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Résumé

Les systèmes intégrables quantiques restaient longtemps un domaine où des méthodes mathématiques
modernes permettaient d’accéder aux résultats intéressants pour l‘étude de systèmes physiques.
Le calcul exacte, numérique et asymptotique de fonction de corrélation reste un de sujets les plus
importants de la théorie de modèles intégrables quantiques. Dans ce cadre l’approche basée sur le
calcul des facteurs de forme s’est révélée la plus efficace. Dans ce thèse, une méthode alternative
fondée sur l’ansatz de Bethe algébrique est développée pour calculer des facteurs de formes dans la
limite thermodynamique. Elle est appliqué et décrit dans le contexte de chaîne de spin isotrope XXX,
qui est un des cas plus intéressant des modèles critiques où la zone de Fermi est non-compacte. Dans
le cas particulière des facteurs de formes à deux-spinons, on obtient un résultat exact en forme close
qui est comparable à celui-ci obtenu initialement dans le formalisme de l’algèbre des opérateurs de
𝑞-vertex. Cette méthode est aussi généralisée au calcul des facteurs de formes dans les secteurs
de spinons plus hauts, donnant une représentation en déterminants réduits, dont une structure de
haut-niveau à l’échelle des facteurs de formes est révélée.

Abstract

Since a long-time, the quantum integrable systems have remained an area where modern mathematical
methods have given an access to interesting results in the study of physical systems. The exact
computations, both numerical and asymptotic, of the correlation function is one of the most
important subject of the theory of the quantum integrable models. In this context an approach based
on the calculation of form factors has been proved to be a more effective one. In this thesis, we
develop a new method based on the algebraic Bethe ansatz for the computation of the form-factors
in thermodynamic limit. It is both applied to and described in the context of isotropic XXX
Heisenberg chain, which is one of the examples of an interesting case of critical models where the
Fermi-zone is non-compact. In a particular case of two-spinon form-factors, we obtain an exact
result in a closed-form which matches the previous result obtained from an approach based on
𝑞-vertex operator algebra. This method is then generalised to form-factors in higher spinon sectors
where we find a reduced determinant representation for the form-factors, in which a higher-level
structure for the form-factors is revealed.
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Récapitulatif de la thèse

La méthode des facteurs de forme est un outil très puissant [voir Smi92] pour étudier la dynamique
des systèmes intégrables quantiques. La théorie des systèmes intégrables donne une possibilité pour
réaliser les calculs exacts des facteurs de forme. Les moyens utilisés dans ce contexte entrent dans
le cadre des mathématiques modernes. Un exemple fondamental de ces systèmes est celui d’une
chaîne de spin XXX qui est déterminée par l’Hamiltonien ci-dessous.

𝐻𝑋𝑋𝑋 =
𝑀∑︁
𝑎=1

{
𝜎1
𝑛𝜎

1
𝑛+1 + 𝜎2

𝑛𝜎
2
𝑛+1 + 𝜎3

𝑛𝜎
3
𝑛+1 − 1

}
. (1)

C’est un opérateur sur l’espace de Hilbert (ou l’espace quantique) qui se décompose en produit
tensoriel 𝑉𝑞 = C2⊗𝑀 . Soit la longeur de chaîne 𝑀 un entier pair. De plus, nous allons y imposer la
condition de bords périodique 𝜎𝛼

𝑀+1 = 𝜎𝛼
𝑀 , ∀𝛼 ∈ {1, 2, 3}.

La résolution du problème spectral de ce système a été étudiée par Bethe [Bet31]. Il a montré
que les paramètres spectraux 𝝀 ∈ ℂ décrivant les vecteurs propres satisfont un système d’équations
transcendantales. Une variation algébrique de cette approche a été développée par Faddeev,
Sklyanin et Takhtadzhyan [FST79], surnommée « Ansatz de Bethe Algébrique » (ABA). Pour
brièvement parler de cette approche, considérons un vecteur (ou son dual) d’une forme

|𝜓(𝝀)〉 =
𝑁∏
𝑎=1
B(𝜆𝑎) |𝜙〉 , 〈𝜓(𝝀) | = 〈𝜙|

𝑁∏
𝑎=1
C(𝜆𝑎); (2a)

où |𝜙〉 est un vecteur de référence, les opérateurs B et C sont des opérateurs de l’espace quantique
𝑉𝑞 et, 𝑁 est la cardinalité de l’ensemble 𝝀. On peut montrer qu’un tel vecteur (ou son dual) est
un vecteur propre non-trivial du Hamiltonien 𝐻 si les paramètres spectraux 𝝀 correspondent aux
solutions admissibles d’un système d’équations

(∀𝑎 ≤ 𝑁) 𝔞(𝜆𝑎) + 1 = 0. (3a)

La fonction auxiliaire 𝔞(𝜆) qu’on trouve dans l’eq. (3a) est donnée par

𝔞(𝜆) =
(
𝜆 − 𝑖

2

𝜆 + 𝑖
2

)𝑀 𝑁∏
𝑎=1

𝜆 − 𝜆𝑎 + 𝑖
𝜆 − 𝜆𝑎 − 𝑖 . (3b)

Ces équations ainsi obtenues par l’approche de [FST79] sont équivalentes à celles de Bethe [Bet31].
Elles sont appelées les équations de Bethe et leurs solutions sont appelées les racines de Bethe. De
la même manière, un vecteur de la forme (2a) dont les paramètres spectraux satisfont eq. (3a) est
appelé un vecteur de Bethe on-shell, par opposition au vecteur de Bethe off-shell.

Ici, nous nous intéresserons au calcul des facteurs de forme qui se présentent notamment dans
le développement des fonctions de corrélations dynamiques en deux points, tel que l’exemple
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Récapitulatif de la thèse

ci-dessous. Notons que nous utiliserons ici la représentation de Heisenberg où les opérateurs
évoluent avec le temps alors que les états sont constants.

〈𝜎3
1 (0)𝜎3

𝑛+1(𝑡)〉 =
∑︁
exc
𝑒−𝑖 (𝐸exc−𝐸vide)𝑡𝑒−𝑖 (𝑝exc−𝑝vide)𝑛 |𝐹exc |2 . (4)

La somme des facteurs de forme de ce développement est prise sur tous les états excités (vecteurs
propres) de l’Hamiltonien. Le produit des facteurs de forme |𝐹exc |2 s’écrit alors

|𝐹exc |2 =
〈𝜓vide |𝜎3

𝑛 |𝜓exc〉 〈𝜓exc |𝜎3
𝑛 |𝜓vide〉

〈𝜓vide |𝜓vide〉 〈𝜓exc |𝜓exc〉 . (5)

Avec les états excités, apparaissent des particules de spinons. Dans le cadre de l’ansatz de Bethe
algébrique, ces spinons sont générés en ajoutant des trous dans la distribution des racines pour
l’état vide, ce que l’on décrit par l’ensemble 𝝑 des paramètres de la cardinalité 𝑛ℎ. On trouve que
le nombre des spinons 𝑛ℎ est toujours un pair et par conséquences elles apparaissent toujours en
couple. Les états liés de spinons sont décrits dans le cadre de l’ansatz de Bethe algébrique avec
des racines de Bethe complexes non-réelles. Nous allons utiliser ici la description de Destri et
Lowenstein [DL82] pour ces dernières, selon laquelle elles sont classifiées soit dans une paire
étroite (close-pair), soit dans une paire étendue (wide-pair). Les paires étroites forment une des
deux dispositions suivantes dans la limite thermodynamique 𝑁, 𝑀 →∞, 𝑁 ∼ 1

2𝑀 : une corde de
longueur deux (2-string) ou un quartet qui consiste en quatre racines de Bethe. Les trois types de
racines complexes : 2-string, quartet et wide-pair sont décrites par un ensemble des racines du haut
niveau 𝝁̃ de la cardinalité 𝑛̃. Elles satisfont un système d’équations de Bethe non-homogènes, que
l’on appelle équation de Bethe du haut niveau, s’écrivant :

(𝑎 ≤ 𝑛̃) 𝔞̃( 𝜇̃𝑎) + 1 = 0. (6a)

La fonction 𝔞̃ dans l’eq. (6a) étant donnée par :

𝔞̃(𝜈) =
𝑛ℎ∏
𝑎=1

𝜈 − 𝜗𝑎 − 𝑖
2

𝜈 − 𝜗𝑎 + 𝑖
2

𝑛̃∏
𝑎=1

𝜈 − 𝜇̃𝑎 + 𝑖
𝜈 − 𝜇̃𝑎 − 𝑖 . (6b)

À ce stade, on se retrouve face au problème de diffusion inverse quantique, c.à.d. le problème de
déterminer l’action d’un opérateur de spin 𝜎3

𝑛 sur un état on-shell défini par eq. (2a) et eq. (3a). Ce
problème a été résolu par Kitanine, Maillet et Terras [KMT99], grâce auquel on obtient des
quotients de produits scalaires, où au moins un vecteur est on-shell. Pour un tel genre du produit
scalaire ; Slavnov [Sla89], Gaudin [Gau83] et Korepin [Kor82] ont trouvé des représentations
déterminants parmi lesquelles on a ces deux cas différents :

— la représentation en déterminant des produit scalaire en déterminant de Slavnov dont au moins
un des deux états de produit scalaire est on-shell. On note la matrice de Slavnov par lettreM.
— la représentation de la norme au carré d’un état de Bethe on-shell en déterminant de Gaudin.
On note la matrice de Gaudin par lettre N .

Ces deux représentations, avec la résolution du problème de diffusion inverse, nous permettent
[KMT99] d’écrire une représentation des facteurs de forme en déterminants pour les chaînes de spin
d’une longueur finie. Nous avons ici une représentation des facteurs de forme finis en déterminants,
qui s’écrit comme un quotient des déterminants de Slavnov et Gaudin. À partir de là, la méthode
qu’on propose aussi se poursuite aux études asymptotiques des facteurs de forme dans la limite
thermodynamique, où la longueur de chaîne 𝑀 →∞. Cette méthode est divisée en trois étapes :
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étape 1 Extraction de la matrice de Gaudin : dans cette première étape, nous extrayons∗ la
matrice de Gaudin en prenant l’action de son inverse sur la matrice de Slavnov ou une version Foda
et Wheeler [FW12b] qui généralise la matrice de Slavnov.

F = N−1M, detF =
detM
detN . (7)

Après cette étape, nous obtenons une représentation en termes de déterminants des matrices de
Cauchy modifiées. On évoque souvent la propriété de condensation des racines de Bethe dans les
calculs thermodynamiques, qui permet d’écrire les sommes en tant qu’intégrales. La mesure de
celles-ci est la fonction de densité des racines qui satisfait par conséquence une équation intégrale.
Dans certains cas qu’on précisera dans les calculs, une extension de cette propriété pour les fonctions
méromorphes sera utilisé, c’est ce qu’on appellera la propriété de condensation généralisée.
Un résultat surprenant que nous avons obtenu, montre l’émergence de la matrice de Gaudin du haut
niveau et son extraction :

S̃ = Ñ−1T̃ . (8)

Cette structure du haut niveau se trouve dans un bloc des colonnes de la matrice de Cauchy modifiée
provenant des racines complexes. L’émergence ici de cette structure du niveau supérieur pour les
facteurs de forme est comparable avec celle de l’équation de Bethe du haut niveau (6a) obtenue
dans [DL82] pour le spectre.

étape 2 Extraction de la matrice de Cauchy(-Vandermonde) : dans cette étape, nous extrayons∗

la plus large matrice de Cauchy contenue dans la représentation obtenue dans l’étape précédente.
Malheureusement la matrice de Cauchy plus large est souvent rectangulaire. Dans ce cas, la matrice
mixte de Cauchy-Vandermonde est un recours pour avancer l’extraction puisqu’elle généralise
l’identité du déterminant de Cauchy aux cas rectangulaires.

detCª𝛾 [𝜶‖𝜷] =
∏𝑚+𝑛

𝑗>𝑘 sinh 𝜋(𝛼 𝑗 − 𝛼𝑘)
∏𝑚

𝑗<𝑘 sinh 𝜋(𝛽 𝑗 − 𝛽𝑘)∏𝑚+𝑛
𝑗=1

∏𝑚
𝑘=1 sinh 𝜋(𝛼 𝑗 − 𝛽𝑘)

. (9)

Ceci nous montre aussi l’intérêt d’extraire une matrice au sens plus général. Nous allons plus loin et
extrayons une matrice duale de Cauchy-Vandermonde grâce à sa dualité. Cette dualité nous permet
de remplacer le bloc Vandermonde par un bloc équivalent, composé de polynômes supersymétriques
élémentaires.

étape 3 Calcul des déterminants de Cauchy infinis dans la limite thermodynamique : dans
cette dernière étape, nous calculons les déterminants de Cauchy, avec les préfacteurs dans la
limite thermodynamique. Comme 𝑀, 𝑁 → ∞ dans cette limite, la matrice de Cauchy (ou plus
généralement la matrice de Cauchy-Vandermonde) devient une matrice infinie. Pour calculer cette
limite, nous exprimons d’abord les déterminants de Cauchy et les préfacteurs comme un produit
infini des fonctions auxiliaires. On peut calculer la limite thermodynamique de ces fonctions
auxiliaires avec la méthode de condensation. Après la substitution de cette limite pour les fonctions
auxiliaires, on obtient un nouveau produit infini. En comparant celui-ci avec la forme Weierstrass
de fonction de Barnes-G, on obtient le résultat final.
∗ Ce que l’on entend ici par l’« extraction d’une matrice » est une action de sa matrice inverse, ou une matrice équivalente

à celle dernière au déterminant près.
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Récapitulatif de la thèse

Dans le cas particulier des facteurs de forme pour les états excités à deux spinons tous les racines
de Bethe sont réelles et les racines non-réelles s’absentent. Par conséquence, on trouve que la
modification dans la matrice de Cauchy que l’on obtient après l’étape 1 est minimale, de même que
le calcul de l’extraction de Cauchy dans l’étape 2 donne un simple résultat. Ainsi on a obtenu dans
[KK19] la forme exact close des facteurs de formes thermodynamiques à deux spinons :

|𝐹𝑧 (𝜗1, 𝜗2) |2 =
2

𝑀2𝐺4
(

1
2

) ∏
𝜎=±

𝐺 ( 𝜗2−𝜗1
2𝑖𝜎 )𝐺 (1 + 𝜗2−𝜗1

2𝑖𝜎 )
𝐺 ( 12 + 𝜗2−𝜗1

2𝑖𝜎 )𝐺 ( 32 + 𝜗2−𝜗1
2𝑖𝜎 )

. (10)

Ce résultat a été comparé avec celui-ci obtenu dans [BCK96] ; [BKM98], ces dernières sont obtenus
en utilisant une méthode fondé sur l’algèbre des opérateurs de 𝑞-vertex [JM95]. Car l’approche de
l’ABA a une domaine d’applicabilité plus large, on voit immédiate l’aspect intéressant derrière notre
méthode. Ce comparaison entre les résultat obtenus dans les deux cadre différent est également
important pour justifier les hypothèses utilisées dans nos calculs, notamment la propriété de
condensation généralisée.

Nous avons calculé aussi les facteurs de forme dans le cas plus général des états excités liés qui
contiennent nécessairement les racine non-réelles. On obtient dans ce cas une représentation des
facteurs de formes en déterminant réduit, que s’écrivant :

��𝐹𝑧 ({𝜗𝑎}𝑛ℎ𝑎=1)
��2 = (−1)

𝑛ℎ+2
2 𝑀−𝑛ℎ2

𝑛ℎ (𝑛ℎ−2)+2
2 𝜋

𝑛ℎ (𝑛ℎ−3)+2
2

∏𝑛̃
𝑎=1

∏𝑛ℎ
𝑏=1( 𝜇̃𝑎 − 𝜗𝑏 − 𝑖

2 )∏𝑛̃
𝑎,𝑏=1( 𝜇̃𝑎 − 𝜇̃𝑏 − 𝑖)

× 1
𝐺2𝑛ℎ ( 12 )

𝑛ℎ∏
𝑎,𝑏=1
𝑎≠𝑏

𝐺 ( 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 (1 + 𝜗𝑎−𝜗𝑏

2𝑖 )
𝐺 ( 12 + 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 ( 32 + 𝜗𝑎−𝜗𝑏

2𝑖 )
det𝑛̃ Q𝑔 det𝑛ℎ Q𝑒

det V[𝝑] . (11)

Ce que l’on entend ici dans la phrase « représentation des facteurs de forme en déterminant
réduit » c’est que les matrices Q

𝑔/𝑒 sont finies, ce qui est vrai car on ne s’intéresse qu’aux
calculs des déterminants pour les états excités plus proches (low-lying) de l’état vide 𝑛ℎ, 𝑛̃ << 𝑁 .
Malheureusement ce résultat de l’eq. (11) n’est pas écrit sous une forme close, car les composants
des matrices résiduelles Q

𝑔/𝑒 restent toujours sous une forme d’intégrales contenants des fonctions
auxiliaires. Pourtant il est bien important car il montre qu’on peut obtenir, dans le cadre de ABA,
une représentation des facteurs de formes des états liés en déterminants d’une taille finis. Cependant,
on peut toujours simplifier cette expression. Dans le cas des facteurs de forme à quatre spinons,
nous montrons que l’on peut exprimer le résultat sous la forme suivante, en éliminant tous les
déterminants résiduels.

|𝐹𝑧 (𝜗1, 𝜗2, 𝜗3, 𝜗4) |2 = − 32𝜋3

𝑀4𝐺8( 12 )
∑︁
𝑎≠𝑏

𝐺 ( 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 (1 + 𝜗𝑎−𝜗𝑏

2𝑖 )
𝐺 ( 12 + 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 ( 32 + 𝜗𝑎−𝜗𝑏

2𝑖 )
J𝑔J𝑒∑𝑛ℎ

𝑎=1 𝜌̃(𝜐 − 𝜗𝑎)
. (12)

Finalement, remarquons que l’avantage principal derrière notre méthode est qu’elle fondé sur
ABA. Ça lui donne une applicabilité dans le contexte du modèle plus général d’une chaîne de spin
anisotrope dite XXZ. On peut aussi estimer qu’on puisse généraliser notre méthode aux autres
modèles intégrables similaires à condition que la structure que donne la matrice de Cauchy (ou une
structure équivalente) reste préservée.

Le reste de ce manuscrit est rédigé en anglais.
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“what we observe is not nature in
itself, but nature exposed to our
method of questioning.”

— Werner Heisenberg
Physics & Philosophy

Introduction

A quantum spin chain is a prototype of an interacting many-body quantum system whose origins
can be found in the initial attempts of W. Heisenberg to demonstrate the quantum origin of the
magnetism [Hei28]. It came soon after the failure of the one dimensional Ising model [Isi25] to
demonstrate the phase transition to disordered phase that Heisenberg proposed his model, albeit it is
important to note that Onsager [Ons44] did manage to show the phase transition in two-dimensional
Ising model.

The Heisenberg model is a lattice of spin-1/2 particles where each of them interact with its nearest
neighbours. In its most general form, one can write the totally anisotropic quantum Hamiltonian
with the coupling to an external field

𝐻𝑋𝑌 𝑍,ℎ =
∑︁

< 𝑗,𝑘>

3∑︁
𝑎=1

𝐽𝑎𝜎
𝑎
𝑗 𝜎

𝑎
𝑘 + ℎ

∑︁
𝑗

𝜎3
𝑗 .

In this expression 𝜎𝑎
𝑗 denote the local spin operators which act as a Pauli matrices in the subspace for

the 𝑗 th lattice site of the total Hilbert space. Here we consider only the one-dimensional Heisenberg
chains of length 𝑀 with periodicity condition 𝜎𝑎

𝑀+1 = 𝜎𝑎
𝑀 . We also distinguish the model with

isotropic coupling 𝐽1 = 𝐽2 = 𝐽3 = 𝐽 which is called the XXX model, the model with longitudinal
anisotropy 𝐽1 = 𝐽2 = 𝐽 and 𝐽3 = Δ𝐽 called XXZ model.

In 1931, Hans Bethe [Bet31] realised that the isotropic Heisenberg model can be solved
analytically to obtain exact wavefunctions and their eigenvalues. This method came to be known
as the coordinate Bethe ansatz. It tells us that the Bethe wavefunction is parametrised by a set of
complex spectral parameters which satisfy a system of coupled transcendental equations, known
as the Bethe equations. Its roots are correspondingly called the Bethe roots. This method was
extended to the other one dimensional quantum models opening a new paradigm of the integrable
one-dimensional quantum models, notable examples of which include the one dimensional Bose
gas (or the non-linear Schrodinger equation NLS model) as well as the anisotropic version of the
Heisenberg spin-1/2 model denoted XXZ or the XYZ for the completely anisotropic case. Lieb and
Liniger [LL63] resolved the NLS model for the one-dimensional Bose gas whereas XXZ model was
resolved by Orbach [Orb58] for values of the anisotropy parameter Δ.
Following Bethe’s seminal work, the study of the ground state and its excitations became the
primary focus of the investigation. It was Hulthén [Hul38] who first came up with a conjecture
which determines the anti-ferromagnetic ground state of the Heisenberg model. He also made the
assumption that ground state Bethe roots are distributed densely on the real line in the thermodynamic
limit and gave the integral equation satisfied by the density function. This allowed him to compute
the energy of the ground state in the thermodynamic limit. It was thus known that the ground
state of the XXZ model for Δ > −1 is a disordered anti-ferromagnetic ground state which has a
very non-trivial description in the Bethe ansatz. These results were extended to the anisotropic
anti-ferromagnetic XXZ model in [Orb58] giving the integral equations for the density of the ground
state roots for all values of anisotropy parameter in Δ > 1. Some of the assumptions inherent in
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these computations, including the condition used to determine the ground state, were rigorously
proved by Yang and Yang in [YY66a]; [YY66b]. However, the fact that ground state roots condenses
in the thermodynamic limit with the given density function was only recently proved by Kozlowski
[Koz18]. The excited states ‘near’ the ground state are called low-lying excitations. These low-lying
excitations for Δ > −1 of the XXZ model were first studied by des Cloizeaux and Pearson [CP62]
walking along the footsteps of Hulthén. However there it was misconstrued that the low-lying
excitations are made of the spin-1 particles and thus the dispersion relation obtained was wrong.
This error was corrected by Faddeev and Takhtadzhyan [FT81] (see also [FT84]) as they showed
that the low-lying excitations are made up of spin-1/2 particles called spinons which always comes
in pairs. In addition to it, the XXZ chain also contain the complex Bethe roots which represent
physically the spinon bound states. Since the original work of the Bethe himself, it has been widely
believed that the complex roots can be arranged in the specific formations called strings in the
thermodynamic limit where 𝑀 →∞. This string hypothesis although it is frequently used in the
computation involving the complex roots, remains a contentious issue. The analysis of Destri and
Lowenstein [DL82] and Babelon, Vega and Viallet [BVV83] provides an alternate approach which
do not make any a priori assumptions of the string hypothesis, before passing to the thermodynamic
limit. In this picture all the complex roots are classified into the two categories called close-pairs
and wide-pairs where the former are sub-divided into two types of special formations: 2-strings and
quartets. The nomenclature ‘2-string’ is borrowed from the traditional string picture and it refers to
the strings of length two. In the alternate picture proposed of the Destri-Lowenstein, we find that
strings of length higher than two do not appear in the low-lying spectrum. Combinatorially, their
absence is compensated by the new type of formations called quartets and wide-pairs.

The quantum integrable models in one dimension demonstrate uncanny similarities with the
exactly solvable models of the two dimensional statistical physics. During his investigations into
the six-vertex model Lieb [Lie67] found that wavefunction for its transfer matrix are same as
the wavefunction obtained through the Bethe ansatz for the isotropic (XXX) Heisenberg model.
Subsequently McCoy and Wu [MW68] made a similar observation for the anisotropic (XXZ)
Heisenberg model and showed that the Hamiltonian commute with the transfer matrix whereas
Sutherland [Sut70] found a similar link between the totally anisotropic (XYZ) model and the transfer
matrix for the eight-vertex model. This correspondence between the quantum integrable chains and
two dimensional exactly solvable lattice model is more profound. It was further explored by Baxter
in [Bax71]; [Bax72]; [Bax89] where he also outlines the algebraic nature of this link. The same
period also saw the radical changes in our understanding of the classical integrable systems. The
works of Lax [Lax68] and Gardner, Greene, Kruskal and Miura [GGKM67] on the Korteweg and
de Vries (KdV) equation led to the realisation that non-linear problem of the KdV equation can
be rephrased in terms of evolution problem of a linear operator, which surprisingly turns out to
be the Schrödinger operator in the case of KdV equation. This method of using the Lax operator
was further developed by Zakharov, Faddeev and Shabat in [ZS72]; [ZF72]; [ZS74]; [ZS79] and
it came to be known as classical inverse scattering method. These simultaneous developments in
the classical integrable systems as well as exactly solvable lattice models played a quintessential
role towards the development of the quantum inverse scattering method by Faddeev, Sklyanin and
Takhtadzhyan [FST79]. Consolidating on these previous developments, they firmly established the
algebraic origin of the quantum integrability hence giving us the algebraic version of the Bethe
ansatz. There it was shown that the Lax operators in the quantum sense are given by a representation
of the Baxter’s R matrix satisfying so-called Yang-Baxter equation. The transfer matrix is defined
as the trace of the product of Lax operators and it generates a family of commutating operators,
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among which one can find the Hamiltonian of the quantum integrable model. This also meant
that one can define in principle new integrable quantum models by looking for the solutions of the
Yang-Baxter equation and the representations of the R matrices. This line of reasoning sparked
an interest in study of quantum groups [Jim90, and the refs. therein] ([KS82]; [Dri85]; [Dri88];
[Jim85]; [FRT90]) which developed into entire new domain of mathematics.

In the algebraic formulation of the Bethe ansatz, we generate a Fock space starting from a
(pseudo-)vacuum vector. This method gives a convenient description where both on-shell and
off-shell vectors are obtained by action of lowering operator in this algebra. This simpler formulation
opens the doors to the computations of the physically more meaningful quantities: the correlation
functions, which we were able to compute only for a handful of special cases of the spin chains
such as its free-fermion point [LSM61] and the Ising model [MTW77] and conformal field theories
in the larger picture. The correlation function can be either equal-time correlations for a system at
equilibrium or the dynamic correlations for a system near or away from the equilibrium. Fourier
transform of the two-point dynamic correlation function is called the dynamic structure factor,
it can be studied experimentally in the neutron scattering experiments [MEK+13]. The matrix
elements of the local operators are called the form-factors provides a powerful tool [Smi92] to study
the quantum integrable models, these are the central object of this thesis. These are related with the
correlation functions and dynamic structure factor through the so-called form-factor expansion.

There are two main approaches for the computations of the correlation functions and form-factors
of the quantum spin chains, both of which ultimately rely on the algebraic structure behind the
integrability. The first approach is based on the 𝑞-vertex operator algebra formalism put-forth by
Jimbo and Miwa [JM95] which relies on the affine𝑈𝑞 ( ˆ𝔰𝔩2) symmetry of the infinite quantum spin
chains which they exhibit directly in the thermodynamic limit. Jimbo, Miki, Miwa and Nakayashiki
[JMMN92] were able to obtain the multiple integral representation of the equal-time correlation
functions for the massive anti-ferromagnetic XXZ model with anisotropy Δ > 1 using the approach
based on the 𝑞-vertex operator algebra. The form-factors can also be written in the multiple integral
representation form [JM95] for the massive XXZ model. It is important to remark that this method
works directly in the thermodynamic limit and for the massive regime of the XXZ spin chains
only where |𝑞 | ≠ 1. However it is important to note that there is a way to get around this problem,
which allowed Jimbo and Miwa [JM96] to compute the correlation functions in the massless
−1 < Δ ≤ 1 regime of the XXZ chain. One can also compute the form-factors in the isotropic
limit 𝑞 → 1,Δ→ 1+ from the multiple integral representation [JM95] to obtain the form-factors
of the isotropic (XXX) Heisenberg model. This isotropic limit for the two-spinon form-factors
was computed by Bougourzi, Couture and Kacir [BCK96] and Bougourzi, Karbach and Müller
[BKM98] whereas for the four-spinon form-factor it was computed by Abada, Bougourzi and
Si-Lakhal [ABS97] and Caux and Hagemans [CH06]. Caux, Konno, Sorrell and Weston [CKSW12]
showed that one can obtain the form-factors of the massless anisotropic XXZ model |Δ| < 1 with a
similar limit for the form-factors starting from the elliptic XYZ model.

The second approach that we shall use here is based directly on the algebraic Bethe ansatz.
Using the determinant formulae for the scalar products obtained by Gaudin [Gau83], Korepin
[Kor82] and Slavnov [Sla89] as well as through the resolution of the quantum inverse scattering
problem by Kitanine, Maillet and Terras [KMT99], we can obtain the determinant representation
for the form-factors of the finite length XXZ chain for all values of the Δ > −1. This result
was also obtained in [KMT99] and the same group went to compute in [KMT00] the multiple
integral representation for the correlation functions in the thermodynamic limit which was found in
agreement with the prior result [JMMN92]; [JM96] from the 𝑞-vertex operator algebra method.
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This was extended in [KMST02] to compute the correlation function for the XXZ model in the
presence of an external magnetic field ℎ ≠ 0.

The extraction of the long-distance asymptotic behaviour of the correlations from its multiple
integral representation for the correlation function is a truly daunting task. Remarkably, it is
still possible to do so as shown by group of Kitanine, Kozlowski, Maillet, Slavnov and Terras
[KKM+07]; [KKM+09a]; [KKMT14]. It is also argued that the form-factor expansion comes out as
very powerful method long-distance asymptotic behaviour of the two-point (dynamic) correlation
functions [KKM+09a]; [KKM+11a]; [KKM+12]. There it was found that the large-distance
asymptotic behaviour of the two-point function for the massless non-zero field XXZ chain is
dominated by the form-factor of the umklapp excitation generated by adding particle hole pair at the
Fermi-boundary.
However the computations of form-factors in the thermodynamic limit from an algebraic Bethe
ansatz based method had remained an unexplored territory until the very end of the first decade of
the millennium, barring an important exception of the spontaneous magnetisation computed by
Izergin, Kitanine, Maillet and Terras [IKMT99]. The renewed interest in the recent years has led to
the computation of thermodynamic form-factors [KKM+09b]; [KKM+11b] for the massless XXZ
chain in the presence of an external field ℎ ≠ 0 as well as by Dugave, Göhmann, Kozlowski and
Suzuki [DGKS15] in the massive regime Δ > 1 of the XXZ model. However, it is important to
remark that these results are always represented in terms of the Fredholm determinants for which it
is not yet known how it could be converted to the multiple integral form. As a result, the results
for the form-factors from the 𝑞-vertex operator algebra and algebraic Bethe ansatz based methods
were never successfully compared. It is also important to note that there is no Fermi-boundary for
the zero-field case ℎ = 0 of the massless XXZ model as well as the XXX model since the Fermi
distribution of its roots is non-compact. As a result there is no question of particle-hole excitation
at the boundary and the previous results of the non-zero external field cannot be simply extended to
the zero-field case.
One of the main objective behind the work presented in this thesis was to get these problems and
build up a method to compute the thermodynamic form-factors which can allow us to compare the
results with those obtained from the 𝑞-vertex operator algebra. This was successfully demonstrated
in [KK19] for the isotropic Heisenberg (XXX) model where we reproduced the result of [BCK96]
from the 𝑞-vertex operator approach. Another equally important objective behind this new method
proposed here is to understand the role of the complex roots in the form-factors. For the XXZ chain
in the presence of an external field, the form-factor for the excitations involving complex roots was
done in [Koz17]. Boos, Jimbo, Miwa, Smirnov and Takeyama [BJM+07] (BJMST) found hidden
fermionic operators in the space quasi-local operators for the XXZ model, based on which they
propose a new approach [JMS11] towards the computation of the form-factors of the bound-states.
An important conclusion drawn from this formalism is a prediction that all the form-factors can
be written as smaller, finite determinants. We do not use the BJMST approach here, although our
results based on the method generalised from [KK19] does satisfy this criteria.

Outline of the Thesis

This thesis is organised into three parts. The first part is primarily of introductory nature. In the
second part we discuss our method of computation of the form-factors in the context of the isotropic
Heisenberg (XXX) model. The third part summarises the result and lays down the conclusions.
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Outline of the Thesis

Here we also briefly discuss scope for the generalisation of this method to the XXZ model and
beyond.

The first part is organised into two chapters. In the first chapter we introduce the quantum inverse
scattering method and determinant formulae for the scalar products and the finite form-factors. The
second chapter is entirely devoted to the spectrum in the thermodynamic limit. The first section
deals with the ground state of the XXZ model for different values of Δ. Here we introduce a
conjecture for a generalised version of the condensation property which we use to write the sum
over the roots of the ground state (or real roots of a low-lying excitation) involving a meromorphic
function as integrals in the thermodynamic limit. In the second section of this chapter we also
introduce the Destri-Lowenstein picture which describes the bound state excitations in the low-lying
spectrum which necessarily contain complex Bethe roots. Although most of the discussion revolves
around the XXX chain, we shall also discuss very briefly section 2.3 the generalisation of the
Destri-Lowenstein picture to the XXZ model by Babelon, de Vega and Viallet. At the end of
chapter 2 we give an auxiliary result for the asymptotic form of the 𝜙 function representing the ratio
of Baxter polynomials, which later plays an important role in our computations.

The second part contains all the technical details of our method employed on the XXX model.
Our method can be thought of as a three step process:

Step 1: In the first step we perform the so-called Gaudin extraction that allows us to write a ratio
of two determinants as a single determinant. This can be achieved by taking an action of the inverse
of a Gaudin matrix, or an equivalent matrix∗ on the Slavnov matrix. This procedure gives us a
determinant representation involving an infinite Cauchy matrix.

Step 2: In the second step, we extract the infinite Cauchy matrix. This procedure leaves behind
a small residual matrix of a finite size. In a particular case of two-spinon form-factors, it turns
out that we can compute the determinant of the reduced matrix exactly, leading to a final result in
closed-form. However, we cannot extend the same method to compute the residual matrices for
the form-factors of bound states, as they must involve the complex Bethe roots which complicates
the computations of auxiliary integrals. As a result we have not yet obtained a result for generic
form-factors that can be expressed in closed-form.

Step 3: In the third and final step we compute the infinite determinant together with the prefactor
in the thermodynamic limit to obtain our final results.

This part is organised into three chapters from chapters 3 to 5. In chapter 3 we first introduce
our method and compute the thermodynamic limit of the two-spinon form-factor. This chapter is
entirely based on our published result

N. Kitanine and G. Kulkarni. ‘Thermodynamic limit of the two-spinon form factors
for the zero field XXX chain’. SciPost Physics 6.6 (2019), p. 076. doi: 10.21468/
scipostphys.6.6.076

Here we use the determinant representations due to Slavnov and Gaudin for the scalar product and
also a version of the Slavnov’s determinant for excitations that are obtained as 𝔰𝔲2 descendants of
the leading Bethe vectors. With the procedure of Gaudin extraction and Cauchy extraction described
earlier we obtain an exact result for the two spinon form-factor. In particular, here we find that the
residual determinant that is left behind after the Cauchy extraction (step two) is a Vandermonde
∗ here equivalence means the equality of their determinants
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matrix of size two. Hence its determinant can be easily computed which gives us a closed form
expression for the two-spinon form-factor after computing the thermodynamic limit of the infinite
Cauchy determinants and prefactors. This result is also compared with the result from the 𝑞-vertex
operator formalism.
Over the next two chapters 4 and 5, we extend this method to the computation of generic form-factors
for the bound states. Chapter 4 is devoted to the Gaudin extraction in the generic case, where
we discuss how the emergence of complex Bethe roots influences this process. As a result of
this procedure we obtain a modified Cauchy determinant representation where a small number
of modifications are brought due to the presence of complex roots and not all of these extra
terms associated with the Cauchy part coming from the real roots. Nonetheless, the low-lying
criteria for the excitation mean that the complex roots form a small fraction of the excited state
Bethe roots and hence the determinant representation is still dominated by an infinite Cauchy
matrix in the thermodynamic limit. Chapter 5 is devoted to the extraction of these infinite
Cauchy matrices and computation of their determinants in the thermodynamic limit. Here we
encounter a subtle impediment since we find that the Cauchy matrices that we wish to extract are
rectangular. This problem is resolved through the extraction of a Cauchy-Vandermonde matrix which
is composed by mixing rectangular Cauchy and Vandermonde matrices. Its determinant formula is
a simple generalisation of the Cauchy determinant. With this extraction we obtain a determinant
representation in terms of the reduced matrices of small and finite size in the thermodynamic limit.
This result is further examined for the four-spinon case where we find that the residual determinants
can be computed to as a summation over some general terms. However, this does not yet give us a
closed-form representation since these general terms are expressed in the form of integrals of a
auxiliary Φ functions which are hyperolic equivalent of the ratio of Baxter polynomials 𝜙.

In the conclusion, we summarise the results obtained for the XXX model. Here we again compare
the entire result for the two-spinon form-factors and the prefactors in the result for four-spinon
form-factor with those obtained from the 𝑞-vertex operator algebra framework. At the end, we
will briefly discuss the possible extensions of this method to the XXZ model and to more diverse
scenarios.

There are three appendices to supplement all the computations. Appendix A gives all the
definitions and useful properties of the special functions used here. Appendix B contains all the
auxiliary computations that involve the density functions. We study a general version of Lieb
integral equations to define the density that encompasses all the variations of this integral equation
that we need in our computations. Appendix C gives useful results for the determinants and the
extractions of matrices. In this appendix we also discuss the mixed Cauchy-Vandermonde matrix,
its determinant and inversion.
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Notations

A more comprehensive list of all the notations can be found in the index at the back of this Thesis.

ℕ set of natural numbers
ℕ∗ = ℕ \ {0} set of natural numbers exlcuding zero
ℤ set of integers
ℚ set of rationals
ℝ set of real numbers
ℝ + 𝑖𝛼, 𝛼 ∈ ℝ a line parallel to the real line in complex plane
ℂ set of complex numbers
𝛿 𝑗 ,𝑘 Kronecker’s delta function
𝛿(𝑥) Dirac’s delta function (as a distribution)
𝐼𝑆 characterisitc function of a set 𝑆
𝐻 (𝑥) = 𝐼𝑥>0 Heaviside step function

Index-free notation

In this thesis we use a non-conventional∗ index-free notation for sets of rapidities or spectral
parameters, and sums and products involving such sets, that is denoted without writing the dummy
indices explicitly. This is summarised in the following table, which is followed by some important
clarifications presented in the remainder of this section.

𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} set of complex parameters

𝑛𝒛 = #𝒛 cardinality of a set

𝒛𝒂̂ = 𝒛 \ {𝑧𝑎} set with an omission
∏

𝑓 (𝒛) =
∏
∀𝑧𝑎 ∈𝒛

𝑓 (𝑧𝑎) product over all elements in the set 𝝀

𝐴[𝒛] or 𝐵[𝒛‖𝒘] matrix parametrised by set(s) of parameters
aaa
𝑓 (𝒛) or

aaa
𝑓 (𝒛‖𝒘) (super-)alternant product

«𝜆 = {𝜆1, 𝜆2, . . . | 𝜆𝑖 ∈ ℕ, 𝜆𝑖+1 < 𝜆𝑖} partition of integers

∗ Although this is not a conventional notation, similar notations have been used by N. Slavnov, O. Foda (to name a few)
in their works, see for example [FW12a] or (math.ph/1911.12811).
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Index-free set

We will use the bold typeface for mathematical symbols that denote a set of variables.
Example. The notation 𝝀 denotes the set

𝝀 = {𝜆 𝑗}𝑛𝑗=1

The cardinality 𝑛(𝝀) has to be explicitly given in this notation. In this example, we have 𝑛(𝝀) = 𝑛.
We will also use the notation 𝑛𝝀 for the cardinality. An omission of an index will be denoted as

𝝀𝑎̂ = 𝝀 \ {𝜆𝑎} .

Set operations in this notations are defined as follows:

1. The addition with a scalar (complex) can be used to define a shifted set.
Example. 𝝀 + 𝜂 denotes the set {𝜆 𝑗 + 𝜂} 𝑗 .

2. Multiplication by a scalar corresponds to the dilation or rescaling of the set
Example. 𝛼𝝀 denotes the set {𝛼𝜆 𝑗} 𝑗 .

3. Addition (or subtraction) of two sets can be defined as
Example. 𝝀 − 𝝁 can be used to denote {𝜆 𝑗 − 𝜇𝑘 } 𝑗 ,𝑘 .
We also note that as far as the addition of sets is concerned, we will drop the condition for its
elements to be distinct and allow for repetitions. That is to say that we interpret, 𝝀 − 𝝁 as a
collection rather than a set in the set theoretic parlance.

Index-free products (or summations)

We use the product and sum operators in bold typeface
∏

and
∑

to denote the product and sum
running over a set (or collection) of variables.
Example. For any function 𝑓 : ℂ→ ℂ, we can define

∏

𝑓 (𝝀) =
𝑛𝝀∏
𝑗=1

𝑓 (𝜆 𝑗) and
∑︁

𝑓 (𝝀) =
𝑛𝝀∑︁
𝑗=1

𝑓 (𝜆 𝑗).

This can be combined with the operations defined on the sets above.

∏

𝑓 (𝝀 − 𝝁) =
𝑛𝝀∏
𝑗=1

𝑛𝝁∏
𝑘=1

𝑓 (𝜆 𝑗 − 𝜇𝑘)

We may face a situation where the function 𝑓 has poles (or zeroes) that we want to avoid from
the product (or sum), in such case, we will attach an attribute ′ to the product (or sum).
Example.

∏′(𝝀 − 𝝀) =
𝑛𝝀∏

𝑗 ,𝑘=1
𝑗≠𝑘

(𝜆 𝑗 − 𝜆𝑘).
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When there are more than one sets of variables present in summand (product term), the dummy
set can be often deduced by comparison. Nonetheless for the sake of clarity, we will be sometimes
add explicit indications for dummy variables in the subscript as it is shown in the following example:
Example.

𝑔(𝝁) =
∑︁

𝝀
𝑓 (𝝀, 𝝁) =

𝑛𝝀∑︁
𝑗=1

𝑓 (𝜆 𝑗 , 𝝁)

which denotes a partial sum in contrast to the double sum

ℎ =
∑︁

𝝀,𝝁
𝑓 (𝝁, 𝝀) =

𝑛𝝀∑︁
𝑗=1

𝑛𝝁∑︁
𝑘=1

𝑓 (𝝁, 𝝀).

