Anyonic states and their algebraic properties can be

defined axiomatically [89, 98]. A generic density matrix
is a sum of projection operators using the fusion rules. As
a result, the only input required for constructing anyonic
density matrices is the associativity of fusion rules, i.e., F
symbols. As we argue in this paper, a plausible choice to
incorporate the PT in this formalism would be to reverse
the arrow of time for anyon worldlines which are ulti-
mately related to a set of braiding exchanges. We apply
the proposed PT to various examples of anyonic density
matrices and compare it with other candidate entangle-
ment measures. In the case of Ising anyons, we find that
the anyonic PT and ALN reproduces the expected results
identical to those of the entangled Majorana dimers [90].
Despite the fact that our derivation was carried out

for some toy examples, the procedure of the anyonic PT
is general and only assumes a normal ordering of anyon
lines. Here, by normal ordering we mean that if one wants
to apply PT to anyon lines in the middle of a diagram,
those anyons must be brought to the edge of the diagram
by braiding them past other anyons. This is similar to
the case of fermionic states where Fock space need to be
normal ordered when taking the partial trace or partial
transpose [99].
Throughout our discussion in this paper, we use the

diagrammatic description of anyon states to implement
the anyonic PT. For clarity, we denote an anyonic state
by ρ̃ and its associated diagrammatic trace (or quantum
trace) by tilde. A generic state ρ̃ ∈ V a1...ana1...an is shown by

ρ̃
def
= ρ̃

. . .

. . .

ana1

ana1

, (2.6)

which is a Hermitian semi-definite operator with unit

quantum trace, T̃r ρ̃ = 1, where T̃r is the quantum trace.

Appendix B reviews some basics of the tensor category,
the so-called theory of anyons, such as the fusion rules,
states, and operators following Refs. [89, 97, 98].

Let us now review the definitions of several entangle-
ment quantities in anyon models. The anyonic von Neu-
mann entanglement entropy or Rényi entropies are de-
fined in terms of anyonic density matrices as

S(ρ̃) = − T̃r(ρ̃ ln ρ̃), (2.7)

Sn(ρ̃) =
1

1− n
ln T̃r(ρ̃n). (2.8)

These quantities are collectively known as the anyonic
entanglement entropies (AEE) [89]. In practice, the any-
onic von Neumann entropy of a given state is usually
calculated by analytically continuing the Rényi entropies,
that is

S(ρ̃) = lim
n→1

Sn(ρ̃), (2.9)

where T̃r(ρ̃n) is computed digarammatically. Similarly,
one can define the mutual information

I(A : B) = S(ρ̃A) + S(ρ̃B)− S(ρ̃AB), (2.10)

where ρ̃AB is the density of matrix of the bipartite sys-

tem (A ∪B), while ρ̃A = T̃rB(ρ̃AB) and ρ̃B = T̃rA(ρ̃AB)
are the corresponding reduced density matrices. Here,
the partial tracing is performed in the anyonic sense as
explained in Appendix B. Here also, the anyonic mutual
information suffers from the same issue [89] that it over-
estimates the entanglement as in the case of ordinary
qubits.

Another probe of the entanglement in anyonic systems
(which may also be applicable to mixed states) is the en-
tropy of anyonic charge entanglement (ACE) [89] which
is defined by

Sace(A : B)
def
= S (DA:B[ρ̃])− S (ρ̃) , (2.11)

where DA:B is the charge line decoherence superoperator
that projects out the charge lines which connect the sub-
systems A and B unless it is the identity charge line (or
equivalently no line). DA:B acts on a state by applying
the ω0-loop [89, 100]:

ω0

a b

c

a′ b′

def
=
∑

e

[
F aba′b′

]
ce

ω0
ba

b′a′

e (2.12)

=

√
dc
dadb

δa,a′δb,b′

ba

. (2.13)
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In other words, the definition (2.11) is constructed in a
way to extract only the correlations associated with the
anyonic charge lines that connect the two subsystems A
and B. Hence, ACE is identically zero in the states of
the form,

ρ̃sep ∈ V a1,...,ama1,...,am ⊗ V b1,...,bnb1,...,bn
, (2.14)

since ρ̃sep = DA:B[ρ̃sep]. As we will see in Sec. IVA,
these are called separable states and their ALN vanishes
as well.

III. ANYONIC PARTIAL TRANSPOSE

In this section, we introduce a diagrammatic imple-
mentation of the PT. As the reader may have noticed,
in the diagrammatic formalism, we implicitly assume an
arrow of time by representing anyon worldlines traveling
forward in time as upward oriented lines. Hence, we re-
verse the arrow of time of one subsystem by exchanging
the corresponding anyon lines vertically.
Let us begin with a diagrammatic implementation of

the full transposition by exchanging the endpoints of the
lines from top and bottom of a density matrix operator




ρ̃

. . .

. . .

ana1

ana1




T

def
= ρ̃

. . .

. . .

ān

ān

ā1

ā1

. (3.1)

Given this observation, we propose a definition for PT.
At the level of blocks, the anyonic PT looks like




ρ̃

. . . . . .

. . . . . .

a1

a1

an

an

b1

b1

bn

bn




TA

def
= ρ̃

. . . . . .

. . . . . .

ān

ān

ā1

ā1

b1

b1

bn

bn

. (3.2)

As we see, we get braiding exchange of anyon worldlines
within subsystem A. We then define the anyonic loga-
rithmic negativity (ALN) as

E(A : B) = ln
∥∥ρ̃TA

∥∥
1
, (3.3)

in terms of singular values of ρ̃TA . We should note that
the anyonic PT defined above is not necessarily unique
as we can braid clockwise or counterclockwise anyons at
different positions. However, different choices of braiding
do not change the singular values and lead to the same
value for the ALN. Hence, we do not need to make a
specific choice. This arbitrariness is reminiscent of ba-
sis dependence of the partial transpose in conventional
systems.
We further notice that the order of the charge lines

(from left to right) is reversed as we perform the PT.
This however is not an issue, since we always contract
ρ̃TA with itself (or its Hermitian conjugate). As a sanity
check, we note that the above construction manifestly

obeys the identity T̃r ρ̃2 = T̃r(ρ̃TA ρ̃TA†) which is valid for
any definition of PT.
Finally, we should add that the above definition of any-

onic PT is not necessarily trace preserving nor Hermitian.
To resolve this, one can perform local unitary transfor-
mations to make it trace preserving. Nevertheless, we
technically do not need ρ̃TA to be Hermitian or trace pre-
serving as far as calculating the ALN is concerned. This
is because ALN only depends on the singular values of
ρ̃TA (i.e., square roots of the spectrum of the Hermitian
operator ρ̃TA†ρ̃TA).
We finish this section by a warm-up example on how

ALN is computed for a special case of an anyon dimer
which fuses into the identity channel, as shown below,

ρ̃a =
1

da a ā

a ā

. (3.4)

Following the steps described above and taking the any-
onic PT, we get

ρ̃TA
a =

1

da

ā

ā

. (3.5)

In order to compute the ALN, we need to calculate the

norm of ρ̃T1 which involves computing
√
ρ̃T1†ρ̃T1 . Defin-

ing the square root in the diagrammatic approach may
look difficult. However, we observe in this case that

ρ̃TA
a (ρ̃TA

a )† =
1

d2a
ā ā, (3.6)

which is proportional to the identity operator. Therefore,
we find the ALN to be

E = ln da, (3.7)

which is non-zero when a is non-Abelian. In view of
the fact that da can be thought of as the local anyonic
Hilbert space dimension, the state (3.4) can then be re-
garded as anyonic version of maximally entangled state
of two anyons. In the next section, we investigate general
properties of ALN defined earlier. Subsequently, we will
discuss more examples in Sec. V.

IV. GENERAL PROPERTIES

In order for an entanglement measure to be useful, it
should satisfy several requirements [101–103]. In this sec-
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tion, we check these conditions for the ALN. We briefly
list them here:

a. Vanishing for separable states;

b. Invariance under local unitaries;

c. Additivity;

d. Monotonicity under LOCC;

e. Computability, and continuity.

We should note that one may impose other conditions as
requirements for a useful entanglement measure. Here,
we considered the most common ones from the quantum
information literature. Furthermore, the last condition
is only necessary for practical purposes. For instance,
a given quantity can be a measure of entanglement by
satisfying the first four conditions, but it may be very
difficult to compute it. In this regard, such a measure is
not practically useful for quantifying the entanglement.