In the scenario where a set appears in the definition of a function, a single vertical bar | will be
used to seperate the implicit or hidden variables. For example, let us take the precedent partial sum,
we can have

𝑔(𝜆𝑎 |𝝀) =
∑︁

𝑓 (𝜆𝑎, 𝝀).

Any further operation with this function will now only involve the parameters before the vertical bar
|, as the parameters after the bar are hidden variables that occur implicitly in its definition. For
example

𝑒 =
∑︁

𝑔(𝝀 |𝝀)𝑞(𝝀) =
𝑛𝝀∑︁
𝑗=1
𝑔(𝜆𝑎 |𝝀)𝑞(𝜆𝑎)

Whenever there is the slightest indication that the ambiguity due to the use of this notation cannot
be resolved, we will fall back to the classical notation. All final results presented as conlusions will
also be expressed in classical notations.

Parametrised matrices

We will use the following notation for a parametrised matrix 𝐴:

𝐴[𝒙‖𝒚] = [𝑎(𝑥 𝑗 , 𝑦𝑘)] 𝑗 ,𝑘
A complex valued function 𝑎 : ℂ2 → ℂ needs to be explicitly given on case-by-case basis for each
individual usage of this notation.
When parametrised by a single set, it will become necessary to tell the reader explicitly about the
form of the matrix in order to avoid confusion while reading. This can avoided through the use
phrases such as:

• B is a square/ rectangular matrix given by

𝐵[𝒙] = [
𝑏1(𝑥 𝑗) . . . 𝑏𝑛 (𝑥 𝑗)

]
• C is a column (row) vector given by

𝐶 [𝒙] = [𝑐(𝑥 𝑗)] 𝑗

9
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• D is a diagonal matrix given by

𝐷 [𝒙] = diag(𝑑 (𝑥1), 𝑑 (𝑥2), . . . , 𝑑 (𝑥𝑛)) =

𝑑 (𝑥1) 0

. . .

0 𝑑 (𝑥𝑛)


Matrix products in this notation can be denoted with the contractions of dummy variables. For
example,

𝑃[𝒖‖𝒛] · 𝑄 [𝒛‖𝒗] = 𝑃𝑄 [𝒖‖𝒗]
𝑃[𝒖‖𝒛] · 𝐵[𝒛] = 𝑃𝐵[𝒖] both 𝐵 and 𝑃𝐵 are square/ rectangular
𝑃[𝒖‖𝒛] · 𝐶 [𝒛] = 𝑃𝐶 [𝒖] 𝐶 and 𝑃𝐶 are column & row vectors resp.
𝑃[𝒖‖𝒛] · 𝐷 [𝒛] = 𝑃𝐷 [𝒖‖𝒛] 𝐷 is diagonal

Note that in the case of multiplication by diagonal matrix, there is no dummy variable that is
summed over. Instead what we get is a modification of the original matrix that can be seen as a
diagonal dressing.
Finally, let us note that parametrised notation for matrices can also be combined with the previous
notation for sums and products. For example in the following

𝑉 [𝒚] =
∑︁

𝒙
𝑊 [𝒙‖𝒚]

we sum over each elements in the rows of the matrix𝑊 to obtain a column matrix 𝑉 .

Alternant product

We will use the notation
aaa

to denote a very special type of product. Given a set of variables 𝒙 and
a function 𝑓 : ℂ→ ℂ, we define the alternant

aaa
𝑓 : ℂ𝑛𝒙 → ℂ as a product

iii
𝑓 (𝒙) =

𝑛𝒙∏
𝑗<𝑘

𝑓 (𝑥 𝑗 − 𝑥𝑘).

For some particular choices of the function 𝑓 , this product can be interpreted as the Vandermonde
determinant. Furthermore, we shall use the notation

aaa2 to denote

iii2
𝑓 (𝒙) =

iii
𝑓 (𝒙)

iii
𝑓 (−𝒙) =

𝑛𝒙∏
𝑗≠𝑘

𝑓 (𝑥 𝑗 − 𝑥𝑘).

Superalternant product

Similarly, let us define a supersymmetric variant of the alternant product. Given 𝑓 : ℂ→ ℂ, we
define the superalternant

aaa
𝑓 : ℂ𝑛𝒙 × ℂ𝑛𝒚 → ℂ as the product

iii
𝑓 (𝒙‖𝒚) =

aaa
𝑓 (𝒙)aaa 𝑓 (−𝒚)∏
𝑓 (𝒙 − 𝒚) =

∏𝑛𝒙
𝑗>𝑘 𝑓 (𝑥 𝑗 − 𝑥𝑘)

∏𝑛𝒚
𝑗<𝑘 𝑓 (𝑦 𝑗 − 𝑦𝑘)∏𝑛𝒙

𝑗=1
∏𝑛𝒚

𝑘=1 𝑓 (𝑥 𝑗 − 𝑦𝑘)
.
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For the particular choice of function 𝑓 , it can be interpreted as the Cacuhy-Vandermonde determinant.
We shall sometimes use the notation

aaa2 to denote the following product of superalternants

iii2
𝑓 (𝒙‖𝒚) =

iii
𝑓 (𝒙‖𝒚)

iii
𝑓 (−𝒙‖ − 𝒚) =

∏𝑛𝒙
𝑗≠𝑘 𝑓 (𝑥 𝑗 − 𝑥𝑘)

∏𝑛𝒚
𝑗≠𝑘 𝑓 (𝑦 𝑗 − 𝑦𝑘)∏𝑛𝒙

𝑗=1
∏𝑛𝒚

𝑘=1 𝑓 (𝑥 𝑗 − 𝑦𝑘) 𝑓 (𝑦𝑘 − 𝑥 𝑗)
.

Partition of integers

We denote a partition of non-negative integers as «𝜆 = {𝜆1, 𝜆2, . . . ,} with descending property
𝜆1 ≥ 𝜆2 · · · . The number of non-zero integers in any partition is always finite.

• The length of a partition (stripped of the trailing zeroes) is denoted by ℓ( «𝜆), while its weight is
denoted by 𝑤( «𝜆) = ∑

𝑎
«𝜆𝑎. Whenever it would be felt necessary, the length of partition is indicated

explicitly as ª𝜆(𝑛) which means ℓ( ª𝜆(𝑛)) = 𝑛.
• Here we will also allow partitions in ascending order, the reason behind it is to avoid unnecessary

sign corrections in the determinants. Our notation is adopted for this reordering with a left-ward
pointing arrow «𝜆 indicating the descending order and a right-ward arrow ª𝜆 indicating an ascending
order. It also helps us distinguish a partition of integers from spectral parameter, both of which are
usually denoted by Greek letters.
Remark. It should be noted that reordering in ª𝜆 is only symbolic. For that matter, an addition of
partitions is always carried in the descending order, no matter in which order it is written. For
example, let ª𝜆 = {0, 1, 3, 4, 7} and ª𝜇 = {1, 2, 5}, the sum is given by ª𝜆 + ª𝜇 = {0, 1, 4, 6, 12}.
The partition of consecutive integers of length 𝑛 will be denoted as ª𝛿.

«𝛿(𝑛) = {𝑛 − 1, 𝑛 − 2, . . . , 0} .

Similarly, we also define the partition into even or odd integers ª𝛾 as

«𝛾 = {𝑛 − 1, 𝑛 − 3, . . . , 0} , (for 𝑛 odd).
«𝛾 = {𝑛 − 1, 𝑛 − 3, . . . , 1} , (for 𝑛 even).

Its length is ℓ( ª𝛾) = b 𝑛2 c where b·c denotes the integer part.
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Part I.

An Introduction
to the

Quantum Inverse Scattering Method

This part is divided in two chapters. In the beginning of the first chapter we recall the basic
framework of the algebraic Bethe ansatz or also called the quantum inverse scattering method for
quantum spin chains developed by Faddeev, Sklyanin and Takhtadzhyan [FST79]. In the latter
half of this chapter from section 1.2 onwards, we will discuss how this framework enables the
computation of correlation function and form-factors for this model.
The second chapter is dedicated to the treatment of the spectrum in the thermodynamic limit. The
nature of the anti-ferromagnetic ground state, the excitations which are energetically close to this
ground state and the condensation property for these states is discussed here. We also devote the
end of this chapter to the complex solutions of the Bethe equations in the picture presented by
Destri and Lowenstein [DL82].
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Chapter 1.
Quantum inverse scattering method

In this chapter we will lay down the framework of the algebraic Bethe ansatz that we use in our
computations. All the discussion in this chapter is made in the context of the anisotropic Heisenberg
or the XXZ model which describes a one-dimensional periodic chain of even length 𝑀 = 2𝑁
composed of interacting spin- 1

2 particles. The spins interact with their nearest neighbours and this
interaction is governed by the quantum Hamiltonian 𝐻Δ which is given by,

𝐻Δ = 𝐽
𝑀∑︁
𝑚=1

𝜎1
𝑚𝜎

1
𝑚+1 + 𝜎2

𝑚𝜎
2
𝑚+1 + Δ(𝜎3

𝑚𝜎
3
𝑚+1 − I). (1.1)

The coupling parameter 𝐽 ∈ ℝ represents the interaction strength, whereas the anisotropy parameter
Δ ∈ ℝ governs the longitudinal anisotropy of the XXZ model. At the isotropic point Δ = 1, we find
the Hamiltonian 𝐻1 of the isotropic XXX Heisenberg model. Whereas, at the free fermion point
where the anisotropy parameter vanishes Δ = 0, we obtain the 𝑋𝑋 model, which is also called the
free-fermion model since its Hamiltonian 𝐻0 can be mapped to that of the free-fermion gas using
the Jordan-Wigner transformation.

To each individual site on the lattice of a quantum spin chain we associate a ℂ2 vector space.
Hence the total Hilbert space for the XXZ model can be decomposed as a tensor product𝑉𝑞 = ⊗𝑀ℂ2.
In the terminology of the algebraic Bethe ansatz, the Hilbert space of a model is often called
quantum space, which we will denote as 𝑉𝑞 . The operators 𝜎𝛼

𝑛 in eq. (1.1) for the Hamiltonian 𝐻Δ

denote the local spin operators, which act non-trivially only on the 𝑛th site on the lattice as

𝜎𝛼
𝑛 = I𝑛−1 ⊗ 𝜎𝛼 ⊗ I𝑀−𝑛. (1.2)

Here, 𝜎𝛼 are the Pauli matrices:

𝜎1 =

(
0 1
1 0

)
, 𝜎2 =

(
0 −𝑖
𝑖 0

)
, 𝜎3 =

(
1 0
0 −1

)
; (1.3)

and the I denotes the identity matrix. Thus, the spin operators 𝜎𝛼
𝑛 satisfy the local 𝔰𝔲2 algebra:

[𝜎𝛼
𝑛 , 𝜎

𝛽
𝑚] = 2𝑖𝛿𝑚,𝑛 𝜖

𝛼𝛽𝛾𝜎
𝛾
𝑛 . (1.4)

The local raising and lowering spin operators 𝜎±𝑚 are defined as:

𝜎±𝑚 = 𝜎1
𝑚 ± 𝑖𝜎2

𝑚. (1.5)

The sign of coupling constant 𝐽 in eq. (1.1) for the Hamiltonian can be fixed so that it is always
positive 𝐽 > 0 since we have the similarity transformation which maps

−𝐻Δ = 𝑈−1𝐻−Δ𝑈, 𝑈 =

𝑀
2∏

𝑚=1
𝜎3

2𝑚. (1.6)

15



Chapter 1. Quantum inverse scattering method

The total spin operator 𝑆 on 𝑉𝑞 is defined as the sum of local spin operators on each lattice site, it
has the components:

𝑆𝛼 =
1
2

𝑀∑︁
𝑚=1

𝜎𝛼
𝑚 . (1.7)

It can be readily checked that the components of the total spin operators follow the 𝔰𝔲2 algebra and
the XXZ Hamiltonian commutes with the third component 𝑆3 of the total spin operator

[𝑆3, 𝐻Δ] = 0. (1.8)

For the XXX model at the isotropic point Δ = 1, the Hamiltonian 𝐻1 possesses extended 𝔰𝔲2
symmetry since all the total spin operators commute with the Hamiltonian

[𝑆𝛼, 𝐻1] = 0 ∀𝛼 ∈ {1, 2, 3} . (1.9)

The anisotropy parameter Δ also determines the nature of the spectrum which we will study in more
detail in chapter 2. We are always interested in the values of the anisotropy parameter Δ > −1 for
which the lowest energy state or ground state has anti-ferromagnetic nature. We also further divide
this into the following regimes based on the nature of excitations and symmetry:

• massless XXZ for the values −1 < Δ < 1
• XXX for the isotropic point Δ = 1
• massive XXZ for the values Δ > 1.

At this point it is important to remark that the XXX model is the primary focus of all our computations
carried out in part II of this thesis. Nonetheless, we begin here in this introductory part I with the
XXZ model for its virtue of being more general. This would facilitate our later discussion focused
around broader applicability of the method in conclusions (part III).

The XXZ model governed by 𝐻Δ (1.1) is integrable for all values of the anisotropy parameter Δ.
The exact solutions for the spectral problem were originally given by Bethe [Bet31] for the XXX
chain and these were extended to the XXZ model for an arbitrary value of Δ by Orbach [Orb58].The
method that they used to obtain these solutions is now known as the coordinate Bethe ansatz. In this
thesis, we will not use this method but its algebraic reformulation developed by Faddeev, Sklyanin
and Takhtadzhyan [FST79]. This latter method which is discussed here goes by the name of the
algebraic Bethe ansatz (ABA) or more appropriately the quantum inverse scattering method.

1.1. Algebraic formulation of Bethe ansatz

The Hilbert space of a quantum spin chain of length 𝑀 can be expressed as a tensor product of
local quantum spaces 𝑉𝑞 = ⊗𝑀𝑚=1𝑉𝑚. We can define the permutation operator which acts on the
tensor product of vector spaces 𝑉 ⊗ 𝑉 with an action given by the exchange property:

P(𝑣1 ⊗ 𝑣2) = 𝑣2 ⊗ 𝑣1. (1.10)

Let us now define the permutation operators P 𝑗𝑘 as natural extension of P onto a 𝑀-fold tensor
product ⊗𝑎𝑉𝑎 of local vector spaces such that it acts trivially everywhere except on 𝑉 𝑗 and 𝑉𝑘 . We
can check that the permutation operators P 𝑗 ,𝑘 satisfy the relations:

P2
𝑗 ,𝑘 = I, and P 𝑗𝑘P𝑘𝑙 = P𝑘𝑙P 𝑗𝑙 = P 𝑗𝑙P𝑘𝑙 . (1.11)
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1.1. Algebraic formulation of Bethe ansatz

For the XXZ model which is a fundamental spin-1
2 representation of the 𝔰𝔲2 spin chains, the

individual vector spaces 𝑉𝑚 are all isomorphic to ℂ2. Here the permutation operator is a 4 × 4
matrix which admits the decomposition

P =
1
2

3∑︁
𝛼=1

𝜎𝛼 ⊗ 𝜎𝛼. (1.12)

Let us now define the R-matrix which was originally found by Baxter [Bax89] for the six-vertex
model. Incidentally, it also plays a central role in the algebraic Bethe ansatz for the XXZ model and
related integrable models.

Definition 1 (Six-vertex R-matrix). We introduce an operator-valued function R of a spectral
parameter 𝜆 ∈ ℂ which acts on the tensor product space ℂ2 ⊗ ℂ2. In the elementary basis 𝑒𝑎 ⊗ 𝑒𝑏,
it can be expressed in matrix form as

R(𝜆) =
©­­­«
1

𝑓 (𝜆) 𝑔(𝜆)
𝑔(𝜆) 𝑓 (𝜆)

1

ª®®®¬ . (1.13)

We also require that it satisfy the Yang-Baxter equation:

R12(𝜆) R13(𝜆 + 𝜇) R23(𝜇) = R23(𝜇) R13(𝜆 + 𝜇) R12(𝜆). (1.14)

We are not going to discuss all the possible solutions of the Yang-Baxter equation here. This
was the premise behind a range of investigations [Jim90] which led to the development of quantum
groups. Here, we will directly begin our discussion with the following solution, that leads us back
to the XXZ model through a relation which is known as the trace identity.

Lemma 1.1. With the following weight functions 𝑓 (𝜆) and 𝑔(𝜆) for the R-matrix the Yang-Baxter
equation (1.14) is satisfied.

𝑓 (𝜆) = 𝜑(𝜆)
𝜑(𝜆 + 𝑖𝛾) , 𝑔(𝜆) = 𝜑(𝑖𝛾)

𝜑(𝜆 + 𝑖𝛾) . (1.15)

The function 𝜑 can correspond to any one of the following possible choices:

𝜑(𝜆) =

𝜆 rational parametrisation,
sin(𝜆) trigonometric parametrisation,
sinh(𝜆) hyperbolic parametrisation.

(1.16)

Remark. These three parametrisations are related to the different regimes of the XXZ model
according to the value of Δ that we discussed earlier. Within the different regimes, the parameter 𝛾
is related to the anisotropy parameter Δ, this relationship will be established when we come to the
trace identities.

We can take note that the our R-matrix (1.13) with the parametrisations (1.15) can be expressed
as the sum:

R(𝜆) = 𝜑(𝜆 + 𝑖𝛾) + 𝜑(𝜆)
2𝜑(𝜆 + 𝑖𝛾) I + 𝜑(𝑖𝛾)

2𝜑(𝜆 + 𝑖𝛾) (𝜎
1 ⊗ 𝜎1 + 𝜎2 ⊗ 𝜎2)

+ 𝜑(𝜆 + 𝑖𝛾) − 𝜑(𝜆)
2𝜑(𝜆 + 𝑖𝛾) (𝜎3 ⊗ 𝜎3). (1.17)
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Chapter 1. Quantum inverse scattering method

Let us also note that R-matrix possesses the following properties:

Initial condition: R(0) = P, (1.18a)
Unitarity: R𝑎𝑏 (𝜆)R𝑏𝑎 (−𝜆) = I, (1.18b)
Crossing symmetry: 𝜎2

𝑎R𝑡𝑎
𝑎𝑏 (𝜆)𝜎2

𝑎 = R𝑏𝑎 (−𝜆). (1.18c)

In eq. (1.18c), 𝑡𝑎 denotes the paritial transposition in the local vector space 𝑉𝑎
Let us now write down an augmented Hilbert space 𝑉𝑎 ⊗ 𝑉𝑞 which is obtained by enlarging the

original quantum space 𝑉𝑞 with the auxiliary space 𝑉𝑎 h ℂ2. On this augmented Hilbert space we
define the following operator.

Definition 2 (Monodromy matrix). We define the monodromy matrix as an operator on the
augmented quantum space, which is given by the following product:

T𝑎 (𝜆) = R𝑎𝑀

(
𝜆 − 𝑖𝛾

2

)
R𝑎,𝑀−1

(
𝜆 − 𝑖𝛾

2

)
· · · R𝑎1

(
𝜆 − 𝑖𝛾

2

)
. (1.19)

It is often represented as follows:

T𝑎 (𝜆) =
(A(𝜆) B(𝜆)
C(𝜆) D(𝜆)

)
𝑎

(1.20)

where the blocks A, B, C, D are operator valued functions taking their values as operators on the
quantum space 𝑉𝑞.

Lemma 1.2. The monodromy matrix also satisfies the Yang-Baxter equation, since

R𝑎𝑏 (𝜆 − 𝜇)T𝑎 (𝜆)T𝑏 (𝜇) = T𝑏 (𝜇)T𝑎 (𝜆)R𝑎𝑏 (𝜆 − 𝜇). (1.21)

Corollary (Fundamental commutation relations, FCR). Equation (1.21) imposes the following
commutation relations on the block operators of the monodromy matrix:

[A(𝜆),A(𝜇)] = [B(𝜆),B(𝜇)] = [C(𝜆), C(𝜇)] = [D(𝜆),D(𝜇)] = 0. (1.22a)

A(𝜆)B(𝜇) = 𝑓 (𝜆 − 𝜇)B(𝜇)A(𝜆) + 𝑔(𝜆 − 𝜇)A(𝜆)B(𝜇),
D(𝜆)B(𝜇) = 𝑓 (𝜇 − 𝜆)B(𝜇)D(𝜆) + 𝑔(𝜇 − 𝜆)D(𝜆)B(𝜇);
B(𝜆)A(𝜇) = 𝑓 (𝜆 − 𝜇)A(𝜇)B(𝜆) + 𝑔(𝜆 − 𝜇)B(𝜆)A(𝜇),
B(𝜆)D(𝜇) = 𝑓 (𝜇 − 𝜆)D(𝜇)B(𝜆) + 𝑔(𝜇 − 𝜆)B(𝜆)B(𝜇).

(1.22b)

A(𝜆)C(𝜇) = 𝑓 (𝜇 − 𝜆)C(𝜇)A(𝜆) + 𝑔(𝜇 − 𝜆)A(𝜆)C(𝜇),
D(𝜆)C(𝜇) = 𝑓 (𝜆 − 𝜇)C(𝜇)D(𝜆) + 𝑔(𝜆 − 𝜇)D(𝜆)C(𝜇);
C(𝜆)A(𝜇) = 𝑓 (𝜇 − 𝜆)A(𝜇)C(𝜆) + 𝑔(𝜇 − 𝜆)C(𝜆)C(𝜇),
C(𝜆)D(𝜇) = 𝑓 (𝜆 − 𝜇)D(𝜇)C(𝜆) + 𝑔(𝜆 − 𝜇)C(𝜆)D(𝜇).

(1.22c)

𝑓 (𝜆 − 𝜇) [A(𝜆),D(𝜇)] = 𝑔(𝜆 − 𝜇) (C(𝜇)B(𝜆) − C(𝜆)B(𝜇)),
𝑓 (𝜆 − 𝜇) [C(𝜆),B(𝜇)] = 𝑔(𝜆 − 𝜇) (A(𝜇)D(𝜆) − A(𝜆)D(𝜇)). (1.22d)
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1.1. Algebraic formulation of Bethe ansatz

Definition 3 (Transfer matrix). The transfer matrix 𝑇 is obtain from the monodromy matrix T by
taking the partial trace over the auxiliary space

𝑇 (𝜆) = tr𝑎 T𝑎 (𝜆) = A(𝜆) + D(𝜆). (1.23)

From the Yang-Baxter relation for the monodromy matrices (1.21) we can see that the transfer
matrix generates a one-parameter family of commuting operators on the quantum space 𝑉𝑞.

[𝑇 (𝜇), 𝑇 (𝜆)] = 0; ∀𝜆, 𝜇 ∈ ℂ. (1.24)

This tells us that the transfer matrix is the generating function of an infinite set of mutually
commuting operators. These are obtained by expanding the transfer matrix as formal series at
any particular value. However in general, such an expansion does not give us the local operators
(i.e. operators with finite support in the 𝑀 →∞ limit). However, for a particular case where the
expansion is taken around 𝑖 𝛾2 , all the operators obtained are quasi-local operators which can be
expressed as sums of local operators. Among them we also find the Hamiltonian of the XXZ chain
as was defined in eq. (1.1). Therefore the transfer matrix and all the quasi-local operators generated
by the transfer matrix also commute with the Hamiltonian of the XXZ model 𝐻Δ (including the
isotropic XXX model for Δ = 1) giving us an infinite set of conserved charges. The equation that
relates the conserved charges to the derivatives of the transfer matrix are called the trace identities.
The central sub-algebra of the commuting conserved charges which include the Hamiltonian is
called the Bethe subalgebra.

Trace identities
From the property (1.18a) of the R-matrix we can deduce that the following evaluation of the
monodromy matrix can be expressed in terms of the product of permutation matrices

T𝑎
(
𝑖𝛾
2

)
= P𝑎𝑀P𝑎,𝑀−1 · · · P𝑎1. (1.25)

The property (1.11) of the permutation matrix allows us to rewrite this to obtain the cyclic shift
operator which is given by the following expression

𝑇
(
𝑖𝛾
2

)
= P12P23P34 · · · P𝑀−1,𝑀P𝑀,1 (1.26)

and its logarithm gives us a trace identity for the total momentum operator

𝑃 = −𝑖𝐽 log𝑇
(
𝑖𝛾

2

)
. (1.27)

A similar computation with the first derivative shows that we can extract the shift operator from
𝑇 ′( 𝑖𝛾2 ). The summation that remains after this procedure is nothing but the Hamiltonian 𝐻Δ of
XXZ chain as we have defined in eq. (1.1). This leads us to the following trace identity that gives a
relation between the Hamiltonian 𝐻Δ and the transfer matrix. It is given by,

𝐻Δ = 2𝐽𝜑(𝑖𝛾) log𝑇 ′
(
𝑖𝛾
2

)
. (1.28)

To obtain this we have identified the parameter Δ with the parameter 𝛾 according to the following
relation:

Δ = −𝑖𝜑′(𝑖𝛾). (1.29)
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Chapter 1. Quantum inverse scattering method

For the rational parametrisation, we immediately obtain the XXX Hamiltonian with Δ = 1. Let us
remark that rational parametrisation (1.16) that we use in the case of the XXX model, the spectral
parameter can be always rescaled to set 𝛾 to any particular value of our choice. Here we shall fix it
to 𝛾 = 1.
For the hyperbolic parametrisation, we obtain Δ = cos 𝛾. The parameter 𝛾 takes values in the
interval ]0, 𝜋[ and this corresponds to the anisotropic disordered regime −1 < Δ < 1 of the XXZ
chain.
For the trigonometric parametrisation, we obtain Δ = cosh 𝛾. The parameter 𝛾 takes values in ℝ+∗
and it corresponds to the massive regime Δ > 1 of the XXZ chain.

Isotropic symmetry of the XXX model
We have seen in eq. (1.8) that the third component of the total spin operator 𝑆3 also commutes with
the Hamiltonian of the XXZ model. Following the approach of [FT84], here we can show that
this𝑈 (1) symmetry can be given a broader sense through the following relation that connects the
commutator of the 𝑆3 with the monodromy matrix in the quantum space with the commutator in the
auxiliary space.

[I𝑎 ⊗ 𝑆3,T𝑎 (𝜆)] = −1
2
[𝜎3

𝑎 ⊗ I𝑉𝑞
,T𝑎 (𝜆)] . (1.30)

In particular this relation contains the commutators:

[𝑆3, 𝑇 (𝜆)] = 0 (1.31a)
and

[𝑆3,B(𝜆)] = −B(𝜆). (1.31b)

The extended 𝔰𝔲2 symmetry (1.9) of the XXX model means that the relation like in eq. (1.30) holds
for all of the 𝔰𝔲2 generators,

[I𝑎 ⊗ 𝑆𝛼,T𝑎 (𝜆)] = −1
2
[𝜎𝛼

𝑎 ⊗ I𝑉𝑞
,T𝑎 (𝜆)] (1.32)

which gives us many more commutators which are equivalent to eqs. (1.31a) and (1.31b). Following
are few important examples of these commutators:

[𝑆𝛼, 𝑇 (𝜆)] = 0, (∀𝛼) (1.33a)
[𝑆+,B(𝜆)] = A(𝜆) − D(𝜆). (1.33b)
[𝑆−, C(𝜆)] = D(𝜆) − A(𝜆). (1.33c)

Here 𝑆± denotes the total raising and lowering operators which are defined through eqs. (1.5)
and (1.7). Furthermore, we can also see that these the lowering and raising operators 𝑆± in the case
of XXX model can be written as limit of B and C operators with infinite spectral parameters in
appropriate normalisation

𝑆− = −𝑖 lim
𝜆→∞

𝜆B(𝜆), (1.34a)

𝑆+ = −𝑖 lim
𝜆→∞

𝜆C(𝜆). (1.34b)

This symmetry of the XXX model plays an important role in our computations and it will be
invoked whenever it would be necessary to do so.
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1.1. Algebraic formulation of Bethe ansatz

1.1.1. Bethe equations

The trace identity (1.28) and the commutator (1.31a), both tell us that the spectral problem for the
Hamiltonian (1.1) can be resolved by finding the eigenvectors of the transfer matrix and 𝑆3 instead
of the Hamiltonian 𝐻Δ. This is one of the founding arguments of the algebraic Bethe ansatz that
allows us to reproduce the Bethe equations.

Definition 4 (Reference vector). We define the reference vector |𝜙〉 as

|𝜙〉 =
(
1
0

)
1
⊗ · · · ⊗

(
1
0

)
𝑀

. (1.35)

Sometimes it will be also referred as ferromagnetic vacuum vector since it represents the fully
magnetised, ferromagnetic ground state in the regime Δ < −1 of the XXZ model.

We can check that the reference vector |𝜙〉 is an eigenvector of the transfer matrix. In fact, it is an
eigenvector of the diagonal blocks of operators A and D separately whereas the block operator C
annihilates this vector since,

A(𝜆) |𝜙〉 = |𝜙〉 , D(𝜆) |𝜙〉 = 𝑟 (𝜆) |𝜙〉 , C(𝜆) |𝜙〉 = 0. (1.36)

Similarly, we can write the vector which is dual to (1.35) and show that

〈𝜙 | A(𝜆) = 〈𝜙 | , 〈𝜙| D(𝜆) = 𝑟 (𝜆) 〈𝜙| , 〈𝜙 | C(𝜆) = 0. (1.37)

The eigenvalue function 𝑟 (𝜆) in these expressions is given by the following expression:

𝑟 (𝜆) =
©­­«
𝜑

(
𝜆 − 𝑖𝛾

2

)
𝜑

(
𝜆 + 𝑖𝛾

2

) ª®®¬
𝑀

. (1.38)

The function 𝑟 (𝜆) is always a model dependant function, for the spin chains it depends implicitly
on the anisotropy parameter Δ through the identity (1.29). Meanwhile, we can also see that the
operators B and C can act as raising and lowering operators respectively, in the Fock space built
upon the reference vector |𝜙〉 (or vice-versa in the dual space). This permits us to define the
following type of vectors |𝜓(𝝀)〉 in the Fock space generated by these lowering-raising operators
and which are built upon the reference vector |𝜙〉.

Definition 5 (Bethe vector). Given a set of 𝑁 distinct (complex) spectral parameters 𝝀 =
{𝜆1, . . . , 𝜆𝑁 }, we look for the eigenvectors (or their duals) of the transfer matrix which have
the form

|𝜓(𝝀)〉 =
∏

B(𝝀) |𝜙〉 = B(𝜆1) · · · B(𝜆𝑁 ) |𝜙〉 , (1.39a)
or in the case of dual,

〈𝜓(𝝀) | = 〈𝜙 |
∏

C(𝝀) = 〈𝜙 | C(𝜆1) · · · C(𝜆𝑁 ). (1.39b)

Note that here we are invoking for the first time in this chapter the index-free notation for the set 𝝀
and the product

∏

over this set. This was also defined on pages 7 to 11.
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Chapter 1. Quantum inverse scattering method

As the quantum space can be written as direct sum with respect to the action of the third
component of the total spin operator 𝑆3 as

𝑉𝑞 =
𝑀⊕
ℓ=1

𝑉 (ℓ)𝑞 , 𝑉 (ℓ)𝑞 =

{
|𝜓〉 ∈ 𝑉𝑞

���� 𝑆3 |𝜓〉 =
(
𝑀

2
− ℓ

)
|𝜓〉

}
. (1.40)

We can see from eq. (1.31b), that any Bethe vector in the subspace 𝑉 (ℓ)𝑞 is determined by the set 𝝀
of spectral parameters with the cardinality 𝑛𝝀 = 𝑁ℓ , where it is given by,

𝑁ℓ =
𝑀

2
− ℓ. (1.41)

Let us now use the commutation relations in eq. (1.22) to write the action of the diagonal block
operators A and D on an arbitrary Bethe vector.

Lemma 1.3. The action of the block operators A(𝜇) and D(𝜇) on the Bethe vector |𝜓(𝝀)〉 is
described by,

A(𝜇) |𝜓(𝝀)〉 = Λ𝐴(𝜇 |𝝀) |𝜓(𝝀)〉 −
𝑁∑︁
𝑎=1

Λ𝐴,𝑎 (𝜇 |𝝀) |𝜓(𝝀𝑎̂ ∪ {𝜇})〉 (1.42a)

D(𝜇) |𝜓(𝝀)〉 = Λ𝐷 (𝜇 |𝝀) |𝜓(𝝀)〉 −
𝑁∑︁
𝑎=1

Λ𝐷,𝑎 (𝜇 |𝝀) |𝜓(𝝀𝑎̂ ∪ {𝜇})〉 (1.42b)

where,

Λ𝐴(𝜇 |𝝀) =
∏ 𝜑(𝜇 − 𝝀 − 𝑖𝛾)

𝜑(𝜇 − 𝝀) , Λ𝐷 (𝜇 |𝝀) = 𝑟 (𝜇)
∏ 𝜑(𝜇 − 𝝀 + 𝑖𝛾)

𝜑(𝜇 − 𝝀) (1.43)

and,

Λ𝐴,𝑎 (𝜇 |𝝀) = 𝜑(𝑖𝛾)
𝜑(𝜆𝑎 − 𝜇)

∏ 𝜑(𝜆𝑎 − 𝝀𝑎̂ − 𝑖𝛾)
𝜑(𝜆𝑎 − 𝝀𝑎̂) , (1.44a)

Λ𝐷,𝑎 (𝜇 |𝝀) = 𝑟 (𝜆𝑎) 𝜑(𝑖𝛾)
𝜑(𝜇 − 𝜆𝑎)

∏ 𝜑(𝜆𝑎 − 𝝀𝑎̂ + 𝑖𝛾)
𝜑(𝜆𝑎 − 𝝀𝑎̂) . (1.44b)

Note that the index 𝑎̂ in eqs. (1.42) and (1.44b) denotes the removal of one parameter 𝝀𝒂̂ = 𝝀 \ {𝜆𝑎}
as defined in the summary of the index-free notations on page 7.

Proof. Let us first note that since the operators B(𝜆𝑎) commute with each other due to the
commutator (1.22a), it does not matter the order in which the operator A(𝜇) or D(𝜇) is pushed
through the products of operators B, i.e. we have the freedom to reorder the indices of this product.
With this remark in mind, let us push an operator A(𝜇) or D(𝜇) through the first operator B(𝜆𝑎)
in the product for certain index 𝑎 ≤ 𝑁 , by using the commutation relation found in eq. (1.22b).
After this process we get:

A(𝜇)
∏
B(𝝀) = 1

𝑓 (𝜆𝑎 − 𝜇) B(𝜆𝑎)A(𝜇)
∏

B(𝝀𝑎̂) |𝜙〉

− 𝑔(𝜆𝑎 − 𝜇)
𝑓 (𝜆𝑎 − 𝜇) B(𝜇)A(𝜆𝑎)

∏

B(𝝀𝑎̂) |𝜙〉 (1.45a)
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1.1. Algebraic formulation of Bethe ansatz

and similarly,

D(𝜇)
∏
B(𝝀) = 1

𝑓 (𝜇 − 𝜆𝑎) B(𝜆𝑎)D(𝜇)
∏

B(𝝀𝑎̂) |𝜙〉

− 𝑔(𝜇 − 𝜆𝑎)
𝑓 (𝜇 − 𝜆𝑎) B(𝜇)D(𝜆𝑎)

∏

B(𝝀𝑎̂) |𝜙〉 . (1.45b)

Notice that there are two types of terms produced after each commutation, the first type of terms
exchanges the operators without exchanging the spectral parameters whereas the second type of
terms also exchanges the spectral parameters. But since B(𝜆𝑎) commute among themselves, the
action of these operators must lie in the eigenspace spanned by |𝜓(𝝀)〉 and |𝜓(𝜇, 𝝀𝑎̂)〉 and hence it
has the decomposition given by eqs. (1.42a) and (1.42b), which signify the same thing while they
are written in a compact notation.

Since the vector |𝜓(𝝀)〉 can only be obtained by taking cross terms without any exchange of
spectral parameters as we commute the operator A(𝜇) or D(𝜇) with the product of B(𝜆𝑎), its
coefficient Λ𝐴 or Λ𝐷 is given by the product of direct term coefficients with the eigenvalues of
A(𝜇) or D(𝜇) for the reference vector. On the other hand, the remaining vector with coefficients
Λ𝐴,𝑎 or Λ𝐷,𝑎 can be obtained by taking a cross-term exchanging the parameters at the very first
step as we have seen in eq. (1.45). After this, we only need to take the direct terms without any
exchange for all the remaining spectral parameters. This gives us the expressions that were shown
in eqs. (1.43) and (1.44) for the coefficients Λ𝐴,𝑎 and Λ𝐷,𝑎, where we used the expression (1.15)
for the weight functions 𝑓 and 𝑔 of the R-matrix. �

Theorem 1.4 (Bethe equations [FT84]). A Bethe vector as defined in eq. (1.39a) can be an
eigenvector of the transfer matrix only if its spectral parameters satisfy the following set of
equations:

(𝑎 ≤ 𝑁 = 𝑛𝝀), 𝑟 (𝜆𝑎)
∏ 𝜑(𝜆𝑎 − 𝝀 + 𝑖𝛾)

𝜑(𝜆𝑎 − 𝝀 − 𝑖𝛾) = −1. (1.46)

The eigenvalue of the transfer matrix for such a vector is given by the sum Λ𝐴 +Λ𝐷 which gives rise
to the following expression:

𝜏(𝜇) =
∏ 𝜑(𝜇 − 𝝀 − 𝑖𝛾)

𝜑(𝜇 − 𝝀) + 𝑟 (𝜇)
∏ 𝜑(𝜇 − 𝝀 + 𝑖𝛾)

𝜑(𝜇 − 𝝀) . (1.47)

Proof. It follows from the lemma 1.3 that for |𝜓(𝝀)〉 to be an eigenvector of the transfer matrix
𝑇 (𝜆) = A(𝜆) + D(𝜆), we must have Λ𝐴,𝑎 +Λ𝐷,𝑎 = 0 (∀𝑎). From eqs. (1.43) and (1.44), we obtain
the necessary condition:

𝜑(𝑖𝛾)
𝜑(𝜆𝑎 − 𝜇)

∏ 𝜑(𝜆𝑎 − 𝝀𝑎̂ − 𝑖𝛾)
𝜑(𝜆𝑎 − 𝝀𝑎̂) + 𝑟 (𝜆𝑎) 𝜑(𝑖𝛾)

𝜑(𝜇 − 𝜆𝑎)
∏ 𝜑(𝜆𝑎 − 𝝀𝑎̂ + 𝑖𝛾)

𝜑(𝜆𝑎 − 𝝀𝑎̂) = 0. (1.48)

This can be simplified to write the equation in the form (1.46), here we use the fact that 𝜑 (1.16) is
always an odd function and assume that there are no singular terms∗ in the above expression. The
eigenvalue can then be readily seen as a sum of the coefficients Λ𝐴 + Λ𝐷 . �

∗ see section 1.1.2 on admissibility
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Chapter 1. Quantum inverse scattering method

Remark. A similar result can be also derived for the dual off-shell Bethe vector (1.39b). The Bethe
equations (1.46) and the expression (1.47) eigenvalue of the transfer matrix are identical in the dual
case.

Notation 6 (Auxiliary function). Let us define an auxiliary function 𝔞 as follows:

𝔞(𝜇 |𝝀) = 𝑟 (𝜇)
∏

𝝀

𝜑(𝜇 − 𝝀 + 𝑖)
𝜑(𝜇 − 𝝀 − 𝑖) (1.49)

In terms of this function the Bethe equations (1.46) can be recast in a compact form:

(∀𝑎 ≤ 𝑛𝝀), 1 + 𝔞(𝜆𝑎 |𝝀) = 0. (1.50)

Energy and momentum of the magnons
As the Hamiltonian is included through the trace identity (1.28) in the Bethe sub-algebra generated
by transfer matrix (1.23), the eigenstates found by solving the Bethe equations with admissible
solutions are the eigenstates of the Hamiltonian, as desired. The energy and momentum eigenvalue
of such an eigenstate can be computed from eq. (1.48). These are given the following expressions:

𝐻Δ |𝜓(𝝀)〉 = 𝐽
∑︁

𝜀0(𝝀 |Δ), 𝜀0(𝜆 |Δ) =



−2
𝜆2 + 1

4
, Δ = 1;

−2 sin2 𝛾

sinh(𝜆 + 𝑖𝛾
2 ) sinh(𝜆 − 𝑖𝛾

2 )
, |Δ| < 1;

−2 sinh2 𝛾

sin(𝜆 + 𝑖𝛾
2 ) sin(𝜆 −

𝑖𝛾
2 )
, Δ > 1.

(1.51a)

And

𝑃 |𝜓(𝝀)〉 = 𝐽
∑︁

𝑝0(𝝀 |Δ), 𝑝0(𝜆 |Δ) = −𝑖 log

(
𝜑(𝜆 + 𝑖𝛾

2 )
𝜑(𝜆 − 𝑖𝛾

2 )

)
+ 𝜋

or, 𝑝0(𝜆 |Δ) =



−2 arctan(2𝜆) + 𝜋, Δ = 1;

−2 arctan

(
tanh𝜆
tan( 𝛾2 )

)
+ 𝜋, |Δ| < 1;

−2 arctan

(
tan𝜆

tanh( 𝛾2 )

)
+ 𝜋, Δ > 1.

(1.51b)

Combining these two expression we obtain the dispersion relation for the magnons, which can be
presented as

𝜖0(𝜆 |Δ) = cos 𝑝0(𝜆) − Δ. (1.52)

Note that this dispersion relation is not a non-negative function in the range of anisotropies Δ > −1
that we are interested in. This indicates that the magnon excitations are not true excitations of the
XXZ model for Δ > −1 but rather, they represent the pseudo-excitations over the reference vector
|𝜙〉 which are created by the action of B(𝜆𝑎). Consequently, the reference vector |𝜙〉 is not the true
ground state of our model either, as we shall see in chapter 2, the latter is of composed of a large
number of pseudo-particles forming a sea of magnons.
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1.1. Algebraic formulation of Bethe ansatz

=𝜆 = 0

=𝜆 = 𝜅𝛾
2

=𝜆 = − 𝜅𝛾
2

Figure 1.1.: The choice of branch cuts of the function Θ𝜅 (𝜆). The points ‘ ’ denote the parameter 𝜆
whereas the cross ‘ ’ denote a branch point of the function Θ𝜅 (𝜆). The branch cut that is chosen
is denoted with a snaked line ‘ ’.