A. Zero entanglement for anyonic separable states

Here, we need to show that PT acting on a separa-
ble state, defined in Eq. (2.1), does not change its norm
(which is one). For concreteness, we consider a general
form of a separable state in a tensor product Hilbert
space V a1···ana1···an ⊗ V b1···bmb1···bm ,

ρ̃sep =
∑

~e,~e′,f,f ′

p~e,~e′,ff ′ ρ̃
(~e,f)
A ⊗ ρ̃

(~e′,f ′)
B , (4.1)

where ~e and ~e′ label the fusion channels in the fusion tree
and f and f ′ denote the net fusion channels. We note
that the action of PT becomes a full transpose on one
subsystem, i.e.,

ρ̃TA
sep =

∑

~e,~e′,f,f ′

p~e,~e′,ff ′ (ρ̃
(~e,f)
A )T ⊗ ρ̃

(~e′,f ′)
B . (4.2)

We observe that

ρ̃TA
sepρ̃

TA†
sep =

∑

~e,~e′,f,f ′

p2~e,~e′,ff ′ (ρ̃
(~e,f)
A )T (ρ̃

(~e,f)
A )T† ⊗ (ρ̃

(~e′,f ′)
B )2

=
∑

~e,~e′,f,f ′

p2~e,~e′,ff ′ (¯̃ρ
(~̄e,f̄)
A )2 ⊗ (ρ̃

(~e′,f ′)
B )2, (4.3)

where ¯· · · on ρ̃A means the operator is turned upside-
down, and as usual, ¯· · · over an anyon symbol denotes
the corresponding anti-particle. The first identity in the
above follows from the orthogonality of anyonic states
and the second identity follows from the property that

(ρ̃
(~e,f)
A )T = θ∗f ¯̃ρ

(~̄e,f̄)
A , (4.4)

which diagrammatically means

a1 a2

e2

an

f

a1 a2 an

= θ∗f

ā1 ā2

ē2

ān

f̄

ā1 ā2 ān

. (4.5)

The above relation in turn yields

∥∥∥(ρ̃(~e,f)A )T
∥∥∥
1
=
∥∥∥ρ̃(~e,f)A

∥∥∥
1
= 1. (4.6)

Finally, Eq. (4.3) implies the norm invariance under PT
and hence a zero ALN,

E(ρ̃sep) = ln
∥∥ρ̃TA

sep

∥∥
1
= ln ‖ρ̃sep‖1 = 0. (4.7)

Regardless of separability, because of the triangle in-
equality for the one-norm we can put forward the follow-
ing theorem.

Theorem 1. The subspace of states with vanishing ALN

forms a convex set.

Proof :
Suppose two density matrices ρ̃1 and ρ̃2 have vanishing

ALN, i.e.,
∥∥∥ρ̃TA

1

∥∥∥
1
=
∥∥∥ρ̃TA

2

∥∥∥
1
= 1. Then, the ALN of any

linear combination of these two states is also zero, since

1 ≤
∥∥∥(pρ̃1 + (1− p)ρ̃2)

TA

∥∥∥
1
=
∥∥∥pρ̃TA

1 + (1− p)ρ̃TA
2

∥∥∥
1

≤ p
∥∥∥ρ̃TA

1

∥∥∥
1
+ (1− p)

∥∥∥ρ̃TA
2

∥∥∥
1

= 1, (4.8)

where 0 ≤ p ≤ 1. Therefore, E (pρ̃1 + (1− p)ρ̃2) = 0.
�

B. Invariance under local unitary transformation

Applying a local unitary operator must not change the
entanglement measure. A local unitary is represented by

ρ̃→ (UA ⊗ UB)ρ̃(U
†
A ⊗ U †

B), (4.9)

where Us, s = A,B are unitary operators acting on sub-
systems A and B, respectively. We are to show that

∥∥∥∥
(
(UA ⊗ UB)ρ̃(U

†
A ⊗ U †

B)
)TA

∥∥∥∥
1

=
∥∥ρ̃TA

∥∥
1
. (4.10)

We first note that

((UA ⊗ UB)ρ̃(VA ⊗ VB))
TA = (V̄A ⊗ UB)ρ̃

TA(ŪA ⊗ VB),
(4.11)
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where V̄A (ŪA) denotes modified unitary operators which
act from left (right) as opposed to their original form
which acts from right (left). The above identity is
a consequence of the pivotal property of unitary cate-
gories [104] which can be shown diagrammatically as,

ρ

. . . . . .

. . . . . .

VA VB

UA UB

= ρ

. . . . . .

. . . . . .

VB

UB

VA

UA

,

(4.12)

where we identify the upside down operators with V̄A and
ŪA in Eq. (4.11). The crucial point is that V̄A and ŪA are
also unitary operators. Finally, the fact that one-norm is
unitary invariant then leads to Eq. (4.10).

C. Additivity

Entanglement of a composite system is equal to the
sum of the entanglements of the constituting systems.
To be more specific, let us consider two sets of anyons

V a1···anb1···bma1···anb1···bm and V
a′1···a′pb′1···b′q
a′
1
···a′pb′1···b′q

. A tensor product state

in the combined space can be written as

ρ̃ = ρ̃AB ⊗ ρ̃A′B′ , (4.13)

where ρ̃AB and ρ̃A′B′ describe entangled states in V and
V ′, respectively. This situation, for example, is real-

ized by stacking two systems where V a1···ana1···an and V
a′1···a′p
a′
1
···a′p

spaces belong to subsystem A and similarly for the sub-
system B. The additivity condition requires that

E(ρ̃AB ⊗ ρ̃A′B′) = E(ρ̃AB) + E(ρ̃A′B′). (4.14)

This condition is satisfied in the diagrammatic approach
by definition, since the anyonic partial transpose involves
manipulating each diagram separately. In other words,

(ρ̃AB ⊗ ρ̃A′B′)TA∪A′ = ρ̃TA

AB ⊗ ρ̃
TA′

A′B′ , (4.15)

i.e., the partial transpose and tensor product commute.

D. Monotonicity under LOCC

Here, we show that ALN is an entanglement monotone
under the action of local quantum operations and classi-
cal communication (LOCC). LOCC generally refers to a
multi-party process which consists of a sequence of steps
where one party performs local measurements and com-
municates the result to other parties. As a result, the

density matrix is mapped into

ρ→
∑

i

piρi, (4.16)

where ρi denote a set of post measurement density ma-
trices and pi’s are the probabilities associated with each
outcome such that

∑
i pi = 1. The monotonicity con-

dition states that an entanglement quantity f must not
increase on average over the set {ρi}; i.e.,

f(ρ) ≥
∑

i

pif(ρi). (4.17)

Instead of working directly with LOCCs and proving the
above inequality, we make use of the theorem in Refs. [18,
105, 106] which implies that a convex function[107] f is
LOCC monotone if and only if f is

(1) invariant under local unitary operations,

(2) invariant under adding local ancilla in an arbitrary
state at either subsystems,

(3) monotone under local projective measurements,

(4) affine on mixtures of states possessing local orthog-
onal (ancilla) flags, i.e., the function is equal to its
average as in

f(
∑

i

piρi ⊗ |iR〉〈iR|) =
∑

i

pif(ρi), (4.18)

where |iR〉 ∈ HR denotes a set of local orthogo-
nal flags and can be combined to be part of either
subsystems A or B.

Although the monotonicity conditions are commonly
defined for desnity matrix operators in matrix notation,
it is straightforward to promote them to the anyonic
version and express them in terms of tilde operators.
Condition (1) was already discussed in Sec. IVB. In Ap-
pendixC, we show that ALN meets conditions (2) and
(3). Furthermore, we observe that

∥∥∥∥
(∑

i
piρ̃i ⊗Π

(i)
R

)TA

∥∥∥∥
1

=
∥∥∥
∑

i
piρ̃

TA

i ⊗Π
(i)
R

∥∥∥
1

=
∑

i
pi

∥∥∥ρ̃TA

i ⊗Π
(i)
R

∥∥∥
1

=
∑

i
pi

∥∥∥ρ̃TA

i

∥∥∥
1
, (4.19)

which is the anyonic version of the affinity condi-

tion (4.18) for the norm of PT. Here, Π
(i)
R refers to an

orthonormal set of anyonic projection operators for an-
cilla and the system is partitioned as A∪ (BR). We note
that the second identity follows from the orthogonality of
projection operators, and the last line is a consequence
of condition (2) (see also Appendix C for more details).

Having shown that anyonic PT satisfies conditions (1)-
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(4), we conclude that

∥∥ρ̃TA
∥∥
1
≥
∑

i

pi

∥∥∥ρ̃TA

i

∥∥∥
1
, (4.20)

which is the anyonic version of the monotonicity condi-
tion (4.17). Finally, we use the fact that logarithm is a
concave function to arrive at

E(ρ̃) ≥
∑

i

piE(ρ̃i). (4.21)

E. Computability and Continuity

An entanglement measure is useful in practice if it can
be efficiently computed for every state. For a generic any-
onic density matrix represented diagrammatically, it is
straightforward to perform the transformation rule (3.2),
albeit it may lead to complicated diagrams. Furthermore,
the entanglement measure should be continuous. There
is not much to prove here, since PT is a linear opera-
tion and ALN is defined in terms of a one-norm which is
algebraically a continuous function.

V. APPLICATION TO A SINGLE PAIR OF

ANYONS

To illustrate how our proposed anyonic PT can be car-
ried out, we use the entangled state ρ̃ab that describes a
pair of anyons a and b which fuse to the total charge f
with matrix coefficients [pf ]µµ′ ,

ρ̃ab =
∑

f,µ,µ′

[pf ]µµ′

df
|a, b, µ; f〉 〈a, b, µ′; f |

=
∑

f,µ,µ′

[pf ]µµ′√
dadbdf a b

µ′
f
µ

a b

, (5.1)

where µ, µ′ = 1, · · · , N c
ab denote multiplicity indices.

This is a generalization of the example given at the end
of Sec. III. We further assume that the above density

matrix is normalized T̃r(ρ̃) =
∑

f Tr[p
f ] = 1 and positive

semi-definite which further constrains the matrix [pf ]µµ′

of coefficients. For instance, det[pf ] > 0 for every f is a
necessary condition.

We now apply the definition (3.2) to the anyonic dimer
state ρ̃ab in Eq. (5.1), which gives

ρ̃TA

ab =
∑

f,µ,µ′

[pf ]µµ′√
dadbdf

ā

ā a b

µ′
f
µ

a
b

, (5.2)

that can further be simplified as

ρ̃TA

ab =
∑

f,µ,µ′

[pf ]µµ′√
dadbdf

b
µ

f
ā

āb

µ′
(5.3)

=
1

db

∑

c,ν,ν′

[M c]νν′

√
dc
dadb

ā b
ν′

c
ν

ā b

, (5.4)

where

[M c]νν′ =
∑

f,µ,µ′

σ,σ′,δ,δ′

[pf ]µµ′ [Aabf ]µδ[A
ab
f ]∗µ′δ′ [R

fā
b ]δσ

× [F āf āc ]∗(b,σ,ν),(b,δ′,σ′)[R
āb
c ]∗σ′ν′ , (5.5)

and A-symbols are unitary matrices associated with the
A-moves (see the definition in Eqs. (B18) and (B19) of
Appendix B). Clearly, this process does not preserve the
anyonic trace, because

T̃r ρ̃TA

ab =
∑

c

dc
db

Tr[M c] = θa, (5.6)

where the last identity comes from directly evaluating
the anyonic trace of the diagram (5.2). As mentioned
earlier, we can define a trace-preserving anyonic PT by
performing a local unitary to absorb θa. However, this
step is not really necessary when evaluating the ALN,
since we need to compute the one-norm of ρ̃TA which
can in turn be written in terms of square root of the

Hermitized operator ρ̃TA

ab ρ̃
TA†
ab where the θa factor cancels

out. Hence, we obtain

E(A : B) = ln
∥∥∥ρ̃TA

ab

∥∥∥
1
= ln

∑

c

dc
db

‖M c‖1 . (5.7)

We should note that ALN is independent of which sub-
system we apply the partial transpose to. In Appendix D,

we prove that
∥∥∥ρ̃TA

ab

∥∥∥
1
=
∥∥∥ρ̃TB

ab

∥∥∥
1
. Moreover, Eq. (5.7) is

always non-negative, because

∑

c

dc
db

‖M c‖1 ≥
∑

c

dc
db
θ∗a Tr[M

c] = 1 (5.8)

where we use Eq. (5.6) in the last equality.

Let us now look at some special limits of the above
expression. When the fusion channel is multiplicity free,
the ALN is simplified into

E = ln
∑

c

dc
db

∣∣∣∣∣∣

∑

f

pfR
fā
b [F āf āc ]∗b,b

∣∣∣∣∣∣
. (5.9)
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When there is only one Abelian fusion channel (e.g. the
identity sector), [pf ]µµ′ = δef δµ,1δµ′,1, Eq. (5.7) reduces
into

E = ln
∑

c

dc
db

∥∥[F āeāc ](b,1,ν),(b,1,ν′)

∥∥
1

= ln
∑

c

dc
db
N c
āb = ln da,

(5.10)

where we use the fact that F -symbols are unitary ma-
trices and

∑
cN

c
abdc = dadb. From this observation, we

also deduce that if a or b is Abelian, then the ALN is
identically zero. From now on, we omit the multiplicity
indices for simplicity unless stated otherwise.
As a reference for comparison with (5.9), we note that

ACE of the dimer state (5.1) without multiplicity is given
by

Sace = ln da + ln db −
∑

f

pf ln df +
∑

f

pf ln pf (5.11)

which is simply the mutual information. This quantity
however overestimates the entanglement. For instance,
when a = b and there is only one Abelian fusion channel,
we get

Sace = 2 ln da (5.12)

which is twice the logarithmic negativity in Eq. (5.10).
Later in this section, we study several examples of

multiplicity-free fusion categories and observe that ALN
only vanishes at an isolated point or a line in a higher di-
mensional parameter space. This observation inspires us
to put forward the following theorem and its subsequent
conjecture.

Theorem 2. The subspace of vanishing ALN in

multiplicity-free dimer states is at least one dimension
lower than the entire space of dimer states.

We should note that this statement is in stark con-
trast with ordinary spins (qubits) where zero LN (posi-
tive PT) states occupy a finite volume of the entire space
of states [14, 108–110].
Proof:

We begin by noting that the space of dimer states
is (n − 1)-dimensional, parameterized by a vector ~p =
(p1, p2, · · · , pn) ∈ Rn with a unit trace constraint∑n

f=1 pf = 1. For multiplicity-free theories, PT can be

viewed as a linear map from Rn to ~m = (m1, · · · ,mn) ∈
Cn where the complex valued components are defined in
Eq. (5.5), subject to the constraint

∑n
c=1mc = 1 [111].

Alternatively, the linear relation between ~m and ~p can be
recast as

mi =
n∑

j=1

∆ijpj, (5.13)

where ∆ is an n×n complex matrix which depends on R

and F symbols as in Eq. (5.5). Because of the unit trace
constraint on ~m, the zero ALN condition

∑
i |mi| = 1

is met only when mi’s are collinear on the real positive
axis, i.e. Im mi = 0 for every i. In terms of ∆, we can
write these conditions as

n∑

j=1

Im[∆ij ]pj = 0. (5.14)

Therefore, the dimension of subspace of states with van-
ishing ALN depends on the rank of Im[∆] and is given
by

r0 = n− 1− rank(Im[∆]). (5.15)

Notice that the unit trace requirement already imposes a
constraint on Im[∆] matrix,

∑n
i,j=1 Im[∆ij ]pj = 0, which

makes it rank deficient. This in turn guarantees r0 ≥ 0.
In general, r0 is not a priory known and depends on
the dimer state and a given category. Nevertheless, it is
unlikely that Im[∆] will be a zero matrix; hence, 0 ≤ r0 <
n−1, which is lower-dimensional than (n−1)-dimensional
parameter space.

�

In the case of rank(Im[∆]) = n − 1, there is only one
solution to Eq. (5.14). Due to Theorem 1, the ALN is
zero at a single point, and there is no choice but the sep-
arable state which is given by the probability coefficients
in Eq. (5.16), written below.

Corollary 1. When the subspace of vanishing ALN is
zero-dimensional, ALN vanishes only at the separable

state where

pf =
df
dadb

. (5.16)

In other words, zero ALN is a necessary and sufficient

condition for separability in this case.

We further believe that Theorem 2 can be generalized
to categories with fusion multiplicities, although we do
not present a rigorous proof here.

Conjecture 1. The subspace of vanishing ALN for
dimer states forms a zero measure set.

In the remainder of this section, we compute the ALN
of the toy density matrix (5.1) for some special cases
in Ising anyons, Fibonacci category, su(2)k, and su(3)k
theories. As we will see, ALN vanishes along a line in
the parameter space of dimer state of two spin-1 anyons
in su(2)4 and two spin-8 anyons in su(3)3, otherwise, it
equals zero at a single point.

A. Ising anyons

The Ising(ν) anyon models [88, 104, 112] contain three
topological charges {I, σ, ψ} with the following fusion
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FIG. 1. Anyonic logarithmic negativity (5.9) of two entangled
anyons as a function of pI , the probability of identity fusion
charge in Eq. (5.1). Here, a = b = σ for the Ising category,
a = b = τ for the Fibonacci category, and a = b = 2 for
su(2)5 theory.

rules

ψ ⊗ ψ = I, σ ⊗ ψ = ψ ⊗ σ = σ, σ ⊗ σ = I ⊕ ψ.
(5.17)

Here, ν is an odd integer which labels the eight distinct
Ising anyon models such that ν ∼ ν+16, i.e., ν is defined
modulo 16. The quantum dimensions are

dI = dψ = 1, dσ =
√
2. (5.18)

The nontrivial F -symbols are

Fψσψσ = F σψσψ = −1,

[F σσσσ ]ab =
κσ√
2

[
1 1
1 −1

]
,

(5.19)

where the latter matrix is in the {I, ψ} basis, i.e., a, b =

I, ψ, and κσ = (−1)
ν2

−1

8 is the Frobenius-Schur indicator
of σ. Furthermore, the R-symbols are

Rψσσ = Rσψσ = (−i)ν ,
RσσI = κσe

−iπ
8
ν , Rσσψ = κσe

i 3π
8
ν .

(5.20)

The topological twist factor θσ = ei
π
8
ν uniquely distin-

guishes the eight distinct Ising(ν) anyon models, as does
the chiral central charge c mod 8 = ν

2 .
As our first example, we consider the dimer state of

two Ising anyons, i.e., a = b = σ in Eq. (5.1). Upon
plugging in the anyon data for Eq. (5.9), we arrive at

E =
1

2
ln[2(p2I + p2ψ)], (5.21)

where pI + pψ = 1. As we see in this case, E vanishes
only when pI = pψ = 1/2, corresponding to Eq. (5.16).
In other words, there is no other (in-)separable states
with zero ALN.
As our second example, we take a = σ and b = ψ. In

FIG. 2. Anyonic logarithmic negativity (5.9) of two spin-1/2
anyons of su(2)k theory as a function of p0, the probability
of fusing into identity charge of ρab in Eq. (5.1). su(2)∞
corresponds to the LN of the Werner state of ordinary spin-
1/2’s given in Eq. (5.34). Notice that ALN vanishes at a
single point p0 = d−2

1
2

for su(2)k anyons, whereas it vanishes

over the range p0 < 1/2 for the Werner state.

this case, the total fusion channel is fixed to be f = σ
and E = 0.

B. Fibonacci anyons

The Fibonacci category has two topological charges
{I, τ}, with the following non-trivial fusion rule

τ ⊗ τ = I ⊕ τ. (5.22)

The quantum dimensions are given by

dI = 1, dτ = φ, (5.23)

where φ = 1+
√
5

2 is the golden ratio and the non-trivial
F -symbol and R-symbol are

[F ττττ ]ab =

[
φ−1 φ−1/2

φ−1/2 −φ−1

]
, (5.24)

where a, b = I, τ , and

RττI = e−i
4π
5 , Rτττ = ei

3π
5 , (5.25)

respectively. The twist factor of the Fibonacci anyon is
given by θτ = ei

4π
5 .