Logarithmic form of the Bethe equations
Let us take the logarithm of eq. (1.46) with appropriately chosen branch cuts. This gives us the
logarithmic form of the Bethe equations:

(∀𝑎 ≤ 𝑁 = 𝑛𝝀), 𝑀Θ1(𝜆𝑎 |Δ) −
𝑁∑︁
𝑘=1

Θ2(𝜆𝑎 − 𝜆𝑘 |Δ) = 2𝜋𝑄𝑎 . (1.53a)

On the right hand side we obtain the quantum numbers that form a set 𝑸 ⊂ 1
2ℤ of either all integers

or all half-integers, depending upon the value of 𝑁 and 𝑀 . The function Θ𝜅 in eq. (1.53a) is defined
piecewise in different regimes according to the value of the anisotropy parameter Δ as follows:

Θ𝜅 (𝜆 |Δ) =



2 arctan
(
2𝜆
𝜅

)
, Δ = 1;

2 arctan

(
tanh𝜆

tan
( 𝜅𝛾

2
) ) , |Δ| < 1;

2 arctan

(
tan𝜆

tanh
( 𝜅𝛾

2
) ) , Δ > 1.

(1.53b)

The branch cut of the logarithm in each of these expressions for Θ𝜅 is chosen such that we have
a continuous branch on the real line. One important consequence of this choice is demonstrated
through fig. 1.1, which clearly shows that there are two distinct types of the complex roots based on
the structure of branch cuts chosen for these roots. As we shall see in chapter 2, this difference
has important implications for the nature of complex roots. We can also see that this distinction is
solely driven by the relative placement of the branch points, vis-à-vis the real line.

The term with Θ1(𝜆 |Δ) in eq. (1.53a) is related to the bare momentum (1.51b) whereas the terms
Θ2(𝜆𝑎 − 𝜆𝑘 |Δ) denote the scattering terms. This observation prompts us to define the counting
function as shown below.
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Chapter 1. Quantum inverse scattering method

Definition 7. Given a set of Bethe roots 𝝀, we define the counting function 𝜉 (𝜈 |𝝀) as follows:

𝜉 (𝜈 |𝝀,Δ) = 1
2𝜋

Θ1(𝜈 |Δ) − 1
2𝜋𝑀

∑︁

Θ2(𝜈 − 𝝀 |Δ). (1.54)

Let us pause here to remark that the auxiliary function defined in eq. (1.49) earlier can also be
viewed as the exponential counting function, since we have the following relation among these two:

𝔞(𝜈 |𝝀) = 𝑒2𝜋𝑖𝑀 𝜉 (𝜈 |𝝀) . (1.55)

The logarithmic Bethe equations (1.53a) can be expressed in a compact form in terms of the counting
function 𝜉 as follows:

(∀𝑎) 𝜉 (𝜆𝑎 |𝝀) = 1
𝑀
𝑄𝑎 . (1.56)

The monotonicity of the counting function means that all the real Bethe roots are in one-to-one
correspondence with quantum numbers. The question of the complex roots is more delicate, it will
be addressed partly in section 1.1.2 of this chapter and revisited again in chapter 1.

1.1.2. Admissibility of solutions

The Baxter polynomial† 𝑞(·|𝝀) [Bax89] for a given set of spectral parameters 𝝀 is defined as

𝑞(𝜇 |𝝀) =
∏

𝜑(𝜇 − 𝝀). (1.57)

Let us also remark that the exponential counting function can be expressed in terms of the Baxter
polynomials 𝑞 as

𝔞(𝜇 |𝝀) = 𝑟 (𝜇) 𝑞(𝜇 + 𝑖𝛾 |𝝀)
𝑞(𝜇 − 𝑖𝛾 |𝝀) . (1.58)

We will often drop the implicit dependence on the set of Bethe roots 𝝀 in the Baxter polynomials
(1.57) as well as in the exponential counting function (1.58) whenever it is made clear from the
context.

We can see that the Bethe equations 1 + 𝔞(𝜆𝑎) = 0 (1.46) arise as the necessary condition for the
following polynomial factorisation problem known as the 𝑇-𝑄 relation to be solved.

𝑞(𝜇)𝑡 (𝜇) = 𝜑𝑀
(
𝜇 − 𝑖𝛾

2

)
∏

𝜑(𝜇 − 𝝀 + 𝑖𝛾) + 𝜑𝑀
(
𝜇 + 𝑖𝛾

2

)
∏

𝜑(𝜇 − 𝝀 − 𝑖𝛾). (1.59)

The factorised polynomial 𝑡 in this case turns out to be nothing but the eigenvalue of the transfer
matrix (1.47) which is rescaled to a polynomial form:

𝑡 (𝜆) = 𝜑𝑀
(
𝜆 + 𝑖𝛾

2

)
𝜏(𝜆). (1.60)

Although the Bethe equation (1.46) gives the sufficient condition under which an arbitrary
Bethe vector (1.39a) can become an eigenvector of the transfer matrix, it is not necessary that the
solutions to eq. (1.46) lead to a non-trivial eigenvector of the transfer matrix. One of the possible
† in the anisotropic case Δ ≠ 1, we mean here the trigonometric or hyperbolic polynomials, i.e. the functions which can

be written as polynomials in 𝑞-variables which are exponentials of the spectral parameters
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1.1. Algebraic formulation of Bethe ansatz

counter-examples can be seen from the violation of distinctness criteria. Let us recall that we have
already made use of this property in lemma 1.3, however we can see that the system of Bethe
equations (1.46) in itself does not forbid such a solution. Mukhin, Tarasov and Varchenko [MTV09]
demonstrated that the 𝑇-𝑄 relation from eq. (1.59) can be used to partly address this particular
problem.
Another problem arises when we have an exact string pair with two roots whose difference is
𝜆𝑎 − 𝜆𝑏 = ±𝑖𝛾. Since these coincide with the poles or zeroes of the exponential counting function,
we must discard such singular solutions. However, this gets tricky for the exact string pair { 𝑖𝛾2 ,

−𝑖𝛾
2 }

at the origin and it could be allowed in eq. (1.46) if the remaining roots satisfy it, even for the model
at finite chain length 𝑀. This was studied by Nepomechie and Wang [NW13]. It turns out that
the corresponding vector is a null vector with vanishing norm since one can show that following
product is a null operator,

B
(
𝑖𝛾
2

)
B

(
− 𝑖𝛾

2

)
= 0. (1.61)

However, this does represent the complete picture as we can still achieve a normalised vector with
an exact string

{
𝑖𝛾
2 ,−

𝑖𝛾
2

}
by taking the limit such that it is non-singular. But we find that such a

limit is not well defined unless we have some additional information that dictates the way in which
such a limit is taken. The limit from the eigenvector of the twisted transfer matrix is an example of
such a case where it can be properly defined. We will not further devolve into this issues, the reader
may refer to [AV86]. Here in this thesis we will always impose the following admissibility criteria
on the solutions 𝝀 of eq. (1.46):

1. All the roots are pairwise distinct;
2. They do not contain the zeroes or the poles of the exponential counting function 𝔞 (1.49);
3. The exact string solution, even if it could be otherwise permitted when written in polynomial

form, is to be discarded.

These conditions can be summarised as

𝜆𝑎 − 𝜆𝑏 ∉ {0, 𝑖𝛾,−𝑖𝛾} ; ∀𝑎, 𝑏 ≤ 𝑁. (1.62)

The solutions satisfying these conditions are called admissible Bethe roots or simply, the Bethe
roots. Correspondingly, a Bethe vector given by an admissible set of Bethe roots will be called
on-shell Bethe vector and off-shell otherwise.

Complex roots
The Bethe equations (1.46) can also admit non real complex roots. In the thermodynamic limit
𝑀 → ∞ (see chapter 2), a simplified description can be found for the complex roots if we make
certain assumptions. The most common description is the one given by the string hypothesis which
tells us that complex Bethe roots in the thermodynamic limit form string complexes of the following
type:

𝜆 (ℓ)𝑎; 𝑗 = 𝑧
(ℓ)
𝑎 + 𝑖

(
𝛾
2 (ℓ + 1 − 2 𝑗) + 𝛿 𝑗𝑎

)
, 𝑗 = 1, 2, . . . , ℓ. (1.63)

The parameter 𝑧 (ℓ)𝑎 ∈ ℝ is the centre of the string of length ℓ and the parameters 𝛿𝑎 characterise
the deviation from the ideal string. In this picture, the real roots can be seen as strings of length 1

27



Chapter 1. Quantum inverse scattering method

with exactly zero string deviation. The deviation parameters for complex strings are assumed to be
exponentially small for large chain lengths 𝑀 which we need to balance the 𝑟 (𝜆𝑎) term in the Bethe
equation (1.46). With the string hypothesis, the logarithmic form of the Bethe equation is:

𝑀Θℓ

(
𝑧 (ℓ)𝑎

)
−

∑︁
𝑘≥1

∑︁

Θℓ,𝑘 (𝑧 (ℓ)𝑎 − 𝒘𝒌 ) = 2𝜋𝑄 (ℓ)𝑎 (1.64a)

where,

Θℓ,𝑘 (𝜆) =
∑︁′

|ℓ−𝑘 | ≤𝑟 ≤ℓ+𝑘
Θ𝑟 (𝜆) . (1.64b)

The primed sum
∑′ omits the singularity term for 𝑟 = 0 (if it is present). In contrast to the

eq. (1.53a), here we get different flavours of quantum numbers 𝑸 (ℓ) depending on the length ℓ of
the string.

We will revisit the string hypothesis in section 2.2 of the next chapter where it is discussed in
the context of the XXX model. Let us note that although it is widely used, the string hypothesis
remains contentious as it makes a very strong assumption. The violations of string hypothesis has
been investigated in numerous works [HC07]; [Vla84]; [EKS92] and alternate description that do
not rely a priori on the string hypothesis are also presented in [DL82]; [BVV83]. In-fact we use
Destri-Lowenstein picture [DL82] in our computations, it will be presented here in section 2.2.2 of
the next chapter.

1.1.3. Decomposition of the XXX spectrum into multiplets

We know that the XXX model enjoys a larger 𝔰𝔲2 symmetry which manifests itself in the form of
identities shown in eqs. (1.32) and (1.33). Using these identities we can show that an on-shell Bethe
vector |𝜓(𝝀)〉 (or its dual) is annihilated by the natural action of the global raising operator 𝑆+ (or
𝑆− in the case of the dual) in the XXX model.

𝑆+ |𝜓(𝝀)〉 = 0, 〈𝜓(𝝀) | 𝑆− = 0. (1.65)

The eigenvalues of the third component of the total spin operator 𝑆3 and Casimir operator 𝐶 of the
global 𝔰𝔲2 algebra for an on-shell Bethe vector |𝜓(𝝀)〉 are given by the following expressions.

𝑆3 |𝜓(𝝀)〉 =
(
𝑀

2
− 𝑛𝝀

)
|𝜓(𝝀)〉 = 𝑠 |𝜓(𝝀)〉 , (1.66a)

𝐶 |𝜓(𝝀)〉 =
(
𝑀

2
− 𝑛𝝀

) (
𝑀

2
− 𝑛𝝀 + 1

)
|𝜓(𝝀)〉 = 𝑠(𝑠 + 1) |𝜓(𝝀)〉 . (1.66b)

The eigenvalue 𝑠 in these expression is the total spin of the vector |𝜓(𝝀)〉.
As a consequence of the symmetry, the eigenspaces of the XXX chain for transfer matrix form

the irreducible representations of 𝔰𝔲2 which we call the multiplets and the on-shell Bethe vector
have the highest weight in a multiplet. An interesting consequence of this is that the number of
Bethe roots can never exceed 𝑀

2 . We introduce the following notations that takes into account these
factors.

Notation 8. For a given value of the total spin 𝑠, let us define integer 𝑁𝑠 according to the following
expression

𝑁𝑠 =
𝑀

2
− 𝑠

(
0 ≤ 𝑠 ≤ 𝑀

2

)
. (1.67)
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Notation 9. Let 𝝀 be a set of Bethe roots of the cardinality 𝑛𝝀 = 𝑁𝑠. We use the notation |𝜓ℓ
𝑠 〉 to

denote the set of vectors:

|𝜓ℓ
𝑠 〉 = (𝑆−)ℓ |𝜓(𝝀)〉 where, 0 ≤ ℓ ≤ 2𝑠.. (1.68)

The dimension of the multiplet generated by |𝜓ℓ
𝑑〉 is 𝑑 = 2𝑠 + 1. This will be called a 𝑠-multiplet.

For the first few values of 𝑠, we shall give the names singlet (𝑠 = 0), triplet (𝑠 = 1) and quintplet
(𝑠 = 2) and so on. Due to the identity given in eq. (1.34), the action of lowering operator in
eq. (1.68) is synonymous with

|𝜓ℓ
𝑠 (𝝀)〉 = (−𝑖)ℓ lim

𝝁→∞

(
∏

𝝁B(𝝁)
)
|𝜓(𝝀)〉 , (1.69a)

〈𝜓ℓ
𝑠 (𝝀) | = (−𝑖)ℓ lim

𝝁→∞ 〈𝜓(𝝀) |
(
∏

𝝁 C(𝝁)
)
. (1.69b)

The multiplets are degenerate eigenspaces of the transfer matrix since the latter commutes with the
lowering operator (1.33c), therefore all the vectors have the same energy and momentum eigenvalues.
Meanwhile the eigenvalues of the Casimir operator and 𝑆3 for the vectors |𝜓ℓ

𝑠 〉 of a multiplet are as
follows:

𝑆3 |𝜓ℓ
𝑠 (𝝀)〉 = (𝑠 − ℓ) |𝜓ℓ

𝑠 (𝝀)〉 , 〈𝜓ℓ
𝑠 (𝝀) | 𝑆3 = (𝑠 − ℓ) 〈𝜓ℓ

𝑠 (𝝀) | ; (1.70a)
𝐶 |𝜓ℓ

𝑠 (𝝀)〉 = 𝑠(𝑠 + 1) |𝜓ℓ
𝑠 (𝝀)〉 , 〈𝜓ℓ

𝑠 (𝝀) |𝐶 = 𝑠(𝑠 + 1) 〈𝜓ℓ
𝑠 (𝝀) | . (1.70b)

Decomposition of the XXX spectrum into degenerate multiplets has many important consequences.
In section 1.3 we will see how this symmetry can be utilised to reduce the complexity in our
computations of the form-factors. We will also study the nature of the eigenvectors of the XXX
model in the next chapter 2. There we characterise the ground state of the XXX model as well as its
excitations. For the rest of the discussion in this chapter, we only need to know that the ground state
of the XXX model in the absence of any external field is a uniquely determined by a singlet 𝑠 = 0
Bethe vector, denoted by |𝜓𝑔〉.

1.2. Quantum inverse scattering and determinant representation

This path from the spin chain Hamiltonian to transfer matrix in the algebraic Bethe ansatz framework
is comparable to the direct scattering part in the literature of classical integrable systems. However,
as we know from its classical analogue, this is only half the story, and the other half is the inverse
map. The quantum inverse scattering map that we will discuss now, is a key that gives access to
the computations of physically relevant quantities for integrable models, notably the correlation
functions and form-factors.

A physical state of a quantum system is best described by a density matrix. At thermal equilibrium
at inverse temperature 𝛽, the density matrix is given by the exponential of the Hamiltonian 𝜚 = 𝑒−𝛽𝐻 .
The expectation value of an operator O is given by the trace:

〈O〉 = tr(𝜚O)
tr 𝜚

. (1.71)

All the computations in this thesis are carried in the zero temperature limit, where the expectation
value of an operator is dominated by the ground state, hence

〈O〉 𝑇→0−→ 〈𝜓𝑔 |O|𝜓𝑔〉
〈𝜓𝑔 |𝜓𝑔〉 . (1.72)
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In the case of spin chains, the local operator O can be expressed as a product of 𝑛 spin operators, the
expectation value of this operator is the 𝑛-point correlation function. In this thesis we will be mostly
interested with the two-point longitudinal dynamic correlations and longitudinal form-factors both
of which we will discuss again in section 1.3. There are two main points that need to be discussed
before we could move forward. These are the two problems whose solutions pave the way for out
computations, which are summarised in the following:

1. Computing the action of local operators on the on-shell Bethe vectors and to express the result
as an off-shell Bethe vector. This is precisely what we mean by the quantum inverse scattering
problem.

2. Finding exact representations for the scalar products of the on-shell and off-shell Bethe vector
as well as the norms of the on-shell Bethe vector.

We will first see the solution of the second problem in section 1.2.1 below. The solution of the
quantum inverse scattering problem for the XXZ model and its application will be discussed in
section 1.2.2.

1.2.1. Determinant representation for the scalar product

Let us consider the scalar product of the two Bethe vectors:

〈𝜓(𝝁) |𝜓(𝝀)〉 =
〈
𝜙
���∏C(𝝁)

∏

B(𝝀)
��� 𝜙〉 . (1.73)

The action of operators C on the product of operators B can be easily accessed from eq. (1.22d),
which leads to the following lemma.

Lemma 1.5. The left action (or, rightward action) of the operator C(𝜇) on the Bethe vector |𝜓(𝝀)〉
(let 𝑁 = 𝑛𝝀) is given by,

C(𝜇) |𝜓(𝝀)〉 =
𝑁+1∑︁
𝑗 ,𝑘=1
𝑘≠ 𝑗

𝑟 (𝜆̌ 𝑗)
∏

𝜑(𝜆̌ 𝑗 − 𝝀 + 𝑖𝛾)
∏

𝜑(𝜆̌ 𝑗 − 𝝀̌ 𝒋)

∏

𝜑(𝜆̌𝑘 − 𝝀 𝒋 − 𝑖𝛾)
∏

𝜑(𝜆̌𝑘 − 𝝀̌ 𝒋 ,𝒌̂ )
���𝜓(𝝀̌ 𝑗 , 𝑘̂)

〉
(1.74a)

and similarly the right action (or, the leftward action) of the operator B(𝜇) on the dual Bethe vector
〈𝜓(𝝀) | is given by,

〈𝜓(𝝀) | B(𝜇) =
𝑁+1∑︁
𝑗 ,𝑘=1
𝑘≠ 𝑗

𝑟 (𝜆̌ 𝑗)
∏

𝜑(𝜆̌ 𝑗 − 𝝀 + 𝑖𝛾)
∏

𝜑(𝜆̌ 𝑗 − 𝝀̌ 𝒋)

∏

𝜑(𝜆̌𝑘 − 𝝀 𝒋 − 𝑖𝛾)
∏

𝜑(𝜆̌𝑘 − 𝝀̌ 𝒋 ,𝒌̂ )
〈
𝜓(𝝀̌ 𝑗 , 𝑘̂)

��� , (1.74b)

where the set 𝝀̌ denotes the union 𝝀̌ = 𝝀 ∪ {𝜇} with the additional parameter added at 𝜆̌𝑁+1 = 𝜇.

Proof. Let us start with the right action C(𝜇) |𝜆〉. From the commutator in eq. (1.22d), we can see
that[
C(𝜇),

∏

B(𝝀)
]
=

𝑁∑︁
𝑘=1


𝜑(𝑖𝛾)

𝜑(𝜇 − 𝜆𝑘)
©­«
𝑘−1∏
𝑗=1
B(𝜆 𝑗)ª®¬ (A(𝜇)D(𝜆𝑘) − A(𝜆𝑘)D(𝜇)) ©­«

𝑁∏
𝑗=𝑘+1

B(𝜆 𝑗)ª®¬
 (1.75)
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1.2. Quantum inverse scattering and determinant representation

The action of A and D on the product of B was given in the set of eqs. (1.43) and (1.44) of
lemma 1.3. From there we know that the action of diagonal block operatorsA and D take the form
of either a direct action or it can be a cross action involving an exchange of a parameter. From this
we can already expect that we have an expansion of the type:

C(𝜇) |𝜓(𝝀)〉 =
𝑁∑︁
𝑘=1

𝜒𝑘
��𝜓(𝝀𝒌̂ )〉 + 𝑁∑︁

𝑗<𝑘

𝜒 𝑗 ,𝑘

���𝜓(𝝀 𝒋 ,𝒌̂ ∪ {𝜇})
〉
. (1.76)

To compute the coefficients 𝜒𝑘 and 𝜒 𝑗 ,𝑘 we will use a method which is analogous to the one used in
lemma 1.3. Since the operators B commute among themselves [see eq. (1.22a)], we can reorder the
product

∏B(𝝀) to bring the operator B(𝜆𝑘) to the front. The coefficient 𝜒𝑘 can be then easily
obtained from the direct terms for actions of the operators A and D

𝜒𝑘 =
𝜑(𝑖𝛾)

𝜑(𝜇 − 𝜆𝑘)

{
𝑟 (𝜆𝑘)

∏

𝜑(𝜆𝑘 − 𝝀𝒌̂ + 𝑖𝛾)
∏

𝜑(𝜆𝑘 − 𝝀𝒌̂ )

∏

𝜑(𝜇 − 𝝀𝒌̂ − 𝑖𝛾)
∏

𝜑(𝜇 − 𝝀𝒌̂ )

−𝑟 (𝜇)
∏

𝜑(𝜇 − 𝝀𝒌̂ + 𝑖𝛾)
∏

𝜑(𝜇 − 𝝀𝒌̂ )

∏

𝜑(𝜆𝑘 − 𝝀𝒌̂ − 𝑖𝛾)
∏

𝜑(𝜆𝑘 − 𝝀𝒌̂ )

}
. (1.77a)

The coefficient 𝜒 𝑗 ,𝑘 can be computed using the symmetry argument that comes from eq. (1.22a).
We take only the cross-terms for the operator A(𝜇) which exchange spectral parameters 𝜇 and 𝜆 𝑗 .
The remaining exchanges are already managed through the symmetry. Therefore we see that,

𝜒 𝑗 ,𝑘 = 𝑟 (𝜆𝑘) 𝜑(𝑖𝛾)
𝜑(𝜇 − 𝜆𝑘)

𝜑(𝑖𝛾)
𝜑(𝜆 𝑗 − 𝜇)

∏

𝜑(𝜆𝑘 − 𝝀𝒌̂ + 𝑖𝛾)
∏

𝜑(𝜆𝑘 − 𝝀𝒌̂ )

∏

𝜑(𝜆 𝑗 − 𝝀 𝒋 ,𝒌̂ − 𝑖𝛾)
∏

𝜑(𝜆 𝑗 − 𝝀 𝒋 ,𝒌̂ )

+ 𝑟 (𝜆 𝑗) 𝜑(𝑖𝛾)
𝜑(𝜇 − 𝜆 𝑗)

𝜑(𝑖𝛾)
𝜑(𝜆𝑘 − 𝜇)

∏

𝜑(𝜆 𝑗 − 𝝀 𝒋 + 𝑖𝛾)
∏

𝜑(𝜆 𝑗 − 𝝀 𝒋)

∏

𝜑(𝜆𝑘 − 𝝀 𝒋 ,𝒌̂ − 𝑖𝛾)
∏

𝜑(𝜆𝑘 − 𝝀 𝒋 ,𝒌̂ )
(1.77b)

Now we can see that two types of sums in the expansion (1.76) over the coefficients given by
eqs. (1.77a) and (1.77b) can be consolidated into one larger double sum over the set of parameters
𝝀̌ if we set 𝜆̌𝑁+1 = 𝜇. The terms with coefficients 𝜒𝑘 are the special cases of the double sum in
eq. (1.74a) when we set either 𝜆̌ 𝑗 = 𝜇 or 𝜆̌𝑘 = 𝜇. Whereas the two types of terms in 𝜒 𝑗 ,𝑘 are
symmetric. These can be simply used to extend the double sum by removing its ordering condition
from 𝑗 < 𝑘 to simply 𝑗 ≠ 𝑘 . This proves the result in eq. (1.74a) whereas the result in eq. (1.74b)
for the dual can be proved in a similar manner. �

However, we find that the expression (1.74) describing the action of an off-diagonal block operator
B or C often leads to a complicated double summation, hence limiting its utility to some particular
scenarios. A rather trivial example of such a scenario can be found in the corollary presented below.
We note that this can also be obtained by comparing the eigenvalues of third component of the spin
for the two vectors.

Corollary. The scalar product 〈𝜓(𝝀) |𝜓(𝝁)〉 vanishes whenever 𝑛𝝀 ≠ 𝑛𝝁.

〈𝜓(𝝀) |𝜓(𝝁)〉
��
𝑛𝝀≠𝑛𝝁

= 0 (1.78)
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Chapter 1. Quantum inverse scattering method

Proof. This is clear from the commutator in eq. (1.75). From eq. (1.76), we can recursively express
a scalar product as linear sum of scalar product of the Bethe vectors with progressively smaller
cardinalities on each side

〈𝜓(𝝁) |𝜓(𝝀)〉 =
∑︁

𝛼𝑎𝑏 〈𝜓(𝝂) |𝜓(𝜼𝑎𝑏)〉 , 𝑛𝝂 = 𝑛𝝁 − 1, 𝑛𝜼𝑎𝑏 = 𝑛𝝀 − 1. (1.79)

Whenever we have 𝑛𝝁 ≠ 𝑛𝝀 , we would get either 𝐶 (𝜇) |𝜙〉 = 0 or, 〈𝜙 | B(𝜂) = 0 as a result of the
imbalance in the cardinalities. �

When the cardinalities of the vectors match, we need to take the action for all the raising operators.
The lemma 1.5 provides a combinatorial representation of the scalar products of the Bethe vectors
which expresses the scalar products as a sum over partitions [IK85]; [BIK93]. It turns out that
this combinatorial formula is not very computationally efficient, as the number of terms in the
summations grows exponentially with 𝑁 . This is particularly problematic when we are interested
in the computations in the thermodynamic limit. However, a more efficient form for the scalar
products can be obtained in the form of determinant whenever at-least one of the Bethe vector is
on-shell [Sla89]. We introduce this result in the following theorem.

Theorem 1.6 (Slavnov determinant representation [Sla89]). Let the set 𝝀 of Bethe roots (1.46)
represent an on-shell Bethe vector and the set 𝝁 of spectral parameter represent an off-shell Bethe
vector, with the condition that we have the same cardinalities for two sets: 𝑛𝝁 = 𝑛𝝀 = 𝑁 . Their
scalar product can be represented in the form of a determinant

〈𝜓(𝝀) |𝜓(𝝁)〉 =
∏

𝜑(𝝁 − 𝝀 − 𝑖𝛾)
aaa
𝜑(𝝀)aaa 𝜑(−𝝁) detM[𝝁‖𝝀] . (1.80a)

The matrixM[𝝁‖𝝀] in eq. (1.80a) is called the Slavnov matrix whose elements are described by,

M 𝑗 ,𝑘 [𝝁‖𝝀] = 𝔞(𝜇 𝑗 |𝝀)𝑡 (𝜇 𝑗 − 𝜆𝑘) − 𝑡 (𝜆𝑘 − 𝜇 𝑗). (1.80b)

The function 𝑡 (𝜈) used here is a rational form in 𝜑 which is defined as

𝑡 (𝜈) = 𝜑(𝑖𝛾)
𝜑(𝜈)𝜑(𝜈 + 𝑖𝛾) (1.80c)

Note that this function is completely different from the polynomial 𝑡 defined earlier in eq. (1.60) the
context of Baxter’s T-Q equation. The function 𝔞(𝜇 |𝝀) is the exponential counting function which
was defined in eq. (1.49).

Remark. Note that we are using the index free notations in eq. (1.80) for the product
∏

and an
alternant product

aaa
which are defined on pages 8 and 10. We have also invokes a parametrised

notation from page 9 for Slavnov matrixM[𝝁‖𝝀].
We do not prove the theorem 1.6 here. There are multiple proofs that are known for this result.

The original proof by Slavnov can be found in [Sla89]. An alternative proof based on the F -basis
formalism was obtained in [KMT99]. In addition to these, a simpler proof using the interpolation
theorems for symmetric polynomials can also be written.

We now discuss two important corollaries of Slavnov’s theorem. The first one ultimately leads to
the orthogonality of the on-shell Bethe vectors. Although the orthogonality of the Bethe roots is a
trivial result that has been known before the Slavnov’s theorem, it is the method used to prove this
corollary that is more important for us.

32



1.2. Quantum inverse scattering and determinant representation

Corollary (Slavnov vector). The scalar product 〈𝜓(𝝀) |𝜓(𝝁)〉 of two distinct on-shell Bethe vectors
vanishes. The vector V as defined in eq. (1.81) below is in the kernel of the Slavnov matrix
Y ∈ kerM.

Y𝑗 =

∏

𝜑(𝜆 𝑗 − 𝝁)
∏′ 𝜑(𝜆 𝑗 − 𝝀)

. (1.81)

Proof. This result will be proven here for the rational parametrisation (XXX) only. We can write
components of the productMY as

(MY) 𝑗 =
𝑁∑︁
𝑘=1

𝔞(𝜇𝑎 |𝝀)𝑡 (𝜇 𝑗 − 𝜆𝑘)Y𝑘 −
𝑁∑︁
𝑘=1

𝑡 (𝜆𝑘 − 𝜇 𝑗)Y𝑘 . (1.82)

Let us look at these two summation terms individually. Since we are in rational parametrisation
𝜑(𝜆) = 𝜆. We can easily show the following result by comparing the residues of the meromorphic
functions on the both side of the following expression:

𝑁∑︁
𝑘=1

𝑖

𝜇 𝑗 − 𝜆𝑘 + 𝑖𝜎

∏(𝜆𝑘 − 𝝁 𝒋)
∏(𝜆𝑘 − 𝝀𝒌̂ )

= 𝜎

∏(𝜇 𝑗 − 𝝁 + 𝑖𝜎)
∏(𝜇 𝑗 − 𝝀 + 𝑖𝜎) , (𝜎 = ±1). (1.83)

This lead us to the following result:

(MY) 𝑗 = 𝔞(𝜇 𝑗 |𝝀)
∏(𝜇 𝑗 − 𝝁 + 𝑖)
∏(𝜇 𝑗 − 𝝀 + 𝑖) +

∏(𝜇 𝑗 − 𝝁 − 𝑖)
∏(𝜇 𝑗 − 𝝀 − 𝑖) . (1.84)

Now it only remains to observe that if 𝝁 are also Bethe roots then we can extract 𝑟 (𝜇𝑎) from their
Bethe equations to write

𝔞(𝜇 𝑗 |𝝀) = −
∏(𝜇 𝑗 − 𝝁 − 𝑖)
∏(𝜇 𝑗 − 𝝁 + 𝑖)

∏(𝜇 𝑗 − 𝝀 + 𝑖)
∏(𝜇 𝑗 − 𝝀 − 𝑖) . (1.85)

Substitution of this into eq. (1.84) tell us that Y ∈ ker(M𝝀). Since Y is a non-zero vector for this
choice of distinct set of roots, we can conclude that the matrixM𝝀 given in theorem 1.6 is singular
when both vectors are on-shell and distinct. In other words, this shows that on-shell Bethe vectors
are orthogonal. The proof is similar for the trigonometric and hyperbolic parametrisations as we
still obtain meromorphic functions 𝑡 (𝜈) and for Y𝑎. The only difference is that there are additional
zeroes due to periodicity which needs to be accounted for. �

The second corollary to the theorem 1.6 is the Gaudin’s determinant representation for the norms.
This result was also first conjectured by Gaudin [Gau83] and proved by Korepin [Kor82], well
before the Slavnov determinant representation (1.80) for scalar products came to light. But it can
also be seen as the corollary of the Slavnov’s theorem 1.6 by allowing the two Bethe vectors in the
representation (1.80) to coincide.

Corollary (Gaudin determinant representation). Given an on-shell Bethe vector which is described
by Bethe roots 𝝀 (𝑛𝝀 = 𝑁), its squared norm can be represented by a determinant of the Gaudin
matrix N[𝝀‖𝝀] as

〈𝜓(𝝀) |𝜓(𝝀)〉 = (−1)𝑁
∏

𝜑(𝝀 − 𝝀 − 𝑖𝛾)
∏′ 𝜑(𝝀 − 𝝀) detN[𝝀‖𝝀] . (1.86a)
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The Gaudin matrix N has elements:

N𝑗 ,𝑘 [𝝀‖𝝀] = 𝔞′(𝜆 𝑗)𝛿 𝑗 ,𝑘 − 2𝜋𝑖𝐾 (𝜆 𝑗 − 𝜆𝑘). (1.86b)

Here the function 𝐾 (𝜈) is defined as the following for any of the three parametrisations in eq. (1.16).

𝐾 (𝜈) = 𝑡 (𝜈) + 𝑡 (−𝜈)
2𝜋𝑖

=
1
𝜋

−𝑖𝜑(2𝑖𝛾)
𝜑(𝜈 − 𝑖𝛾)𝜑(𝜈 + 𝑖𝛾) . (1.86c)

Note that the primed product
∏′ in the denominator here in eq. (1.86a) is a double product that

excludes all the zeroes, this notation was introduced on pages 7 and 11.

∏′
𝜑(𝝀 − 𝝀) =

𝑁∏
𝑗≠𝑘

𝜑(𝜆 𝑗 − 𝜆𝑘) (1.87)

Proof. We can rewrite eq. (1.80b) as

M 𝑗𝑘 [𝝁‖𝝀] = (1 + 𝔞(𝜇 𝑗 |𝝀))𝑡 (𝜇 𝑗 − 𝜆𝑘) − 2𝜋𝑖𝐾 (𝜇 𝑗 − 𝜆𝑘) (1.88)

In the limit where 𝜇 𝑗 → 𝜆 𝑗 , the first term gives rise to the derivative 𝔞′(𝜆 𝑗 |𝝀) on the diagonal terms,
hence obtaining eq. (1.86b). Similarly computing the prefactors of the determinant representation
(1.80a) in this limit gives us the determinant representation (1.86a). �

Scalar product formula for the descendants of a Bethe vector in the XXX model
A variant of this formula that is applicable for the isotropic XXX model is discussed in the following
lemma 1.7, originally obtained by Foda and Wheeler [FW12b]. The multiplet structure of the XXX
model (1.1.3) tells us that adding a root at infinity corresponds to the action of the spin lowering
operator 𝑆− (1.34a). In this way, the scalar products of the descendants of the Bethe vector in a
XXX multiplet can be accessed. However, it should be noted that the limit where roots are sent to
infinity must be taken with proper normalisation.

Lemma 1.7 (Foda-Wheeler version of the Slavnov formula [FW12b]). Let 𝝀 denote the set of Bethe
roots of an on-shell Bethe vector of the XXX model and 𝝁 a set of arbitrary complex parameters.
Let ℓ = 𝑛𝝁 − 𝑛𝝀 . Then scalar product 〈𝜓ℓ

𝑠 (𝝀) |𝜓(𝝁)〉 of the descendant of the Bethe vector with an
off-shell Bethe vector |𝜓(𝝁)〉 can be represented in the form:

〈𝜓ℓ
𝑠 (𝝀) |𝜓(𝝁)〉 = ℓ!(−1)𝑁ℓ+ ℓ2

2

∏(𝝁 − 𝝀 − 𝑖)
aaa(𝝀)aaa(−𝝁) detM (ℓ) [𝝁‖𝝀] . (1.89)

The matrixM (ℓ) [𝝁 |𝝀] is composed of the blocks of columns

M (ℓ) [𝝁‖𝝀] =
(
M[𝝁‖𝝀]

����U[𝝁]) . (1.90)

The first blockM[𝝁‖𝝀] is a rectangular Slavnov matrix (1.80b) of 𝑁 = 𝑛𝝀 columns. Since we are
dealing with the XXX model, it is written in the rational parametrisation

M 𝑗 ,𝑘 [𝝁 |𝝀] = 𝔞(𝜇 𝑗 |𝝀)𝑡 (𝜇 𝑗 − 𝜆𝑘) − 𝑡 (𝜆𝑘 − 𝜇 𝑗). (1.91a)

Whereas the matrixU[𝝁] = (U1 [𝝁]
�� · · · ��Uℓ [𝝁]

)
forms a block of ℓ columns whose components

are described by the following expression

U 𝑗 ,𝑎 [𝝁] = 𝔞(𝜇 𝑗 |𝝀) (𝜇 𝑗 + 𝑖)𝑎−1 − 𝜇𝑎−1
𝑗 . (1.91b)

We remark that the matrixU[𝝁] can be seen as a sum of two Vandermonde matrices.
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Proof. This result was originally obtained by Foda and Wheeler [FW12b], we reproduce this proof
in section 1.A at the end of this chapter. �

1.2.2. Quantum inverse scattering problem and its solution

The problem of expressing the local operators like 𝜎𝛼
𝑛 in terms of the operators of the Yang-Baxter

algebra is known as quantum inverse scattering problem, or QISP. The solution of this problem for
the XXZ chains was originally obtained by Kitanine, Maillet and Terras [KMT99]. In the following
lemma we summarise their result.

Lemma 1.8 (Solution of QISP for XXZ chains [KMT99]). Let 𝑒𝛼𝛽 denote the elementary matrices
in 𝑒𝑛𝑑 (ℂ2) forming its basis. These can be represented in terms of the block operators of the
monodromy matrix (1.20) as the product

𝑒
𝛼𝛽
𝑛 =

(
𝑇 ( 𝑖𝛾2 )

)𝑛−1
T 𝛼𝛽 ( 𝑖𝛾2 )

(
𝑇−1( 𝑖𝛾2 )

)𝑛
. (1.92)

Here 𝑇 (𝜈) = A(𝜈) + D(𝜈) denotes the transfer matrix (1.23).

We do not prove the lemma 1.8 here. It was first proved in [KMT99] using the F -basis method
and again in [MT00] using the shift operator. In particular, the result (1.92) leads to the following
identities for the local spin operators.

𝜎𝑧
𝑛 =

(
𝑇 ( 𝑖𝛾2 )

)𝑛−1 {
A( 𝑖𝛾2 ) − D(

𝑖𝛾
2 )

} (
𝑇−1( 𝑖𝛾2 )

)𝑛
(1.93a)

𝜎+𝑛 =
(
𝑇 ( 𝑖𝛾2 )

)𝑛−1
C( 𝑖𝛾2 )

(
𝑇−1( 𝑖𝛾2 )

)𝑛
(1.93b)

𝜎−𝑛 =
(
𝑇 ( 𝑖𝛾2 )

)𝑛−1
B( 𝑖𝛾2 )

(
𝑇−1( 𝑖𝛾2 )

)𝑛
(1.93c)

With the solution of the quantum inverse scattering problem, we are better placed to introduce the
determinant representation for the form-factors, which is the starting point of all the computations
carried out in this thesis. But before we do that, let us briefly consider the case of two-point
correlations, primary to see how these objects and the form-factors are related. We are interested in
the longitudinal two-point functions 〈𝜎𝛼

𝑛 𝜎
𝛽
𝑚〉 at zero temperature. Upon substituting the inverse

relation (1.93a), we get the following expression for it

〈𝜓𝑔 |𝜎3
𝑛𝜎

3
𝑚 |𝜓𝑔〉

〈𝜓𝑔 |𝜓𝑔〉 =
(
𝜏𝑔 ( 𝑖𝛾2 )

)𝑛−𝑚−1

×

〈
𝜓𝑔

���� (A( 𝑖𝛾2 ) − D( 𝑖𝛾2 )) (
𝑇 ( 𝑖𝛾2 )

)𝑚−𝑛−1 (
A( 𝑖𝛾2 ) − D(

𝑖𝛾
2 )

) ����𝜓𝑔

〉
〈𝜓𝑔 |𝜓𝑔〉 . (1.94a)

The 𝜏 function denotes an eigenvalue of the transfer matrix (1.47) for the ground state vector that
we have factored out into the prefactor. Similarly for the transverse two-point correlation function
〈𝜎+𝑛𝜎−𝑚〉, we get

〈𝜓𝑔 |𝜎+𝑛𝜎−𝑚 |𝜓𝑔〉
〈𝜓𝑔 |𝜓𝑔〉 =

(
𝜏𝑔 ( 𝑖𝛾2 )

)𝑛−𝑚−1

〈
𝜓𝑔

����C( 𝑖𝛾2 ) (𝑇 ( 𝑖𝛾2 ))𝑚−𝑛−1
B( 𝑖𝛾2 )

����𝜓𝑔

〉
〈𝜓𝑔 |𝜓𝑔〉 . (1.94b)
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There are several approaches available to us. In the first one, an action of the entire block of
operators is taken on one of the sides, let us say the left-action for example, using eqs. (1.42)
and (1.74). This gives us a multiple sum over the scalar products of the ground state vector with an
off-shell vector resulting from this action. We will not write down this expression here since we do
not use it here. From this approach, a multiple integral representation for the n-point correlation
function was found in [KMT00], which is consistent with the results of [JMMN92] obtained from
the 𝑞-vertex operator algebra [JM95].

Another approach, that is more important to us in this thesis, makes use of the form-factor
expansion:

〈𝜓𝑔 |𝜎𝛼
𝑛 𝜎

𝛽
𝑚 |𝜓𝑔〉

〈𝜓𝑔 |𝜓𝑔〉 =
∑︁
|𝜓𝑒 〉∈𝑉𝑞

〈𝜓𝑔 |𝜎𝛼
𝑛 |𝜓𝑒〉 〈𝜓𝑒 |𝜎𝛽

𝑚 |𝜓𝑔〉
〈𝜓𝑔 |𝜓𝑔〉 〈𝜓𝑒 |𝜓𝑒〉 . (1.95)

The vectors |𝜓𝑒〉 denote the eigenvectors of the Hamiltonian, called the excited states. The
completeness of the set of eigenvectors obtained from the algebraic Bethe ansatz is assumed before
we could obtain eq. (1.95), so that a resolution of the identity as a sum over projectors can be
introduced in two-point function 〈𝜎𝛼

𝑛 𝜎
𝛽
𝑚〉 to get eq. (1.95). Let us substitute the identities (1.93)

for the solution of the inverse problem in eq. (1.95). We see that for the longitudinal and transverse
two-point functions, the scalar products in the numerators of the form-factors in this expansion
(1.95) can be rewritten as

〈𝜓𝑔 |𝜎3
𝑛 |𝜓𝑒〉 〈𝜓𝑔 |𝜎3

𝑚 |𝜓𝑒〉 =
(
𝜏𝑔 ( 𝑖𝛾2 )

)𝑛−𝑚−1 (
𝜏𝑒 ( 𝑖𝛾2 )

)𝑚−𝑛−1 ���〈𝜓𝑔 |A( 𝑖𝛾2 ) − D(
𝑖𝛾
2 ) |𝜓𝑒〉

���2 , (1.96a)

and

〈𝜓𝑔 |𝜎+𝑛 |𝜓𝑒〉 〈𝜓𝑔 |𝜎−𝑚 |𝜓𝑒〉 =
(
𝜏𝑔 ( 𝑖𝛾2 )

)𝑛−𝑚−1 (
𝜏𝑒 ( 𝑖𝛾2 )

)𝑚−𝑛−1
〈𝜓𝑔 |B( 𝑖𝛾2 ) |𝜓𝑒〉 〈𝜓𝑔 |C( 𝑖𝛾2 ) |𝜓𝑒〉 .