Here, we consider the dimer state of two Fibonacci
anyons, i.e., a = b = τ in Eq. (5.1) which fuses to f =
I, τ . Upon plugging in the anyon data for Eq. (5.9), we
get

E = ln
1

φ

[∣∣pI + pτR
ττ
τ

∣∣+
∣∣pIφ− pτR

ττ
τ

∣∣
]
. (5.26)
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The two extreme limits are when pI = 1,

E = lnφ, (5.27)

and when pτ = 1,

E = ln
2

φ
. (5.28)

Figure 1 shows how ALN varies in the Ising and Fibonacci
categories. Similar to the Ising anyons, ALN in the Fi-
bonacci case vanishes only at a single point defined in
Eq. (5.16).

C. su(2)k anyons

The deformed versions of the su(2) spin models where
the anyons are labeled by the first k+1 (generalized) an-
gular momenta {0, 12 , 1, 32 , · · · , k2}. They obey the fusion
rule

j1 ⊗ j2 =

min{j1+j2,k−j1−j2}⊕

j=|j1−j2|
j, (5.29)

and their quantum dimensions are given by

dj =
sin π(2j+1)

k+2

sin π
k+2

. (5.30)

In the above notation, the identity sector is labeled by
zero, i.e., I ≡ 0. The F and R symbols of this category
are provided in Appendix E.

Let us first consider an entangled state (5.1) of two
spin-2’s in the su(2)5 category associated with the fol-
lowing fusion rule,

2⊗ 2 = 0⊕ 1, (5.31)

which is shown as a green curve in Fig. 1. By compar-
ing the values of ALN at p0 = 0 for different categories,
we observe that the fusion channel with larger quantum
dimension leads to a smaller ALN. Next, we consider a
mixed state of two spin- 12 ’s with the two fusion channels,

1
2 ⊗ 1

2 = 0⊕ 1. (5.32)

Figure 2 shows how the ALN for different su(2)k cate-
gories changes as the probability is tuned from the spin-1
channel towards the spin-0 (identity) channel. We ob-
serve that the entanglement in the spin-1 fusion channel
decreases substantially as the level of the theory, k, is
increased, while the negativity of the identity channel re-
mains finite at ln d 1

2
= ln 2 cos(π/(k + 2)). Finally, as

k ≫ 1 is tuned towards the ordinary spins, it approaches

the Werner state [113] of ordinary spin- 12 (qubit) systems,

ρw = p0 |s〉〈s|+
(
1− p0

3

) ∑

i=0,±
|ti〉〈ti| , (5.33)

where |t0〉 = (|↑↓〉+|↓↑〉)/
√
2, |t+〉 = |↑↑〉, and |t−〉 = |↓↓〉

are spin triplet states and |s〉 = (|↑↓〉− |↓↑〉)/
√
2 denotes

the spin singlet state. The corresponding logarithmic
negativity is given by

E(ρw) = ln

(
1

2
+ p0 +

∣∣∣∣
1

2
− p0

∣∣∣∣
)
, (5.34)

which is shown as the dashed line in Fig. 2. We should
note that all states with p0 < 1/2 are separable for ordi-
nary spins. This is in contrast with any theory of finite
k where ALN vanishes only at one point. The separable
point of su(2)k is determined by (5.16), that is

p∗0 =
1

[2 cos(π/(k + 2))]2
, (5.35)

which approaches 1/4 in the k → ∞ limit. This is clearly
away from the sudden death point p0 = 1/2 of the Werner
state. Therefore, what happens to the ALN curves as we
increase k in su(2)k is that they get flatter and flatter

near p∗0, i.e., higher order derivatives
∂nE
∂pn

0

vanish at p0 =

p∗0. As shown in Fig. 2, su(2)100 is already quite close to
the Werner state.

Let us now consider mixed states of two spin-1’s with
three fusion channels

1⊗ 1 = 0⊕ 1⊕ 2, (5.36)

for k ≥ 4. This implies that the space of dimer states
is two dimensional, (p0, p1). In particular, for k = 4 we
find that

E = ln

[
1

2

∑

s=±1

∣∣p0 − p2 + se−i
π
3 p1
∣∣+ |p0 + p2|

]
,

(5.37)

where ALN is identically zero for p0 = p2 = (1 − p1)/2
(See Fig. 3(a)). We observe two important differences
from the other cases we studied so far: First, the subspace
of states with zero ALN is not simply an isolated point
but a one-dimensional space. Second, this family of states
is clearly not a product state or separable, while their
ALN is zero. To put it in the context of Theorem 2, we
find the ∆ matrix to be

∆ =
1

2



θ 1 −θ
2 0 2
−θ 1 θ


 , (5.38)

where θ = ei
2π
3 . We see that rank(Im[∆]) = 1, and

hence, using Eq. (5.15), the dimension of the subspace of
vanishing ALN is r0 = 1.
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FIG. 3. (a)-(c) Anyonic logarithmic negativity (5.9) of two spin-1 anyons (5.1) for various su(2)k categories as a function of
p0 and p1, the probability of fusing into spin-0 and spin-1 charges, respectively. (d) Zero locus of ALN for two spin-1 in all
su(2)k theories. Notice that ALN equals zero along the blue line p1 = 1− 2p0 for k = 4 theory, whereas it only vanishes at a
single point for k > 4 categories. The latter (isolated) zero moves along the red line as shown by the arrow in panel (d) as k is
swept from k = 4 to k → ∞. In panel (d), su(2)∞ corresponds to the LN of two ordinary spin-1’s, which is identically zero in
the green region p0 ≤ 1/3, p1 ≤ 1/2. Here, the gray shaded area is prohibited since p0 + p1 ≤ 1.

We further numerically compute the ALN for k > 4
and typical results for level k = 6 and 100 are shown in
Fig. 3(b) and (c). We note that in these cases ALN van-
ishes only at one point as in Eq. (5.16). To summarize the
spin-1 results, we plot the zero locus of ALN in Fig. 3(d).
For reference, we also show the zero locus of two ordi-
nary spin-1’s which covers a finite two-dimensional region
p0 ≤ 1/3, p1 ≤ 1/2 (green region). Again, the crucial dif-
ference between anyonic states and ordinary spin states
is that ALN only vanishes at points or along a line which
are measure-zero sets in two-dimensional space. Simi-
lar to the previous case of two spin- 12 anyons, here also
the ALN surface becomes flatter and flatter around the
separable point (5.16), as we increase k (e.g., Fig. 3(c)).

D. su(3)3 anyons

We study a subset of the anyons within the su(3)3
category as a simple theory with fusion multiplicity. The
four anyons {1, 8, 10, 10} are closed under fusion, and has
quantum dimensions [114],

d1 = d10 = d10 = 1, d8 = 3, (5.39)

where the fusion rules are given by

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10,

8⊗ 10 = 8× 10 = 8,

10⊗ 10 = 10, 10⊗ 10 = 10, 10⊗ 10 = 1.

(5.40)

The crucial point here is that we have a non-trivial mul-
tiplicity N8

88 = 2. The F and R symbols are provided in
Appendix E.

We consider a state in the form of Eq. (5.1) where a =
b = 8 and we limit the fusion channel only to f = 8 with
two multiplicities. This density matrix is fully described

by a 2× 2 matrix

[p8] =

(
p811 p812
p821 p822

)
, (5.41)

in the Hilbert space V 88
88 and is characterized by three

real parameters:

p811 = p, p822 = 1− p,

p812 = p8∗21 = qr + iqi. (5.42)

where qi, qr ≤ 1/2 to ensure positive semi-definiteness of
ρ̃ab. Plugging in the anyon data for Eq. (5.7), we get

E = ln

[
1 +

|2p− 1|
3

+
1

6

∑

s=±1

∣∣∣2p− 1 + 2
√
3sqr

∣∣∣
]
.

(5.43)

(See Appendix E for details.) It is interesting to note
that ALN does not depend on qi and vanishes when p =
1/2, qr = 0 for arbitrary values of qi. This gives not
just a point but a family of states with vanishing ALN
which lives on a line in the three-dimensional parameter
space (p, qr, qi). Similar to the case of two spin-1’s in
su(2)4, here also we get a family of states with zero ALN
which is clearly not a product state or separable. We
also note that this is consistent with Conjecture 1, since
a one-dimensional space occupies a measure zero volume
in three-dimensional parameter space.

VI. CONCLUSIONS

In summary, we proposed a way to incorporate PT
as an operation (braiding) on anyonic density matrices.
We examined this construction in terms of standard re-
quirements for faithful measures of entanglement includ-
ing invariance under local unitaries and projection op-
erators, monotonicity under LOCC, and additivity, and
showed that it satisfies them all. Moreover, ALN mani-
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festly vanishes for separable anyonic states, which in the
language of anyons corresponds to states where there is
no non-trivial anyon line connecting the two parties. We
then applied the anyonic PT to several examples of anyon
dimers, where we found that although the PT depends
on some 2D properties such as a choice of (over or un-
der) braiding but the final result does not depend on
these details. In other words, the notion of entanglement
in anyons is algebraic beyond the dimensionality. The
mentioned dependence is reminiscent of a similar phe-
nomenon in the standard PT for qubits where the oper-
ation itself is basis dependent while the final quantities
such as LN or topological invariants [94] are basis inde-
pendent. Looking at examples, we proved that in the case
of multiplicity-free dimers, ALN vanishes only at lower-
dimensional convex subspaces of the parameter space of
density matrices. Specifically, when this subspace is zero-
dimensional, this theorem implies that there is only one
point with vanishing ALN which corresponds to a dis-
connected anyon diagram. We further argued that the
assumption of multiplicity-free may not be essential, and
conjectured that our theorem can be generalized to cat-
egories with fusion multiplicities. For instance, in the
case of su(3)3 which is a category with a two-fold fusion
multiplicity, we find that ALN vanishes along a line in a
three-dimensional parameter space.

There are several new avenues for future research.
ALN is known to provide an upper bound on distillable
entanglement in qubit systems [115–117]. It would be in-
teresting to figure out what are the analogs of distillation
protocols for anyons and whether in this case ALN gives
any bound on the amount of distillable entanglement. So
far, we have studied the entanglement in braided tensor
categories. Nevertheless, it is tempting to believe that
our formalism can also be applied to entangled states of
anyon symmetry defects such as the ones realized in G-

crossed categories [112], e.g., parafermion dimers in Z
(p)
N

categories. We think that the anyonic PT may be defined
in terms of the G-crossed braiding. Exploring such pos-
sibilities for generalizing the current formalism is worth
pursuing. Furthermore, our proposed diagrammatic im-
plementation of PT may be adapted to implement other
manipulations of anyonic density matrices such as re-
alignment [118, 119], reflected entropy [120, 121], and
odd entropy [122]. It would be interesting to find possi-
ble similarities and differences among these different mea-
sures.

Throughout this paper, we focus more on methodol-
ogy, i.e., developing a framework to implement the PT
in anyonic systems, rather than studying various physi-
cal phenomena in anyon models. A more comprehensive
study on the application of this method to other many-
anyon models such as anyon chains would be worth pur-
suing both from the standpoint of having more bench-
mark examples as well as uncovering entanglement struc-
tures within different strongly interacting many-body
systems. In a sequel paper, we apply the anyonic PT
to construct partition functions of anyon chains on non-

orientable spacetime manifolds (i.e., an anyonic general-
ization of [94]) and use the ALN to derive the topolog-
ical entanglement negativity [54]. Another future direc-
tion along this line may be the implementation of the
anyonic PT in versatile numerical approaches such as
the density matrix renormalization group (DMRG). For
example, it would be interesting to investigate whether
ALN in translationally symmetric anyonic chains (e.g.,
the golden chain [123]) obeys the expected scaling form
predicted by the conformal field theory [38].
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Appendix A: Similarity between partial transpose

and exchange of vortices in chiral superconductors

In this appendix, we briefly review the definition of
partial transpose for fermions and show that the partial
transpose is identical to the braiding operator of vor-
tices in a chiral px + ipy superconductor. Let H be
a fermionic Fock space generated by N local fermionic
modes fj , j = 1, · · · , N . The Hilbert space is spanned
by |n1, n2, · · · , nN〉 which is a string of occupation num-
bers nj = 0, 1. The Majorana (real) fermion operators
are defined by

c2j−1
def
= f †

j + fj , c2j
def
= i(fj − f †

j ), j = 1, . . . , N.

(A1)

These operators satisfy the Clifford algebra {cj, ck} =
2δjk. Any operator X acting on H can be expressed in
terms of a polynomial of cj ’s,

X =

2N∑

k=1

∑

p1<p2···<pk
Xp1···pkcp1 · · · cpk , (A2)

where Xp1...pk are complex coefficients which are fully
antisymmetric under odd permutations of {1, . . . , k}.
A density matrix is a Hermitian operator and com-
mutes with the total fermion-number parity operator,

[ρ, (−1)F ] = 0 where F =
∑
j f

†
j fj . The latter constraint
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implies that ρ only contains monomials with even number
of Majorana operators, i.e., k is always even.
To define the bipartite entanglement, we consider de-

composing the Hilbert space into H1 ⊗ H2. A generic
density matrix on H1 ⊗H2 can be expanded in the Ma-
jorana operators as

ρ =

k1+k2=even∑

k1,k2

ρp1···pk1 ,q1···qk2 ap1 · · · apk1 bq1 · · · bqk2 ,

(A3)

where {aj} and {bj} are Majorana operators acting on
H1 and H2, respectively. Our definition of the partial
transpose for fermions is given by [90, 95]

ρTA
def
=

k1+k2=even∑

k1,k2

ρp1···pk1 ,q1···qk2 i
k1ap1 · · ·apk1 bq1 · · · bqk2 ,

(A4)

and similarly for ρTB .
Let us now consider a simple example of N = 2 com-

plex fermions which share a Majorana dimer. This state
is described by the following density matrix

ρ =
1

2
(1 + ic2c3), (A5)

where ci’s are defined in (A1). This operator is simply
a projector into the subspace where ic2c3 = 1. Using
the definition (A4), the partial transpose of the above
density matrix is given by

ρTA =
1

2
(1 − c2c3). (A6)

We now compare the partial transpose with the ex-
change statistics of vortices. To this end, we consider
vortices in a spinless chiral superconductor. It is well-
known that there exists a single Majorana bound state
attached to each π-flux vortex [124–126]. The Majorana
bound states can be described by operators γi that mu-
tually anti-commute and square to +1, i.e., they obey a
Clifford algebra analogous to the ordinary Majorana op-
erators defined above. Furthermore, two vortices can be
combined, and the two localized Majorana bound states
form a single complex fermion state which can be oc-
cupied or un-occupied. Hence, two vortices give a de-
generacy of 2. Similarly, we will get a 2N ground state
degeneracy for a collection of 2N vortices [127, 128]. It
is important to remember that each vortex γi is accom-
panied by a π-flux which can be represented by a branch
cut. The branch cut is there to take into account the fact
that a fermion picks up a −1 phase factor upon traversing
around the vortex.
Let us now find the braiding operator of two vortices

following the Refs. [129, 130]. Exchanging two vortices γi
and γj , denoted by Tij , is an adiabatic process and we are
only interested in the unitary operator of the outcome.

As a result, we get

γi → γj , γj → −γi, γk → γk, (A7)

where k 6= i, j. One can construct a representation of this
exchange process on the Hilbert space by finding τ(Tij)
such that τ(Tij)γaτ

−1(Tij) = Tij(γa). Such a representa-
tion is given by

τ(Tij) = exp
(π
4
γjγi

)
=

1√
2
(1− γiγj) . (A8)

It is easy to check that τγiτ
−1 = γj , τγjτ

−1 = −γi, and
τγkτ

−1 = γk for k 6= i, j. Notice the similarity between
the exchange operator above and the partial transpose
in Eq. (A6). This further supports the idea that partial
transpose can be implemented by the exchange operator
(or half braid) in anyonic systems.

Appendix B: Review of anyon diagrams

In this appendix, we discuss some basics of the mod-
ular tensor category which were used in the main text.
Consult Refs. [89, 97, 98] for a survey on this topic. An
anyon model C consists of a set of anyons which are la-
beled as {a, b, c, · · · } and obey a commutative associative
fusion algebra:

a⊗ b =
⊕

c

N c
abc, (B1)

where N c
ab = N c

ba are non-negative integers which give
the number of ways anyons a and b can fuse to anyon c.
An anyon a is non-Abelian if

∑
cN

c
ab > 1 for some b, and

Abelian otherwise.

Physics of anyons as point-like excitations in 2D topo-
logically ordered phases imposes certain constraints on
the fusion algebra. There must exist a unique vacuum
anyon I such that N c

aI = δac, and each anyon a must
have a unique conjugate charge or anti-particle ā such
that N I

ab = δbā. The fusion coefficients also satisfy the
following relation

dadb =
∑

c

N c
abdc, (B2)

where da, the quantum dimension of a, is the largest
eigenvalue of the fusion matrix Na (when N c

ab is viewed
as matrix elements [Na]bc). da > 1 implies non-Abelian
anyons, while da = 1 implies Abelian anyons.

The fusion rules provide a direct way to define the
Hilbert space of anyons and states therein. In this paper,
we use the diagrammatic formalism to denote states and
operators. The building blocks of the anyonic Hilbert
space is the space V abc of two anyons a and b with definite
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total charge c, which is spanned by the ket states

|a, b; c, µ〉 =
(

dc
dadb

)1/4
a b

c
µ , (B3)

where µ = 1, . . . , N c
ab. The dual space V cab is spanned by

the bra states

〈a, b; c, µ| =
(

dc
dadb

)1/4

a b

c
µ . (B4)

Inner products can be evaluated by stacking the dia-
grams. For instance, the orthonormality condition

〈a′, b′; c′, µ′|a, b; c, µ〉 = δaa′δbb′δcc′δµµ′11c (B5)

can be expressed as

(
d2c

dadbda′db′

)1/4

a b

c
µ

a′ b′

c′

µ′

= δa,a′δb,b′δc,c′δµ,µ′ c .

(B6)

Note that in the diagramatic notation, δcc′ is to enforce
the conservation of anyonic charge. More complicated
diagrams can be evaluated similarly. In particular, we
can choose c = I and use the above relation to deter-
mine the quantum dimension da. Diagrammatically, this
corresponds to

da = a , (B7)

where we use the fact that dI = 1. We also note that da =
dā. In general, a diagram with open anyon worldlines
at the top and bottom represents a state in a Hilbert
space that depends on the number and types of open
anyon worldlines. A diagram without open worldlines
represents an amplitude or a complex number.

The space V a
′b′

ab of operators acting on anyons a and

b can be constructed as V a
′b′

ab =
⊕

c V
c
ab ⊗ V abc , which is

spanned by

|a′, b′, α′; c〉 〈a, b, α; c| =
(

d2c
dadbda′db′

)1/4

a b
α
c
α′

a′ b′

.