(1.96b)

Although we are entirely committed to the form-factor approach in this thesis, it is important to
note that the two approaches work complementary to each other for the two-point function. The
form-factor approach turns out to be more efficient in analysing the large distance behaviour of the
correlation function 〈𝜎𝛼

𝑛 𝜎
𝛽
𝑚〉, since the number of multiple-integral terms from the direct approach

(1.94) would grow with the lattice distance |𝑚 − 𝑛|. The form-factor approach also finds a greater
utility for the dynamical correlations where the time dependence is introduced in the two-point
function. 〈

𝜎𝛼
𝑛 (𝑡1)𝜎𝛽

𝑚(𝑡2)
〉
=
〈𝜓𝑔 |𝜎𝛼

𝑛 (𝑡1)𝜎𝛽
𝑚(𝑡2) |𝜓𝑔〉

〈𝜓𝑔 |𝜓𝑔〉 (1.97)

During the form-factor expansion we shall use the Hamilton’s equation for the time evolution of the
operators, which factorises out the time variables 𝑡 into the exponential phase factors

〈𝜎𝛼
𝑛 (𝑡1)𝜎 𝛼̄

𝑚 (𝑡2)〉 =
∑︁
|𝜓𝑒 〉∈𝑉𝑞

𝑒−𝑖 (𝑡2−𝑡1) (𝐸𝑒−𝐸𝑔)𝑒−𝑖 (𝑚−𝑛) (𝑝𝑒−𝑝𝑔) |𝐹𝛼 |2 . (1.98)

The phase factors are the trivial part of this equation (1.98), which only depend on the differences
of time and lattice positions, which is a direct consequence of time-invariance and translational
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symmetry of the model. In the Fourier transform of the dynamic two-point function, called the
dynamic structure factor:

𝑆𝛼𝛼̄ (𝑘, 𝜔) =
∫ ∞
−∞
𝑑𝑡 𝑒−𝑖𝜔𝑡

𝑀∑︁
𝑚=1

𝑒−𝑖𝑘𝑚 〈𝜎𝛼
𝑚+1(𝑡)𝜎 𝛼̄

1 〉 (1.99)

all the trivial phase terms can be summed over to write the form-factor expansion.

𝑆𝛼𝛼̄ = 2𝜋𝑀
∑︁
exc
𝛿(𝜔 − 𝜀exc)𝛿𝑘, 𝑝exc

��𝐹𝛼
��2. (1.100)

The terms 𝜀exc and 𝑝exc denote the energy and momentum of the excited states measured over the
ground state. The amplitude term

��𝐹𝛼
��2 in eqs. (1.98) and (1.100) are the product of form-factors

𝐹𝛼 and 𝐹 𝛼̄. These are defined as the ratio of scalar products

|𝐹𝛼 |2 =
〈𝜓𝑔 |𝜎𝛼

𝑚 |𝜓exc〉 〈𝜓exc |𝜎 𝛼̄
𝑚 |𝜓𝑔〉

〈𝜓𝑔 |𝜓𝑔〉 〈𝜓exc |𝜓e〉 . (1.101)

1.3. Determinant representation for the form-factors

We shall now present the determinant representations for the longitudinal and transverse form-factors
for a finite chain, starting from the expressions (1.96). For the longitudinal form-factors, we can
take the left-action of the operators A and D and we get the following result.

Lemma 1.9. The determinant representation of the scalar product in the longitudinal form-factor
(1.96a) is given by

〈𝜓(𝝀) |A( 𝑖𝛾2 ) − D(
𝑖𝛾
2 ) |𝜓(𝝁)〉 = 𝜏(

𝑖𝛾
2 |𝝁)

∏

𝜑(𝝁 − 𝝀 − 𝑖𝛾)
aaa
𝜑(𝝀)aaa 𝜑(−𝝁) det

[M[𝝁‖𝝀] − 2P[𝝁‖𝝀]] (1.102a)

where P(𝝀 |𝝁) is a rank-1 matrix given by elements

P 𝑗 ,𝑘 [𝝁‖𝝀] =
∏

𝜑(𝝀 + 𝑖𝛾
2 )

∏

𝜑(𝝁 + 𝑖𝛾
2 )

∏

𝜑(𝜇 𝑗 − 𝝀 − 𝑖𝛾)
∏

𝜑(𝜇 𝑗 − 𝝁 − 𝑖𝛾) 𝑡 (𝜆𝑘 −
𝑖𝛾
2 ). (1.102b)

Proof. Here we first utilise the relation

A( 𝑖𝛾2 ) − D(
𝑖𝛾
2 ) = 2A( 𝑖𝛾2 ) − 𝑇 (

𝑖𝛾
2 ). (1.103)

The action of the operator A on a Bethe vector was computed in eqs. (1.42a), (1.43) and (1.44a).
The direct term for this action is identical to action of 𝑇 ( 𝑖𝛾2 ). Using this we get

〈𝜓(𝝀) |A( 𝑖𝛾2 ) − D(
𝑖𝛾
2 ) |𝜓(𝝁)〉 = 𝜏(

𝑖𝛾
2 |𝝁) 〈𝜓(𝝀) |𝜓(𝝁)〉

+ 2
𝑁∑︁
𝑎=1

∏

𝜑(𝜇𝑎 − 𝝁 − 𝑖𝛾)
∏′ 𝜑(𝜇𝑎 − 𝝁̌) 〈𝜓(𝝀) |𝜓( 𝝁̌𝒂̂)〉 (1.104)
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where 𝝁̌ = 𝝁 ∪ { 𝑖𝛾2 }. Using the determinant representation from theorem 1.6 we obtain the sum
over determinants

〈𝜓(𝝀) |A( 𝑖𝛾2 ) − D(
𝑖𝛾
2 ) |𝜓(𝝁)〉 = 𝜏( 𝑖2 |𝝁)

∏

𝜑(𝝁 − 𝝀 − 𝑖𝛾)
aaa
𝜑(𝝀)aaa 𝜑(−𝝁)

{
detM[𝝁‖𝝀]

+2
𝑁∑︁
𝑎=1
(−1)𝑁−𝑎

∏

𝜑( 𝑖𝛾2 + 𝝀)
∏

𝜑( 𝑖𝛾2 + 𝝁)

∏

𝜑(𝜇𝑎 − 𝝁 − 𝑖𝛾)
∏

𝜑(𝜇𝑎 − 𝝀 − 𝑖𝛾) detM [
𝝁̌𝒂̂



𝝀]} . (1.105)

The last column rank-1 modifications inM [ 𝝁̌𝒂̂‖𝝀] are described by following the expression since
we have 𝔞( 𝑖𝛾2 ) = 0:

M𝑁 , 𝑗

[
𝝁̌𝒂̂



𝝀] = −𝑡 (𝜆 𝑗 − 𝑖𝛾
2 ). (1.106)

The sum over determinants in eq. (1.105) can be written down as common determinant representation
(1.102) using lemma C.2 shown in appendix C. �

In the case of transverse form-factors, we have two distinct channels of computations since the
left and right action of the off-diagonal operators B or C have different forms [see the lemma 1.5],
unlike the diagonal blocks A or D where this choice does not make a significant difference [see
eq. (1.42)]. In the channel where the off-diagonal acts as raising operator of the Bethe algebra (i.e.,
a left-action of C or a right action of B), we get a complicated double-sum (1.74) as we have seen in
the lemma 1.5. This expression leads to the following representation for the transverse form-factor:

Lemma 1.10. The scalar product in the transverse form-factor for 𝜎+𝑛 (1.96b) when evaluated with
the right-action can be expressed as

〈𝜓(𝝀) |C( 𝑖2 ) |𝜓(𝝁)〉 =
∏

𝜑( 𝝁̌ − 𝝀 − 𝑖𝛾)
aaa
𝜑(𝝀)aaa 𝜑(−𝝁̌)

×
𝑁∑︁
𝑗=1

𝑁+1∑︁
𝑘=1
𝑘≠ 𝑗

(−1) 𝑗+𝑘+𝐼 𝑗>𝑘

𝜑(𝜇 𝑗 − 𝜇̌𝑘 + 𝑖𝛾)

∏

𝜑(𝜇 𝑗 − 𝝁 − 𝑖𝛾)
∏

𝜑(𝜇 𝑗 − 𝝀 − 𝑖𝛾)
∏

𝜑( 𝜇̌𝑘 − 𝝁 − 𝑖𝛾)
∏

𝜑( 𝜇̌𝑘 − 𝝀 − 𝑖𝛾) detM
[
𝝁̌ 𝒋 ,𝒌̂



𝝀] (1.107a)

Similarly, the scalar product in the transverse form-factor for 𝜎−𝑛 (1.96b) when evaluated with the
left-action can be expressed as

〈𝜓(𝝁) |B( 𝑖2 ) |𝜓(𝝀)〉 =
∏

𝜑( 𝝁̌ − 𝝀 − 𝑖𝛾)
aaa
𝜑(𝝀)aaa 𝜑(−𝝁̌)

×
𝑁∑︁
𝑗=1

𝑁+1∑︁
𝑘=1
𝑘≠ 𝑗

(−1) 𝑗+𝑘+𝐼 𝑗>𝑘

𝜑(𝜇 𝑗 − 𝜇̌𝑘 + 𝑖𝛾)

∏

𝜑(𝜇 𝑗 − 𝝁 − 𝑖𝛾)
∏

𝜑(𝜇 𝑗 − 𝝀 − 𝑖𝛾)
∏

𝜑( 𝜇̌𝑘 − 𝝁 − 𝑖𝛾)
∏

𝜑( 𝜇̌𝑘 − 𝝀 − 𝑖𝛾) detM
[
𝝁̌ 𝒋 ,𝒌̂

��𝝀] (1.107b)

Here the function 𝐼 𝑗>𝑘 is the characteristic function for {( 𝑗 , 𝑘) | 𝑗 > 𝑘}‡ and the notation 𝝁̌ is
used to denote the union 𝝁̌ = 𝝁 ∪ { 𝑖2 }.
‡ this can also be seen as the Heaviside step function
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Proof. This follows from the lemma 1.5. Using eq. (1.74a) and the determinant representation
(1.80) we can write

〈𝜓(𝝀) |C( 𝑖2 ) |𝜓(𝝁)〉 =
𝑁∑︁
𝑗=1

𝑁+1∑︁
𝑘=1
𝑘≠ 𝑗

{
𝑟 (𝜇 𝑗 |𝝁)

∏

𝜑(𝜇 𝑗 − 𝝁 + 𝑖𝛾)
∏

𝜑(𝜇 𝑗 − 𝝁̌ 𝒋)

∏

𝜑( 𝜇̌𝑘 − 𝝁 𝒋 − 𝑖𝛾)
∏

𝜑( 𝜇̌𝑘 − 𝝁̌ 𝒋 ,𝒌̂ )

×
∏

𝜑( 𝝁̌ 𝒋 ,𝒌̂ − 𝝀 − 𝑖𝛾)aaa
𝜑(𝝀)aaa 𝜑(−𝝁̌ 𝒋 ,𝒌̂ )

detM
[
𝝁̌ 𝒋 ,𝒌̂



𝝀]} . (1.108)

Since the parameter 𝜇 𝑗 is a Bethe root, it satisfies eq. (1.46). Hence we can see that

𝑟 (𝜇 𝑗 |𝝁)
∏

𝜑(𝜇 𝑗 − 𝝁 + 𝑖𝛾) = −
∏

𝜑(𝜇 𝑗 − 𝝁 − 𝑖𝛾). (1.109)

In the denominator, we can combine the terms to write a larger alternant (Vandermonde determinant)
iii

𝜑(−𝝁̌ 𝒋 ,𝒌̂ )
∏

𝜑(𝜇 𝑗 − 𝝁̌ 𝒋)
∏

𝜑( 𝜇̌ 𝑗 − 𝝁̌ 𝒋 ,𝒌̂ ) = (−1) 𝑗+𝑘+𝐼 𝑗>𝑘

iii
𝜑(−𝝁̌). (1.110)

Let us now substitute expressions derived in the above eqs. (1.109) and (1.110) into eq. (1.108).
Here we also take the common prefactors out of the summation and we obtain as a result (1.107a).
Similarly one can also obtain the result (1.107b) using eq. (1.74b) for the scalar product in the 𝜎−𝑛
form-factor. �

In the second channel, where the off-diagonal operator B or C act as a lowering operator in
the Bethe algebra, the computation is very straightforward. This can be easily seen from the
definitions given in eqs. (1.39a) and (1.39b). The determinant representation obtained in this way is
summarised in the following lemma 1.11.

Lemma 1.11. The scalar product in the transverse form-factor for 𝜎+𝑛 when evaluated with the
left-action of the operator C( 𝑖2 ) leads to the determinant representation

〈𝜓(𝝀) |C( 𝑖2 ) |𝜓(𝝁)〉 =
∏

𝜑(𝝀̌ − 𝝁 − 𝑖𝛾)
aaa
𝜑(𝝁)aaa 𝜑(−𝝀̌) detM [

𝝀̌


𝝁]

(1.111a)

and similarly the right-action of the operatorB( 𝑖2 ) in the scalar product in the transverse form-factors
for the 𝜎− leads to the following determinant representation:

〈𝜓(𝝁) |B( 𝑖2 ) |𝜓(𝝀)〉 =
∏

𝜑(𝝀̌ − 𝝁 − 𝑖𝛾)
aaa
𝜑(𝝁)aaa 𝜑(−𝝀̌) detM [

𝝀̌ |𝝁]
(1.111b)

The next logical step is the computation of the form-factors in the thermodynamic limit, starting
from the determinant representations in eqs. (1.102), (1.107) and (1.111). It is a challenging
problem. This project of thermodynamic form-factors from ABA has been realised only for a
handful of scenarios in the XXZ chains, which includes: the spontaneous magnetisation for massive
XXZ chain Δ > 1 in [IKMT99], form-factors of the massless XXZ chain −1 < Δ ≤ 1 where the
Hamiltonian is modified by coupling to an external field [KKM+11a], and the result which we will
present later in this thesis for two-spinon form-factors for the XXX chain [KK19]. We should also
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remark that the form-factors can also be computed using the 𝑞-vertex operator algebra approach.
The results obtained in the algebraic Bethe ansatz framework are found in good agreement with the
result from the 𝑞-vertex algebra framework wherever there is an overlap. In this thesis we are going
to present the method used to obtain the result of [KK19] and examine the broader utility of this
method. In the latter case, the symmetry of the XXX model brings additional freedom when it
comes to the form-factors, which is highlighted in the following paragraphs.

Determinant representation for form-factors of the XXX model
In this thesis, we are primarily interested in the longitudinal form-factors for the XXX model
computed in the thermodynamic limit.

|𝐹𝑧 |2 =
〈𝜓𝑔 |𝜎3

𝑚 |𝜓𝑒〉
〈𝜓𝑔 |𝜓𝑔〉

〈𝜓𝑒 |𝜎3
𝑚 |𝜓𝑔〉

〈𝜓𝑔 |𝜓𝑒〉 (1.112)

A more detailed understanding of excitations entering in this formula is required for the computations
in the thermodynamic limit, which we will do in chapter 2. For the demonstration of the following
result, that is applicable to finite chain before we take the thermodynamic limit, it would be sufficient
to know that the ground state |𝜓𝑔〉 of the XXX model is a singlet.

Lemma 1.12 (Selection criteria). Only the first descendant of the triplet excitations |𝜓1
1〉 can have

non-trivial contribution to the longitudinal form-factors (1.112) of the XXX model.

Proof. Let us first remark that the scalar product 〈𝜓𝑔 |𝜎3
𝑛 |𝜓ℓ

𝑠 〉 would vanish unless ℓ = 𝑠. It can be
seen by comparing the eigenvalues of 𝑆3 or through eq. (1.78) from the corollary to the lemma 1.5.
Now we shall show that for the scalar product 〈𝜓𝑔 |𝜎3

𝑛 |𝜓𝑠
𝑠〉 vanishes for both singlet 𝑠 = 0 and higher

multiplets 𝑠 > 1.
For the case of singlet excitations (𝑠 = 0), we can replace the operator 𝜎3

𝑚 by the commutator
[𝑆+, 𝜎−𝑚] and see that we have〈

𝜓𝑔

��𝜎3
𝑚

��𝜓0
0
〉
=

〈
𝜓𝑔

�� [𝑆+, 𝜎−𝑚] ��𝜓0
0
〉
= 0. (1.113)

This is because of the fact that all singlets, which includes the ground state |𝜓𝑔〉, are annihilated by
the action of both lowering and raising operators. Similarly, we can also show that for quintuplet or
higher multiplets (𝑠 ≥ 2), the longitudinal form-factor is also zero due to〈

𝜓𝑔

��𝜎3
𝑚

��𝜓𝑠
𝑠

〉
=

〈
𝜓𝑔

��𝜎−𝑚 ��𝜓𝑠−1
𝑠

〉
=

〈
𝜓𝑔

�� 𝑆−𝜎−𝑚 ��𝜓𝑠−2
𝑠

〉
= 0, 𝑠 ≥ 2. (1.114)

This shows that only the scalar products
〈
𝜓𝑔

��𝜎3
𝑛

��𝜓1
1 (𝝑)

〉
can have non-zero value. �

Corollary. The procedure in the proof of the above lemma 1.12 can also be used to prove the
following identities for the scalar product of the triplet. It permits us to switch between the scalar
products for the longitudinal and transverse local spin operators〈

𝜓𝑔

��𝜎3
𝑚

��𝜓1
1
〉
= −2 〈𝜓𝑔 |𝜎−𝑚 |𝜓0

1〉 (1.115a)
or, 〈

𝜓𝑔

��𝜎3
𝑚

��𝜓1
1
〉
=

〈
𝜓𝑔

��𝜎+𝑚 ��𝜓2
1
〉
. (1.115b)

And the squared norm for the first descendant is revealed to be twice that of the corresponding
leading Bethe vector 〈

𝜓1
1
��𝜓1

1
〉
= 2

〈
𝜓0

1
��𝜓0

1
〉
. (1.115c)
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1.A. Proof of the Foda-Wheeler version of Slavnov’s theorem

These identities can allow us to rewrite the longitudinal form-factor (1.112) in the transverse mode
either as

|𝐹𝑧 |2 = 2
〈
𝜓𝑔

��𝜎−𝑚 ��𝜓0
1
〉〈

𝜓𝑔

��𝜓𝑔

〉 〈
𝜓0

1

��𝜎+𝑚 ��𝜓𝑔

〉〈
𝜓0

1

��𝜓0
1
〉 (1.116a)

or,

|𝐹𝑧 |2 = −
〈
𝜓𝑔

��𝜎−𝑚 ��𝜓0
1
〉〈

𝜓𝑔

��𝜓𝑔

〉 〈
𝜓2

1
��𝜎−𝑚 ��𝜓𝑔

〉〈
𝜓0

1

��𝜓0
1
〉 . (1.116b)

The identities (1.116) mean that we can exploit the 𝔰𝔲2 symmetry of the XXX model to find
a simpler route for the computation of the form-factors. To do this, let us first compare the
representations for longitudinal and transverse form-factors obtained in eqs. (1.102), (1.107)
and (1.111). Let us also recall that the complexity of the representations in the transverse case is
different for the two channels which we discussed earlier. While we have a very simple formula
(1.111) for the direct channel with B or C acting as creation operators; in contrast we obtain a
complicated double sum for the channel (1.107) where the operator B or C acts as an annihilation
operator.
Although this means that a use of direct transverse channel (1.111) is always preferable, we should
also note that we do not have absolute freedom when choosing the direction of this action. For a
reason that will become evident in part II, the action of a local operator must be taken rightward
in our method, no matter which one of these three representation from eqs. (1.112), (1.116a)
and (1.116b) is chosen.
With this piece of information provided, we can evidently see that the representation (1.116b)
makes for an appropriate choice. We also note that its use is facilitated by a version of the Slavnov
determinant formula for the descendants due to [FW12b], which we have presented in the lemma 1.7.

1.A. Proof of lemma 1.7 : Foda-Wheeler version of Slavnov’s theorem

Proof. Here we will use the notation 𝜻 (ℓ) to denote a set with ℓ extra roots added 𝜻 (ℓ) = 𝝀 ∪ 𝜼,
with the cardinality 𝑛𝜼 = ℓ. At any intermediate stage, we will write the set 𝜻 (𝒌) = 𝝀 ∪ 𝜼 (𝒌) where
𝜼 (𝒌) = {𝜂𝑘+1, . . . , 𝜂ℓ}. Initially, we have the determinant representation

〈𝜓ℓ
𝑠 (𝝀) |𝜓(𝝁)〉 = (−𝑖)ℓ lim

𝜼→∞ (∏ 𝜼)
∏(𝝁 − 𝜻 (ℓ) − 𝑖)
aaa(−𝝁)aaa(𝜻 (ℓ) ) detM[𝝁‖𝜻 (ℓ) ] . (1.117)

Let us begin with the first limit where 𝜂1 →∞. The prefactors in this limit are transformed as

lim
𝜂1→∞

1
𝜂1

∏(𝝁 − 𝜻 (ℓ) − 𝑖)
aaa(−𝝁)aaa(𝜻 (ℓ) ) = (−1)𝑛𝝁

∏(𝝁 − 𝜻 (ℓ−1) − 𝑖)
aaa(−𝝁)aaa(𝜻 (ℓ−1) ) . (1.118)

We can also see that all the terms with exponential counting reduce in this limit simply as

lim
𝜂1→∞

𝔞(𝜇 𝑗 |𝜻 (ℓ) ) = 𝔞(𝜇 𝑗 |𝜻 (ℓ−1) ). (1.119)
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Chapter 1. Quantum inverse scattering method

We will multiply the column of index 𝑛𝝀 + 1 with a factor of 𝜂2
1 before taking the limit. It leads to

the Foda-Wheeler columnU1

U1(𝜇 𝑗) ≡ lim
𝜂1→∞

M 𝑗 ,𝑛𝝀+1
[
𝝁


𝜻 (ℓ) ] = 𝔞(𝜇 𝑗 |𝜻 (ℓ−1) ) − 1. (1.120)

For the successive limit 𝜂𝑎 → ∞ (𝑎 ≥ 2), we first develop the fractional terms in the column of
index 𝑛𝝀 + 𝑎 as §

𝑡 (±(𝜂𝑎 − 𝜇 𝑗)) ∼𝜂𝑎→∞
∞∑︁
𝑟=0

𝑓𝑟 (𝜇±𝑗 )𝜂−𝑟−2
𝑎 . (1.121)

Here 𝑓𝑟 (𝑧) ∈ ℂ𝑟 [𝑧] is a polynomial of degree 𝑟 with a known coefficient for the term of highest
degree.

𝑓𝑟 (𝑧) = (𝑟 + 1)𝑧𝑟 +
∑︁
𝑎<𝑟

𝜒𝑎𝑧
𝑎 . (1.122)

Let us project in this way all the polynomials of degree 0 ≤ 𝑟 < 𝑎 so that the expression (1.121)
can be expanded as

𝑡 (±(𝜂𝑎 − 𝜇 𝑗)) ∼ (𝜇±𝑗 )𝑎−1𝜂−𝑎−1
𝑎 + 𝑔𝑎−2 |𝑎+1(𝜇±𝑗 |𝜂−1

𝑎 ) +
∑︁
𝑟 ≥𝑎

𝑓𝑟 (𝜇±𝑗 )𝜂−𝑟−2
𝑎 (1.123)

where 𝑔𝑟 ,𝑠 (𝑢, 𝑣) denotes a polynomial of degrees 𝑟 and 𝑠 in the variables 𝑢 and 𝑣 respectively.
We can see that the limit 𝜂𝑎 → ∞ must be taken with the normalisation 𝜂𝑎𝑎 added to it in the

denominator, so that

lim
𝜂𝑎→∞

1
𝜂𝑎𝑎

∏(𝝁 − 𝜻 (ℓ−𝒂+1) )
aaa(−𝝁)aaa(𝜻 (ℓ−𝒂+1) ) = (−1)𝑛𝝁

∏(𝝁 − 𝑖𝜻 (ℓ−𝒂) )
aaa(−𝝁)aaa(𝜻 (ℓ−𝒂) ) . (1.124)

The limit for the counting functions can be simply evaluated as

lim
𝜂𝑎→∞

𝔞(𝜇 𝑗 |𝜻 (ℓ−𝒂+1) ) = 𝔞(𝜇 𝑗 |𝜻 (ℓ−𝒂) ). (1.125)

Before taking the limit for the column of index 𝑛𝝀 + 𝑎 inM𝑎−1 [𝝁 |𝜻 (ℓ−𝒂+1) ], we will first use the
expansion (1.123). During this substitution we also cancel the polynomial 𝑔𝑎−1,𝑎+1(𝜇 𝑗 |𝜂−𝑎𝑎 ) using
the recombination with the previously obtained Foda-Wheeler columnsU𝑎, up to the degree 𝑎 − 1.

M̂ (𝑎−1)
𝑗 ,𝑛𝝀+𝑎 =

1
𝑎

{
M (𝑎−1)

𝑗 ,𝑛𝝀+𝑎 +
𝑎−1∑︁
𝑟=1

𝜒𝑟 (𝜂−1
𝑎 )U𝑎 (𝜇 𝑗)

}
. (1.126)

Now taking the limit 𝜂𝑎 →∞ on this new column, with the normalisation 𝜂𝑎+1𝑎 , gives us

U 𝑗𝑎 [𝝁] ≡ lim
𝜂𝑎→∞

M̂ (𝑎−1)
𝑗 ,𝑎 . (1.127)

Repeating this process for all 1 < 𝑎 ≤ ℓ would give us the limit

lim
𝜼→∞(𝜼)

∏(𝝁 − 𝜻 (ℓ) )
aaa(−𝝁)aaa(𝜻 (ℓ) ) detM[𝝁 |𝜻 (ℓ) ] = (−1)𝑛𝝁ℓℓ!

∏(𝝁 − 𝝀)
aaa(−𝝁)aaa(𝝀) . (1.128)

This leads us to the result (1.89) of the lemma 1.7. �

§ We use the notation 𝑧± = 𝑧 ± 𝑖
2 in this expression.
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Chapter 2.
Spectrum in the thermodynamic limit

In this chapter, we will study the nature of the spectrum generated by the Bethe eigenvectors and its
thermodynamic limit, where we let the length of the spin-chain 𝑀 as well as the number of magnons
𝑁 (or the pseudo-particles) approach infinity (𝑀 →∞, 𝑁 →∞) while keeping the density of the
magnons fixed (𝑑 = 𝑁

𝑀 ).
This chapter is divided into three sections. In the first section, we discuss the nature of the ground

state for the XXZ model Δ > −1. In particular, the criteria for determining the ground state, first laid
down in [Hul38] and later proved by C.N. Yang and C.P. Yang in [YY66a]; [YY66b], is discussed
here. We shall also discuss the condensation property for the ground state roots, which was originally
conjectured by Yang and Yang, and proved by Kozlowski [Koz18]. Subsequently, we propose
a more general version of the condensation property which applies to a class of meromorphic
functions. It is demonstrated for the cases where the Fermi-zone is compact. We then propose that
it can be used for the non-compact case with certain assumptions.

In the second section we discuss the excitations in the vicinity of the ground state of the isotropic
XXX model. Special attention is paid towards the behaviour of complex roots in the thermodynamic
limit. In this context, we introduce the Destri-Lowenstein (DL) picture [DL82], which divides
complex roots into classes of close-pairs and wide-pairs. A comparison between the DL picture and
the string picture is made, based on which we strengthen the argument for why the DL picture is
better suited to our computations than the string picture.

In the third section, we briefly discuss the generalisation of the DL picture to the excitation of the
anisotropic XXZ model Δ > −1 by Babelon, Vega and Viallet [BVV83].

2.1. The true ground state of the XXZ model

First of all, let us recall that the dispersion relation (1.52) for magnon excitations, which are created
by the action of B, is not a non-negative function. Therefore the ferromagnetic ground state |𝜙〉 is
not the real ground state of the anti-ferromagnetic chain. In fact, it is the highest energy state. More
importantly, we can see that the true ground state (or the antiferromagnetic ground state) must be a
highly disordered state, composed by a sea of magnons, which lies in the subspace with 𝑁 = 𝑀

2 .
Let us recall from chapter 1 the logarithmic form of the Bethe equations (1.53). Let us also recall

that in terms of the counting function 𝜉 (1.54), the system of logarithmic Bethe equations can be
expressed as

(∀𝑎 ≤ 𝑁), 𝜉 (𝜆𝑎) = 2𝜋𝑄𝑎, (2.1a)

(𝑁 = 𝑛𝝀), 𝜉 (𝜈) = Θ1(𝜈) − 1
𝑀

𝑁∑︁
𝑘=1

Θ2(𝜈 − 𝜆𝑘). (2.1b)

From the monotonicity of the 𝜉 function, we see that the quantum numbers 𝑸 are half-integers
which are in one-to-one correspondence with the Bethe roots on the real line. Now to characterise
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Chapter 2. Spectrum in the thermodynamic limit

the ground state, Hulthén [Hul38] conjectured criteria which identify the ground state from its
quantum numbers 𝑸. His conjecture was later proved by Yang and Yang [YY66a]. It states that the
ground state has the following characteristics:

1. A set of real, pairwise distinct Bethe roots 𝝀 ⊂ ℝ of cardinality 𝑛𝝀 = 𝑀
2 .

2. And the set of corresponding quantum numbers related through eq. (2.1) are all consecutive

𝑄𝑎 = 𝑎 − 𝑀 + 2
4

, 𝑎 = 1, 2, . . . ,
𝑀

2
. (2.2)

The ground state is non-degenerate in the regime −1 < Δ ≤ 1. As we move to the regime Δ > 1,
due to the periodicity of the 𝜑 function, we get a two-fold quasi-degeneracy in the thermodynamic
limit as 𝑀 →∞. The quasi-degenerate ground state for Δ > 1 is obtained [Orb58] [see also Tak99]
from the choice of quantum numbers that are shifted 𝑸′ = 𝑸 + 1.

Definition 10 (Density). We define the density function 𝜌(𝜈 |𝝀) as the derivative of the counting
function (1.54)

𝜌(𝜈 |𝝀) = 𝑑

𝑑𝜈
𝜉 (𝜈 |𝝀). (2.3)

We will often drop the second argument whenever it is unambiguously clear from the context. For
example, here we can write 𝜌𝑔 (𝜈) = 𝜌(𝜈 |𝝀) for the ground state. Similarly, while speaking about
an excited state, we can denote 𝜌𝑒 (𝜈).

2.1.1. Condensation of roots in the thermodynamic limit

Hulthén [Hul38] also postulated that in the thermodynamic limit, the ground state roots condense
on the real line with a density given by the function 𝜌𝑔 (𝜆). The support of the counting function is
called the Fermi-zone 𝔉 ⊂ ℝ or the Fermi distribution. The condensation property allows us to
replace a sum over ground state Bethe roots by an integral with density function 𝜌𝑔 as measure. In
particular, starting from the logarithmic Bethe equation (2.1) this procedure gives us the integral
equation for the density function 𝜌𝑔 itself.

𝜌𝑔 (𝜆) +
∫
𝔉
𝐾 (𝜆 − 𝜏)𝜌𝑔 (𝜏)𝑑𝜏 = 1

2𝜋
𝑝′0(𝜆). (2.4a)

We call it the Lieb equation since it was obtained first by Lieb and Liniger [LL63] in the setting of
an integrable model known as one-dimensional Bose gas. Due to parity symmetry of the counting
function 𝜉, we can see that the Fermi-zone is symmetric at the origin, which can be either compact
𝔉 = [−Λ,Λ] or non-compact 𝔉 = ℝ. The compactness is determined by the following relation for
the Fermi-boundary parameter Λ: ∫ Λ

−Λ
𝜌𝑔 (𝜆)𝑑𝜆 =

1
2
. (2.4b)

which is coupled to the integral equation (2.4a). This heuristic argument allowed Hulthén to
compute the ground state energy to leading order. This approach was then adopted by others. It was
brought to mathematical rigour by Yang and Yang [YY66b] where they proved, most importantly,
that the coupled system of integral eqs. (2.4a) and (2.4b) admits a unique solution.
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2.1. The true ground state of the XXZ model

The Lieb kernel 𝐾 (𝜆) in the integral equation (2.4a) is given by the derivative of the scattering
phase Θ′(𝜆, 𝑖𝛾). According to the anisotropy Δ, the function 𝐾 assumes the form:

𝐾 (𝜆) =



1
𝜋(𝜆2 + 1) , Δ = 1

sin(2𝛾)
2𝜋 sinh (𝜆 + 𝑖𝛾) sinh (𝜆 − 𝑖𝛾) , |Δ| < 1

sinh(2𝛾)
2𝜋 sin (𝜆 + 𝑖𝛾) sin (𝜆 − 𝑖𝛾) , Δ > 1

. (2.5)

For the values of the anisotropy parameter in the massless regime −1 < Δ ≤ 1, we find that the
Fermi zone is non-compact 𝔉 = ℝ and the integral equation (2.4a) can be solved using the Fourier
transform. Whereas for the values of the anisotropy in the massive regime Δ > 1, the Fermi zone is
compact with the Fermi-boundary Λ = 𝜋

2 . In fact, due to the periodicity of the parametrisation 𝜑 in
the massive regime, we can see that the Fermi-zone can be mapped onto the unit circle. The solution
to the Lieb equation (2.4a) can be written as a Fourier series, or in terms of elliptic functions. With
all the three results aggregated, we can write

𝜌𝑔 (𝜆) =



1
2 cosh 𝜋𝜆

, Δ = 1

1
2 cosh 𝜋𝜆

𝛾

, |Δ| < 1

1
2𝜋

∑︁
𝑛∈ℤ

𝑒2𝑖𝑛𝜆

cosh(𝑛𝛾) , Δ > 1.

(2.6)

By integrating the density function 𝜌𝑔, we obtain the leading order term for the counting function 𝜉
and hence the same for the exponential counting function 𝔞. For the XXX model Δ = 1 we get

𝜉𝑔 (𝜆) = 1
2𝜋

arctan sinh 𝜋𝜆. (2.7a)

Hence,

𝔞𝑔 (𝜆) = ©­«
sinh 𝜋 (𝜆− 𝑖

2 )
2

sinh 𝜋 (𝜆+ 𝑖
2 )

2

ª®¬
𝑀
2

. (2.7b)

Similarly, for the massless XXZ chain |Δ| < 1, we get

𝜉𝑔 (𝜆) = 𝛾

2𝜋
arctan sinh

𝜋𝜆

𝛾
. (2.8a)

Hence, we can write

𝔞𝑔 (𝜆) =
©­­«
sinh 𝜋 (𝜆− 𝑖𝛾

2 )
2𝛾

sinh 𝜋 (𝜆+ 𝑖𝛾2 )
2𝛾

ª®®¬
𝛾𝑀

2

. (2.8b)

For the massive XXZ model Δ > 1, although a closed form expressions for the counting function
can be obtained in terms elliptic functions, we will not present it explicitly here.
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Chapter 2. Spectrum in the thermodynamic limit

However, Yang and Yang did not prove the condensation property that allows us to rewrite the
sum over Bethe roots of the ground state as an integral with the Lieb density. Recently, this major
gap was filled by Kozlowski [Koz18] as he rigorously proved the condensation property for all
values of the anisotropy Δ > −1.

Theorem 2.1 (Condensation property (Yang-Yang), (Kozlowski [Koz18])). For a sufficiently
regular function 𝑓 , we can write the sum over ground state roots as the integral over density in the
thermodynamic limit

lim
𝑀→∞

1
𝑀

∑︁

𝑓 (𝝀) =
∫
𝔉
𝑓 (𝜏)𝜌(𝜏)𝑑𝜏 (2.9)

It is also important to note that in [Koz18], the condensation property was proved also for a class
of excitations of the particle-hole type, where a root is removed (hole added) from the Fermi-zone
and an additional root (particle) is placed outside it, on the real line. It is also expected that this
property applies to the excitations with the complex roots which are energetically close to the
ground state, that are more relevant here in the scope of this thesis. These excitations and their
nature will be discussed in more detail in the next section 2.2. There we will see that the holes
play the role of true excitations of the ground state, called spinons. Thus the low-lying condition
translates to having a finite number of holes or spinons in the thermodynamic limit.

We will use in this thesis a generalisation of the condensation property 2.1 that extends it
to meromorphic functions, which may have poles on the real line. It is stated in the following
proposition, that we shall also demonstrate, for the compact Fermi-zone case which occurs in the
massive XXZ model.

Proposition 2.2 (Generalised condensation property for massive chains). Let 𝝀 be the set of Bethe
roots for the ground state of a massive XXZ chain Δ > 1. Let 𝑓 : ℂ→ ℂ be meromorphic function
periodic on the real line with principle domain 𝔉 and with poles 𝒘 on the real line such that its
intersection with the set of ground state Bethe roots is empty 𝒘 ∩ 𝝀 = ∅. Then the thermodynamic
limit of the sum over ground state Bethe roots is given by the integral

lim
𝑀→∞

1
𝑀

∑︁

𝑓 (𝝀) =
∫
𝔉+𝑖0

𝑓 (𝜏)𝜌𝑔 (𝜏)𝑑𝜏 + 2𝜋𝑖
∑︁ 𝜌𝑔 (𝒘)

1 + 𝔞𝑔 (𝒘) Res 𝑓 (𝒘). (2.10)

Proof. Let us define the function 𝑔 as

𝑔(𝜏) = 𝜌𝑔 (𝜏)
1 + 𝔞𝑔 (𝜏) 𝑓 (𝜏). (2.11)

We can easily see that the function 𝑔 is also periodic with 𝔉 as the fundamental domain. Since
1 + 𝔞𝑔 (𝜆𝑎) = 0 for all the Bethe roots 𝝀, we have poles of the function 𝑔 in the set 𝝀 t 𝒘. From
eqs. (1.55) and (2.3) we can see that its residue at each of these poles in 𝝀 is given by

Res
𝜏=𝜆𝑎

𝑔(𝜏) = − 1
2𝜋𝑖𝑀

𝑓 (𝜆𝑎). (2.12)

On the other hand, the poles in the set 𝒘 that were inherited from the function 𝑓 remain simple
because it is disjoint with the set of Bethe roots 𝒘 ∩ 𝝀 = ∅ and the residue at each of the poles in 𝒘
is hence given by

Res
𝜏=𝑤𝑎

𝑔(𝜏) = 𝜌𝑔 (𝑤𝑎)
1 + 𝔞𝑔 (𝑤𝑎) Res

𝜈=𝑤𝑎

𝑓 (𝜈) (2.13)
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2.1. The true ground state of the XXZ model

<

=

𝑤1 𝑤2 · · · 𝑤𝑛−1 𝑤𝑛

(𝔉 + 𝑖[−𝛼, 𝛼]) \ 𝒘

Figure 2.1.: Thickened Fermi-zone 𝔉 of the width 2𝛼, punctured at 𝑤𝑎 ∈ 𝒘 for 𝑎 ≤ 𝑛 (𝑛 = 𝑛𝒘)

Therefore from eq. (2.12) the sum over 𝑓 (𝜆𝑎) can be written as

1
𝑀

∑︁

𝑓 (𝝀) = −2𝜋𝑖
∑︁

Res 𝑔(𝝀) = −
∮
𝜕[ (𝔉+𝑖 (−𝛼,𝛼))\𝒘 ]

𝑔(𝜏)𝑑𝜏. (2.14)

Here the contour of integration is the boundary of the region shown in section 2.1.1 which shows
a thickened Fermi-zone 𝔉 + 𝑖(−𝛼, 𝛼) punctured to remove unwanted poles in the set 𝒘. The
integration on the inner contour simply gives the sum over residues (2.13) for the excluded poles.
The sum of integrals for the edges Λ + 𝑖(−𝛼, 𝛼) and −Λ + 𝑖(−𝛼, 𝛼) of the out contour is zero due to
periodicity of the integrand (∫ Λ+𝑖𝛼

Λ−𝑖𝛼
−

∫ −Λ+𝑖𝛼
−Λ−𝑖𝛼

)
𝑔(𝜏)𝑑𝜏 = 0. (2.15)

This leaves us with the part of the contour which we can rewrite as(∫
𝔉+𝑖𝛼
−

∫
𝔉−𝑖𝛼

)
𝑔(𝜏)𝑑𝜏 =

∫
𝔉+𝑖𝛼

𝑓 (𝜏)𝜌𝑔 (𝜏)𝑑𝜏

−
{∫

𝔉+𝑖𝛼
𝑓 (𝜏)𝜌𝑔 (𝜏)

𝔞𝑔 (𝜏)
1 + 𝔞𝑔 (𝜏) 𝑑𝜏 +

∫
𝔉−𝑖𝛼

𝑓 (𝜏)𝜌𝑔 (𝜏) 1
1 + 𝔞𝑔 (𝜏) 𝑑𝜏

}
(2.16)

From substituting eqs. (2.13), (2.15) and (2.16) into eq. (2.14) we obtain

1
𝑀

∑︁

𝑓 (𝝀) =
∫
𝔉+𝑖𝛼

𝑓 (𝜏)𝜌𝑔 (𝜏)𝑑𝜏 + 2𝜋𝑖
∑︁ 𝜌𝑔 (𝒘)

1 + 𝔞𝑔 (𝒘) Res 𝑓 (𝒘)

−
{∫

𝔉+𝑖𝛼
𝑓 (𝜏)𝜌𝑔 (𝜏) 𝑒2𝜋𝑖𝑀 𝜉 (𝜏)

1 + 𝑒2𝜋𝑖𝑀 𝜉 (𝜏) 𝑑𝜏 +
∫
𝔉−𝑖𝛼

𝑓 (𝜏)𝜌𝑔 (𝜏) 𝑒−2𝜋𝑖𝑀 𝜉 (𝜏)

1 + 𝑒−2𝜋𝑖𝑀 𝜉 (𝜏) 𝑑𝜏
}

(2.17)
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Chapter 2. Spectrum in the thermodynamic limit

In the thermodynamic limit, this leads to the result of eq. (2.10) where the error term can be
estimated as

2<
∫
𝔉+𝑖𝛼

𝑓 (𝜏)𝜌𝑔 (𝜏) 𝑒2𝜋𝑖𝑀 𝜉 (𝜏)

1 + 𝑒2𝜋𝑖𝑀 𝜉 (𝜏) 𝑑𝜏 = 𝑂 (𝑀
−∞) (2.18)

as we substitute the thermodynamic limit of the counting function 𝜉 (𝜏 ± 𝑖𝛼). Here we also remark
that this finite-size correction term is identical to the one obtained by Vega and Woynarovich
[VW85]. �

2.1.2. Generalised condensation in the non-compact case

For the massless chains −1 < Δ ≤ 1 where the Fermi-zone is non-compact 𝔉 = ℝ, a similar
approach can be used to obtain eq. (2.17). Instead of the periodicity, here we would need to have the
function 𝑓 that vanishes sufficiently rapidly at infinity, which makes the contribution of the edges of
the larger contour vanish as in eq. (2.15).