(B8)

For example, the identity operator for a pair of anyons a
and b is

11ab =
∑

c,µ

|a, b; c, µ〉 〈a, b; c, µ| , (B9)

or, diagramatically,

a b =
∑

c,µ

√
dc
dadb a b

µ
c
µ

a b

. (B10)

Larger Hilbert spaces are constructed by a fusion tree.
For instance, the space of three anyons a, b, and c with
definite total charge d, denoted as V abcd , can be con-
structed by a sum of tensor products V abcd

∼=
⊕

e V
ab
e ⊗

V ecd , which is spanned by

|a, b; e, µ〉 |e, c; d, ν〉 =
(

dd
dadbdc

)1/4 a b
c

d

e
µ

ν
,

(B11)

where µ = 1, . . . , Ne
ab, ν = 1, . . . , Nd

ec, upon introducing
the intermediate anyon e. The space V abcd can also be
constructed by another decomposition, V abcd

∼=
⊕

e V
bc
e ⊗

V aed . The two constructions are isomorphic, and their
basis vectors are related by an F -move:

c
a b

d

e
µ

ν

def
=
∑

f,α,β

[
F abcd

]
(e,µ,ν)(f,α,β)

b c
a

d

f
α

β
,

(B12)

where the F -symbols F abcd are unitary matrices which
must satisfy a consistency condition, the so-called Pen-
tagon equations.
In general, the space V a1...anc of anyons a1, . . . , an with

definite combined charge c can be constructed as

V a1...anc
∼=
⊕

~b

V a1a2b2
⊗ V b2a3b3

⊗ · · · ⊗ V bn−1an
c , (B13)

which is spanned by

|~a,~b, ~α; c〉 = |a1, a2; b2, α2〉 · · · |bn−1, an; c, αn〉

=

(
dc
d~a

)1/4
an

a2a1

c

b2
bn−1

α2

αn

.

. . .

, (B14)

where ~b and ~α take values that are allowed by fusion and
we also define

d~a
def
= da1 · · · dan =

∑

c

N c
a1...andc. (B15)

Similarly, the space V
a′1...a

′

n
a1...an of operators acting on

anyons a1, . . . , an can be constructed as

V
a′1...a

′

n
a1...an =

⊕

c

V ca1...an ⊗ V
a′1...a

′

n
c , (B16)
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which is spanned by

|~a′,~b′, ~α′; c〉 〈~a,~b, ~α; c| =
(

d2c
d~ad~a′

)1/4

a′1 a′2
a′n

c

b′2
b′n−1

α′

2

α′

n

.

. . .

a1 a2
an

b2

bn−1

α2

αn
.

. . .

,

(B17)

where ~b, ~α, ~b′, and ~α′ take values that are allowed by
fusion. The above definition of operators which act on the
Hilbert space of multiple anyons is the basis of the next
part, where we discuss a model Hamiltonian in terms of
a fusion tree.

We also use the A-moves which are associated with
bending the wordlines as follows

aā b

c
µ

def
=
∑

ν

[Aabc ]µν ā c

b
ν , (B18)

where the A-symbols are given in terms of the F -symbols

[Aabc ]µν =

√
dadb
dc

κ
∗
a[F

āab
b ]∗1,(c,µ,ν). (B19)

One can similarly define the B-moves by bending the
anyon b’s worldline.

Another useful operation that we utilize in this paper,
is the braiding exchange operator for a pair of anyons,

Rab =
∑

c,µ

[Rabc ]µν |a, b; c, µ〉 〈b, a; c, ν| , (B20)

or, diagramatically,

Rab =
ab

def
=
∑

c,µ,ν

√
dc
dadb

[Rabc ]µν
b a

ν
c
µ

a b

, (B21)

where the R-symbols Rabc are unitary matrices that must
satisfy the Hexagon consistency equations. The above
operation is usually called a counterclockwise braiding
exchange. We may also have a clockwise braiding ex-
change as,

(Rab)−1 =
a b

. (B22)

An important quantity derived from braiding exchange
is the topological twist (or topological spin) of charge a

θa = θā =
∑

c,µ

dc
da

[Raac ]µµ =
1

da a

, (B23)

which is a root of unity.

A natural way to define anyonic density matrices is by
using partial tracing which results in a reduced density
matrix of a subsystem. We require the ordinary trace of
an operator to be the sum of its diagonal elements, e.g.,

Tr(|a′, b′; c, µ′〉 〈a, b; c, µ|) def
= δaa′δbb′δµµ′ . (B24)

Similarly, the anyonic trace in the diagrammatic repre-

sentation denoted by the quantum trace T̃r, (also called
the anyonic trace) is realized by connecting the outgo-
ing and incoming anyon lines. Diagrams which contain
loops that connect two lines labeled by different topo-
logical charges are identically zero. The partial anyonic
trace is also obtained by connecting only the outgoing
and incoming lines of the anyons which we want to trace
over. The anyonic trace in the diagrammatic representa-

tion is denoted by the quantum trace T̃r, (also called the
anyonic trace),

T̃r

((
d2c

dadbda′db′

)1/4

a b

µ
c
µ′

a′ b′
)

def
=

(
d2c

dadbda′db′

)1/4

a b

µ
c
µ′

a′ b′

(B25)

= dcδa,a′δb,b′δµ,µ′ , (B26)

We should note that for the Abelian fusion channels dc =
1 and the ordinary trace and anyonic trace are identical.

The partial anyonic trace is also obtained by connect-
ing only the outgoing and incoming lines of the anyons
which we want to trace over. For instance,

T̃rb

((
d2c

dadbda′db′

)1/4

a b
µ
c
µ′

a′ b′ )

def
=

(
d2c

dadbda′db′

)1/4

a b
µ
c
µ′

a′ b′

(B27)

=
dc
da
δaa′δbb′δµµ′

a . (B28)

In the diagrammatic representation, a generic operator
X ∈ V a1...ana′

1
...a′n

is shown as

X
def
= X

. . .

. . .

a′

na′

1

ana1

, (B29)
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and the corresponding anyonic trace is given by

T̃rX = T̃r


 X

. . .

. . .


 =

∑

a1,...,an

X

. . .

. . .

. . .

a1 an

.

(B30)

Note that for a generic operator X ∈ V a1...ana′
1
...a′n

the any-

onic and ordinary traces are related by

T̃rX =
∑

c

dc Tr[X ]c, (B31)

TrX =
∑

c

1

dc
T̃r[X ]c, (B32)

where [X ]c = ΠcXΠc ∈ V a1...anc ⊗ V ca′
1
...a′n

is the pro-

jection of X onto definite total fusion channel c, with
X =

∑
c[X ]c.

Appendix C: Lemmas for monotonicity

In this appendix, we prove two lemmas which are
essential for proving the monotonicity under LOCC in
Sec. IVD.

1. Appending ancilla: Appending an unentangled lo-
cal ancilla R must not change the entanglement measure.
This is modeled by the following process

ρ̃AB → (ρ̃AB ⊗ ρ̃R), (C1)

where we add an ancilla in an arbitrary mixed state, de-
noted by ρ̃R, to our original system ρ̃AB and by local
ancilla, we mean that the new global system R∪ (A∪B)
is partitioned to A′ = A ∪ R and B. We need to show
that

E(ρ̃AB ⊗ ρ̃R) = E(ρ̃AB). (C2)

A way to prove this starts by noticing that the partial
transpose of A′∪B is now taken with respect to A′. From
the property (4.15), we write

∥∥(ρ̃AB ⊗ ρ̃R)
TA′

∥∥
1
=
∥∥∥ρ̃TA′

AB ⊗ ρ̃
TA′

R

∥∥∥
1

=
∥∥∥ρ̃TA

AB ⊗ ρ̃TR

∥∥∥
1

=
∥∥∥ρ̃TA

AB

∥∥∥
1

(C3)

where in the second line we simplify TA′ into the partial
transpose with respect to A and full transpose for A∪B
and R subsystems, respectively, and in the third line we
make use of the fact that the full transpose does not
change the one norm as explained in Sec. IVA.

2. Local projectors: Application of local projective
measurements does not increase the entanglement mea-

sure. A local projection operator which acts on the any-
onic space V a1···ana1···an and projects into fusion channel c is
given by

Πc~a =

(
dc
d~a

)1/2∑

~e,~α

a1 a2
an

c

e2
en−1

α2

αn

.

. . .

a1 a2
an

e2

en−1

α2

αn
.

. . .

. (C4)

Note that the projection operators satisfy,

Πc~aΠ
c′

~a = δcc′Π
c
~a, (C5)

∑

c

Πc~a = 11~a. (C6)

The above identities are easy to show diagrammatically.
Now, consider two sets of orthogonal local projectors

{Π(i)
A } and {Π(i)

B } on subsystems A and B. Here, each

{Π(i)
A } operator may include multiple local fusion chan-

nels. We consider an orthogonal measurement on the
composite system using a product of local projection op-
erators,

Π
(ij)
AB = Π

(i)
A ⊗Π

(j)
B , (C7)

which in turn form an orthocomplete set, i.e.,

∑

i,j

Π
(ij)
AB = 11AB, (C8)

Π
(ij)
ABΠ

(i′j′)
AB = δii′δjj′Π

(ij)
AB . (C9)

We define locally projected density matrices by

ρ̃
(ij)
AB =

1

rij
Π

(ij)
AB ρ̃ABΠ

(ij)
AB , (C10)

where rij = T̃r[(Π
(i)
A ⊗Π

(j)
B )ρ̃AB(Π

(i)
A ⊗Π

(j)
B )]. The mono-

tonicity condition can then be written as

E(ρ̃AB) ≥
∑

i,j

rijE
(
ρ̃
(ij)
AB

)
. (C11)

We begin our proof by noting that for any set of orthog-
onal projectors and any unitarily invariant norm, we have
a triangle(-type) inequality

∥∥∑
k Π

(k)AΠ(k)
∥∥
1
≤ ‖A‖1.