However, a problem arises in the estimation of the error terms due to the non-compactness of
the Fermi-zone 𝔉. This is due to the fact that exponential counting function near the tails of the
Fermi-distribution do not behave exponentially, rather it is 𝑜(1) as the spectral parameter 𝜆→∞
[see eqs. (2.7b) and (2.8b)]. Therefore, we encountered a problem of non-vanishing tails in the
integrals

2<
∫
ℝ+𝑖𝛼

𝑓 (𝜏)𝜌𝑔 (𝜏) 𝑒2𝜋𝑖𝑀 𝜉 (𝜏)

1 + 𝑒2𝜋𝑖𝑀 𝜉 (𝜏) 𝑑𝜏. (2.19)

This problem puts us in a precarious position, preventing a complete proof of the generalised
condensation property for massless XXZ chain −1 < Δ ≤ 1. At this juncture, it is very important to
realise that this problem is not unique to the meromorphic nature of the function 𝑓 . It also appears
in the case of condensation property for regular functions in non-compact Fermi-zone [Koz18]. In
the regular case, it is important to see that a significant fraction of the Bethe roots are populated in
the bulk of the Fermi-zone in order to prove the condensation property. By comparison, we see that
we ought to consider in the case of meromorphic functions, two different scenarios.
In the first case, all the poles are taken well within the bulk of the Fermi-distribution, where we can
write

𝔞𝑔 (𝜈) = 𝑂 (𝑒𝜎𝜅𝑀 ), 𝜎=𝜈 > 0. (2.20)

Therefore the function 𝑓 is regular in the neighbourhood of the problematic part in eq. (2.19), i.e.
the tails of the Fermi-distribution. Therefore it is reasonable to say, by comparison, that in such
cases the condensation property holds and the corrections from tails are sub-leading.
The second scenario that is truly problematic is where at-least one pole of the function 𝑓 lies near
the tail region where eq. (2.20) does not hold. In this part, the corrections from the tails can become
non-negligible. However, in practice the function 𝑓 always has poles determined by the roots of
ground state or a low-lying excited state∗. For such an eigenvector, most of the roots lie inside the
bulk and do not fall in the problematic tail region. Thus it can be argued that that this problematic
scenario in question, is an exception rather than a rule. We believe that in this way, the problematic
cases arising from the pole outside the bulk can be tamed. But it is hard to show this rigorously,
∗ see for example the functions 𝑡 (𝜆 − 𝜇) in the Slavnov determinant representation (1.80). Apropos, we shall see that

these terms are at the origin of the poles that enter our computations in part II.

48



2.2. Excitations of the XXX ground state

one of the reason is that there is no clear boundary in the Fermi-zone that separates the tails from
the bulk, although the bulk is heavily populated in comparison to the tails.

We will assume that the condensation property can be extended to such a meromorphic function
𝑓 and that the finite size corrections from eq. (2.19) remain sub-dominant, at-least in the bulk part.
We also assume that the order of sub-leading correction is 𝑜( 1

𝑀 ), in order to write

1
𝑀

∑︁

𝑓 (𝝀) =
∫
𝔉+𝑖𝛼

𝑓 (𝜏)𝜌𝑔 (𝜏)𝑑𝜏 + 2𝜋𝑖
∑︁ 𝜌𝑔 (𝒘)

1 + 𝔞𝑔 (𝒘) Res 𝑓 (𝒘) + 𝑜
(

1
𝑀

)
. (2.21)

We will further assume that the contribution of sub-leading terms in the determinant representations,
as well as the contribution due the presence of poles outside the bulk, are negligible in the final result
for the form-factors in the thermodynamic limit. In other words, we assume that the contribution of
the leading order terms from the bulk part of the Fermi-distribution dominates in the computation
of form-factors in the thermodynamic limit. With this bulk assumption, we have managed to obtain
the correct result for the thermodynamic limit of the two-spinon form-factor in [KK19] that is
compatible with the previous result [BCK96]. It will be reproduced in this thesis in chapter 3.

Although we introduced the condensation properties in the context of the ground state, it also
applies to the low-lying excitations, obtained by adding a finite number of holes and complex roots.
As an effect of their introduction, we have correction terms of order 𝑂 ( 1

𝑀 ) in the total excited
state density function 𝜌𝑒, that appear on top of the leading order terms which is dominated by the
ground state density function. Note that these correction terms are called so only due to their 𝑀−1

coefficients and the behaviour of these terms is well understood. It is well known that they all satisfy
an integral equation, similar to the Lieb eq. (2.4a). Having a better understanding of these density
terms for holes and complex roots tell us about the nature of complex Bethe roots themselves, as we
shall see in section 2.2.2 where we introduce the DL picture.

2.2. Excitations of the XXX ground state

The Bethe equations (2.22) for the XXX model are written in the rational parametrisation:

(∀ 𝑗 ≤ 𝑁),
(
𝜆 𝑗 − 𝑖

2

𝜆 𝑗 + 𝑖
2

)𝑀
∏ 𝜆 𝑗 − 𝝀 + 𝑖

𝜆 𝑗 − 𝝀 − 𝑖 = −1. (2.22)

Its logarithmic form can be written similar to eq. (2.1) as follows:

(∀ 𝑗 ≤ 𝑁), 𝜉 (𝜆 𝑗) = 𝑀Θ2(𝜆 𝑗) −
∑︁

Θ1(𝜆 𝑗 − 𝝀) = 2𝜋𝑖𝑄 𝑗 . (2.23)

The functions Θ𝜅 in the rational parametrisation (1.53b) can be expressed with the arctan function
as follows:

Θ𝜅 (𝜆) = 2 arctan
(
2𝜆
𝜅

)
. (2.24)

One of the most characteristic features of the XXX model is its 𝔰𝔲2 symmetry, which distinguishes
it from the anisotropic XXZ model model. An important consequence of its symmetry is the
decomposition of the XXX spectrum into multiplets, as we saw it in section 1.1.3. We will now
take it a step further as we study the spectrum of XXX model in the thermodynamic limit. Let us
first begin with the simpler types of excitations, where there are only real Bethe roots involved. The
treatment of complex roots will be taken up later in sections 2.2.2 and 2.2.3.
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Chapter 2. Spectrum in the thermodynamic limit

2.2.1. Spin waves (excitations generated by holes)

Let us start with an eigenstate described by a set 𝝁 ⊂ ℝ of 𝑛𝝁 = 𝑁𝑠 real Bethe roots. We will
denote the set of real Bethe roots as 𝝔 and its cardinality by 𝑛𝑟 = 𝑛𝝔 , more so in the future, as in the
current context it is rather redundant: 𝝁 = 𝝔 and 𝑛𝑟 = 𝑁𝑠. The set of quantum numbers 𝑸, which
are related to this set through the logarithmic Bethe eq. (2.23), form a subset of (half-)integers
𝑸 ⊂ [−𝑄max;𝑄max] which is placed symmetrically around zero. The value of the maximal quantum
number can be computed from the logarithmic Bethe equation (2.23), as it corresponds to the
penultimate quantum number for which the inverse counting function is finite [FT84]. This allows
us to write,

𝑄max = 𝑀𝜉 (∞) − 1 =
𝑀

4
+ 𝑠 − 1

2
. (2.25)

Therefore the cardinality 𝑛̂𝑟 of the set 𝑸̂ = [−𝑄max, 𝑄max] is given by the formula:

𝑛̂𝑟 = 2𝑄max + 1 =
𝑀

2
+ 𝑠. (2.26)

It is called the occupancy number 𝑛̂𝑟 . The set 𝑸̂ represents the range of all permissible quantum
numbers. The difference of cardinalities denoted 𝑛ℎ = 𝑛̂𝑟 − 𝑛𝑟 gives us number of the quantum
numbers that remain unoccupied. We find that the solution of the logarithmic Bethe eq. (2.23) for
these missing quantum numbers can also satisfy the Bethe equation (2.22) for given set 𝝁, although
they do not belong to this set of Bethe roots. Such extra real roots are referred to as holes, which
form a set denoted by 𝝑 (𝑛𝝑 = 𝑛ℎ). Naturally, in the current context, we have the relation:

𝑛ℎ = 𝑛̂𝑟 − 𝑛𝑟 = 2𝑠 (2.27)

Notation 11. We denote the union of all real roots of the logarithmic Bethe equations as

𝝔̂ = 𝝔 ∪ 𝝑. (2.28)

Quite clearly, its cardinality is the same as the occupancy number 𝑛𝝔̂ = 𝑛̂𝑟 .

From the relation (2.27) we can again see that the ground state |𝜓𝑔〉 is a singlet 𝑠 = 0 that is fully
occupied 𝑛𝑟 = 𝑛̂𝑟 = 𝑁0. In other words, it does not contain holes and as a singlet, it is annihilated
by the action of both global lowering and raising operators

𝑆+ |𝜓𝑔〉 = 𝑆− |𝜓𝑔〉 = 0 (2.29a)
similarly for the dual,

〈𝜓𝑔 | 𝑆+ = 〈𝜓𝑔 | 𝑆− = 0. (2.29b)

In all the higher multiplets 𝑠 > 0, we always have an excitation given by a Bethe vector, that contains
𝑛ℎ = 2𝑠 holes in its Fermi distribution. We call the quasi-particle obtained by addition of holes a
spin-wave or spinon. The relation (2.27) indicates that spinons obey fractional statistics and always
occur in pairs.
Due to the condensation of real roots in the thermodynamic limit, the hole parameters 𝝑 are more
suitable to characterise the excitations in comparison to the Bethe roots 𝝁, where the latter are better
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2.2. Excitations of the XXX ground state

described through their density function. Therefore, we will denote the leading Bethe eigenvector
of a (2𝑠 + 1)-plet in the spinon picture as |𝜓0

𝑠 (𝝑)〉, in contrast to the magnon picture where the
Bethe roots 𝝁 were explicitly used in the vector |𝜓0

𝑠 (𝝁)〉, like for example in section 1.1.3.
Let us recall that the Bethe vectors have highest weight in the 𝔰𝔲2 multiplets

𝑆+
��𝜓0

𝑠 (𝝑)
〉
= 0. (2.30)

Similar to eq. (1.69a) in section 1.1.3, the descendants of the Bethe vector in a multiplet are denoted:��𝜓ℓ
𝑠 (𝝑)

〉
= (𝑆−)ℓ |𝜓0

𝑠 (𝝑)〉 . (2.31)

The ground state in this notation is
��𝜓0

0
〉

since it does not contain holes.

Density functions and their integral equations
One of the ways to define the density of the roots in the excited state is as follows:

Definition 12. The total density function for the excited state 𝜌𝑒 (𝜈) is defined as the derivative of
its counting function.

𝜌𝑒 (𝜈) = 𝑑𝜉𝑒 (𝜈)
𝑑𝜈

. (2.32)

It is called total density because it includes the holes.

The condensation property also applies to a low-lying excitation, where this condition means that
the number of holes is finite 𝑛ℎ < ∞ in the thermodynamic limit 𝑁, 𝑀 →∞. The integral equation
that we obtain from eq. (2.1) for total root density function 𝜌𝑒 [see definition 12 above] is written
down in the following equation:

𝜌𝑒 (𝜈) +
∫
ℝ
𝐾 (𝜈 − 𝜏)𝜌𝑒 (𝜏)𝑑𝜏 = 1

2𝜋
𝑝′0(𝜈) +

1
𝑀

∑︁

𝐾 (𝜈 − 𝝑). (2.33)

Comparing it with the Lieb equation (2.4a) for the ground state, we see that the total root density
function for this type of excitation admit a decomposition:

𝜌𝑒 (𝜈) = 𝜌𝑔 (𝜈) + 1
𝑀

∑︁

𝜌ℎ (𝜈 − 𝝑). (2.34)

The 𝜌𝑔 is the ground state density satisfying the Lieb integral eq. (2.4a), thus it admits the Fourier
transform and the solution:

𝜌̂𝑔 (𝑡) = 𝑒−
|𝑡 |
2

1 + 𝑒−|𝑡 | , (2.35a)

𝜌𝑔 (𝜈) = 1
2 cosh 𝜋𝜈

(2.35b)

The density term 𝜌ℎ due to the presence of holes enters as a correction term of order 𝑂 ( 1
𝑀 ) in this

expansion (2.34). We can see that it satisfies the integral equation:

𝜌ℎ (𝜈) +
∫
ℝ
𝐾 (𝜈 − 𝜏)𝜌ℎ (𝜏)𝑑𝜏 = 𝐾 (𝜈). (2.36)
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Chapter 2. Spectrum in the thermodynamic limit

Let us remark that the above integral eq. (2.36) for 𝜌ℎ stands for the resolvent of the Lieb eq. (2.4a),
in this respect, the density function 𝜌ℎ is the resolvent of the Lieb eq. (2.4a).
The computations in this thesis will often require us to consider several variations of the Lieb
integral equation. To make this process more efficient, we introduce a shifted and rescaled version
of the Lieb equation as follows:

𝜌𝜅 (𝜆, 𝛼) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝜌𝛼 (𝜏, 𝛼)𝑑𝜏 = 𝐾𝜅 (𝜆 − 𝛼) (2.37)

where the function 𝐾𝜅 (𝜆 − 𝛼) is the Lieb kernel 𝐾 that is shifted by a complex parameter 𝛼 ∈ C
and rescaled by positive real parameter 𝜅 > 0, as shown in the following expression:

𝐾𝜅 (𝜈) = 𝜅𝐾 (𝜅(𝜈)). (2.38)

Since we can write the bare momentum as

1
2𝜋
𝑝′0(𝜆) = 𝐾2(𝜆) (2.39)

the ground state root density function 𝜌𝑔 is nothing but 𝜌2(𝜆) = 𝜌𝑔 (𝜆). Similarly, we can also see
that 𝜌ℎ (𝜈) = 𝜌1(𝜈). However, the integral eq. (2.37) for the generic term 𝜌𝜅 (𝜆, 𝛼) also allow us
to study where the argument or the line of integration is shifted in the imaginary direction. The
different scenarios arising from this generalisation are studied in appendix B. We borrow the results
from eqs. (B.5b) and (B.8) obtained there, to write the Fourier transform of the hole density term

𝜌̂ℎ (𝑡) = 𝑒−|𝑡 |

1 + 𝑒−|𝑡 | (2.40a)

and its solution in closed-form, which can be expressed in terms of the digamma function [see
appendix A] as follows:

𝜌ℎ (𝜈) = 1
4𝜋

∑︁
𝜎=±1

{
𝜓

(
1
2
+ 𝜈

2𝑖𝜎

)
− 𝜓

(
1 + 𝜈

2𝑖𝜎

)}
. (2.40b)

Definition 13. Let us define the density function of the real roots without the holes through the
following expression:

𝜎𝑒 (𝜈) = 𝑑𝜉𝑒 (𝜈)
𝑑𝜈

− 1
𝑀

∑︁

𝛿(𝜈 − 𝝑). (2.41)

The integral equation for the density function 𝜎𝑒 (2.41) can be obtained from the condensation
property. It is as follows:

𝜎𝑒 (𝜈) +
∫
ℝ
𝐾 (𝜈 − 𝜏)𝜎𝑒 (𝜏)𝑑𝜏 = 1

2𝜋
𝑝′0(𝜈) −

1
𝑀

∑︁

𝛿(𝜈 − 𝝑). (2.42)

Therefore, it admits the decomposition:

𝜎𝑒 (𝜇) = 𝜌𝑔 (𝜇) + 1
𝑀

∑︁

𝜎ℎ (𝜇 − 𝝑). (2.43)

Let us observe that the leading order term in both eqs. (2.34) and (2.43) is common, and it is equal
to the density function 𝜌𝑔 for the ground state. Hence, the terms due to the holes 𝜌ℎ and 𝜎ℎ in the
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2.2. Excitations of the XXX ground state

expansions of the densities 𝜌𝑒 and 𝜎𝑒 [see eqs. (2.34) and (2.43)] are related to each other by the
following relation:

𝜌ℎ (𝜈) − 𝜎ℎ (𝜈) = 𝛿(𝜈) (2.44)

This leads us to the Fourier transform of 𝜎ℎ, as seen in the following expression:

𝜎ℎ (𝑡) = −1
1 + 𝑒−|𝑡 | . (2.45)

Energy-momentum eigenvalues in the thermodynamic limit
In the thermodynamic limit the eigenvalues (1.51) can be computed as integrals with densities,
using the condensation property. The density function 𝜎𝑒 and its decomposition (2.43) allows us to
see that the leading term will be dominated by the eigenvalues of the ground state.

𝐻 |𝜓ℓ
𝑠 (𝝑)〉 = 𝐽 (𝐸𝑔 +

∑︁

𝜀𝑒 (𝝑)), (2.46a)
and

𝑃 |𝜓ℓ
𝑠 (𝝑)〉 = 𝐽 (𝑃𝑔 +

∑︁

𝑝𝑒 (𝝑)). (2.46b)

The difference, i.e. the energy when measured over the ground state, is a physically important
quantity. We can see from the above expression that it can be represented as sum over terms
for individual spinons, where the functions for 𝜀𝑒 and 𝑝𝑒 characterising these spinon energy and
momentum are given by the convolutions:

𝜀𝑒 (𝜗) =
∫
ℝ
𝜀0(𝜏)𝜎ℎ (𝜏 − 𝜗)𝑑𝜏, (2.47a)

𝑝𝑒 (𝜗) =
∫
ℝ
𝑝0(𝜏)𝜎ℎ (𝜏 − 𝜗)𝑑𝜏. (2.47b)

This leads us to the following expressions for the energy and momentum of the spinons.

𝜀𝑒 (𝜗) = 𝜋

2 cosh 𝜋𝜗
, (2.48a)

𝑝𝑒 (𝜗) = arctan sinh 𝜋𝜗 − 𝜋
2
(mod 𝜋). (2.48b)

By comparing the energy and momentum values of the spinons in eq. (2.48) above, we get the des
Cloizeaux and Pearson [CP62] dispersion relation for the spinons:

𝜀𝑒 (𝑝) = −𝜋2 sin 𝑝. (2.49)

Similarly, by integrating the 𝜎ℎ function (2.45) we obtain∫
ℝ
𝜎(𝜏)𝑑𝜏 = −1

2
(2.50)

which gives us correctly the value of total spin of the excited state Bethe vector

𝑆3 |𝜓0
𝑠 (𝝑)〉 = 𝑠 |𝜓0

𝑠 (𝝑)〉 , (2.51)

since we have by eq. (2.27) number spinons or holes 𝑛ℎ is given by 𝑛ℎ = 2𝑠, in the current context
of only real excitations.
The dispersion relation (2.49) also tells us that the necessary condition for an excitation to be a
low-lying state is that the number of holes 𝑛ℎ remains finite in the thermodynamic limit. It also tells
us that the spinon excitations have a vanishing mass gap, therefore we say that the XXX model is
massless.
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Chapter 2. Spectrum in the thermodynamic limit

Complex Bethe roots in the thermodynamic limit

The nature of complex Bethe roots of eq. (2.22) is a very delicate issue. In the finite case, we can
only claim with certainty that complex roots of the XXX chain always appear in conjugated pairs.
In the thermodynamic limit however, as Bethe [Bet31] himself realised, we can expect that complex
roots form a discernible pattern called string complex.

Since we can see that in the Bethe eq. (2.22) for the XXX model reproduced below

𝑟 (𝜆 𝑗)
∏ 𝜆 𝑗 − 𝝀 + 𝑖

𝜆 𝑗 − 𝝀 − 𝑖 = −1, 𝑟 (𝜆) =
(
𝜆 − 𝑖

2

𝜆 + 𝑖
2

)𝑀
. (2.52)

The function 𝑟 (𝜆) becomes singular for non-real values of the spectral parameter as

𝑟 (𝜆) = 𝑂 (𝑒−𝜎𝜅𝑀 ), for 𝜎=𝜆 > 0, 𝜎 = ±1. (2.53)

Thus we can expect that this singularity is counter-balanced by the singularity in the remaining
phase terms in the eq. (2.22). This can happen if the complex Bethe roots in question approach the
singularity 𝜆𝑎 − 𝜆𝑏 ± 𝑖 = 𝑖𝛿𝑎𝑏 up-to an exponentially small correction 𝛿𝑎𝑏 = 𝑂 (𝑀−∞) of the same
as order of divergence as 𝑟 (𝜆𝑎). This parameter is called the string deviation.

This string hypothesis about the behaviour of complex Bethe roots allow us to classify them in
string complexes of various length ℓ > 1 called ℓ-string in the thermodynamic limit as follows:

𝜆 (ℓ)𝑎; 𝑗 = 𝑧
(ℓ)
𝑎 + 𝑖

(
1
2 (ℓ + 1 − 2 𝑗) + 𝛿 𝑗𝑎

)
, 𝑗 = 1, 2, . . . , ℓ. (2.54)

The parameter 𝑧𝑎 ∈ ℝ is called the string centre and the upper index tells us the length of string
complex generated by this centre. The real Bethe roots can be seen as 1-string (string complex of
length 1) with exactly zero string deviation in this picture.

In the stronger version of the string hypothesis where all the deviations are exponentially
small, we can rewrite the logarithmic Bethe equation in terms of the aggregated phase terms for
string-complexes:

∏ 𝜈 − 𝝀ℓ𝒂 + 𝑖
𝜈 − 𝝀ℓ𝒂 − 𝑖

=
𝜈 − 𝑧𝑎 + (ℓ + 1) 𝑖2
𝜈 − 𝑧𝑎 − (ℓ + 1) 𝑖2

(1 +𝑂 (𝑀−∞)) (2.55)

where only the centres of the strings, which are all real parameters enter the final expression. In the
same manner as earlier, we can compute the bare energy and momentum for the complex strings
𝜀ℓ-str

0 and 𝑝ℓ-str
0 . Using eq. (2.55), the logarithmic Bethe equation eq. (2.56) reproduced here in the

context of the XXX model by,

𝑀Θℓ

(
𝑧 (ℓ)𝑎

)
−

∑︁
𝑘≥1

∑︁

Θℓ,𝑘 (𝑧 (ℓ)𝑎 − 𝒘𝒌 ) = 2𝜋𝑄 (ℓ)𝑎 (2.56a)

where,

Θℓ,𝑘 (𝜆) =
∑︁′

|ℓ−𝑘 | ≤𝑟 ≤ℓ+𝑘
Θ𝑟 (𝜆) . (2.56b)

The primed sum
∑′ omits the singularity term for 𝑟 = 0 (if it is present). In contrast to the

eq. (1.53a), here we get a set of quantum numbers 𝑸 (ℓ) associated to each subset of Bethe roots
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2.2. Excitations of the XXX ground state

forming ℓ-string complexes. As we did in the case of 1-strings in eqs. (2.25) and (2.26), we can
compute the maximum quantum number for ℓ-string and the occupancy number. However, the main
difference is that we have to subtract the length of the chain ℓ to get the maximal quantum number:

𝑄 (ℓ)max = 𝜉ℓ-str(∞) − ℓ. (2.57)

This gives us the formula:

𝑄 (ℓ)max =
𝑀

2
−
∞∑︁
𝑘=1

𝐽 (ℓ, 𝑘)𝑛𝑘-str − 1
2

(2.58)

and hence the occupancy number 𝑛̂ℓ-str:

𝑛̂ℓ-str = 𝑀 − 2
∞∑︁
𝑘=1

𝐽 (ℓ, 𝑘)𝑛𝑘-str. (2.59a)

where 𝐽 : ℕ2 → 1
2ℕ is given by,

𝐽 (ℓ, 𝑘) =
{

min(ℓ, 𝑘), ℓ ≠ 𝑘;
ℓ − 1

2 , ℓ = 𝑘.
(2.59b)

It is possible to compute combinatorially, using eqs. (2.58) to (2.59b), the total number of
eigenvectors obtained from the Bethe ansatz which correctly gives the dimension of the quantum
space [FT84]; [Kir85]. However, this does not prove the completeness problem at all since it uses
the string hypothesis for the counting. In order to write eq. (2.54) we require that string deviations
𝜹 vanish uniformly, which is problematic. The violations of the string hypothesis are demonstrated
in [EKS92]; [IP93]; [HC07]; [Vla84] where strings with large deviation are shown to exist or
some extra solutions are found which do not fit the scheme of the string hypothesis. The correct
proof of the completeness problem for the XXX chain is provided in [MTV09], which changes the
perspective and reformulates the problem around the Baxter polynomial. For the XXZ chain the
completeness problem for the spectrum remains unsolved.
In addition to the completeness problem, the string picture is also known to be problematic in the
thermodynamic analysis, particularly for the XXX chain. It has been pointed out [Woy82] that the
low-lying excitations of the XXZ 0 < Δ ≤ 1 ground state do not contain higher strings of length
longer than two.

Destri and Lowenstein [DL82] gave an alternate description for the complex roots, in the context
of the chiral Gross-Neveu model†. This description does not a priori assume the string hypothesis
as in eq. (1.63). It splits the complex roots into 2-strings, quartets and wide-pairs based on
the imaginary part which determines the choice of branch cuts in the counting function. This
classification presents a more accurate description of the spectrum in the thermodynamic limit.
While speaking strictly in combinatorial terms, the absence of higher strings in this formulation is
compensated by the emergence of quartet and wide-pair formations.
The new picture due to [DL82] is more general in the sense that it can also give rise to higher
strings, albeit only in some extreme scenarios. For these and other reasons, it is this description of
† The Bethe equations for the chiral Gross-Neveu model are identical to Bethe equations in rational parametrisation

obtained here for the XXX chain
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Chapter 2. Spectrum in the thermodynamic limit

Destri-Lowenstein (DL) that we will use throughout the computations carried out in part II of this
thesis.
The description provided in [DL82] was extended to anisotropic XXZ model Δ > −1 by Babelon,
Vega and Viallet [BVV83]. Here we first give detailed description of the DL picture of the excitations
in the XXX model in sections 2.2.2 and 2.2.3. The generalisation to the XXZ picture due to
[BVV83] will be briefly discussed in section 2.3.

2.2.2. Destri-Lowenstein picture of excitations

Based on the difference in the choice of branch cuts of the function Θ2(𝜈 − 𝜇) as seen in fig. 1.1,
we classify the complex Bethe roots of the excited state 𝝁 into two categories, called close-pairs
and wide-pairs.

Close-pair : 𝝁𝑐 ⊂ {𝛼 + 𝑖𝛽 | 𝛼 ∈ ℝ, 0 < |=𝛽 | < 1} , (2.60a)
Wide-pair : 𝝁𝑤 ⊂ {𝛼 + 𝑖𝛽 | 𝛼 ∈ ℝ, |=𝛽 | > 1} . (2.60b)

Together with the set of real Bethe roots, this gives the complete partition into three categories of
cardinalities

𝝁 = 𝝔 ∪ 𝝁𝑐 ∪ 𝝁𝑤 , with cardinality, 𝑁𝑠 = 𝑛𝑟 + 2𝑛𝑐 + 2𝑛𝑤 . (2.61)

Let us recall from the discussion in the preceding section 2.2.1, that we also have a set of holes 𝝑.
The cardinality of the set of hole parameters 𝝑 will be determined a posteriori in this picture.
Let us now define an auxiliary function that will facilitate our computations.

Definition 14. We define the 𝜙 function as the ratio of Baxter polynomials (1.57) of the excited
state and the ground state

𝜙(𝜈 |𝝁, 𝝀) = 𝑞𝑒 (𝜈)
𝑞𝑔 (𝜈) =

∏(𝜈 − 𝝁)
∏(𝜈 − 𝝀) . (2.62)

The sets 𝝁 and 𝝀 which corresponds here to the sets of Bethe roots of the excited state and the
ground state respectively are deliberately kept in the argument very explicitly to ease the redefinition
of the 𝜙 function producing several different versions that we will use in this thesis. In the absence
of explicit second arguments such as 𝜙(𝜈), the interpretation will be taken strictly according to the
definition eq. (2.62).

Notation 15 (Ratio of eigenvalues). Given a set of excited state and ground state, the function 𝜒(𝜈)
defines the ratio of the eigenvalues of the transfer matrix for these two states as

𝜒(𝜈) = 𝜏𝑒 (𝜈)
𝜏𝑔 (𝜈) . (2.63)

The ratio of eigenvalues is naturally present in the prefactors of the form-factors as we can see from
eq. (1.96).

Let us recall that complex roots appear in conjugated pairs, hence their cardinalities are always
even and we can further talk about the partitions based on the sign of their imaginary values

𝝁𝑐 = 𝝁𝑐+ ∪ 𝝁𝑐−, 𝝁𝑤 = 𝝁𝑤+ ∪ 𝝁𝑤−. (2.64)

Due to the auto-conjugacy of the set of Bethe roots, we can see that

𝝁𝑐− = 𝝁𝑐+, 𝝁𝑤− = 𝝁𝑤+. (2.65)
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2.2. Excitations of the XXX ground state

Notation 16. We adopt the notation of shifted parameters 𝑧± with respect to its ‘anchor’ 𝑧 as
follows:

𝑧𝜎 = 𝑧 + 𝑖𝜎
2
, 𝜎=𝑧 > −1

2
, (𝜎 = ±). (2.66)

The condition 𝜎=𝑧 > − 1
2 is imposed to ensure that parameters 𝑧+ are always in the positive half of

the complex plane and 𝑧− in the negative half.

With this notation, we shall now denote a close-pair root in the positive half of the complex plane
by the symbol 𝜐+ and that on the negative half by 𝜐̄−. Similarly, the wide pairs by 𝜔+ and 𝜔̄− on the
positive and negative half of the complex plane respectively. Here, 𝜐̄ and 𝜔̄ denote the complex
conjugations of anchors 𝜐 and 𝜔. Thus auto-conjugacy requirement of the Bethe roots demand that

• if 𝜐+ is a close-pair Bethe roots, then 𝜐̄− should be as well and vice-versa;

• if 𝜔+ is a close-pair Bethe roots, then 𝜔̄− should be as well and vice-versa.

Hence, it is sufficient to parametrise the Bethe roots by specifying all the positive parts of the
close-pairs and wide-pairs:

𝝁𝑐 = 𝝊+ ∪ 𝝊̄−, 𝝁𝑤 = 𝝎+ ∪ 𝝎̄−. (2.67)

From the derivative of the counting function, we obtain the integral equation for the total root
density function 𝜌𝑒:

𝜌𝑒 (𝜈) +
∫
ℝ
𝐾 (𝜈 − 𝜏)𝜌𝑒 (𝜏)𝑑𝜏 = 1

2𝜋
𝑝′0(𝜈) +

1
𝑀

∑︁

𝐾 (𝜈 − 𝝑)

− 1
𝑀

∑︁ {
𝐾 (𝜈 − 𝝊+) + 𝐾 (𝜈 − 𝝊̄−)} − 1

𝑀

∑︁ {
𝐾 (𝜈 − 𝝎+) + 𝐾 (𝜈 − 𝝎̄−)} . (2.68)

This allows us to write the total density as

𝜌𝑒 (𝜈) = 𝜌𝑔 (𝜈) + 1
𝑀

∑︁

𝜌1(𝜈, 𝝑) − 1
𝑀

{
∑︁

𝜌1(𝜈, 𝝊+ + 𝑖𝜹) +
∑︁

𝜌1(𝜈, 𝝊− − 𝑖𝜹)
}

− 1
𝑀

{
∑︁

𝜌1(𝜈,𝝎+) +
∑︁

𝜌1(𝜈, 𝝎̄−)
}
+ 𝑜

(
1
𝑀

)
(2.69)

where the function 𝜌1(𝜆, 𝜇) represents the shifted density function, satisfying the integral equation
(2.37) for 𝜅 = 1. In appendix B we study this generalised form of the integral equation (2.37). In
section 2.A at the end of this chapter we recall these results for 𝜅 = 1.

In section B.2 we extend the domain of the density function 𝜌𝑔 (𝜆) = 𝜌2(𝜆) to complex values
𝜆 ∈ ℂ. There we found (B.15) that 𝜌𝑔 can be analytically continued to the region |=𝜆 | < 1 which
tells us that the expression (2.7b) for the exponential counting function can also be extended to the
close-pair strip, as shown in the following:

𝔞𝑔 (𝜆) = ©­«
sinh 𝜋 (𝜆− 𝑖

2 )
2

sinh 𝜋 (𝜆+ 𝑖
2 )

2

ª®¬
𝑀
2

, |=𝜆 | < 1. (2.70)
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Chapter 2. Spectrum in the thermodynamic limit

Due to its periodicity we can write the following

𝔞𝑔 (𝜆+)𝔞𝑔 (𝜆−) = 1, ( |=𝜆 | < 1
2
) (2.71a)

whereas for the wide-pair we found that it vanishes 𝜌2(𝜆) = 0 (B.17), which leads to

𝔞𝑔 (𝜆) = 1, ( |=𝜆 | > 1). (2.71b)

We reformulate in this thesis the method of [DL82] to determine the nature of the complex roots
in thermodynamic limit in terms of auxiliary functions. To do this, we factorise the exponential
counting function of the ground state from that of the excited state as follows:

𝔞𝑒 (𝜆)
𝔞𝑔 (𝜆) =

𝜙(𝜆 + 𝑖 |𝝁, 𝝀)
𝜙(𝜆 − 𝑖 |𝝁, 𝝀) . (2.72)

The reasoning behind this factorisation is clear, it follows from the observation that the leading
order term in the density of roots for the excited state is the density function for the ground state 𝜌𝑔
as evident from eq. (2.69). We note that a similar reasoning can be found in [DL82] and also in
[BVV83] for the XXZ model. However, here we choose to work in terms of the auxiliary 𝜙 function
[see definition 14], which will be a recurrent feature throughout our computations. We compute its
thermodynamic limit in section 2.B at the end of this chapter. The result (2.131) obtained there
allows us to write down the thermodynamic limit for eq. (2.72) for the different scenarios, which is
summarised in the following paragraphs.

For close-pairs
Substituting the result obtained in eq. (2.131) for the thermodynamic limit of the 𝜙 and eq. (2.70)
for the ground state exponential counting function 𝔞𝑔 into eq. (2.72) gives us the following
thermodynamic limit of the 𝔞𝑒 (𝜆) in close-pair strip |=𝜆 | < 1 :

𝔞𝑒 (𝜆) = ©­«
sinh 𝜋 (𝜆− 𝑖

2 )
2

sinh 𝜋 (𝜆+ 𝑖
2 )

2

ª®¬
𝑀
2
∏ (𝜆 − 𝝎−) (𝜆 − 𝝎̄−)
(𝜆 − 𝝎+) (𝜆 − 𝝎̄+)

×
∏

Γ
(

1
2 + 𝜆−𝝊+

2𝑖

)
Γ

(
1
2 + 𝜆−𝝊̄−

2𝑖

)
Γ

(
1 − 𝜆−𝝊+

2𝑖

)
Γ

(
1 − 𝜆−𝝊̄−

2𝑖
)

Γ
(
1 + 𝜆−𝝊+

2𝑖

)
Γ

(
1 + 𝜆−𝝊̄−

2𝑖
)
Γ

(
1
2 − 𝜆−𝝊+

2𝑖

)
Γ

(
1
2 − 𝜆−𝝊̄−

2𝑖

)
×
∏

Γ
(
1 + 𝜈−𝝑

2𝑖

)
Γ

(
1
2 − 𝜈−𝝑

2𝑖

)
Γ

(
1
2 + 𝜈−𝝑

2𝑖

)
Γ

(
1 − 𝜈−𝝑

2𝑖

) . (2.73)

Since the term due to 𝔞𝑔 (𝜆) in eq. (2.73) can be estimated from eq. (2.70) as

𝔞𝑔 (𝜈) = ©­«
sinh 𝜋 (𝜈− 𝑖

2 )
2

sinh 𝜋 (𝜈+ 𝑖
2 )

2

ª®¬
𝑀
2

, (2.74)

it turns out to be singular in the thermodynamic limit for complex values for the parameter 𝜈 in
0 < |=𝜈 | < 1. Hence, we can see that this behaviour should be compensated by the remaining
terms in eq. (2.73) in order to have 1 + 𝔞𝑒 (𝜐+) = 0 or 1 + 𝔞(𝜐̄−) = 0 for the close-pair roots.
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2.2. Excitations of the XXX ground state

We now argue that this can be achieved by having a pole (or a zero) in these remaining terms.
We can also reasonably believe that such a pole must be from a close-pair part of this expression as
the remaining terms do not have any pole (or zero) in |=𝜆 | < 1. This forces us to write

𝜐𝑎 − 𝜐̄𝑏 = 𝑖𝛿𝑎𝑏, (2.75)

where the string deviation parameter is exponentially small 𝛿𝑎𝑏 = 𝑂 (𝑀−∞), as it is responsible for
countering the singular term. Note that unlike the string hypothesis in eq. (1.63) , we did not make
this assumption a priori in order to arrive at eq. (2.75). We first computed the relevant quantities
(𝜙 in our case) in the thermodynamic limit, which naturally led us to eq. (2.75). This is the key
difference of this approach in contrast to the string hypothesis. It is also important to point out that
the length of strings obtained in this way is limited to two, since this result is obtained in the context
of close-pairs. In addition to 2-strings, we also find that there can exist a new type of formation
called a quartet consisting of four complex roots. This is discussed in the following paragraph.

To see all the possible formations resulting from eq. (2.75), we let the two sets of anchors for the
close pairs coincide, halving the number of anchors for close-pairs

𝝊 = 𝝊̄. (2.76)

Let us note that while writing this, we have silently, i.e. without changing the notation, separated the
deviation terms from the set of anchors and incorporated them into the close-pair roots as deviated
shifts:

𝜐+ + 𝑖𝛿 = 𝜐 + 𝑖
2
+ 𝑖

2
𝛿. (2.77)

For the close-pair in the negative half of the complex plane, the notation 𝜐̄ for the anchor becomes
redundant due to eq. (2.76) hence we can write

𝜐− − 𝑖𝛿 = 𝜐 − 𝑖
2
− 𝑖

2
𝛿. (2.78)

The parameter 𝜐 is thus called the centre of the close-pair 𝜐± ± 𝑖𝛿. However, there are two ways the
anchors can be identified in pairs according to eq. (2.76). This gives rise to the following two types
of formations:

2-string: if we set 𝜐̄𝑎 = 𝜐𝑎, then this parameter must be real and it form a 2-string:

{𝜐+𝑎 + 𝑖𝛿𝑎, 𝜐−𝑎 − 𝑖𝛿𝑎 | 𝜐 ∈ ℝ} . (2.79a)

quartet: if we set 𝜐𝑎 = 𝜐̄𝑏 for distinct indices 𝑎 and 𝑏, then these parameters can be outside the
real line in the strip |=𝜆 | < 1

2 . The auto-conjugacy demands that we have 𝜐𝑏 = 𝜐̄𝑎. This leads to a
complex of four close-pair roots:{

𝜐+𝑎 + 𝑖𝛿𝑎𝑏, 𝜐+𝑏 + 𝑖𝛿𝑎𝑏, 𝜐−𝑎 − 𝑖𝛿𝑎𝑏, 𝜐−𝑏 − 𝑖𝛿𝑎𝑏
���� 0 < =(𝜐𝑎) < 1

2
, 𝜐𝑏 = 𝜐𝑎

}
. (2.79b)

The set of centres of the close-pairs forms a self conjugate set (2.76) which lies in the strip |=𝜈 | < 1
2 .

Its cardinality is equal to the number 𝑛𝝊 = 𝑛𝑐 and each centre determines two roots 𝜐± forming
either 2-strings or quartet.
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Chapter 2. Spectrum in the thermodynamic limit

Upon substitution of weaker string hypothesis (2.75) into the thermodynamic limit (2.131) for the 𝜙
function, it takes a simplified form (2.133). Consequently, the expression (2.73) also simplifies to
the following:

𝔞𝑒 (𝜈) = ©­«
sinh 𝜋 (𝜆− 𝑖

2 )
2

sinh 𝜋 (𝜆+ 𝑖
2 )

2

ª®¬
𝑀
∏ 𝜆 − 𝝊 + 𝑖

2

𝜆 − 𝝊 − 𝑖
2

∏ 𝜆 − 𝝎 + 𝑖
2

𝜆 − 𝝎 − 𝑖
2

∏ 𝜆 − 𝝎̄ + 𝑖
2

𝜆 − 𝝎̄ − 𝑖
2

×
∏

Γ
(
1 + 𝜆−𝝑

2𝑖

)
Γ

(
1
2 − 𝜆−𝝑

2𝑖

)
Γ

(
1
2 + 𝜆−𝝑

2𝑖

)
Γ

(
1 − 𝜆−𝝑

2𝑖

) . (2.80)

We now move to discuss the case of wide-pairs consisting of complex roots in the region (2.60b).

For wide-pairs
A wide-pairs is still parametrised in terms of its two anchors 𝜔 and 𝜔̄.

wide-pair :
{
𝜔 + 𝑖

2
, 𝜔̄ − 𝑖

2

����=𝜔 >
1
2

}
. (2.81)

But as remarked earlier, when notation 16 was introduced, we can claim with certainty in this case
that the anchor 𝜔 has a positive imaginary part, likewise the anchor 𝜔̄ has a negative imaginary
part. This statement is equivalent to the difference in the nature of branch cuts in the counting
function for wide-pairs. An interesting consequence follows from this remark. To see it, let us
compute now the thermodynamic limit of the expression (2.72), using the result for the 𝜙 function
from appendix B. At this juncture, it is important to remark that there are two main differences in
its computation here as compared to the close-pair case eq. (2.73):

1. this time we take the thermodynamic limit of the 𝜙 function given in eq. (2.133) that already
uses the weaker string hypothesis (2.75) for the close-pair terms appearing in it.

2. here the exponential counting function for the ground state is constant for wide-pairs.

𝔞𝑔 (𝜔+) = 𝔞𝑔 (𝜔̄−) = 1 (2.82)

This follows from the fact that the density of ground state roots vanishes in the region where
wide-pairs are found. It is seen from eq. (B.17) that we derive in appendix B.

Substituting the result of eqs. (2.82) and (2.133) in eq. (2.72) leads us to

𝔞𝑒 (𝜆) =


∏ 𝜆 − 𝝊 + 𝑖

2

𝜆 − 𝝊 − 3𝑖
2

∏ (𝜆 − 𝝎 + 𝑖
2 ) (𝜆 − 𝝎̄ + 𝑖

2 )
(𝜆 − 𝝎 − 3𝑖

2 ) (𝜆 − 𝝎̄ − 3𝑖
2 )

∏ 𝜆 − 𝝑 − 𝑖
𝜆 − 𝝑 , =𝜆 > 1;

∏ 𝜆 − 𝝊 + 3𝑖
2

𝜆 − 𝝊 − 𝑖
2

∏ (𝜆 − 𝝎 + 3𝑖
2 ) (𝜆 − 𝝎̄ + 3𝑖

2 )
(𝜆 − 𝝎 − 𝑖

2 ) (𝜆 − 𝝎̄ − 𝑖
2 )

∏ 𝜆 − 𝝑 + 𝑖
𝜆 − 𝝑 , =𝜆 < −1.

(2.83)

Note that there is no singular term here and that means wide-pairs do not form any particular
formation. The imaginary part of the wide-pair is a free parameter as long as it is confined to
=𝜔+ > 1 for the wide-pairs in the positive half of the complex plane or to =𝜔̄− < −1 for wide-pairs
in the negative half.
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real

Bethe root — hole 2-string quartet—

close-pair wide-pair

=𝜆 = 1

=𝜆 = 1
2

=𝜆 = −1
=𝜆 = − 1

2

(a) A schematic representation of the different types of roots
in the complex plane. Here we can also see that close-pairs
are condensed into either 2-strings or quartets. The centres
of the close-pairs and anchors of the wide-pair are denoted
with a cross .

𝝁

𝝔 𝝑𝜚

𝝊+

𝝊−

𝝎̄−

𝝎+

(b) Venn diagram for the classification.
The set 𝝑 contains holes. The union
𝝔̂ = 𝝔 ∪ 𝝑 represents the complete
set of real solutions to the logarithmic
Bethe equations.

Figure 2.2.: Classifications of roots into the sets of real 𝝔, close-pair 𝝊+ and 𝝊− and, wide-pairs 𝝎+
and 𝝎̄− in the Destri-Lowenstein picture.

Remark. It also means that there is no halving of the number of parameters in the wide-pair case.
The set of anchors 𝜔 ∪ 𝜔̄ continues to be the same. The number 𝑛𝑤 denotes the number of positive
wide-pair anchors. More importantly, let us note that there are no roots such as 𝜔− or 𝜔̄+. In fact,
writing it so would be in conflict with the notation 16 and hence it ought to avoided at all costs.
Whenever such a parameter may arise in our computations, for whatever reasons, we shall write it
explicitly as 𝜔 − 𝑖

2 or as, 𝜔̄ + 𝑖
2 , or alternatively, as 𝜔+ − 𝑖 or as, 𝜔̄− + 𝑖.

A schematic representation is given in fig. 2.2 to present a combined picture due to [DL82] that
is portrayed here. Let us introduce the notation combining the close-pair and wide-pair parameters.

Higher-level roots and common density term
Notation 17 (higher-level Bethe roots). Let us define the set of higher-level roots composed of all
the centres of close-pairs and anchors of the wide-pairs

𝝁̃ = 𝝊 ∪ 𝝎 ∪ 𝝎̄ (2.84a)

Its cardinality 𝑛̃ = 𝑛𝝁̃ can be expressed in terms of the number of close-pairs and wide-pairs as

𝑛̃ = 𝑛𝑐 + 2𝑛𝑤 . (2.84b)

With the weaker string hypothesis of eq. (2.75), the integral equation (2.68) also becomes
simplified. It is studied in appendix B. Let us highlight an important point that can be drawn from
there. We find after solving the respective integral equations that the density terms for the close-pair
and wide-pair contribution have the same functional form, although different Fourier transform due
to their differing pole structure. This means that we can write a common density term 𝜌̃. It is given
by the following expression:

𝜌̃(𝜆) = 1
2𝜋

1
𝜆2 + 1

4
(2.85)
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Chapter 2. Spectrum in the thermodynamic limit

Coincidentally, we find that the function 𝜌̃ is the same as the bare momentum function 𝑝′0 (1.51b)
of the XXX model. However, its Fourier transform is sensitive to the imaginary part of argument
and admits different representations in the regions for the close-pairs and wide-pairs.̂̃𝜌(𝑡, 𝜐) = 𝑒−| 𝑡2 |𝑒−𝑖𝜐𝑡 , (2.86a)̂̃𝜌(𝑡, 𝜔) = 𝐼𝑡<0(1 − 𝑒−𝑡 )𝑒−𝑖𝜔𝑡 , (2.86b)̂̃𝜌(𝑡, 𝜔̄) = 𝐼𝑡>0(1 − 𝑒𝑡 )𝑒−𝑖 𝜔̄𝑡 . (2.86c)

Together, notation 17 and eq. (2.85) allows us to rewrite the expansion (2.69) in a simplified form:

𝜌𝑒 (𝜈) = 𝜌𝑔 (𝜈) + 1
𝑀

∑︁

𝜌ℎ (𝜈 − 𝝑) − 1
𝑀

∑︁

𝜌̃(𝜈 − 𝝁̃). (2.87)

Similarly, we can also write the density function of the real roots without holes, using eq. (2.41). It
has the decomposition:

𝜎𝑒 (𝜈) = 𝜌𝑔 (𝜈) + 1
𝑀

∑︁

𝜎ℎ (𝜈 − 𝝑) − 1
𝑀

∑︁

𝜌̃(𝜈, 𝝁̃). (2.88)

Let us also recall that in the above expressions, the 𝜌𝑔 denotes density of the ground state roots
while 𝜌ℎ and 𝜎ℎ denotes the density terms for the holes, all of which are exactly the same as in
section 2.2.1.

Energy and momentum eigenvalues
Using the condensation property, we can again compute the energy and momentum eigenvalues for
the excited state in the DL picture. Let us denote the leading Bethe vector of a generic low-lying
excitation as

���𝜓 (ℓ)𝑠 (𝝑 | 𝝁̃)
〉
. The energy and momentum eigenvalues for this vector and its descendant

are determined by the integrals with the density (2.88), which are given in the following expressions.

𝐸𝑒 − 𝐸𝑔 =
∑︁

𝜀2𝑠 (𝝊) +
∑︁

𝜀0(𝝎+) +
∑︁

𝜀0(𝝎̄−) +
∫
ℝ
𝜀0(𝜏) (𝜎𝑒 (𝜏) − 𝜌𝑔 (𝜏))𝑑𝜏; (2.89a)

𝑝𝑒 − 𝑝𝑔 =
∑︁

𝑝2𝑠 (𝝊) +
∑︁

𝑝0(𝝎+) +
∑︁

𝑝0(𝝎̄−) +
∫
ℝ
𝑝0(𝜏) (𝜎𝑒 (𝜏) − 𝜌𝑔 (𝜏))𝑑𝜏. (2.89b)

For the close-pair we assume the vanishing deviation parameters and write the combined terms:

𝜀2𝑠 (𝜈) = 𝜀0(𝜈 − 𝑖
2 ) + 𝜀0(𝜈 + 𝑖

2 ) = −4𝜋𝐾 (𝜈) = −4
𝜈2 + 1

, (2.90a)

𝑝2𝑠 (𝜈) = 𝑝0(𝜈 − 𝑖
2 ) + 𝑝0(𝜈 + 𝑖

2 ) = 𝜋 − Θ2(𝜈) = 𝜋 − 2 arctan(𝜈). (2.90b)

The integrals with density terms of the functions 𝜀0 and 𝑝0 given in eqs. (1.51a) and (1.51b)
can be computed with the Fourier transform. We have already seen the result for the convolution
with density terms for hole in eq. (2.48). The convolution integral with density term for complex
roots can be obtained using the Fourier transforms in eqs. (2.86a) to (2.86c). This is computed in
appendix B. After this computation we find that∫

ℝ
𝜀(𝜏) 𝜌̃(𝜏, 𝜐)𝑑𝜏 = −𝜀2𝑠 (𝜏, 𝜐),

∫
ℝ
𝑝0(𝜏) 𝜌̃(𝜏, 𝜐)𝑑𝜏 = −𝑝2𝑠 (𝜐); (2.91a)∫

ℝ
𝜀(𝜏) 𝜌̃(𝜏, 𝜔+)𝑑𝜏 = −𝜀0(𝜏, 𝜔+),

∫
ℝ
𝑝0(𝜏) 𝜌̃(𝜏, 𝜔+)𝑑𝜏 = −𝑝0(𝜔+); (2.91b)∫

ℝ
𝜀(𝜏) 𝜌̃(𝜏, 𝜔̄−)𝑑𝜏 = −𝜀0(𝜏, 𝜔̄−),

∫
ℝ
𝑝0(𝜏) 𝜌̃(𝜏, 𝜔̄−)𝑑𝜏 = −𝑝0(𝜔̄−). (2.91c)
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2.2. Excitations of the XXX ground state

As a consequence of eq. (2.91), all the terms due to the complex roots in eq. (2.90) are cancelled out
in the thermodynamic limit. This means that the energy momentum eigenvalues are independent
from the complex roots 𝜇̃ and only depend on the hole parameters.

𝜀𝑒 (𝜗) = 𝜋

2 cosh 𝜋𝜗
, (2.92a)

𝑝𝑒 (𝜗) = arctan sinh 𝜋𝜗 − 𝜋
2
(mod 𝜋). (2.92b)

In the form of eq. (2.92), note that we have obtained exactly the same expressions as we did in
section 2.2.1. We can also show that the thermodynamic limit ratio of eigenvalues of the transfer
matrix [see notation 15] is invariant in this eigenspace. This is computed in section 2.C at the end
of this chapter and the final expression can be found in eq. (2.141), which is reproduced below:

𝜒(𝜆) =
∏

tanh
𝜋(𝜆 − 𝝑)

2
. (2.93)

In the above expression, we can see that the function 𝜒(𝜆) depends only on the hole parameters 𝝑,
as we have expected.
In the upcoming section 2.2.3, we will obtain the set of equations which completely determines the
set 𝝁̃ in terms of 𝝑. We will see that these equations resemble the Bethe eq. (2.22), it will also
permits us to compute the dimension of the degenerate eigenspace with fixed 𝝑.

Although we have seen that complex roots do not affect the eigenvalue of the transfer matrix (and
the conserved charges generated by it), they do play a key role in the computation of the total spin 𝑠.
To see this, let us compute the number of real roots by integrating the density function 𝜎𝑒. It gives
us the following relation between the number of real roots on hand and the numbers of holes and
complex roots on the other.

𝑛𝑟 = 𝑀𝜎𝑒 (0) = 𝑀

2
− 𝑛ℎ

2
− 𝑛𝑐 . (2.94a)

In this expression 𝑛𝑐 is the number of close-pairs, while the number of wide-pairs does not enter
this expression. Comparing it with the following expression:

𝑛𝑟 =
𝑀

2
− 𝑠 − 2𝑛𝑐 − 2𝑛𝑤 (2.94b)

allows us to express the number of holes in terms of the total spin 𝑠 and 𝑛̃ as

𝑛ℎ = 2𝑠 + 2𝑛̃. (2.95)

There are different ways of looking at this formula. With fixed number of holes, we see that adding
a higher-level root we move to a lower multiplet 𝑠′ = 𝑠 − 1. In addition to the multiplets, we will
often speak of spinon sectors with constant number of spinons. With fixed total spin 𝑠 (hence in a
given multiplet), we can see that each close-pair require two holes to form while each wide-pair
requires four holes to form. We will now establish the relations that determine the set 𝝁̃ of higher
level roots in terms of the holes 𝝑.
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Chapter 2. Spectrum in the thermodynamic limit

2.2.3. Higher-level Bethe equations

Let us first observe that both results that were obtained in eqs. (2.80) and (2.83) can be rewritten
with notation 17 as

𝔞𝑒 (𝜈) =



∏ 𝜈 − 𝝑 − 𝑖
𝜈 − 𝝑

∏ 𝜈 − 𝝁̃ + 3𝑖
2

𝜈 − 𝝁̃ − 𝑖
2

; =𝜈 > 1,

©­«
sinh 𝜋 (𝜈− 𝑖

2 )
2

sinh 𝜋 (𝜈+ 𝑖
2 )

2

ª®¬
𝑀
∏

Γ
(
1 + 𝜈−𝝑

2𝑖

)
Γ

(
1
2 − 𝜈−𝝑

2𝑖

)
Γ

(
1
2 + 𝜈−𝝑

2𝑖

)
Γ

(
1 − 𝜈−𝝑

2𝑖

) ∏ 𝜈 − 𝝁̃ + 𝑖
2

𝜈 − 𝝁̃ − 𝑖
2
, |=𝜈 | < 1;

∏ 𝜈 − 𝝑 + 𝑖
𝜈 − 𝝑

∏ 𝜈 − 𝝁̃ + 𝑖
2

𝜈 − 𝝁̃ − 3𝑖
2
, =𝜈 < −1.

(2.96)

We will now show that higher-level roots 𝝁̃ satisfy a set of inhomogeneous Bethe equations, which
are known as the higher-level Bethe equations. The inhomogeneity parameters entering these
equations are nothing but the hole parameters 𝝑.

Lemma 2.3. Let 𝝁̃ denote the set of higher-level roots (2.84a) composed of the parameters from
𝝊, 𝝎 and 𝝎̄ which describe the complex roots 𝝊+, 𝝊−,‡ 𝝎+ and 𝝎̄− as described in eqs. (2.79)
and (2.81). Then 𝝁̃ satisfies in the thermodynamic limit the following set of equations:

(∀𝑎 ≤ 𝑛̃)
∏ 𝜇̃𝑎 − 𝝑 − 𝑖

2

𝜇̃𝑎 − 𝝑 + 𝑖
2

∏ 𝜇̃𝑎 − 𝝁̃ + 𝑖
𝜇̃𝑎 − 𝝁̃ − 𝑖 = −1. (2.97)

Proof. Let us begin with the case of a wide-pair 𝜇̃𝑎 = 𝜔𝑎′. Since 𝜔+𝑎′ is a Bethe root, we find that
from eq. (2.96) for 1 + 𝔞𝑒 (𝜔+𝑎′) leads to the expression:

∏ 𝜔𝑎′ − 𝝑 − 𝑖
2

𝜔𝑎′ − 𝝑 + 𝑖
2

∏ 𝜔𝑎′ − 𝝁̃ + 𝑖
𝜔𝑎′ − 𝝁̃ − 𝑖 = −1. (2.98)

Similarly for 𝜇̃𝑎 = 𝜔̄−𝑎′, since 𝜔̄−𝑎′ is a Bethe root we get:

∏ 𝜔̄𝑎′ − 𝝑 − 𝑖
2

𝜔̄𝑎′ − 𝝑 + 𝑖
2

∏ 𝜔̄𝑎′ − 𝝁̃ + 𝑖
𝜔̄𝑎′ − 𝝁̃ − 𝑖 = −1. (2.99)

Finally for a close-pair 𝜇̃𝑎 = 𝜐𝑎′, we can see that both 𝜐+𝑎′ + 𝑖𝛿𝑎′ and 𝜐−𝑎′ − 𝑖𝛿𝑎′ are Bethe roots.
This means that we have 𝔞𝑒 (𝜐±𝑎′ ± 𝑖𝛿𝑎′) = −1, however the expression for the exponential counting
function obtained in (2.96) contains singular terms for this. We have seen that this singularity is
indeed balanced by a pole of the Gamma function in the parameter 𝛿𝑎′. Here we them multiply
together in the limit 𝛿𝑎′ → 0 to get:

lim
𝛿𝑎′→0

𝔞𝑒 (𝜐+𝑎′ + 𝑖𝛿𝑎′)𝔞𝑒 (𝜐−𝑎′ − 𝑖𝛿𝑎′) = −
∏ 𝜐𝑎′ − 𝝑 − 𝑖

2

𝜐𝑎′ − 𝝑 + 𝑖
2

∏ 𝜐𝑎′ − 𝝁̃ + 𝑖
𝜐𝑎′ − 𝝁̃ − 𝑖 . (2.100)

‡ deviation for the close-pair are assumed to be exponentially small
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2.2. Excitations of the XXX ground state

Since we have 𝔞𝑒 (𝜐±𝑎′ ± 𝑖𝛿𝑎′) = −1, this tells us that for the close-pair also we can write,

∏ 𝜐𝑎′ − 𝝑 − 𝑖
2

𝜐𝑎′ − 𝝑 + 𝑖
2

∏ 𝜐𝑎′ − 𝝁̃ + 𝑖
𝜐𝑎′ − 𝝁̃ − 𝑖 = −1. (2.101)

Through the notation 17 that we defined earlier, eqs. (2.98), (2.99) and (2.101) can be collectively
written as eq. (2.97). �

Definition 18. Let us define the higher-level auxiliary function, or the higher-level version of the
exponential counting function 𝔞̃ as

𝔞̃(𝜈 | 𝝁̃, 𝝑) =
∏ 𝜈 − 𝝑 − 𝑖

2

𝜈 − 𝝑 + 𝑖
2

∏ 𝜈 − 𝝁̃ + 𝑖
𝜈 − 𝝁̃ − 𝑖 . (2.102a)

More commonly, we will denote it as simply 𝔞̃(𝜈). In terms of it, the higher-level Bethe eq. (2.97)
can be recast as

(∀𝑎 ≤ 𝑛̃) 1 + 𝔞̃( 𝜇̃𝑎 | 𝝁̃, 𝝑) = 0. (2.102b)

Finding explicit solutions of the Bethe equations is a difficult task, the inhomogeneous nature of
the higher-level Bethe equations makes it even more so. But we can still do some prediction by
analysing the eq. (2.97) alone. First we can see that the higher-level roots are also either real or
they occur in conjugated pairs. For the low-lying excitations, we also know that the system (2.97)
is always finite. We can compute the number of possible solutions to it based on the following
argument.

Let us fix the number of holes 𝑛ℎ as any positive even integer. The number of solutions 𝑍 (𝑛ℎ, 𝑛̃)
for the higher-level Bethe equations (2.97) for any given 𝑛̃ ≤ 1

2𝑛ℎ can be computed as follows: We
first compute the number of solutions for a parameter 𝜇̃𝑎 with all other parameters 𝝁̃𝑎̂ fixed. Since
eq. (2.97) is symmetric, the choice of the parameter 𝜇̃𝑎 does not matter. Assuming that there are no
singularities in eq. (2.97), we can rewrite it in a polynomial form:

𝐴( 𝜇̃𝑎 |𝝑, 𝝁̃𝑎̂) = 0. (2.103)

While doing so we also replace the cross-terms in (2.97) with the other fixed roots using the
higher-level Bethe equation for these roots, with the help of the following expression:

𝜇̃𝑎 − 𝜇̃𝑏 + 𝑖
𝜇̃𝑎 − 𝜇̃𝑏 − 𝑖 =

∏ 𝜇̃𝑏 − 𝝑 − 𝑖
2

𝜇̃𝑏 − 𝝑 + 𝑖
2

∏ 𝜇̃𝑏 − 𝝁̃𝒂̂,𝒃̂ + 𝑖
𝜇̃𝑏 − 𝝁̃𝒂̂,𝒃̂ − 𝑖

. (2.104)

With this substitution the cross terms are replaced by constant terms and the polynomial thus
obtained after simplification has degree determined by the number of holes 𝑛ℎ and the number of
solutions for the variable 𝜇̃𝑎 in polynomial 𝐴 is given by

(𝑛ℎ
𝑛̃

)
. However, since we have fixed the

remaining roots while doing so, the over-counted solutions must be removed, giving us the formula:

𝑃(𝑛ℎ, 𝑛̃) =
(
𝑛ℎ
𝑛̃

)
−

(
𝑛ℎ
𝑛̃ − 1

)
1 ≤ 𝑛̃ ≤ 𝑛ℎ

2
. (2.105)

The number of solutions for 𝑛̃ = 0 is evidently 𝑃(𝑛ℎ, 0) = 1. For a particular choice of 𝑛ℎ and
𝑛̃ the total spin is determined by eq. (2.95). For total spin 𝑠 we have additional degeneracy in
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the 2𝑠 + 1 multiplet. Due to the convexity of this relation, both the total spin 𝑠 and number of
higher-level roots 𝑛̃ lie in the range 0 ≤ 𝑠, 𝑛̃ ≤ 1

2𝑛ℎ. We have already seen that energy eigenvalue
for the excitation is function of the hole parameters alone (2.92). The presence of complex root only
affects the total spin through the relation (2.95). For a given set of holes 𝝑, we get a degenerate
eigenspace whose dimension can be obtained by summing up the expression (2.105) with the 2𝑠 + 1
multiplicity accounting for the descendants of 𝑠 = 𝑛ℎ

2 − 𝑛̃ multiplet

𝑍 (𝑛ℎ) =
𝑛ℎ
2∑̃︁

𝑛=1
(𝑛ℎ − 2𝑛̃ + 1) 𝑃(𝑛ℎ, 𝑛̃). (2.106)

This sum can be recast as follows, which gives the dimension

𝑍 (𝑛ℎ) =
(
𝑛ℎ
𝑛ℎ
2

)
+ 2

𝑛ℎ
2 −1∑̃︁
𝑛=0

(
𝑛ℎ
𝑛̃

)
= 2𝑛ℎ . (2.107)

This can also be seen from the fact that the higher level Bethe equations are nothing but inhomogen-
eous version of the Bethe equations for the site of length 𝑛ℎ.

Examples

We will now study some of the examples of the low-lying excitations. The state with zero spinons is
trivial, it corresponds to the ground state which we thoroughly discussed in the beginning of this
chapter. Let us start with the two-spinon sector.

Two-spinon sector
There are two excitations. The triplet (𝑠 = 1) do not contain any complex root. We can write down
from eq. (2.133), the thermodynamic limit of the auxiliary 𝜙 function for this excitation:

𝜙(𝜈 |𝝁, 𝝀) = (2𝑖𝜎)−1
Γ

(
𝜈−𝜗1
2𝑖𝜎

)
Γ

(
𝜈−𝜗2
2𝑖𝜎

)
Γ

(
1
2 + 𝜈−𝜗1

2𝑖𝜎

)
Γ

(
1
2 + 𝜈−𝜗2

2𝑖𝜎

) , 𝜎=𝜈 > 0. (2.108)

In two-spinon singlet 𝑛ℎ = 2, 𝑠 = 0, we have one 2-string since 𝑛̃ = 1 whose centre is denoted by 𝜐.
The higher-level Bethe equation (2.97) in this case can be reduced to a linear equation in 𝜐 and thus
it can be readily solved to obtain

𝜐 =
𝜗1 + 𝜗2

2
. (2.109)

The thermodynamic limit of the auxiliary 𝜙 function is given by,

𝜙(𝜈 |𝝁, 𝝀) = (2𝑖𝜎)−1
(
𝜈 − 𝜐 − 𝑖𝜎

2

) Γ
(
𝜈−𝜗1
2𝑖𝜎

)
Γ

(
𝜈−𝜗2
2𝑖𝜎

)
Γ

(
1
2 + 𝜈−𝜗1

2𝑖𝜎

)
Γ

(
1
2 + 𝜈−𝜗2

2𝑖𝜎

) , 𝜎=𝜈 > 0. (2.110)

Another auxiliary result of importance is the thermodynamic limit of the function 𝜒 for ratio of
eigenvalues of the transfer matrix defined in eq. (2.63). It is natural to expect from our observation
in eq. (2.92) that it only depends on the choice of holes 𝝑 in the thermodynamic limit. This is
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2.2. Excitations of the XXX ground state

exactly what we find in the explicit computation (2.141) for this function in appendix B. Here for
the two-spinon sector (for both singlet and triplet), the thermodynamic limit of this ratio is given by
the expression:

𝜒(𝜈) = tanh
𝜋(𝜈 − 𝜗1)

2
tanh

𝜋(𝜈 − 𝜗2)
2

. (2.111)

All the possible configurations and their multiplicities are tabulated below up-to six-spinon sector
in the table 2.1. Now we will take here only two examples from the four and six spinon sectors,
both of which are triplets. This bias towards the triplet is a very deliberate choice and the reason
behind it will become clear in the next chapter.

Four-spinon and six-spinon triplet
For a four-spinon triplet (𝑛ℎ = 4, 𝑠 = 1) we get 𝑛̃ = 1 and hence it also consists of one 2-string
with centre 𝜐. However, note that this is also the first occurrence of complex root in a triplet. The
higher-level Bethe equation can be reduced to a cubic polynomial in 𝜐 admitting three real roots for
the value of center 𝜐.

4𝜐3 − 3𝜐2
∑︁
𝑎

𝜗𝑎 + 𝜐
(
2
∑︁
𝑎≠𝑏

𝜗𝑎𝜗𝑏 − 1

)
−

( ∑︁
𝑎≠𝑏≠𝑐

𝜗𝑎𝜗𝑏𝜗𝑐 − 1
4

∑︁
𝑎

𝜗𝑎

)
= 0. (2.112)

In the six spinon triplet (𝑛ℎ = 6, 𝑠 = 1) we get two higher-level roots since 𝑛̃ = 2. The higher-level
Bethe equations are two coupled equations of degree 6 for 𝜐1, 𝜐2. The number of solutions computed
from the expression in eq. (2.105) is 9. The nature of these roots is not easy to determine. Here
we can get any of the three possible configurations. If the two solutions are real then it forms two
2-strings (2.79a), if they occur in conjugated pair, then it forms either a quartet (2.79b) or wide-pair
(2.81) depending on the value of its imaginary part. In some extreme case it can also lead to the
formation of a 3-string if the two roots are located such that their difference is close to 𝜐1 − 𝜐2 ' 1.
We exclude such extreme scenario in all our computations here since eq. (2.97) becomes singular
in this case. However, this remark is behind the following observation where we compare the DL
picture with the string picture.

Compatibility with the string picture

We saw that the DL picture also consists of strings of lengths no longer than 2 and the higher strings
are replaced by quartets and wide-pairs. However, we can also see that a string of length 3 can
also occur in some extreme cases where we have a singular term 𝜇̃𝑎 − 𝜇̃𝑏 = 𝑖 in the higher-level
Bethe equation. This formation can occur from either close-pair or the wide-pair side. When
two close-pairs centres comes close to the difference 𝜇̃𝑎 − 𝜇̃𝑏 = 𝑖, this can be seen as a quartet
becoming a three string. In this case one of the roots from the quartet turns into a real root. From
the wide-pair side as two wide-pair anchors come close to the difference 𝜔𝑎 − 𝜔̄𝑎 = 𝑖, we also get a
3-string. In this case the real root is turned into one of the three roots of the 3-string on the real
line. This process is consistent with the computation of the occupancy numbers for the real roots,
although we will not demonstrate it here. We also remark that higher string complexes can also
form in the same process where quartets and wide-pairs come together. Such extreme cases are
very rare occurrences in the low-lying sector and it cannot affect the thermodynamic computation at
near equilibrium and zero-temperature that is presented here. However, these extreme cases do
occur more frequently when we move away from equilibrium or at higher temperature where the
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𝑛ℎ 𝑠 𝑛̃ (𝑛𝑟 , 𝑛𝑐 , 𝑛𝑤 ) 𝑛̂𝑟 𝑃(𝑛ℎ, 𝑛̃) 𝑍 (𝑛ℎ)
0 0 0 (𝑁0, 0, 0) 𝑁0 1 1

2
1 0 (𝑁1, 0, 0) 𝑁−1 1

4
0 1 (𝑁2, 1, 0) 𝑁0 1

4

2 0 (𝑁2, 0, 0) 𝑁−2 1

16
1 1 (𝑁3, 1, 0) 𝑁−1 3

0 2
(𝑁4, 2, 0) 𝑁0 2
(𝑁2, 0, 1) 𝑁−2

6

3 0 (𝑁3, 0, 0) 𝑁−3 1

64

2 1 (𝑁4, 1, 0) 𝑁−2 5

1 2
(𝑁5, 2, 0) 𝑁−1 9
(𝑁3, 0, 1) 𝑁−3

0 3
(𝑁6, 3, 0) 𝑁0 5
(𝑁4, 1, 1) 𝑁−2

Table 2.1.: Examples of the excitation in the DL picture

low-lying condition is violated and for such studies, the string hypothesis provides more accurate
and convenient description for the nature of complex roots.

Let us also remark that the eigenvalues (2.92) can also be computed in the string picture, starting
from eq. (1.64a). Similarly we can also compute the occupancy numbers for the string using
eq. (2.59a). Here we also find that the two descriptions are compatible. In the string picture also the
eigenvalues are given by the expression (2.92) which is the function of the hole parameters alone.
The computation of the dimensions (2.107) of the eigenspaces generated from this degeneracy are
also found in agreement.

Henceforth we will only use the DL picture with 2-strings (2.79a), quartets (2.79b) and wide-pairs
(2.81). The string deviations will be assumed to be small unless when these parameters are important
for regularising the expressions.

2.3. Excitations of the ground state for the XXZ model for Δ > −1

For the XXZ model with Δ > −1, the excitations of the ground state are also described by the
spinons and their bound states which are described by the holes and the complex Bethe roots in the
algebraic Bethe ansatz formalism. The Destri-Lowenstein picture for the description of complex
roots was extended to the XXZ chain by Babelon, Vega and Viallet [BVV83] for both the massive
and massless regime. We can distinguish between the close-pairs and the wide-pairs and we once
again find that the close-pairs are organised in 2-string or quartet formations in the thermodynamic
limit. In the massive regime Δ > 1 where we use the hyperbolic parametrisation (1.16) of the
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R-matrix, the formations prescribed in this picture are similar to the XXX case.

2-string:
{
𝜐+ + 𝑖𝛾𝛿, 𝜐− − 𝑖𝛾𝛿

�� 𝜐 ∈ ℝ}
, (2.113a)

quartet:
{
𝜐+ + 𝑖𝛾𝛿, 𝜐̄+ + 𝑖𝛾𝛿, 𝜐− − 𝑖𝛾𝛿, 𝜐̄− − 𝑖𝛾𝛿

�� 0 < =𝜐 < 𝛾
2
}
, (2.113b)

wide-pair:
{
𝜔+, 𝜔̄−

��=𝜔 > 𝛾
2
}
. (2.113c)

However the shifted 𝑧± parameters must be redefined in our notation as follows:

𝑧± = 𝑧 ± 𝑖𝛾
2
. (2.114)

to include the parameter 𝛾 which is related with the anisotropy parameter Δ = cosh 𝛾 (1.29). The set
of centres and anchors 𝝁̃ = 𝝊 ∪𝝎 ∪ 𝝎̄ satisfy the set of higher-level Bethe equations. Virosztek and
Woynarovich [VW84] found the correct form§ of the higher-level Bethe equations which resembles
the eq. (2.97) for the XXX model written in trigonometric parametrisation.

∏ sin( 𝜇̃𝑎 − 𝝑 − 𝑖𝛾
2 )

sin( 𝜇̃𝑎 − 𝝑 + 𝑖𝛾
2 )

∏ sin( 𝜇̃𝑎 − 𝝁̃ − 𝑖𝛾)
sin( 𝜇̃𝑎 − 𝝁̃ + 𝑖𝛾) = −1. (2.115)

It was also shown in [VW84] that there is a two-fold increase in the number of excitations with
given set of hole parameters because we have a two-fold degeneracy of the ground state. This fact
can also be attributed to the fact that the Fermi-zone of the massive XXZ model can be mapped
onto the unit circle since the function 𝜑(𝜆) = sin𝜆 is periodic on the real line. We can also compute
the total density function for the excited state which includes density term for the holes and complex
roots (i.e. spinons and their bound states). Integrating this expression one finds a relation similar to
the one obtained for the XXX model (2.95) that gives the total spin of the excited state 𝑠 in terms of
the number of holes 𝑛ℎ and the number of higher-level roots:

𝑠 =
1
2
𝑛ℎ − 𝑛̃. (2.116)

Let us recall that in the massless region we parametrise the anisotropy parameter as Δ = cos 𝛾.
Here the region needs to be divided into two parts centred around the free fermion point Δ = 0
which in terms of the parameter corresponds to 0 < 𝛾 < 𝜋

2 and 𝜋
2 < 𝛾 < 𝜋. In the first case

0 < 𝛾 < 𝜋
2 , we can again divide the principle domain of the 𝜑(𝜆) = sinh𝜆 into the close-pair and

wide-pair regions as follows:

close-pair region: 0 < |=𝜆 | < 𝛾, (2.117a)

wide-pair region: 𝛾 < |=𝜆 | < 𝜋

2
. (2.117b)

which is similar to the case of XXX model and massive (Δ > 1) XXZ model. We again find the
formations of the 2-string, close-pairs and wide-pairs identical to the eq. (2.113). We can also check
that in its isotropic limit 𝛾 → 0 taken with a proper rescaling of the spectral parameters

𝜆 ↦→ 𝛼 =
𝜆

𝛾
; 𝜆, 𝛾 → 0. (2.118)

§ correcting an error in higher-level equation originally found in [BVV83] for the massive XXZ model
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Chapter 2. Spectrum in the thermodynamic limit

It leads to the Destri-Lowenstein picture for the XXX model as described through eqs. (2.79)
and (2.81). For the region beyond the free-Fermi point 𝜋

2 < 𝛾 < 𝜋, the close-pair and wide-pair
regions are defined as

close-pair region: 0 < |=𝜆 | < 𝜋 − 𝛾, (2.119a)

wide-pair region: 𝜋 − 𝛾 < |=𝜆 | < 𝜋

2
. (2.119b)

Unlike the Δ > 0 case, here we do not have 2-string, quartet and wide-pair formations but more
string like formations in the thermodynamic limit [BVV83]. Nonetheless we can still parametrise
the complex roots in terms of the higher-level roots 𝝁̃. For both cases, the set 𝝁̃ solves the
higher-level Bethe equations which take a form similar to the eqs. (2.97) and (2.115) with hyperbolic
parametrisation.

∏ sinh( 𝜇̃𝑎 − 𝝑 − 𝑖𝛾
2 )

sinh( 𝜇̃𝑎 − 𝝑 + 𝑖𝛾
2 )

∏ sinh( 𝜇̃𝑎 − 𝝁̃ − 𝑖𝛾)
sinh( 𝜇̃𝑎 − 𝝁̃ + 𝑖𝛾) = −1. (2.120)

Remark. However the massless case |Δ| < 1 differs from both the isotropic and massive cases Δ ≥ 1
in two important aspects.

1. From the process of integrating the total density function for these excitation, one arrives to
the conclusion [Woy82]; [BVV83] that a case must be made separately for the values of 𝛾 which
are commensurate and non-commensurate with respect to 𝜋. For the non-commensurate values
𝛾 ∉ 𝜋ℚ, we find that only spin zero 𝑠 = 0 eigenstates are allowed and hence we always have the
relation 𝑛ℎ = 2𝑛̃ while in the case of commensurate values of 𝛾 ∈ 𝜋ℚ, some non-trivial but select
values of the total spin are allowed.

2. Due to the periodicity of the 𝜑(𝜆) = sinh𝜆 function along the imaginary axis, we also have
the vacancies for the Bethe roots on the line ℝ + 𝑖𝜋 creating the so-called negative parity roots. It is
important to remark that the excitations with negative parity roots are equivalent to the descendants
(1.69a) in the XXX model since we can see that under isotropic limit 𝛾 → 0 with the rescaling
(2.118) we find that the line ℝ + 𝑖𝜋 of negative parity is send to infinity. Hence the adding negative
parameter roots is equivalent in the isotropic limit to the action of lowering operator (1.34) which
generates descendants.

2.A. Density terms in the Destri-Lowenstein picture

2.A.1. Before the formation of 2-strings and quartets

From the integral equation (2.68) for the total root density (including holes) we saw that we can
write

𝜌𝑒 (𝜈) = 𝜌𝑔 (𝜈) + 1
𝑀

∑︁

𝜌1(𝜈, 𝝑) − 1
𝑀

{
∑︁

𝜌1(𝜈, 𝝊+ + 𝑖𝜹) +
∑︁

𝜌1(𝜈, 𝝊− − 𝑖𝜹)
}

− 1
𝑀

{
∑︁

𝜌1(𝜈,𝝎+) +
∑︁

𝜌1(𝜈, 𝝎̄−)
}
+ 𝑜

(
1
𝑀

)
. (2.121)
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2.A. Density terms in the Destri-Lowenstein picture

We compute in section B.1 of appendix B the function 𝜌1(𝜆, 𝜇) for different values of =𝜇. We find
in eq. (B.8) that for |=𝜇 | < 1 it can be expressed in terms of the 𝜓 function. This includes the
density terms for the holes

𝜌1(𝜆, 𝜗𝑎) = 1
4𝜋

∑︁
𝜎=±1

{
𝜓

(
1
2
+ 𝜆 − 𝜗𝑎

2𝑖𝜎

)
− 𝜓

(
1 + 𝜆 − 𝜗𝑎

2𝑖𝜎

)}
(2.122)

as well as the density terms for the close-pairs

𝜌1(𝜆, 𝜐+𝑎) =
1

4𝜋

{
𝜓

(
1
4
+ 𝜆 − 𝜐𝑎

2𝑖

)
+ 𝜓

(
3
4
− 𝜆 − 𝜐𝑎

2𝑖

)
−𝜓

(
3
4
+ 𝜆 − 𝜐𝑎

2𝑖

)
− 𝜓

(
5
4
− 𝜆 − 𝜐𝑎

2𝑖

)}
, (2.123a)

and,

𝜌1(𝜆, 𝜐̄−𝑎) =
1

4𝜋

{
𝜓

(
5
4
+ 𝜆 − 𝜐̄𝑎

2𝑖

)
+ 𝜓

(
3
4
− 𝜆 − 𝜐̄𝑎

2𝑖

)
−𝜓

(
3
4
+ 𝜆 − 𝜐̄𝑎

2𝑖

)
− 𝜓

(
1
4
− 𝜆 − 𝜐̄𝑎

2𝑖

)}
. (2.123b)

The density terms for the wide-pairs can be directly obtained from the eq. (B.9) which gives us

𝜌1(𝜆, 𝜔+) = 1
2𝜋

1
(𝜆 − 𝜔)2 + 1

4
, (2.124a)

𝜌1(𝜆, 𝜔̄−) = 1
2𝜋

1
(𝜆 − 𝜔̄)2 + 1

4
. (2.124b)

2.A.2. After the formation of 2-string and quartet

Assuming that the close-pairs form the 2-string or quartet formations (2.79) in the thermodynamic
limit with the vanishing string deviation 𝛿 ∼ 𝑒−𝑀 we find that the density terms for the close-pairs
(2.123) can be put together to obtain

𝜌1(𝜆, 𝜐+) + 𝜌1(𝜆, 𝜐−) = 1
2𝜋

1
(𝜆 − 𝜐)2 + 1

4
. (2.125)

Let us observe that it is a rational function which has the same form as the density term for the
wide-pairs (2.124) which allows us to define the common density term for the complex roots 𝜌̃:

𝜌̃(𝜆) = 1
2𝜋

1
𝜆2 + 1

4
. (2.126)

so that eq. (2.121) can be rewritten as

𝜌𝑒 (𝜈) = 𝜌𝑔 (𝜈) + 1
𝑀

∑︁

𝜌ℎ (𝜆 − 𝝑) − 1
𝑀

∑︁

𝜌̃(𝜆 − 𝝁̃) + 𝑜
(

1
𝑀

)
. (2.127)
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Chapter 2. Spectrum in the thermodynamic limit

2.B. Thermodynamic limit of the 𝜙 function.

Let us compute the thermodynamic limit of the 𝜙 function [see definition 14]. Let us first begin with
the function 𝜙(𝜆 | 𝝔̂, 𝝀) where 𝝔̂ denotes the set of all real roots, which includes the holes 𝝔̂ = 𝝔 ∪ 𝝑.
As long as we stay away from its singularity on the real line =𝜆 ≠ 0, we can write the logarithmic
derivative of this function as an integral over density terms as

𝑑

𝑑𝜆
log 𝜙(𝜆 | 𝝔̂, 𝝀) = 𝑀

∫
ℝ

1
𝜆 − 𝜏

(
𝜌𝑒 (𝜏) − 𝜌𝑔 (𝜏)

)
𝑑𝜏. (2.128)

To compute these convolution we use the following result.

Lemma 2.4. Let 𝑓 (𝜆) be a meromorphic function with vanishing tails 𝑓 (𝜆) ∼ 𝜆−2 which is also
holomorphic in the upper (lower) half of the complex plane. Then its convolution with the simple
fraction is determined by,∫

ℝ

1
𝜆 − 𝜏 𝑓 (𝜏)𝑑𝜏 = 0 whenever, =𝜆 < 0, (2.129a)

and, ∫
ℝ

1
𝜆 − 𝜏 𝑓 (𝜏)𝑑𝜏 = 𝑓 (𝜆) whenever, =𝜆 > 0. (2.129b)

According to the expansions in eqs. (2.121) and (2.127) for the total density function 𝜌𝑒 in
eq. (2.127) we consider here two scenarios.

2.B.1. Before the formation of 2-string and quartet.