Hence, we may write

∥∥∥ρ̃TA

AB

∥∥∥
1
≥

∥∥∥∥∥∥

∑

i,j

(Π̄
(i)
A ⊗Π

(j)
B )ρ̃TA

AB(Π̄
(i)
A ⊗Π

(j)
B )

∥∥∥∥∥∥
1

=
∑

i,j

∥∥∥(Π̄(i)
A ⊗Π

(j)
B )ρ̃TA

AB(Π̄
(i)
A ⊗Π

(j)
B )
∥∥∥
1

(Cont.)
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=
∑

i,j

∥∥∥∥
[
(Π

(i)
A ⊗Π

(j)
B )ρ̃AB(Π

(i)
A ⊗Π

(j)
B )
]TA

∥∥∥∥
1

=
∑

i,j

rij

∥∥∥(ρ̃(ij)AB )
TA

∥∥∥
1
, (C12)

where Π̄
(i)
A indicate an upside down projection operator

(e.g., on the space V ā1···ānā1···ān ) and also satisfy (Π̄
(i)
A )2 =

Π̄
(i)
A . Moreover, in going from the second to the third

line we use analog of Eq. (4.12) for projection opera-
tors. Taking the logarithm of both sides and noting the
fact that logarithm is a concave function, we arrive at
Eq. (C11).

Appendix D: Proof of
∥

∥ρ̃TA
∥

∥

1
=

∥

∥ρ̃TB
∥

∥

1

We prove this identity in two steps:

∥∥ρ̃TA
∥∥
1
=
∥∥(ρ̃TA)T

∥∥
1
=
∥∥ρ̃TB

∥∥
1

(D1)

In the first identity, we need to show that the full trans-
pose preserves the one norm, i.e.,

∥∥ρ̃T
∥∥
1
= ‖ρ̃‖1 . (D2)

In the second step, we must prove that

(ρ̃TA)T = ρ̃TB . (D3)

Proof of Eq. (D2): The proof follows immediately from
the diagrammatic approach,

ρ̃Tab
def
=
∑

f

pfab√
dadbdf b̄ ā

b̄ ā

a b

f

a
b

(D4)

=
∑

f

pfabθ
∗
f√

dadbdf ā b̄

f̄

ā b̄

. (D5)

The second line is a special case of the identity (4.4).
Hence, we have

ρ̃Tabρ̃
T†
ab =

∑

f

(
pfab√
dadbdf

)2

ā b̄

f̄

ā b̄

, (D6)

which implies Eq. (D2).

Proof of Eq. (D3): As before, we use diagrams to show

this identity as follows,

(ρ̃TA

ab )
T =

∑

f

pfab√
dadbdf

b̄

b̄ a

a a b

f

a
b

(D7)

=
∑

f

pfab√
dadbdf

b̄

b̄ b a

f

b a

(D8)

= ρ̃TB

ab , (D9)

where we use the fact that the two half braids from
top and bottom of the diagram cancel each other, since
|Rbaf |2 = 1. This completes the proof of Eq. (D1).

Appendix E: F and R symbols

Here, we provide the anyon data of su(2)k and su(3)3
categories which we use to calculate the logarithmic neg-
ativity in Secs. VC and VD of main text.

1. su(2)k

The corresponding F -symbols are given by

[
F j1,j2,j3j

]
j12,j23

= (−1)j1+j2+j3+j
√
[2j12 + 1]q[2j23 + 1]q

×
{
j1 j2 j12
j3 j j23

}

q

, (E1)

where q = ei
2π
k+2 , [n]q =

qn/2−q−n/2

q1/2−q−1/2 is a q-deformed num-

ber and {.}q is q-deformed version of su(2) 6j-symbols.
The R-symbols are

Rj1,j2j = (−1)j−j1−j2q
1
2
[j(j+1)−j1(j1+1)−j2(j2+1)], (E2)

It is worth recalling that su(2)2 with {0, 12 , 1} spins and
su(2)3 with {0, 1} spins are in one-to-one correspondence
with the ν = 3 Ising and Fibonacci anyons, respectively.

2. Subtheory of su(3)3

The non-trivial F -symbols of this category (based on
Ref. [114]) are given by

F 1,8,8
8 = F 8,1,8

8 = F 8,8,1
8 = F 8,8,8

1 =

(
1 0
0 1

)
, (E3)
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F 8,8,8
10 = F 8,8,10

8 = F 8,10,8
8 = F 10,8,8

8 =

(
− 1

2 −
√
3
2√

3
2 − 1

2

)
,

(E4)

F 8,8,8

10
= F 8,8,10

8 = F 8,10,8
8 = F 10,8,8

8 =

(
− 1

2

√
3
2

−
√
3
2 − 1

2

)
,

(E5)

where 2× 2 matrices are due to the two-fold multiplicity
of fusing two anyon-8’s. We also have

F 888
8 =




1
3

1√
3

0 0 1√
3

− 1
3 − 1

3
1√
3

− 1
2 0 0 1

2
1√
12

1√
12

0 0 1
2

1
2 0 1

2 − 1
2

0 0 1
2

1
2 0 − 1

2
1
2

1√
3

1
2 0 0 − 1

2
1√
12

1√
12

− 1
3

1√
12

− 1
2

1
2

1√
12

1
3

1
3

− 1
3

1√
12

1
2 − 1

2
1√
12

1
3

1
3




, (E6)

where the matrix [F 8,8,8
8 ](e,α,β),(f,µ,ν) matrix is writ-

ten in the basis such that the first, sixth, and sev-
enth rows/columns correspond to e = 1, 10, 10, respec-
tively. The second to fifth rows/columns correspond to
e = f = 8. In this case, there are two vertices with three

anyon 8 lines. The second and fifth row correspond to the
cases in which we take the vertices to be the same α = β
and µ = ν, while the third and fourth row correspond to
the off-diagonal cases α 6= β and µ 6= ν. The non-trivial
R-symbols read

R1x
x = 1,

R88
1 = −1, R88

10 = R88
10

= −1,

R88
8 =

(
−i 0
0 i

)
.

(E7)

Derivation of negativity−. Partial transpose of density
matrix (5.41) can be written in the form of Eq. (5.4)
where [M c]’s are given by

[M1] = 2p− 1,

[M10] =
i

2
(2p− 1) + i

√
3qr,

[M10] =
i

2
(2p− 1)− i

√
3qr,

[M8] =

(
i
2 qi
qi − i

2

)
.

(E8)

Note that [M c]’s are scalar except for [M8] which has a
fusion multiplicity. Plugging these values in for Eq. (5.7)
leads to (5.43).
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K. Życzkowski, J. Phys. A: Math. Theor. 50, 255206
(2017).

[82] B. Collins, I. Nechita, and D. Ye, Random Matrices:
Theory and Applications 01, 1250002 (2012); B. Collins
and I. Nechita, J. Math. Phys. 57, 015215 (2016),
arXiv:1509.04689.

[83] H. Shapourian, S. Liu, J. Kudler-Flam, and A. Vish-
wanath, arXiv:2011.01277 (2020).

[84] A. Elben, J. Yu, G. Zhu, M. Hafezi, F. Pollmann,
P. Zoller, and B. Vermersch, arXiv:1906.05011 (2019).

[85] J. Gray, L. Banchi, A. Bayat, and S. Bose, Phys. Rev.
Lett. 121, 150503 (2018).

[86] E. Cornfeld, E. Sela, and M. Goldstein,
arXiv:1808.04471 (2018).

[87] A. Elben, R. Kueng, H.-Y. R. Huang, R. van Bij-
nen, C. Kokail, M. Dalmonte, P. Calabrese, B. Kraus,
J. Preskill, P. Zoller, and B. Vermersch, Phys. Rev.
Lett. 125, 200501 (2020).

[88] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and
S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[89] P. Bonderson, C. Knapp, and K. Patel, Annals of
Physics 385, 399 (2017).

[90] H. Shapourian, K. Shiozaki, and S. Ryu, Phys. Rev. B
95, 165101 (2017).