Let us use the expressions for the density terms obtained in eqs. (2.122) to (2.124). Using lemma 2.4
to compute the convolutions (2.128) we get the following

𝜙(𝜆 | 𝝔̂, 𝝀) =



(2𝑖)𝑠+2𝑛𝑤
∏ 𝜆 − 𝝎̄+

𝜆 − 𝝎̄−

×
∏

Γ
(

1
2 + 𝜆−𝝊+

2𝑖

)
Γ

(
1
2 + 𝜆−𝝊̄−

2𝑖

)
Γ

(
1 + 𝜆−𝝊+

2𝑖

)
Γ

(
1 + 𝜆−𝝊̄−

2𝑖
) ∏

Γ
(
1 + 𝜆−𝝑

2𝑖

)
Γ

(
1
2 + 𝜆−𝝑

2𝑖

) for, =𝜆 > 0;

(−2𝑖)𝑠+2𝑛𝑤
∏ 𝜆 − 𝝎−

𝜆 − 𝝎+

×
∏

Γ
(

1
2 − 𝜆−𝝊+

2𝑖

)
Γ

(
1
2 − 𝜆−𝝊̄−

2𝑖

)
Γ

(
1 − 𝜆−𝝊+

2𝑖

)
Γ

(
1 − 𝜆−𝝊̄−

2𝑖
) ∏

Γ
(
1 − 𝜆−𝝑

2𝑖

)
Γ

(
1
2 − 𝜆−𝝑

2𝑖

) for, =𝜆 < 0.

(2.130)
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2.C. Thermodynamic limit of the ratio of the eigenvalues 𝜒

Therefore for the ratio of Baxter polynomial 𝜙(𝜈 |𝝁, 𝝀) we get

𝜙(𝜆 |𝝁, 𝝀) =



(2𝑖)𝑛𝑟−𝑁0
∏ (

𝜆 − 𝝎+) (
𝜆 − 𝝎̄+)

×
∏

Γ
(

1
2 + 𝜆−𝝊+

2𝑖

)
Γ

(
1
2 + 𝜆−𝝊̄−

2𝑖

)
Γ

(
𝜆−𝝊+

2𝑖

)
Γ

(
𝜆−𝝊̄−

2𝑖
) ∏

Γ
(
𝜆−𝝑
2𝑖

)
Γ

(
1
2 + 𝜆−𝝑

2𝑖

) for, =𝜆 > 0;

(−2𝑖)𝑛𝑟−𝑁0
∏

(𝜆 − 𝝎−) (𝜆 − 𝝎̄−)

×
∏

Γ
(

1
2 − 𝜆−𝝊+

2𝑖

)
Γ

(
1
2 − 𝜆−𝝊̄−

2𝑖

)
Γ

(
−𝜆−𝝊+

2𝑖

)
Γ

(−𝜆−𝝊̄−
2𝑖

) ∏

Γ
(
−𝜆−𝝑

2𝑖

)
Γ

(
1
2 − 𝜆−𝝑

2𝑖

) for, =𝜆 < 0.

(2.131)

2.B.2. After the formation of the 2-string and quartets

Assuming that the close-pairs forms 2-string or quartet formations (2.79), we see that terms for the
close-pairs in eqs. (2.130) and (2.131) factorises to produce

𝜙(𝜆 |𝝂, 𝝀) =



(2𝑖)𝑠+𝑁̃
∏ 𝜆 − 𝝎̄+

𝜆 − 𝝎̄−
∏ 1

𝜆 − 𝝊−
∏

Γ
(
1 + 𝜆−𝝑

2𝑖

)
Γ

(
1
2 + 𝜆−𝝑

2𝑖

) for, =𝜆 > 0;

(−2𝑖)𝑠+𝑁̃
∏ 𝜆 − 𝝎−

𝜆 − 𝝎+
∏ 1

𝜆 − 𝝊+
∏

Γ
(
1 − 𝜆−𝝑

2𝑖

)
Γ

(
1
2 − 𝜆−𝝑

2𝑖

) for, =𝜆 < 0.

(2.132)

And

𝜙(𝜆 |𝝁, 𝝀) =



(2𝑖)−𝑠−𝑁̃
∏

(𝜆 − 𝝎+) (𝜆 − 𝝎̄+)
∏

(𝜆 − 𝝊+)
∏

Γ
(
𝜆−𝝑
2𝑖

)
Γ

(
1
2 + 𝜆−𝝑

2𝑖

) for, =𝜆 > 0;

(−2𝑖)−𝑠−𝑁̃
∏

(𝜆 − 𝝎̄−) (𝜆 − 𝝎−)
∏

(𝜆 − 𝝊−)
∏

Γ
(
−𝜆−𝝑

2𝑖

)
Γ

(
1
2 − 𝜆−𝝑

2𝑖

) for, =𝜆 < 0.

(2.133)

2.C. Thermodynamic limit of the ratio of the eigenvalues 𝜒

This function 𝜒 representing the ratio of eigenvalues of the transfer matrix [see notation 15] can
be expressed in terms of the 𝜙 function [see definition 14] and the exponential counting function
(1.58) as

𝜒(𝜆 |𝝁, 𝝀) = 1 + 𝔞𝑒 (𝜆)
1 + 𝔞𝑔 (𝜆)

𝜙(𝜆 − 𝑖 |𝝁, 𝝀)
𝜙(𝜆 |𝝁, 𝝀) . (2.134)

When evaluated for a ground state root 𝜆𝑎 ∈ 𝝀 we get

𝜒(𝜆𝑎 |𝝁, 𝝀) = 1 + 𝔞𝑒 (𝜆𝑎)
𝔞′𝑔 (𝜆𝑎 |𝝁, 𝝀)

𝜙(𝜆𝑎 − 𝑖 |𝝁, 𝝀)
𝜙′(𝜆𝑎 |𝝁, 𝝀) . (2.135)
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Chapter 2. Spectrum in the thermodynamic limit

The prime symbol ′ in 𝜙′ of the above equation (2.135) in the denominator denotes an omission of
a resulting pole from the product:

𝜙′(𝜆𝑎 |𝝁, 𝝀) =
∏

𝑗 (𝜆𝑎 − 𝜇𝑘)∏
𝑗≠𝑎 (𝜆𝑎 − 𝜆 𝑗) (2.136)

To obtain the thermodynamic limit of 𝜒 function (2.135) we will use the following lemma from
[IKMT99].

Lemma 2.5 ([IKMT99]). The thermodynamic limit of the function 𝜙′(𝜆 |𝝁, 𝝀) is given in terms of
the jump of the function 𝜙(𝜆 |𝝁, 𝝀) across the discontinuity due to the cut on the real line. It is given
by,

𝜙′(𝜆 |𝝁, 𝝀) = 1
2𝜋𝑖𝑀𝜌𝑔 (𝜆) lim

𝜖→0
{𝜙(𝜆 + 𝑖𝜖 |𝝁, 𝝀) − 𝜙(𝜆 − 𝑖𝜖 |𝝁, 𝝀)} (2.137)

Since the 𝜆𝑎 ∈ 𝝀 is a Bethe root, using eq. (2.22) we can write 𝔞𝑒 (𝜆𝑎) in (2.135) as

𝔞𝑒 (𝜆𝑎) = − 𝜙(𝜆𝑎 + 𝑖 |𝝁, 𝝀)
𝜙(𝜆𝑎 − 𝑖 |𝝁, 𝝀) . (2.138)

Therefore, the expression 𝜒(𝜆𝑎) can written in terms of the 𝜙 functions as

𝜒(𝜆𝑎 |𝝁, 𝝀) =
{
𝜙−1(𝜆𝑎 − 𝑖 |𝝁, 𝝀) − 𝜙−1(𝜆𝑎 + 𝑖 |𝝁, 𝝀)

𝔞′𝑒 (𝜆𝑎 |𝝁, 𝝀)

}
𝜙(𝜆𝑎 + 𝑖 |𝝁, 𝝀)𝜙(𝜆𝑎 − 𝑖 |𝝁, 𝝀)

𝜙′(𝜆𝑎 |𝝁, 𝝀) (2.139)

From the thermodynamic limit of the 𝜙 (2.133) we see the following relation:

𝜙−1(𝜆𝑎 ± 𝑖) =
∏(𝜆𝑎 − 𝝑)

∏

(
(𝜆 − 𝝁̃)2 + 1

4

) lim
𝜖→0

𝜙(𝜆𝑎 ± 𝑖𝜖 |𝝁, 𝝀) (2.140)

where 𝝁̃ = 𝝊 ∪ 𝝎 ∪ 𝝎̄. Finally, using lemma 2.5 on eqs. (2.139) and (2.140), we obtain

𝜒(𝜆𝑎 |𝝁, 𝝀) =
∏

tanh
𝜋(𝜆𝑎 − 𝝑)

2
. (2.141)
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Part II.

Computation of the form-factors of
the Heisenberg spin chain in

the thermodynamic limit

This part is divided into three chapters. Chapter 3 presents our method of computing the form-
factors with an example of the two-spinon form-factors. Chapters 4 and 5 generalises this method
to form-factors of generic excitations. The final result is obtained in chapter 5, where we also
discuss a particular example of the form-factors of four-spinon excitations.
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Chapter 3.
Two-spinon form-factors

In this chapter we take the first step towards the computation of the form-factors in the thermodynamic
limit. Here we will compute the thermodynamic limit of the longitudinal form-factors of the
two-spinon (𝑛ℎ = 2) triplet (𝑠 = 1) excitation.

|𝐹𝑧 |2 =
| 〈𝜓𝑔 |𝜎3

𝑚 |𝜓1
1 (𝜗1, 𝜗2)〉 |2

〈𝜓𝑔 |𝜓𝑔〉 〈𝜓1
1 (𝜗1, 𝜗2) |𝜓1

1 (𝜗1, 𝜗2)〉
. (3.1)

Let 𝝀 denote the set of Bethe roots of the ground state |𝜓𝑔〉 while 𝝁 denote the set of Bethe roots of
the excited state |𝜓0

1〉. Their cardinalities are 𝑛𝝀 = 𝑁0 and 𝑛𝝁 = 𝑁1. Since the number of spinons
in the current scenario is two 𝑛ℎ = 2, we know from our previous discussion in chapter 2, that all
of the Bethe roots of such an excitation are real 𝝁 ∈ ℝ. As we saw in eq. (1.116) from chapter 1,
the 𝔰𝔲2 symmetry of the XXX model permits us to recast the form-factors (3.1) in the transverse
mode. There we had also argued that the representation (1.116b) that is reproduced below is more
convenient.

|𝐹𝑧 |2 = −
〈
𝜓𝑔

��𝜎−𝑚 ��𝜓0
1 (𝜗1, 𝜗2)

〉〈
𝜓𝑔

��𝜓𝑔

〉 〈
𝜓2

1 (𝜗1, 𝜗2)
��𝜎−𝑚 ��𝜓𝑔

〉〈
𝜓0

1 (𝜗1, 𝜗2)
��𝜓0

1
〉 . (3.2)

When it was introduced in chapter 1, we had simply remarked that in our method, we are obliged
to take the left-action (or rightwards action) for the local spin-operators [see eq. (1.116) and the
discussion that ensues]. The reasoning behind this remark will become clear in the following
paragraphs, as we introduce the procedure that we use to extract the Gaudin matrix. Let us first
introduce the following notation:

Notation 19. Let the accented sets 𝝁̌ and 𝝀̌ denote the following unions, which add the parameter
𝑖
2 as follows:

𝝁̌ = 𝝁 ∪ { 𝑖2 } and, 𝝀̌ = 𝝀 ∪ { 𝑖2 } . (3.3)

The newly added parameter will be always indexed at the end position 𝜇̌𝑁0 =
𝑖
2 and 𝜆̌𝑁0+1 = 𝑖

2 . Let
us recall from eq. (1.67) that 𝑁0 = 𝑀

2 and 𝑁𝑠 = 𝑁0 − 𝑠.

Since the rightward action of the local spin operator 𝜎−𝑚 is determined by the identity (1.93c) and
it effectively amounts to adding the parameter 𝑖

2 , the above notation 19 helps us encapsulate its
action in a very compact manner. Using it, the expression for the longitudinal form-factor from
eq. (1.116b) can be rewritten as

|𝐹𝑧 |2 = −〈𝜓(𝝀) |𝜓( 𝝁̌)〉〈𝜓(𝝀) |𝜓(𝝀)〉
〈𝜓(𝝁) |𝜓(𝝀̌)〉
〈𝜓(𝝁) |𝜓(𝝁)〉 . (3.4)
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Chapter 3. Two-spinon form-factors

Let us now substitute the determinant representations for the scalar products in the preceding
expression (3.4). We will be using the determinant representation of Slavnov [Sla89] and its
variation by Foda-Wheeler [FW12b] for the scalar product in the numerators and the determinant
representation of Gaudin [Gau83] for the norms in the denominators. It permits us to write the
form-factors as

|𝐹𝑧 |2 = −2
∏ 𝑞𝑔 (𝝁 − 𝑖)

𝑞𝑒 (𝝁 − 𝑖)
∏ 𝑞𝑒 (𝝀 − 𝑖)

𝑞𝑔 (𝝀 − 𝑖)
det𝑁0M

[
𝝁̌


𝝀]

det𝑁0 N
[
𝝀


𝝀] det𝑁0+1M (2) [𝝀̌

𝝁]

det𝑁0−1N
[
𝝁


𝝁] . (3.5)

Consequently, we recall thatM denotes the Slavnov matrix, N denotes the Gaudin matrix, while
the notationM (2) [𝝀̌

𝝁]

is used to denote the version of the Slavnov matrix which is composed of
two rectangular blocks of columns:

M (2) [𝝀̌

𝝁]
=

(
M [

𝝀̌


𝝁] U [

𝝀̌
] )

. (3.6)

Let us recall from eqs. (1.80b), (1.86b) and (1.91b), that all the components of the matricesM, N
andU are given by the following set of expressions:

M 𝑗 ,𝑘 [ 𝝁̌‖𝝀] = 𝔞𝑔 ( 𝜇̌ 𝑗)𝑡 ( 𝜇̌ 𝑗 − 𝜆𝑘) − 𝑡 (𝜆𝑘 − 𝜇̌ 𝑗), (3.7a)
M 𝑗 ,𝑘 [𝝀̌



𝝁] = 𝔞𝑒 (𝜆̌ 𝑗)𝑡 (𝜆̌ 𝑗 − 𝜇𝑘) − 𝑡 (𝜇𝑘 − 𝜆̌ 𝑗), (3.7b)
U 𝑗 ,𝑎 [𝝀̌] = 𝔞𝑒 (𝜆̌ 𝑗)𝜆̌𝑎𝑗 − (𝜆̌ 𝑗 + 𝑖)𝑎; (3.7c)

N𝑗 ,𝑘 [𝝀‖𝝀] = 𝔞′𝑔 (𝜆 𝑗)𝛿 𝑗 ,𝑘 − 2𝜋𝑖𝐾 (𝜆 𝑗 − 𝜆𝑘), (3.7d)
N𝑗 ,𝑘 [𝝁‖𝝁] = 𝔞′𝑒 (𝜇 𝑗)𝛿 𝑗 ,𝑘 − 2𝜋𝑖𝐾 (𝜇 𝑗 − 𝜇𝑘). (3.7e)

We will now present the core of our method as employed for the computation of two-spinon
form-factor (3.4) in the thermodynamic limit. It was first computed using the framework of the
𝑞-Vertex Operator Algebra (𝑞-VOA) by Bougourzi, Couture and Kacir [BCK96]. The two-spinon
form-factors of the XXX model were also analysed by Caux and Hagemans [CH06] who corroborated
the previous result by performing a numerical check of the sum rules. Our approach gives us a
mechanism to obtain the thermodynamic limits of the form-factors from the Algebraic Bethe Ansatz
(ABA). In the two-spinon case, we obtained the result [KK19] that is reproduced in the following
expression, written in terms of the Barnes-𝐺 functions.

|𝐹𝑧 |2 =
2

𝑀2𝐺4
(

1
2

) ∏
𝜎=±

𝐺 ( 𝜗2−𝜗1
2𝑖𝜎 )𝐺 (1 + 𝜗2−𝜗1

2𝑖𝜎 )
𝐺 ( 12 + 𝜗2−𝜗1

2𝑖𝜎 )𝐺 ( 32 + 𝜗2−𝜗1
2𝑖𝜎 )

. (3.8)

It was also compared with previous results for the two-spinon form-factors from 𝑞-VOA approach
and it was found to be consistent with their results. The method applied to obtain it is discussed in
this chapter. This will be divided into two sections. In the first section, we describe the process of
the Gaudin extraction to compute the ratio of determinants in eq. (3.4). It gives us a new determinant
representation which contains modified Cauchy matrices. The second section is devoted to the
computation of the Cauchy determinants in the thermodynamic limit.

3.1. Extraction of the Gaudin matrix

Our goal is to ultimately compute the ratio of determinants in eq. (3.5) in the thermodynamic limit.
In our approach, we will heavily make use of a process of matrix extraction that allows us to replace
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3.1. Extraction of the Gaudin matrix

the ratio of determinant by a single determinant. The most straightforward ways to do this here
is by taking an action of the inverse Gaudin matrix: F = N−1M, so that the determinant of the
new matrix F can represent the ratio of determinants in eq. (3.5). It leads to the definitions of the
matrices:

F𝑔 = N−1 [𝝀‖𝝀] · (M [
𝝁̌


𝝀] )𝑇 (3.9a)

and

F𝑒 = diag
[
N−1 [𝝁‖𝝁]

��� I2] (
M (2) [𝝀̌

𝝁] )𝑇

. (3.9b)

Note that their actions are well defined since the Gaudin matrices are invertible for non-trivial
on-shell Bethe vectors. Inverse Gaudin matrix for the excited state in eq. (3.9b) is diagonally
embdedded as a block, this embedding should be read as

diag
[
N−1 [𝝁‖𝝁]

��� I2] = (N−1 [𝝁‖𝝁] 0
0 I2

)
. (3.10)

The Slavnov matrices are transposed in both expressions (3.9) so that resulting sums always involve
Bethe roots of on-shell vectors.

Remark. However, it is important to note that the word matrix extraction (let us say A-extraction)
can be used in more broader sense than simply an action of inverse matrix A−1. Since it is the
determinant of this procedure that is a primary object of our interest, we are at liberty to replace the
inverse matrix A−1 with any other matrix that we may deem fit, as long as it has same determinant
as A−1. This symmetry can have some technical advantages which we will exploit later in this
thesis. A rather trivial example of this symmetry at work can be seen in eq. (3.9b), where we added
a diagonal identity block to match the orders of two matrices.

We can see that F𝑒 is also divided in two blocks F N
𝑒 and F S

𝑒
∗. The north block F N

𝑒 is made up of
the top 𝑁1 rows while the south block F S

𝑒 is made up of the last two rows. From eq. (3.9), we can
see that F𝑔 and F N

𝑒 solve the systems:

N[𝝀‖𝝀] · F𝑔 =
(M [

𝝁̌


𝝀] )𝑇 (3.11a)

and

N[𝝁‖𝝁] · F N
𝑒 =

(
M [

𝝀̌


𝝁] )𝑇

. (3.11b)

In eq. (3.11b) it is only the north block F N
𝑒 that enters our computations. Meanwhile, we can easily

check that the south block F S
𝑒 retains its original form since it is only acted upon by the identity

matrix during the Gaudin extraction (3.9b).
The first step in our method is to show that linear equations (3.11) give rise to the integral equations
in the thermodynamic limit. To achieve this conclusion, we use the condensation property (2.9)
and whenever necessary, its generalised version (2.2) that was discussed in section 2.1.2. The two
different scenarios present in eqs. (3.11a) and (3.11b) demand a significantly different treatments,
which is why it will be dealt here separately.

∗ in reference to the cardinal directions north (N) and south (S).
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Chapter 3. Two-spinon form-factors

3.1.1. Extraction of the first type

The eq. (3.11a) satisfied by F𝑔 leads us to the system of linear equations

𝔞′𝑔 (𝜆 𝑗)F𝑔; 𝑗 ,𝑘 − 2𝜋𝑖
𝑁0∑︁
𝑙=1

𝐾 (𝜆 𝑗 − 𝜆𝑙)F𝑔;𝑙,𝑘 = 𝔞𝑔 (𝜇𝑘) 𝑡 ( 𝜇̌𝑘 − 𝜆 𝑗) − 𝑡 (𝜆 𝑗 − 𝜇̌𝑘). (3.12)

Note that this also includes the last column for 𝜇̌𝑁0 = 𝑖
2 as per eq. (3.3). In the thermodynamic

limit the system of equations (3.12) would lead us to an integral equation for the function 𝐺𝑔, that
is defined in the following:

Definition 20. Let us define a meromorphic function𝐺𝑔 (𝜆, 𝜇) with the initial conditions as follows:

𝐺𝑔 (𝜆 𝑗 , 𝜇̌𝑘) = 𝔞′𝑔 (𝜆 𝑗)F𝑔;𝑙,𝑘 . (3.13)

In terms of this function, the set of linear equations (3.12) can be rewritten as

𝐺𝑔 (𝜆 𝑗 , 𝜇̌𝑘) − 2𝜋𝑖
∑︁

𝐾 (𝜆 𝑗 − 𝝀)
𝐺𝑔 (𝝀, 𝜇̌𝑘)
𝔞′𝑔 (𝝀)

= 𝔞𝑔 (𝜆 𝑗)𝑡 ( 𝜇̌𝑘 − 𝜆 𝑗) − 𝑡 (𝜆 𝑗 − 𝜇̌𝑘). (3.14)

From the above eq. (3.14) we can now see that the function 𝐺𝑔 (𝜆, 𝜇̌𝑘) has a simple pole at 𝜆 = 𝜇̌𝑘
with residue

Res
𝜆=𝜇̌𝑘

𝐺𝑔 (𝜆, 𝜇̌𝑘) = −(1 + 𝔞𝑔 ( 𝜇̌𝑘)). (3.15)

Barring an isolated case for the 𝐺𝑔 (𝜆, 𝜇̌𝑁0) where 𝜇̌𝑁0 =
𝑖
2 , we see that in all the remaining cases

for the evaluations of 𝐺𝑔 (𝜆, 𝜇𝑘), the poles are all taken from the set 𝝁 and hence they always lie on
the real line.
Let us now replace the sum over residues by an integral over a rectangular contour of an appropriate
width 2𝛼. From the poles of the function 𝐾 (1.86c), we see that the half-width cannot exceed the
value: 𝛼 < 1

2 . Meanwhile, a simple pole of 𝐺𝑔 (𝜆, 𝜇𝑘) at 𝜆 = 𝜇𝑘 also falls inside the contour since
𝝁 ⊂ ℝ and hence it needs to be isolated using eq. (3.15). The integrals on the edges of the contour
can be ignored as long as the function 𝐺𝑔 is bounded at infinity. Using this information, we can
write

∑︁

𝐾 (𝜆 𝑗 − 𝝀)
𝐺𝑔 (𝝀, 𝜇𝑘)
𝔞′𝑔 (𝝀)

=
1

2𝜋𝑖

(∫
ℝ−𝑖𝛼

−
∫
ℝ+𝑖𝛼

)
𝐾 (𝜆 𝑗 − 𝜏)

𝐺𝑔 (𝜏, 𝜇𝑘)
1 + 𝔞𝑔 (𝜏) 𝑑𝜏 + 𝐾 (𝜆 𝑗 − 𝜇𝑘). (3.16)

It can be immediately rewritten as the following expression shows. It makes use of the fact that the
auxiliary function 𝔞 is nothing but the exponential of the counting function 𝜉.

∑︁

𝐾 (𝜆 𝑗 − 𝝀)
𝐺𝑔 (𝝀, 𝜇𝑘)
𝔞′𝑔 (𝝀)

= − 1
2𝜋𝑖

∫
ℝ+𝑖 𝜖

𝐾 (𝜆 𝑗 − 𝜏)𝐺𝑔 (𝜏, 𝜇𝑘)𝑑𝜏 + 𝐾 (𝜆 𝑗 − 𝜇𝑘)

+ 2<
∫
ℝ+𝑖𝛼

𝜌ℎ (𝜆 𝑗 − 𝜏)𝐺𝑔 (𝜏, 𝜇𝑘) 𝑒2𝜋𝑖 𝜉𝑔 (𝜏)

1 + 𝑒2𝜋𝑖 𝜉𝑔 (𝜏) 𝑑𝜏. (3.17)
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3.1. Extraction of the Gaudin matrix

Let us substitute the above expression (3.17) back into eq. (3.12). This permits us to write down the
following integral equation for the function 𝐺𝑔:

𝐺𝑔 (𝜆, 𝜇𝑘) +
∫
ℝ+𝑖 𝜖

𝐾 (𝜆 𝑗 − 𝜏)𝐺𝑔 (𝜏, 𝜇𝑘)𝑑𝜏 = (1 + 𝔞𝑔 (𝜇𝑘))𝑡 (𝜇𝑘 − 𝜆)+

+ 2<
∫
ℝ+𝑖𝛼

𝐾 (𝜆 − 𝜏)𝐺𝑔 (𝜏, 𝜇𝑘) 𝑒2𝜋𝑖 𝜉𝑔 (𝜏)

1 + 𝑒2𝜋𝑖 𝜉𝑔 (𝜏) 𝑑𝜏. (3.18)

From the above eq. (3.18), we see that the function 𝐺𝑔 can be expressed in the following form:

𝐺𝑔 (𝜆, 𝜇𝑘) = 2𝜋𝑖(1 + 𝔞𝑔 (𝜇𝑘))𝜌2

(
𝜆, 𝜇𝑘 + 𝑖2 − 𝑖0

)
+ 2<

∫
ℝ+𝑖𝛼

𝜌ℎ (𝜆 − 𝜏)𝐺𝑔 (𝜏, 𝜇𝑘) 𝑒2𝜋𝑖 𝜉𝑔 (𝜏)

1 + 𝑒2𝜋𝑖 𝜉𝑔 (𝜏) 𝑑𝜏. (3.19)

In this decomposition, the function 𝜌ℎ in the integral appears as the resolvent of the Lieb equation
as it satisfies the integral equation (2.36). We note that it can also be called the function 𝜌1, which
we had introduced in section 2.2.1 earlier. It satisfies a generalised version of the Lieb integral
eq. (2.37), which is duly studied in appendix B.
Let us remark that this procedure uses the generalised condensation property in order to write
eqs. (3.18) and (3.19), that we have introduced in proposition 2.2 from section 2.1.2. The problems
in estimating the finite-size correction terms in the case of non-compact Fermi-zone that were
encountered there are also present here. We can estimate that in the bulk of the distribution, the
value of the exponential of the counting function is exponentially small. However, this is no longer
true in the tails of the Fermi-zone. But at-least in the case where the pole at 𝜇𝑘 of the function
𝐺𝑔 (𝜆, 𝜇𝑘) is in the bulk, we can assume that the correction term is subleading

<
∫
ℝ+𝑖𝛼

𝜌ℎ (𝜆 − 𝜏)𝐺𝑔 (𝜏, 𝜇𝑘) 𝑒2𝜋𝑖 𝜉𝑔 (𝜏)

1 + 𝑒2𝜋𝑖 𝜉𝑔 (𝜏) 𝑑𝜏 = 𝑜
(

1
𝑀

)
(3.20)

which allows us to write

𝐺𝑔 (𝜆 𝑗 , 𝜇𝑘) = 2𝜋𝑖(1 + 𝔞𝑔 (𝜇𝑘))𝜌2

(
𝜆 𝑗 , 𝜇𝑘 + 𝑖2 − 𝑖0

)
+ 𝑜

(
1
𝑀

)
. (3.21)

For the last column corresponding to 𝜇̌𝑁0 =
𝑖
2 , we can simply use the regular condensation property,

as there are no poles of the function 𝐺𝑔 left on the real line in this case. This gives us an integral
equation.

𝐺𝑔 (𝜆, 𝑖2 ) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝐺𝑔 (𝜏, 𝑖2 )𝑑𝜏 = −𝑡 (𝜆 − 𝑖

2 ). (3.22)

Since 𝔞𝑔 ( 𝑖2 ) = 0 as 𝜇̌𝑁0 =
𝑖
2 , it is the zero of the function 𝑟 in eq. (1.58). Therefore, it leaves us with

the term 𝑡 (𝜆 − 𝑖
2 ) = 𝑖𝑝′0(𝜆), which in-turn leads to the solution as shown in the following expression.

𝐺𝑔 (𝜆, 𝑖2 ) = −2𝜋𝑖 𝜌2(𝜆) + 𝑜
(

1
𝑀

)
. (3.23)
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The solution 𝜌2(𝜆, 𝜈) of the Lieb type integral equation was obtained in eq. (B.6). We see that
in both cases, we are in the central strip of its analyticity |𝜈 | < 1

2 . Combining the results from
eqs. (3.21) and (3.23) we can now write

𝐺𝑔 (𝜆 𝑗 , 𝜇̌𝑘) =
𝜋(1 + 𝔞𝑔 ( 𝜇̌𝑘))

sinh 𝜋( 𝜇̌𝑘 − 𝜆 𝑗) + 𝑜
(

1
𝑀

)
. (3.24)

Therefore, all the elements of the matrix F𝑔 can be found from eq. (3.13). It gives,

F𝑔; 𝑗 ,𝑘 =
1 + 𝔞𝑔 ( 𝜇̌𝑘)
𝔞′𝑔 (𝜆 𝑗)

{
𝜋

sinh 𝜋( 𝜇̌𝑘 − 𝜆 𝑗) + 𝑜
(

1
𝑀

)}
. (3.25)

3.1.2. Extraction of the second type

From eq. (3.11b) we get a system of linear equations for the upper block F N
𝑒 of the matrix (3.9b)

which is shown in the following:

𝔞′𝑒 (𝜇 𝑗)F N
𝑒; 𝑗 ,𝑘 − 2𝜋𝑖

𝑁1∑︁
𝑙=1

𝐾 (𝜇 𝑗 − 𝜇𝑙)F N
𝑒;𝑙,𝑘 = 𝔞𝑒 (𝜇𝑘) 𝑡 (𝜆̌𝑘 − 𝜇 𝑗) − 𝑡 (𝜇 𝑗 − 𝜆̌𝑘). (3.26)

Note that it also includes the case 𝜆̌𝑁0+1 = 𝑖
2 , which represents the last column. Similar to

definition 20, we shall again write the following definition:

Definition 21. Now we define a meromorphic function 𝐺𝑒 (𝜇, 𝜆) with the initial conditions

𝐺𝑒 (𝜇 𝑗 , 𝜆̌𝑘) = 𝔞′𝑒 (𝜇 𝑗)F N
𝑒; 𝑗 ,𝑘 . (3.27)

In terms of the function 𝐺𝑒, the system of linear equations from eq. (3.9b) can be rewritten as

𝐺𝑒 (𝜇 𝑗 , 𝜆̌𝑘) − 2𝜋𝑖
∑︁

𝐾 (𝜇 𝑗 − 𝝔̂)𝐺𝑒 ( 𝝔̂, 𝜆̌𝑘)
𝔞′𝑒 ( 𝝔̂)

= 𝔞𝑒 (𝜆̌𝑘)𝑡 (𝜆̌𝑘 − 𝜇 𝑗) − 𝑡 (𝜇 𝑗 − 𝜆̌𝑘)

− 2𝜋𝑖
∑︁

𝐾 (𝜇 𝑗 − 𝝑)𝐺𝑒 (𝝑, 𝜆̌𝑘)
𝔞′𝑒 (𝝑)

. (3.28)

Because it is convenient to do so, we have added the extra terms for the holes on both sides in order
to write down eq. (3.28). At this point, let us recall here that the symbol 𝝔̂ denotes the set of all
the real roots of the logarithmic Bethe eq. (1.53a), including the holes 𝝔̂ = 𝝔 ∪ 𝝑. Since all the
Bethe roots are real in the current scenario of the two-spinon form-factors, we can also write it as
𝝔̂ = 𝝁 ∪ 𝝑. This notation was first used in section 2.2 [see eq. (2.28) therein].
Similar to eq. (3.15) for 𝐺𝑔, we again find that the function 𝐺𝑒 (𝜈, 𝜆̌𝑘) has a simple pole at 𝜈 = 𝜆̌𝑘 ,
with its residue given by the expression:

Res
𝜈=𝜆̌𝑘

𝐺𝑒 (𝜈, 𝜆̌𝑘) = −(1 + 𝔞𝑒 (𝜆̌𝑘)). (3.29)
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Let us now follow the procedure similar to eqs. (3.16) to (3.18), that uses the generalised condensation
property, to produce an integral equation for the function 𝐺𝑒 as shown below:

𝐺𝑒 (𝜈, 𝜆𝑘) +
∫
ℝ+𝑖0

𝐾 (𝜈 − 𝜏)𝐺𝑒 (𝜏, 𝜆𝑘)𝑑𝜏 = (1 + 𝔞𝑒 (𝜆)) 𝑡 (𝜆𝑘 − 𝜈)

− 2𝜋𝑖
∑︁

𝐾 (𝜈 − 𝝑)𝐺𝑒 (𝝑, 𝜆𝑘)
𝔞′𝑒 (𝝑)

+ 2<
∫
ℝ+𝑖𝛼

𝐾 (𝜈 − 𝜏)𝐺𝑒 (𝜏, 𝜆𝑘) 𝑒2𝜋𝑖 𝜉𝑒 (𝜏)

1 + 𝑒2𝜋𝑖 𝜉𝑒 (𝜏) 𝑑𝜏. (3.30)

Similar to eq. (3.19), we can see that the function 𝐺𝑒 can be decomposed as follows:

𝐺𝑒 (𝜈, 𝜆) = 2𝜋𝑖(1 + 𝔞𝑒 (𝜆)) 𝜌2(𝜈, 𝜆 + 𝑖
2 − 𝑖0) − 2𝜋𝑖

∑︁

𝜌1(𝜈, 𝝑 − 𝑖0)𝐺𝑒 (𝝑, 𝜆)
𝔞′𝑒 (𝝑)

+ 2<
∫
ℝ+𝑖𝛼

𝜌ℎ (𝜈 − 𝜏)𝐺𝑒 (𝜏, 𝜆𝑘) 𝑒2𝜋𝑖 𝜉𝑒 (𝜏)

1 + 𝑒2𝜋𝑖 𝜉𝑒 (𝜏) 𝑑𝜏. (3.31)

The shifted density functions 𝜌2(𝜈, 𝜆+ 𝑖
2−𝑖0) and 𝜌1(𝜈, 𝜗−𝑖𝜖) appearing in the above decomposition

(3.31) satisfy the integral equation which are described by eq. (2.37). In both cases, the shifts are
small enough to lie within the central strip of the analyticity of these functions hence the solutions
are given by 𝜌𝑔 and 𝜌ℎ respectively, which are obtained in eqs. (B.6) and (B.8). We substitute them
here to write

𝐺𝑒 (𝜈, 𝜆𝑘) = 𝜋(1 + 𝔞𝑒 (𝜆𝑘))
sinh 𝜋(𝜆𝑘 − 𝜈) − 2𝜋𝑖

∑︁ 𝜌ℎ (𝜈 − 𝝑)
𝔞′𝑒 (𝝑)

𝐺𝑒 (𝝑, 𝜆𝑘) + 𝑜
(

1
𝑀

)
. (3.32)

Similar to eq. (3.20), we have assumed that the finite size correction are of sub-leading order 𝑜
(

1
𝑀

)
,

at least for the values of the parameters 𝜆𝑘 that lie in the bulk of the Fermi-distribution. For the last
column corresponding to 𝜆̌𝑀

2 +1 = 𝑖
2 , the function 𝐺𝑒 (𝜈, 𝑖2 ) is regular on the real line and it suffices

to use the regular condensation property to write the integral equation:

𝐺𝑒 (𝜈, 𝑖2 ) +
∫
ℝ
𝐾 (𝜈 − 𝜏)𝐺𝑒 (𝜏, 𝑖2 )𝑑𝜏 = −𝑖𝑝′0(𝜈) − 2𝜋𝑖

∑︁

𝐾 (𝜈 − 𝝑)𝐺𝑒 (𝝑, 𝑖2 )
𝔞′𝑒 (𝝑)

. (3.33)

Therefore, we see that in this case the function 𝐺𝑒 admits the decomposition:

𝐺𝑒 (𝜈, 𝑖2 ) =
−𝑖𝜋

cosh 𝜋𝜈
− 2𝜋𝑖

∑︁ 𝜌ℎ (𝜈 − 𝝑)
𝔞′𝑒 (𝝑)

𝐺𝑒 (𝝑, 𝑖2 ) + 𝑜
(

1
𝑀

)
. (3.34)

The solutions obtained in eqs. (3.32) and (3.34) can be combined together, to write down a single
expression:

𝐺𝑒 ( 𝜚̂ 𝑗 , 𝜆̌𝑘) = 𝜋(1 + 𝔞𝑒 (𝜆̌𝑘))
sinh 𝜋(𝜆̌𝑘 − 𝜚̂ 𝑗)

− 2𝜋𝑖
∑︁ 𝜌ℎ ( 𝜚̂ 𝑗 − 𝝑)

𝔞′𝑒 (𝝑)
𝐺𝑒 (𝝑, 𝜆̌𝑘) + 𝑜

(
1
𝑀

)
. (3.35)

Note that the terms 𝐺𝑒 (𝝑, 𝜆̌𝑘) for the holes in the above expression are yet to be determined. To
compute them, let us first introduce the following notation for the matrices.
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Definition 22. Given a set of parameters 𝜶 and a set of Bethe roots 𝝀 of an on-shell Bethe vector,
we define a diagonal matrix A𝝀 [𝜶], which is given by its components:

A𝝀; 𝑗 ,𝑘 [𝜶] = 𝔞′(𝛼 𝑗 |𝝀)𝛿 𝑗 ,𝑘 (3.36)

The mismatched brackets in this expression are deliberate since we reserve the square brackets for
the matrices. Alternatively, we can also write

A𝝀 [𝜶] = diag𝜶
[
𝔞′(𝜶 |𝝀)] (3.37)

The subscript 𝝀 can also be replaced byA𝑔 [𝜶] to denote the ground state andA𝑒 [𝜶] for the excited
state.

Definition 23. Given two sets of parameters 𝜶 and 𝜷, we define the matrix R[𝜶‖𝜷] given by its
components:

R 𝑗𝑘 [𝜶‖𝜷] = −2𝜋𝑖𝜌ℎ (𝛼 𝑗 − 𝛽𝑘). (3.38)

We can check that the density function 𝜌ℎ is an even function that satisfies the integral eq. (2.36).
for the density term of the holes:

𝜌ℎ (𝜈) +
∫
ℝ
𝐾 (𝜈 − 𝜏)𝜌ℎ (𝜏)𝑑𝜏 = 𝐾 (𝜈). (3.39)

It is identical to the integral equation for the resolvent of the Lieb kernel, the definition for R can
also be paraphrased as the matrix formed by resolvent of the Lieb equation (2.4a).

Remark. Since the function 𝜌ℎ is even, we can see that we obtain a transpose by reversing the order
of two sets

R[𝜷‖𝜶] = (R[𝜶‖𝜷])𝑇 . (3.40)

Decoupling of the hole terms
We can see that the terms 𝐺𝑒 (𝜗𝑎, 𝜆̌𝑘) can be obtained by solving the system which is coupled due
to the presence of the matrix R[𝝑 |𝝑].(

I − RA−1
𝑒 [𝝑 |𝝑]

)
[

𝐺𝑒 (𝝑, 𝜆̌𝑘)
]

=
[

𝜋(1 + 𝔞𝑒 (𝜆̌𝑘))
sinh 𝜋(𝜆̌𝑘 − 𝝑)

]

. (3.41)

In the product RA−1
𝑒 we have contracted the sum over dummy variables as shown on page 9. Since

the matrix A𝑒 is diagonal, it dresses the matrix of density terms R to lead us to the expressions{A−1R}
𝑎,𝑘
[𝝑 |𝝁] = −2𝜋𝑖

𝜌ℎ (𝜇𝑘 − 𝜗𝑎)
𝔞′𝑒 (𝜗𝑎)

, (3.42a)

or, {RA−1}
𝑎,𝑘
[𝝁 |𝝑] = −2𝜋𝑖

𝜌ℎ (𝜇𝑘 − 𝜗𝑎)
𝔞′𝑒 (𝜗𝑎)

. (3.42b)

However, since the derivative of the exponential counting function can be expressed as

𝔞′𝑒 (𝜗𝑎) = −2𝜋𝑖 𝑀𝜌𝑒 (𝜗𝑎), (3.43)
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we can see that system of eq. (3.41) is decoupled to the leading order as long as the hole parameters
𝝑 are chosen from the bulk, which allows us to write

𝐺𝑒 (𝜗𝑎, 𝜆𝑘) = 𝜋(1 + 𝔞𝑒 (𝜆𝑘))
sinh 𝜋(𝜆𝑘 − 𝜗𝑎) +𝑂

(
1
𝑀

)
. (3.44)

Substituting the above result of eq. (3.44) into eq. (3.32) we can now write

𝐺𝑒 (𝜇 𝑗 , 𝜆̌𝑘) = 𝜋(1 + 𝔞𝑒 (𝜆̌𝑘))
sinh 𝜋(𝜆̌𝑘 − 𝜇 𝑗)

− 2𝜋𝑖
∑︁ 𝜌ℎ (𝜇𝑘 − 𝝑)

𝔞′𝑒 (𝝑)
𝜋(1 + 𝔞𝑒 (𝜆𝑘))
sinh 𝜋(𝜆𝑘 − 𝝑) + 𝑜

(
1
𝑀

)
. (3.45)

Therefore, we can see from eq. (3.27) that components of the matrix F N
𝑒 can be expressed as

F N
𝑒; 𝑗 ,𝑘 = 𝜋

1 + 𝔞𝑒 (𝜆𝑘)
𝔞′𝑒 (𝜇 𝑗)

{
1

sinh 𝜋(𝜆̌𝑘 − 𝜇 𝑗)
− 2𝜋𝑖

𝑛ℎ∑︁
𝑎=1

𝜌ℎ (𝜇 𝑗 − 𝜗𝑎)
𝔞′𝑒 (𝜗𝑎)

1
sinh 𝜋(𝜆̌𝑘 − 𝜗𝑎)

+ 𝑜
(

1
𝑀

)}
.

(3.46)

Let us recall that the south block F S
𝑒 made up of the remaining two rows at the bottom retains its

original form, which was given by the Foda-Wheeler blockU (3.7c). Hence we can write,

F S
𝑒;1,𝑘 = U1(𝜆̌𝑘) = 𝔞𝑒 (𝜆̌𝑘) − 1, (3.47a)

F S
𝑒;2,𝑘 = U2(𝜆̌𝑘) = 𝔞𝑒 (𝜆̌𝑘) (𝜆̌𝑘 + 𝑖) − 𝜆̌𝑘 . (3.47b)

3.1.3. Cauchy determinant representation for the two-spinon form-factor

We will now put together all the results obtained in eqs. (3.25), (3.46) and (3.47) for the components
of the matrices F𝑔 and F𝑒. It will allow us to write down the determinant representation of the
two-spinon form-factors. Beforehand, let us introduce notations that will be used extensively from
here onwards.