[91] Here is a protocol to prepare a separable state by means
of local operation and classical communication: Two
parties A and B have a set of local density matrices

{ρ
(i)
A } and {ρ

(j)
B }, respectively, and agree to prepare the

http://dx.doi.org/10.1103/PhysRevA.81.032311
http://dx.doi.org/10.1103/PhysRevA.84.062307
http://stacks.iop.org/1751-8121/50/i=19/a=194001
http://dx.doi.org/10.1103/PhysRevB.99.075157
http://dx.doi.org/ 10.1088/1367-2630/aad9ba
https://arxiv.org/abs/1908.02761
https://arxiv.org/abs/2001.08222
http://dx.doi.org/10.1103/PhysRevLett.109.130502
http://stacks.iop.org/1742-5468/2013/i=02/a=P02008
http://stacks.iop.org/1751-8121/48/i=1/a=015006
http://dx.doi.org/10.1103/PhysRevB.94.195121
http://stacks.iop.org/1751-8121/51/i=2/a=024001
http://dx.doi.org/10.1007/JHEP09(2014)010
http://dx.doi.org/10.1088/1751-8113/49/12/125401
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysb.2016.10.016
http://dx.doi.org/ 10.1088/1742-5468/ab6b19
http://dx.doi.org/10.1103/PhysRevB.101.064207
https://arxiv.org/abs/1907.01569
https://arxiv.org/abs/2002.05713
http://dx.doi.org/10.1088/1742-5468/aaeda2
http://dx.doi.org/10.1002/qute.201900113
https://arxiv.org/abs/2004.01901
http://dx.doi.org/10.1088/1742-5468/ab11e0
https://arxiv.org/abs/1912.03313
http://dx.doi.org/10.21468/SciPostPhys.8.4.063
http://dx.doi.org/10.1103/PhysRevB.93.245140
http://dx.doi.org/10.1007/JHEP09(2016)012
http://dx.doi.org/10.1103/PhysRevA.88.042319
http://dx.doi.org/10.1103/PhysRevA.88.042318
http://dx.doi.org/10.1103/PhysRevB.97.144410
http://dx.doi.org/ 10.1103/PhysRevB.101.085136
http://dx.doi.org/10.1088/1742-5468/2014/12/p12017
http://dx.doi.org/10.1088/1367-2630/16/12/123020
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysb.2015.06.021
http://arxiv.org/abs/1809.09119
http://dx.doi.org/10.1103/PhysRevB.92.075109
http://dx.doi.org/10.1103/PhysRevX.9.021007
https://arxiv.org/abs/2002.09527
http://dx.doi.org/10.1088/1751-8121/ab831c
http://dx.doi.org/ 10.1103/PhysRevB.101.245130
http://dx.doi.org/10.1007/JHEP01(2020)031
http://dx.doi.org/10.1007/JHEP04(2020)074
https://arxiv.org/abs/2008.11266
https://arxiv.org/abs/2008.11727
http://dx.doi.org/10.1007/JHEP10(2014)060
http://dx.doi.org/10.1007/JHEP09(2014)010
http://dx.doi.org/10.1103/PhysRevD.99.106014
http://dx.doi.org/10.1103/PhysRevLett.123.131603
http://stacks.iop.org/1742-5468/2013/i=05/a=P05002
http://stacks.iop.org/1742-5468/2013/i=05/a=P05013
http://dx.doi.org/ 10.1103/PhysRevB.90.064401
http://stacks.iop.org/1742-5468/2015/i=6/a=P06021
http://dx.doi.org/10.1088/1751-8113/40/45/017
http://dx.doi.org/10.1142/S2010326312500013
http://dx.doi.org/10.1002/cpa.21460
http://dx.doi.org/10.1103/PhysRevA.85.030302
http://dx.doi.org/10.1088/1751-8121/aa70f5
http://dx.doi.org/10.1142/S2010326312500025
http://dx.doi.org/10.1063/1.4936880
http://arxiv.org/abs/1509.04689
https://arxiv.org/abs/2011.01277
https://arxiv.org/abs/1906.05011
http://dx.doi.org/ 10.1103/PhysRevLett.121.150503
http://arxiv.org/abs/1808.04471
http://dx.doi.org/ 10.1103/PhysRevLett.125.200501
http://dx.doi.org/ 10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1016/j.aop.2017.07.018
http://dx.doi.org/10.1103/PhysRevB.95.165101


20

i-th(j-th) state when a classical random number gen-
erator outputs its ij-th outcome. The random number
generator is designed such that it returns the ij-th out-
put with probability pij .

[92] However, the PT criterion is not a sufficient condition
for separability. In other words, there exists a family
of states which passes the PT test while they are not
separable [131]. These states are also known as bound
entangled where their entanglement cannot be distilled
to carry out quantum computing processes such as tele-
portation [132]. The states which satisfy the PT test
collectively form a convex set called the positive partial
transpose (PPT) states.

[93] K. Shiozaki and S. Ryu, J. High Energy Phys. 2017,
100 (2017).

[94] H. Shapourian, K. Shiozaki, and S. Ryu, Phys. Rev.
Lett. 118, 216402 (2017).

[95] K. Shiozaki, H. Shapourian, K. Gomi, and S. Ryu,
Phys. Rev. B 98, 035151 (2018).

[96] K. Inamura, R. Kobayashi, and S. Ryu, J. High Energy
Phys. 2020, 121 (2020).

[97] P. Bonderson, Non-Abelian Anyons and Interferometry,
Ph.D. thesis, California Institute of Technology (2007).

[98] P. Bonderson, K. Shtengel, and J. Slingerland, Annals
of Physics 323, 2709 (2008).

[99] H. Shapourian and S. Ryu, Phys. Rev. A 99, 022310
(2019).

[100] P. Bonderson, M. Freedman, and C. Nayak, Annals of
Physics 324, 787 (2009).

[101] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L.
Knight, Phys. Rev. Lett. 78, 2275 (1997).

[102] D. Bruß, J. Math. Phys. 43, 4237 (2002).
[103] J. Eisert, Entanglement in Quantum Information The-

ory, Ph.D. thesis, University of Potsdam, Germany
(2001).

[104] A. Kitaev, Annals of Physics 321, 2 (2006), january
Special Issue.

[105] G. Vidal, Journal of Modern Optics 47, 355 (2000),
quant-ph/9807077.

[106] M. Horodecki, Open Syst. Inf. Dyn. 12, 231 (2005),
quant-ph/0412210.

[107] Note that ALN is defined in terms of one-norm, hence,
it is a convex function by definition.

[108] G. Aubrun and S. J. Szarek, Phys. Rev. A 73, 022109
(2006); S. J. Szarek, Phys. Rev. A 72, 032304 (2005).

[109] S. Beigi and P. W. Shor, J. Math. Phys. 51, 042202
(2010).

[110] D. Ye, J. Math. Phys. 50, 083502 (2009).
[111] Compared to (5.5) we choose a normalization factor by

including θ∗a in the definition of mc.
[112] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang,

Phys. Rev. B 100, 115147 (2019).
[113] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[114] E. Ardonne and J. Slingerland, J. Phys. A: Math. Theor.

43, 395205 (2010).
[115] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher,

J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76,
722 (1996).

[116] C. H. Bennett, H. J. Bernstein, S. Popescu, and
B. Schumacher, Phys. Rev. A 53, 2046 (1996).

[117] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.
Rev. Lett. 78, 574 (1997).

[118] K. Chen and L.-A. Wu, arXiv:quant-ph/0205017
(2002).

[119] O. Rudolph, Quantum Information Processing 4, 219
(2005), arXiv:quant-ph/0202121.

[120] S. Dutta and T. Faulkner, arXiv:1905.00577 (2019).
[121] Y. Zou, K. Siva, T. Soejima, R. S. Mong, and M. P.

Zaletel, arXiv:2011.11864 (2020).
[122] K. Tamaoka, Phys. Rev. Lett. 122, 141601 (2019).
[123] A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer,

A. Kitaev, Z. Wang, and M. H. Freedman, Phys. Rev.
Lett. 98, 160409 (2007).

[124] G. E. Volovik, JETP Lett. 70, 609 (1999).
[125] N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44,

9667 (1991).
[126] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[127] G. Moore and N. Read, Nuclear Physics B 360, 362

(1991).
[128] C. Nayak and F. Wilczek, Nuclear Physics B 479, 529

(1996).
[129] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[130] B. A. Bernevig and T. L. Hughes, Topological Insulators

and Topological Superconductors (Princeton University
Press, Princeton, NJ, 2013).

[131] P. Horodecki, Physics Letters A 232, 333 (1997).
[132] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.

Rev. Lett. 80, 5239 (1998).

http://dx.doi.org/10.1007/JHEP04(2017)100
http://dx.doi.org/10.1103/PhysRevLett.118.216402
http://dx.doi.org/10.1103/PhysRevB.98.035151
http://dx.doi.org/10.1007/JHEP01(2020)121
https://thesis.library.caltech.edu/2447/2/thesis.pdf
http://dx.doi.org/https://doi.org/10.1016/j.aop.2008.01.012
http://dx.doi.org/10.1103/PhysRevA.99.022310
http://dx.doi.org/https://doi.org/10.1016/j.aop.2008.09.009
http://dx.doi.org/10.1103/PhysRevLett.78.2275
http://dx.doi.org/10.1063/1.1494474
http://arxiv.org/abs/quant-ph/0610253v1
http://dx.doi.org/https://doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1080/09500340008244048
http://arxiv.org/abs/quant-ph/9807077
http://dx.doi.org/10.1007/s11080-005-0920-5
http://arxiv.org/abs/quant-ph/0412210
http://dx.doi.org/10.1103/PhysRevA.73.022109
http://dx.doi.org/10.1103/PhysRevA.72.032304
http://dx.doi.org/10.1063/1.3364793
http://dx.doi.org/10.1063/1.3187216
http://dx.doi.org/10.1103/PhysRevB.100.115147
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1088/1751-8113/43/39/395205
http://dx.doi.org/ 10.1103/PhysRevLett.76.722
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevLett.78.574
https://arxiv.org/abs/quant-ph/0205017
http://dx.doi.org/10.1007/s11128-005-5664-1
http://arxiv.org/abs/quant-ph/0202121
https://arxiv.org/abs/1905.00577
https://arxiv.org/abs/2011.11864
http://dx.doi.org/10.1103/PhysRevLett.122.141601
http://dx.doi.org/10.1103/PhysRevLett.98.160409
http://dx.doi.org/10.1134/1.568223
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/https://doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/https://doi.org/10.1016/0550-3213(96)00430-0
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://press.princeton.edu/titles/10039.html
http://dx.doi.org/ http://dx.doi.org/10.1016/S0375-9601(97)00416-7
http://dx.doi.org/10.1103/PhysRevLett.80.5239