Definition 24. Given two sets of the complex parameters 𝜶 and 𝜷, the hyperbolic Cauchy matrix
C[𝜶‖𝜷] is defined by the following expression for its components

C𝑗𝑘 [𝜶‖𝜷] = 1
sinh 𝜋(𝛼 𝑗 − 𝛽𝑘) (3.48a)

It can be a rectangular matrix which is the case when 𝑛𝜶 ≠ 𝑛𝜷 . The determinant of a square Cauchy
matrix is a well known result. Here it will be denoted in the superalternant

aaa
notation†:

detC[𝜶‖𝜷] =
iii

sinh 𝜋(𝜶‖𝜷) (3.48b)

Since the function ‘sinh’ is an odd function, we can readily see that the reversing of arguments also
leads to a change sign, in addition to the transposition:

C[𝜷‖𝜶] = − (C[𝜶‖𝜷])𝑇 . (3.48c)

Later in section 5.1, we shall define a more general form of this matrix that extends the determinant
formula (3.48b) to a rectangular case.
† see the pages 7 to 11
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Notation 25. Given the set of complex parameters 𝜶, 𝜷 ⊂ ℂ, we define the Φ as

Φ(𝜆 |𝜶, 𝜷) =
∏

sinh 𝜋(𝜆 − 𝜶)
∏

sinh 𝜋(𝜆 − 𝜷) . (3.49)

We can see that this is a meromorphic function with poles 𝜆 = 𝛽𝑎 + 𝑖𝑛 ∀𝑛 ∈ ℤ, 𝑎 ≤ 𝑛𝜷 and zeroes
at 𝜆 = 𝛼𝑎 + 𝑖𝑛 ∀𝑛 ∈ ℤ, 𝑎 ≤ 𝑛𝜶.

We can easily see that the inverse of the Cauchy matrix (3.48a) can be written in terms of this Φ
function, which we shall see in the following lemma.

Lemma 3.1. Let C[𝜶‖𝜷] be a Cauchy matrix (3.48a). Its inverse C−1 [𝜷‖𝜶] can be represented
as a version of itself with diagonal dressing of Φ functions (3.49).

C−1 [𝜷‖𝛼] = diag𝜷
[
Φ′

(
𝜷
��𝜶, 𝜷) ] · C[𝜷‖𝜶] · diag𝜶

[
Φ′

(
𝜶
��𝜷,𝜶) ]

(3.50)

The primed symbol Φ′ signifies the omission of the vanishing term in the products contained in its
definition, i.e. Φ′(𝛽𝑎 |𝜶, 𝜷) = Φ(𝛽𝑎 |𝜶, 𝜷𝒂̂) where 𝜷𝒂̂ = 𝜷 \ {𝛽𝑎}.
Remark. Although this result is trivial and it does not require a proof, it must be seen as a prelude
to a non-trivial version of this result, that we use in chapter 5, and which is proved in appendix C.
It is worth mentioning that the diagonal dressing interpretation that is provided in eq. (3.50) is
extremely significant in this larger picture. It allows us to exploit the full potential of the extraction,
as remarked earlier, by replacing the inverse matrix by an equivalent one with the same determinant.

Let us now return to the determinant representation of the form-factors. We start with the
determinant of the matrix F𝑔. Here we assume that

1. the corrections of order 𝑜(1/𝑀) in eq. (3.21) for 𝜇𝑘 taken in the bulk do not contribute to the
leading order of the determinant,

2. the corrections for 𝜇𝑘 taken outside the bulk are also negligible in the determinant due the
dominant prevalence of the bulk roots in the set 𝝁.

Taking the common term into the prefactor, we rewrite the determinant as

detF𝑔 = 𝜋𝑁0

∏(1 + 𝔞𝑔 (𝝁))
∏

𝔞′𝑔 (𝝀)
det𝑁0H𝑔 . (3.51)

We can see that in this case, the matrixH𝑔 is purely a Cauchy matrix in the hyperbolic parametrisation,
for which we had earlier introduced definition 24.

H𝑔 = −C [
𝝀


𝝁̌]

. (3.52)

Similarly we can write the determinant of the matrix F𝑒 as

detF𝑒 = 𝜋𝑁0+1
∏(1 + 𝔞𝑒 (𝝀))

∏

𝔞′𝑒 (𝝁)
det𝑁0+1H𝑒 . (3.53)

Let us note that in the process of obtaining the above eq. (3.53), we have taken the common terms
out into the prefactors and ignored the sub-leading terms. From eqs. (3.45) and (3.47), we can see
that the matrixH𝑒 is composed of the blocks:

H𝑒 =
(
C [

𝝀̌


𝝁] + C [

𝝀̌


𝝑] · A−1

𝑒 R[𝝑‖𝝁]
��� Ū [

𝝀̌
] )

(3.54)
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3.2. Thermodynamic limit

where the matrix R[𝝑‖𝝁] was introduced in definition 23. The matrix Ū in eq. (3.54) is related to
the matrixU of the Foda-Wheeler block (3.47) in the Slavnov matrix. This relation is as follows:

Ū𝑘𝑎 [𝝀̌] = U𝑘𝑎 [𝝀̌]
𝜋 (1 + 𝔞𝑒 (𝜆̌𝑘))

=
𝔞𝑒 (𝜆̌𝑘) (𝜆̌𝑘 + 𝑖)𝑎−1 − 𝜆̌𝑎−1

𝑘

𝜋 (𝔞𝑒 (𝜆̌𝑘) + 1) . (3.55)

Let us remark that we can construct a larger Cauchy matrix composed of the two rectangular Cauchy
matrices that appear in the expression (3.54) above.

C [
𝝀̌


 𝝔̂] = (

C [
𝝀̌


𝝔] ��� C [

𝝀̌


𝝑] )

(3.56a)

by combining the individual blocks in eq. (3.54). In the current scenario, it turns out to be a square
matrix of order 𝑁0 + 1 with components:

C𝑗𝑘 [𝝀̌ | 𝝔̂] = 1
sinh 𝜋(𝜆̌ 𝑗 − 𝜚̂𝑘)

. (3.56b)

This larger matrix will be exploited when we compute the Cauchy determinant in the thermodynamic
limit.

Let us now substitute the determinants from eqs. (3.51) and (3.53) into the expression (3.5) and
we obtain the following determinant representation for the form-factors in the two-spinon sector

|𝐹𝑧 |2 = −2𝜋𝑀+1
∏

𝜒(𝝀)
∏

𝜒(𝝁)
∏(𝝁 − 𝝀)∏(𝝀 − 𝝁)
∏′(𝝁 − 𝝁)∏′(𝝀 − 𝝀) det𝑁0H𝑔 det𝑁0+1H𝑒 . (3.57)

Here we have combined some of the prefactors in the original expression (3.5), containing Baxter
polynomials, the exponential counting functions and their derivatives from eqs. (3.51) and (3.53),
in order to rewrite it in terms of the ratio of the eigenvalues of the transfer matrix. The latter
were defined in eq. (2.63) and its thermodynamic limit was studied in section 2.C. Its definition is
reproduced again in the following:

𝜒(𝜈) = 1 + 𝔞𝑒 (𝜈)
1 + 𝔞𝑔 (𝜈)

𝑞𝑒 (𝜈 − 𝑖)𝑞𝑔 (𝜈)
𝑞𝑔 (𝜈 − 𝑖)𝑞𝑒 (𝜈) . (3.58)

3.2. Thermodynamic limit from the Cauchy determinant
representation

Since the matrixH𝑔 is a Cauchy matrix of hyperbolic functions (3.52) we find that its determinant
is given by following expression:

detH𝑔 = detC [−𝝀

 − 𝝁̌
]
=

iii
sinh 𝜋( 𝝁̌‖𝝀). (3.59)

Here we use the alternant
aaa

notation which was introduced on pages 7 and 11, to write the Cauchy
determinant:

iii
sinh 𝜋( 𝝁̌‖𝝀) =

∏
𝑗>𝑘 sinh 𝜋( 𝜇̌ 𝑗 − 𝜇̌𝑘)

∏
𝑗<𝑘 sinh 𝜋(𝜆 𝑗 − 𝜆𝑘)∏

𝑗 ,𝑘 sinh 𝜋(𝜇 𝑗 − 𝜆𝑘) . (3.60)
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Chapter 3. Two-spinon form-factors

To compute the determinant of the matrixH𝑒, we shall first extract from it the larger Cauchy matrix
defined in eq. (3.56) as follows:

P = C−1 [
𝝔̂


𝝀̌] · H𝑒 . (3.61)

It permits us to rewrite the representation (3.57) as

|𝐹𝑧 |2 = −2𝜋𝑀+1
∏

𝜒(𝝀)
∏

𝜒(𝝁)

aaa
sinh 𝜋( 𝝁̌‖𝝀)aaa sinh 𝜋(𝝀̌‖𝝁)

aaa(𝝀‖𝝁)aaa(𝝁‖𝝀) det𝑁0+1 P . (3.62)

3.2.1. Cauchy extraction

We will now compute the matrix P and its determinant from the extraction (3.61) of the Cauchy
matrix. SinceH𝑔 matrix (4.72) and C [

𝝀̌‖ 𝝔̂] matrix (3.56a) are both divided in blocks of columns,
it compels us to partition the matrix P into four blocks named according to the cardinal directions
as seen in the following:

P =

(PNW PNE

PSW PSE

)
. (3.63)

In the north-west we have a square matrix PNW which is the largest block comprising of 𝑁1 columns.
In the north-east and south-west we have the rectangular matrices PNE, PSW which forms the
off-diagonal rectangular matrices comprising of two columns and two rows respectively. And finally
in the south-east we have a square matrix PSE which is another diagonal block of order two. We
can see from eq. (3.61) that these four block matrices are given by the following equations.

PNW = C−1 [
𝝁


𝝀̌] · (C [

𝝀̌


𝝁] + C [

𝝀̌


𝝑] · A−1

𝑒 R [𝝑 |𝝁]
)
, (3.64a)

PSW = C−1 [
𝝑


𝝀̌] · (C [

𝝀̌


𝝁] + C [

𝝀̌


𝝑] · A−1

𝑒 R [𝝑 |𝝁]
)

; (3.64b)

PNE = C−1 [
𝝁


𝝀̌] · Ū [𝝀̌], (3.64c)

PSE = C−1 [
𝝑


𝝀̌] · Ū [𝝀̌] . (3.64d)

The Cauchy extraction in eqs. (3.64a) and (3.64b) is a trivial one. It can be easily seen from
C−1 [𝝁‖𝝀̌] · C[𝝀̌‖𝝁] = I that we have

PNW = I, (3.65a)
PSW = A−1

𝑒 R[𝝑‖𝝁] . (3.65b)

Nonetheless, the following lemma is presented and framed in a more general setting. This is so
because the reasoning used to prove this lemma is crucial for the later computations. It will shed light
not only on the computation of non-trivial part of the Cauchy extraction in eqs. (3.64c) and (3.64d)
that we encounter in the current setting, but also the other instances that we will encounter in the
generic setting for higher spinons.

Lemma 3.2. Let 𝜶 and 𝜷 denote two sets of complex parameters of the same cardinality 𝑛𝜶 = 𝑛𝜷 .
Let 𝑓 be a periodic meromorphic function satisfying 𝑓 (𝜆 + 𝑖) = − 𝑓 (𝜆), with simple poles forming
the set 𝜸 + 𝑖ℤ, which are all distinct from the poles of the Φ function modulo its periodicity, i.e.
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3.2. Thermodynamic limit

𝜸 + 𝑖ℤ ∩ 𝜶 + 𝑖ℤ = ∅.
We also assume that 𝑓 (𝜏) is bounded at infinity and lim𝜏→∞ 𝑓 (𝜏) = 𝐴. Then following sum can be
evaluated as

1
𝜋

𝑛𝜶∑︁
𝑗=1

Φ′(𝛼 𝑗 |𝜷,𝜶) 1
sinh 𝜋(𝛼 𝑗 − 𝛽𝑘) 𝑓 (𝛼 𝑗 |𝜸) = −

∑︁

𝜸
Φ(𝜸 |𝜷𝒌̂ ,𝜶) Res 𝑓 (𝜸). (3.66)

where 𝜷𝒌̂ = 𝜷 \ {𝛽𝑘 }.
Proof. The sum in eq. (3.66) is taken over the poles of the functionΦ(𝜏 |𝜷,𝜶). Since the cardinalities
of the two sets match 𝑛𝝂 = 𝑛𝜶, we can see that function tends to

lim
𝜏→∞Φ(𝜏 |𝜷,𝜶) = 1. (3.67)

We can choose to take the parameters 𝜶, 𝜷 and 𝜸 in the fundamental domain. We can see that it has
simple poles at 𝜏 ∈ 𝜶, 𝜏 = 𝛽𝑘 and 𝜏 ∈ 𝛾 inside the fundamental domain. We can also see that the
residue of the pole for 𝜏 = 𝛽𝑘 vanishes since it is a zero of the Φ function. Therefore we can write
this sum as contour integral:

1
𝜋

𝑛𝜶∑︁
𝑗=1

Φ′(𝛼 𝑗 |𝜷,𝜶) 1
sinh 𝜋(𝛽𝑘 − 𝛼 𝑗) 𝑓 (𝛼 𝑗) = 1

2𝜋𝑖

∮
𝜕(S𝜶\𝜸in)

Φ(𝜏 |𝜷,𝜶) 1
sinh 𝜋(𝛽𝑘 − 𝜏) 𝑓 (𝜏)𝑑𝜏

1
2𝜋𝑖

∮
𝜕S𝜶

Φ(𝜏 |𝜷,𝜶) 1
sinh 𝜋(𝜏 − 𝛽𝑘) 𝑓 (𝜏)𝑑𝜏 +

∑︁

Φ(𝜸in |𝜷𝒌̂ ,𝜶) Res 𝑓 (𝜸in) (3.68)

where S𝜶 is rectangular region that contains all the poles 𝜶. We have to exclude those extra poles
𝜸in which inside this rectangle. The boundary of this punctured rectangle S𝜶 \ 𝜸in is the contour
chosen in the above integral. Since the integrand goes to zero exponentially for large values of 𝜏,
the integral on the vertical edges can be made to vanish by taking the length of the rectangle to
infinity. Therefore by exploiting the periodicity of the integrand on the upper edge of the contour,
we can obtain a new contour which is complementary to the original one and it does not contain any
poles of the type 𝜏 ∈ 𝜶 + 𝑖ℤ. Therefore we can write

1
2𝜋𝑖

∮
𝜕S𝜶

Φ(𝜏 |𝜷,𝜶) 𝑓 (𝛼 𝑗)
sinh 𝜋(𝛼 𝑗 − 𝛽𝑘) 𝑑𝜏 = −

1
2𝜋𝑖

∮
𝜕S𝜶̂

Φ(𝜏 |𝜷,𝜶) 𝑓 (𝜏)
sinh 𝜋(𝜏 − 𝛽𝑘) 𝑑𝜏

= −
∑︁

Φ(𝜸out |𝜷𝒌̂ ,𝜶) Res 𝑓 (𝜸out) (3.69)

since the poles 𝜸out = 𝜸 \ 𝜸in which were missed in the original contour will be included. This is
illustrated in fig. 3.1. From eqs. (3.68) and (3.69) we get the result in eq. (3.66). �

For the Cauchy extraction on the Foda-Wheeler block of columns we get the two blocks PNE and
PSE. Here we shall consider them together in a combined east block:

PE =

(PNE

PSE

)
. (3.70)

From eqs. (3.64c) and (3.64d) we get the following summation for this block:

PE
𝑗 ,𝑎 = Φ′( 𝜚̂ 𝑗 |𝝀̌, 𝝔̂) 1

𝜋

𝑁0+1∑︁
𝑘=1

Φ′(𝜆̌𝑘 | 𝝔̂, 𝝀̌) 1
sinh 𝜋( 𝜚̂ 𝑗 − 𝜆̌𝑘)

𝔞𝑒 (𝜆̌𝑘) (𝜆̌𝑘 + 𝑖)𝑎−1 − 𝜆̌𝑎−1
𝑘

𝔞𝑒 (𝜆̌𝑘) + 1
. (3.71)
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Chapter 3. Two-spinon form-factors

Figure 3.1.: An illustrative example of use of periodicity to change the contour of integration. Here
a cross ‘ ’ represents a pole of the function 𝑓 in 𝜸. On the left hand-side we have the contour
which was originally defined and on the right-hand side we have the newly obtained contour by
virtue of the periodicity of the integrand.

It is similar to the summations in eq. (3.66), except that the function 𝑓 is given in this case by
eq. (3.47) for the Foda-Wheeler columns, which is not a periodic function. We see that it has simple
poles in 𝝔̂, all of which have zero residue except for the one 𝜏 = 𝜚̂ 𝑗 . Thus we can write the integral:

P𝐸
𝑗,𝑎 =

1
2𝜋𝑖

Φ′( 𝜚̂ 𝑗 |𝝀̌, 𝝔̂)
(∫

ℝ−𝑖𝛼
−

∫
ℝ+ 𝑖

2+𝑖𝛼
−

∮
𝜀 𝜚̂ 𝑗

)
Φ(𝜏 | 𝝔̂, 𝝀̌)

sinh 𝜋(𝜏 − 𝜚̂ 𝑗)
𝔞𝑒 (𝜏) (𝜏 + 𝑖)𝑎−1 − 𝜏𝑎−1

𝔞𝑒 (𝜏) + 1
𝑑𝜏. (3.72)

Note that the 𝛼 in this expression is a positive real constant whose value lies in the 0 < 𝛼 < 1
2 . We

can make sure that the integrand goes exponentially to zero at infinity, therefore the integrals on the
vertical edges at the boundary vanish. The 𝜕𝜀 𝜚̂ 𝑗

is the infinitesimal neighbourhood of the extra
simple pole 𝜏 = 𝜚̂𝑘 . Hence, it is the integral over the parallel lines in the outer contour that remain
the subject of our investigation. Here we invoke the estimation of the counting function which
holds in the bulk. As a result, we see that the function 𝔞𝑒 is exponentially small in 𝑀 on the branch
ℝ + 𝑖

2 + 𝑖𝛼 and it is exponentially large in 𝑀 on the branch ℝ − 𝑖𝛼. With this assumption, we can
write

PE
𝑗 ,𝑎 = − 1

2𝜋𝑖
Φ′( 𝜚̂ 𝑗 |𝝀̌, 𝝔̂)

{∫
ℝ−𝑖𝛼

(𝜏 + 𝑖)𝑎−1Φ(𝜏 | 𝝔̂, 𝝀̌)
sinh 𝜋(𝜏 − 𝜚̂ 𝑗) 𝑑𝜏 +

∫
ℝ+ 𝑖

2+𝑖𝛼

𝜏𝑎−1Φ(𝜏 | 𝝔̂, 𝝀̌)
sinh 𝜋(𝜏 − 𝜚̂ 𝑗) 𝑑𝜏

}
−
𝜚̂𝑎−1
𝑗 + ( 𝜚̂ 𝑗 + 𝑖)𝑎−1

𝔞′𝑒 ( 𝜚̂ 𝑗) . (3.73)

Let us now use the periodicity property of the Φ function. Under the change of variables 𝜏 → 𝜏 + 𝑖,
we see that the lower branch of integration contour can be transformed according to the following:∫

ℝ−𝑖𝛼

(𝜏 + 𝑖)𝑎−1Φ(𝜏 | 𝝔̂, 𝝀̌)
sinh 𝜋(𝜏 − 𝜚̂ 𝑗) 𝑑𝜏 = −

∫
ℝ+𝑖−𝑖𝛼

𝜏𝑎−1Φ(𝜏 | 𝝔̂, 𝝀̌)
sinh 𝜋(𝜏 − 𝜚̂ 𝑗) 𝑑𝜏. (3.74)
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After substituting eq. (3.74) back, we obtain a new closed contour by adding vanishing contributions
of edges. Since the integrand is regular inside this contour, we get a null result for this part,(∫

ℝ+ 𝑖
2+𝑖𝛼
−

∫
ℝ+𝑖−𝑖𝛼

)
𝜏𝑎−1Φ(𝜏 |𝝂, 𝝀̌)
sinh 𝜋(𝜈𝑘 − 𝜏) 𝑑𝜏 = 0. (3.75)

Therefore we are only left with the infinitesimal part of the contours in eq. (3.72), which leads to the
residue term for an extra pole. Based on this observation, we shall now define the column vectors
W𝑎 [ 𝝔̂+] as follows:

W𝑎 ( 𝜚̂+𝑘) = PE
𝑎,𝑘 = −

𝜚̂𝑎−1
𝑗 + ( 𝜚̂ 𝑗 + 𝑖)𝑎−1

𝔞′𝑒 ( 𝜚̂ 𝑗) ; for 𝑎 = 1, 2. (3.76)

The matrixW[ 𝝔̂+] is composed of the two columns:

W[ 𝝔̂+] = (W1 [ 𝝔̂+]
��W2 [ 𝝔̂+]

)
. (3.77)

Reduction in the size of the determinant
With this result, all the four blocks (3.63) of the matrix P are now determined. We can express the
matrix P as follows:

P =

(
I W[𝝁]

A−1
𝑒 R[𝝑 |𝝁] W[𝝑]

)
. (3.78)

Using lemma C.1, we can reduce the matrix P to a smaller square matrix Q of order two, such that
their determinants are related to each other through the following relation:

det𝑁0+1 P =
1

𝔞′𝑒 (𝜗1)𝔞′𝑒 (𝜗2) det2 Q. (3.79)

Notice that here we also extract the diagonal matrix 𝜋A−1
𝑒 [𝝑] in addition to the reduction through

lemma C.1, this tells us that the components of the reduced matrix can be expressed as

Q = A𝑒W[𝝑] − R[𝝑 |𝝁] · W[𝝁] (3.80)

whereA𝑒W denotes the product of diagonal matrixA𝑒 [𝝑] (3.36) withW[𝝑]. Let us write down
the components of the matrix Q explicitly:

Q𝑎,1 = −2 − 4𝜋𝑖
∑︁ 𝜌ℎ (𝝁 − 𝜗𝑎)

𝔞′𝑒 (𝝁)
, (3.81a)

Q𝑎,2 = −2
(
𝜗𝑎 + 𝑖2

)
− 4𝜋𝑖

∑︁ 𝜌ℎ (𝝁 − 𝜗𝑎)
𝔞′𝑒 (𝝁)

(
𝝁 + 𝑖

2

)
. (3.81b)

The sums in both these cases can be written as integrals:

2𝜋𝑖
∑︁ 𝜌ℎ (𝝁 − 𝜗𝑎)

𝔞′𝑒 (𝝁)

(
𝝁 + 𝑖

2

)𝑎−1
= −

∫
ℝ
𝜌ℎ (𝜏 − 𝜗𝑎)

(
𝜏 − 𝑖

2

)𝑎−1
𝑑𝜏. (3.82)
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Chapter 3. Two-spinon form-factors

Due to the regularity of the integrand, it suffices to use the regular condensation property for this
purpose. The integral of this form due to eq. (3.81a) can be readily computed∫

ℝ
𝜌ℎ (𝜏 − 𝜗𝑎)𝑑𝜏 = 1

2
(3.83)

whereas for the integral coming from the column of the degree 1 (3.81b) we need to break up the
integral in two parts as follows:∫

ℝ

(
𝜏 + 𝑖

2

)
𝜌ℎ (𝜏 − 𝜗𝑎)𝑑𝜏 =

∫
ℝ
(𝜏 − 𝜗𝑎) 𝜌ℎ (𝜏 − 𝜗𝑎)𝑑𝜏 +

(
𝜗𝑎 + 𝑖2

) ∫
ℝ
𝜌ℎ (𝜏 − 𝜗𝑎)𝑑𝜏. (3.84)

Here we can see that the first part is an integral over an odd function and it vanishes. The second
part can be computed similar to eq. (3.83). It gives rise to∫

ℝ

(
𝜏 + 𝑖

2

)
𝜌ℎ (𝜏 − 𝜗𝑎)𝑑𝜏 =

𝜗𝑎 + 𝑖
2

2
. (3.85)

Overall, the substitution of eqs. (3.83) and (3.85) back into eqs. (3.81) and (3.82) tell us that

Q = A𝑒W[𝝑] − 1
2
A𝑒W[𝝑] = 1

2
A𝑒W[𝝑] . (3.86)

We also easily see from eq. (3.76) that Q is a Vandermonde matrix of size two:

Q = V
[
𝝑 + 𝑖

2
]
=

(
−1 − (

𝜗1 + 𝑖
2
)

−1 − (
𝜗2 + 𝑖

2
)) . (3.87)

Therefore its determinant is given by,

detP = detQ = (𝜗2 − 𝜗1). (3.88)

3.3. Thermodynamic limit from an infinite product form

After the extraction of the Cauchy matrix, we see that the determinant representation for the
two-spinon form factors can be written as

|𝐹𝑧 |2 = −2𝜋𝑀+1
𝜗2 − 𝜗1

𝔞′𝑒 (𝜗1)𝔞′𝑒 (𝜗2)
∏

𝜒(𝝀)
∏

𝜒(𝝁)

aaa
sinh 𝜋( 𝝁̌‖𝝀)aaa sinh 𝜋(𝝀̌‖𝝂)

aaa2(𝝀‖𝝁)
. (3.89)

Note that we have used the superalternant notation for the Cauchy determinants
aaa

, which is
introduced on pages 7 to 11. First of all, let us remark that the terms involving 𝜇̌𝑁0 = 𝑖

2 and
𝜆̌𝑁0+1 = 𝑖

2 mutually cancel out to from the product of Cauchy determinants. It leaves us with
iii

sinh 𝜋( 𝝁̌‖𝝀)
iii

sinh 𝜋(𝝀̌‖𝝂) = −1
cosh 𝜋(𝜗1) cosh 𝜋(𝜗2)

iii
sinh 𝜋(𝝁‖𝝀)

iii
sinh 𝜋(𝝀‖𝝂) (3.90)

We will now further expand the second hyperbolic Cauchy determinants by factoring out the terms
with hole parameters.

iii
sinh 𝜋(𝝀‖𝝂) = sinh 𝜋(𝜗1 − 𝜗2)

2∏
𝑎=1

∏

sinh 𝜋(𝜗𝑎 − 𝝁)
∏

sinh 𝜋(𝜗𝑎 − 𝝀)
iii

sinh 𝜋(𝝀‖𝝁) (3.91)
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3.3. Thermodynamic limit from an infinite product form

Let us now replace the derivatives of the counting functions in terms of the densities, assuming the
holes are in the bulk, we can see that it is the ground state density term that dominates. Thus we
can write,

𝔞′𝑒 (𝜗𝑎) =
𝑖𝜋 𝑀

cosh 𝜋𝜗𝑎
+𝑂 (1) (3.92)

as we also ignore the hole-density terms, which are put into the correction of the first sub-leading
order 𝑂 (1). We have computed the thermodynamic limit of the function 𝜒(𝜆) in section 2.C. As
we substitute eqs. (3.90) to (3.92) into eq. (3.89) we obtain the following representation:

|𝐹𝑧 |2 =
2𝜋𝑀−1

𝑀2 (𝜗2 − 𝜗1) sinh 𝜋(𝜗2 − 𝜗1)
∏

𝜒(𝝀)
∏

𝜒(𝝁)
2∏

𝑎=1

∏

sinh 𝜋(𝜗𝑎 − 𝝁)
∏

sinh 𝜋(𝜗𝑎 − 𝝀)

aaa2 sinh 𝜋(𝝀‖𝝁)
aaa2(𝝀‖𝝁)

.

(3.93)

Let us recall that the thermodynamic limit of the 𝜒 function was obtained in eq. (2.141), which is
reproduced below:

∏

𝜒(𝝀)
∏

𝜒(𝝁) =
2∏

𝑎=1

∏

tanh 𝜋 (𝜗𝑎−𝝀)
2

∏

tanh 𝜋 (𝜗2−𝝁)
2

(3.94)

Let us now combine it with the other terms to produce

∏

sinh 𝜋(𝜗𝑎 − 𝝁)
∏

sinh 𝜋(𝜗𝑎 − 𝝀) =
1
4

∏

sinh 𝜋 (𝜗𝑎−𝝁)
2 cosh 𝜋 (𝜗𝑎−𝝁)

2
∏

sinh 𝜋 (𝜗𝑎−𝝀)
2 cosh 𝜋 (𝜗𝑎−𝝀)

2

, (3.95)

and,
aaa2 sinh 𝜋(𝝀‖𝝁)

aaa2(𝝀‖𝝁)
= 𝜋−𝑀+3

∏

𝝀,𝝁 Γ(1 + 𝝀−𝝁
2𝑖𝜎 )Γ( 12 + 𝝀−𝝁

2𝑖𝜎 )
∏

𝝁 Γ(1 + 𝝁−𝝁
2𝑖𝜎 )Γ( 12 + 𝝁−𝝁

2𝑖𝜎 )

∏

𝝀,𝝁 Γ(1 + 𝝁−𝝀
2𝑖𝜎 )Γ( 12 + 𝝀−𝝁

2𝑖𝜎 )
∏

𝝀 Γ(1 + 𝝀−𝝀
2𝑖𝜎 )Γ( 12 + 𝝁−𝝁

2𝑖𝜎 )
(3.96)

where the latter is derived from using the identity (A.6). Substituting the above expressions from
eqs. (3.94) to (3.96) into eq. (3.93) allows us to rewrite it in terms of the auxiliary function Ω as
follows:

|𝐹𝑧 |2 =
𝜋

2𝑀2 (𝜗2 − 𝜗1) sinh 𝜋(𝜗2 − 𝜗1)
∏

𝑗 Ω(𝜇 𝑗 |𝝁, 𝝀)∏
𝑗 Ω(𝜆 𝑗 |𝝁, 𝝀) . (3.97)

Notation 26. The function Ω is defined as

Ω(𝜏 |𝝁, 𝝀) =

∏
𝜎=±


∏

Γ3
(

1
2

)
Γ2

(
1
2 + 𝜏−𝝑

2𝑖𝜎

) 
∏

Γ
(
1 + 𝜏−𝝀

2𝑖𝜎

)
∏

Γ
(

1
2 + 𝜏−𝝀

2𝑖𝜎

)
∏

Γ
(
1 + 𝜏−𝝁

2𝑖𝜎
)
∏

Γ
(

1
2 + 𝜏−𝝁

2𝑖𝜎

)  . (3.98)

Let us now write this function as an infinite product:

Ω(𝜏 |𝝁, 𝝀) =
∞∏
𝑛=1

Ω𝑛 (𝜏 |𝝁, 𝝀). (3.99)
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Chapter 3. Two-spinon form-factors

From the Weierstrass form of the Γ function, we can see that the terms Ω𝑛 in this infinite product
are as follows:

Ω𝑛 (𝜏 |𝝁, 𝝀) = 16𝑛2(
𝑛 − 1

2

)6

∏
𝜎=±

𝜙(𝜏 + 2𝑛𝑖𝜎 |𝝁, 𝝀)𝜙(𝜏 + 2𝑛𝑖𝜎 |𝝁, 𝝀)
∏

{(
𝑛 − 1

2
+ (𝜏 − 𝝑)

2

4

)}2

.

(3.100)

The 𝜙(𝜏 |𝝁, 𝝀) function and its thermodynamic limit was studied in section 2.B. Let us now substitute
the result obtained there in eq. (2.133) for the 𝜙 function, once it is read in the context of a two-spinon
excitations (i.e. by ignoring the terms containing the complex roots). This substitution allows us to
write the general terms Ω𝑛 of the infinite product from the above eq. (3.100), as follows:

Ω𝑛 (𝜏 |𝝁, 𝝀) =
𝑛2 ∏

{(
𝑛 − 1

2

)2
+ (𝜏−𝝑)24

}
(
𝑛 − 1

2

)6 . (3.101)

Therefore, the infinite product (3.100) takes a new form that is equivalent to the old one in the
thermodynamic limit. It reads,∏

𝑗 Ω(𝜇 𝑗 |𝝁, 𝝀)∏
𝑗 Ω(𝜆 𝑗 |𝝁, 𝝀) =

∞∏
𝑛=1


(
𝑛 − 1

2
𝑛

)2 ©­­«
Γ

(
𝑛 + 1

2

)
Γ (𝑛)

ª®®¬
4 ∏
𝜎=±

Γ2
(
𝑛 − 1

2 + 𝜗2−𝜗1
2𝑖𝜎

)
Γ2

(
𝑛 + 𝜗2−𝜗1

2𝑖𝜎

)  . (3.102)

We can show using lemma A.2 that this infinite product is fine-tuned to produce a meaningful result,
which can be expressed in terms of the Barnes-𝐺 function as∏

𝑗 Ω(𝜇 𝑗 |𝝁, 𝝀)∏
𝑗 Ω(𝜆 𝑗 |𝝁, 𝝀) =

𝐺2
(

1
2

)
𝐺6

(
3
2

) ∏
𝜎=±

𝐺2
(
1 + 𝜗2−𝜗1

2𝑖𝜎

)
𝐺2

(
1
2 + 𝜗2−𝜗1

2𝑖𝜎

) . (3.103)

Let us now substitute eq. (3.103) back into eq. (3.97). Meanwhile, we will also substitute the
following expression that follows from the identity (A.6b)

(𝜗2 − 𝜗1) sinh 𝜋(𝜗2 − 𝜗1) = 4𝜋2

(𝜗2 − 𝜗1)
∏
𝜎=±

1
Γ( 𝜗2−𝜗1

2𝑖𝜎 )Γ( 12 + 𝑧
2𝑖𝜎 )

. (3.104)

As a result, we can see that eq. (3.97) can be rewritten in a close-form expression, expressed in
terms of the Barnes-𝐺 functions, as seen in the following:

|𝐹𝑧 |2 =
2

𝑀2𝐺4
(

1
2

) ∏
𝜎=±

𝐺 ( 𝜗2−𝜗1
2𝑖𝜎 )𝐺 (1 + 𝜗2−𝜗1

2𝑖𝜎 )
𝐺 ( 12 + 𝜗2−𝜗1

2𝑖𝜎 )𝐺 ( 32 + 𝜗2−𝜗1
2𝑖𝜎 )

. (3.105)

We can check using the integral representations for the 𝐺 function given in eq. (A.17), that the
result (3.105) is the same as the result obtained earlier in the 𝑞-VOA framework:

|𝐹𝑧 |2 =
2𝑒−𝐼 (𝜗2−𝜗1)

𝑀2 where, 𝐼 (𝜈) =
∫ ∞

0

𝑑𝑡 𝑒𝑡

𝑡

cos(2𝜈𝑡) cosh 2𝑡 − 1
cosh 𝑡 sinh 2𝑡

(3.106)
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3.3. Thermodynamic limit from an infinite product form

It was originally found in this form by Bougourzi, Couture and Kacir [BCK96] for the two-spinon
form-factors. There they used a method which is based on 𝑞-vertex operator algebra [JM95]. The
fact that we are able to compare the results obtained from completely different baseline approaches
is a very important step forward in the direction of ABA based form-factor approach. The 𝑞-vertex
operator algebra method has also been used to compute the exact expressions for four-spinon
form-factor by Caux and Hagemans [CH06] and Abada, Bougourzi and Si-Lakhal [ABS97] and to
the massless XXZ chains by Caux, Konno, Sorrell and Weston [CKSW12]. The natural question
that arises is “Whether and how can we generlise the method presented in this chapter to higher
spinon sectors, or to anisotropic regimes?”. We try to answer these questions for the higher spinon
sectors over the next two chapters 4 and 5.
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Chapter 4.
Modified Cauchy determinant representation for
higher form-factors

In this chapter we take a first step towards generalisation of our method developed in the last chapter
to form-factors for triplet (𝑠 = 1) excitations in the spinon sectors 𝑛ℎ > 2.

|𝐹𝑧 |2 =
| 〈𝜓𝑔 |𝜎3

𝑚 |𝜓1
1 (𝝑)〉 |2

〈𝜓𝑔 |𝜓𝑔〉 〈𝜓1
1 (𝝑) |𝜓1

1 (𝝑)〉
. (4.1)

We will find that the Cauchy determinant representation obtained for two-spinon case (𝑛ℎ = 2)
(3.57) in chapter 3 can be generalised to any excitation with even spinon number 𝑛ℎ, which is small
enough 𝑛ℎ << 𝑀 to satisfy the low-lying criteria.
Although we will use the same method of the Gaudin extraction to compute the ratio of determinants,
unlike the previous case of two-spinon form-factors, here we must also account for the complex
Bethe roots, that are always present in the case of triplet excitations of higher spinon sectors
𝑛ℎ > 2. In this regard, let us recall that we will be using the prescription of Destri and Lowenstein
[DL82] to describe the nature of complex Bethe roots in the thermodynamic limit. In this picture,
complex roots are classified into close-pairs and wide-pairs: 𝝁 = 𝝔 ∪ 𝝊+ ∪ 𝝊− ∪ 𝝎+ ∪ 𝝎̄− [see
eqs. (2.79) and (2.81)]. Let us also recall that complex roots are determined by set of higher-level
roots 𝝁̃ (𝑛𝝁̃ = 𝑛̃), which consists of the centres of the close-pairs and anchors of the wide-pairs:
𝝁̃ = 𝝊 ∪𝝎 ∪ 𝝎̄. We also know that the set of higher-level roots satisfies an inhomogeneous version
of the Bethe equations, called the higher-level Bethe equations (2.97).
The real roots are denoted by the set 𝝔 while the set of all real roots including the holes is denoted
by 𝝔̂. All the parameters will be ordered in the ascending order of the their union, so that the holes
𝝑 appear at the end positions.

Once again, we will use the 𝔰𝔲2 symmetry to recast the longitudinal form-factor (4.1) in the
transverse channel through eq. (1.116b). Therefore, the starting point remains the representation in
terms of ratio of determinants, which is similar to (3.5). However, there is one important difference
due to the presence of complex roots. When it comes to the close-pairs in particular, we see that
due to the formation (2.79) of the close-pairs into 2-string or quartets, there is a singular term in the
prefactors of eq. (3.5), as one the Baxter polynomial 𝑞𝑒 vanishes in the numerator. For this reason,
we find it more appropriate to separate the vanishing terms early-on, which will be written in the
terms of string deviation parameters 𝜹. Therefore, we rewrite eq. (4.1) in a generic setting as

|𝐹𝑧 |2 = −2
∏ 𝑞𝑔 (𝝁 − 𝑖)

𝑞′𝑒 (𝝁 − 𝑖)
∏ 𝑞𝑒 (𝝀 − 𝑖)

𝑞𝑔 (𝝀 − 𝑖)
1

∏ (2𝑖𝜹)
det𝑁0M

[
𝝁̌


𝝀]

det𝑁0 N
[
𝝀


𝝀] det𝑁0+1M (2) [𝝀̌

𝝁]

det𝑁0−1N
[
𝝁


𝝁] . (4.2)

For the Gaudin extraction, once again we define the matrices F𝑔 and F𝑒 that are obtained from the
action of the inverse Gaudin matrices, as follows:

F𝑔 = N−1 [𝝀‖𝝀] · (M [
𝝁̌


𝝀] )𝑇 , (4.3a)
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and,

F𝑒 = diag
[
N−1 [𝝁‖𝝁]

��� I2] (
M (2) [𝝀̌

𝝁] )𝑇

. (4.3b)

The diagonal embedding of the inverse Gaudin matrix in eq. (4.3b) is exactly same as in eq. (3.10).
Computation for the most of the columns of the matrices F𝑔 and F𝑒 plays out on almost similar
lines as it was in chapter 3 for the two-spinon case, since the significant number of Bethe roots are
real for a low-lying excited state. We will not repeat the similar part again, but we will elaborate
on the changes brought out by the presence of complex roots. In the case of the matrix F𝑒, our
computation leads to an interesting result: we see that there is an emergence of higher-level Gaudin
matrix whose extraction is embedded in matrix F𝑒. The higher-level Gaudin matrix is given by an
expression that is similar to eq. (1.86b), except that we replace the counting function and Bethe
roots by their higher-level counter-parts.

𝑁𝑎,𝑏 = 𝔞̃′( 𝜇̃𝑎)𝛿𝑎,𝑏 − 2𝜋𝑖𝐾 ( 𝜇̃𝑎 − 𝜇̃𝑏). (4.4)

We will show that the higher-level version of the Gaudin extraction (4.3) can be expressed as follows:

S̃ = Ñ−1 · R̃. (4.5)

The resulting matrix S̃ describes a higher-level block inside the matrix F𝑒 for the form-factors.
The emergence of this higher-level structure for the form-factor is one of the strong result in our
computations. It can be compared with the emergence of the higher-level Bethe equations found by
Destri and Lowenstein [DL82] and Babelon, Vega and Viallet [BVV83] in the case of spectrum.

Finally, let us remark that whenever we have a close-pair among the complex roots, the deviation
parameters 𝜹 plays an important role of regularising the intermediate expressions. We will see
over the course of our computations, that the determinants also becomes singular in the case of
close-pairs, in such a way that it cancels out with string-deviation terms in the prefactors (4.2). At
an appropriate stage in the computations, we will redefine the matrices F in such a manner that
leads to the cancellation of the deviation parameters 𝜹.

4.1. Gaudin extraction of first type

We can write the system of linear equations for the extraction of the Gaudin matrix of the ground
state (3.9a), that is identical to eq. (3.12) obtained in chapter 3 for the two-spinon case. However,
hidden in the notations, we see that the set 𝝁̌ also contains complex roots in the form of close-pairs
and wide-pairs. Let us reorder the set 𝝁̌ in the ascending order of unions:

𝝁̌ = 𝝔 ∪ {
𝑖
2
} ∪ {𝝊+ + 𝑖𝜹} ∪ {𝝊− − 𝑖𝜹} ∪ 𝝎+ ∪ 𝝎̄−. (4.6)

Accordingly, we will partition the matrix F𝑔 as follows:

Notation 27.

F 𝑟
𝑔; 𝑗 ,𝑘 = F𝑔; 𝑗 ,𝑘 , 𝑘 ≤ 𝑛𝑟 + 1; (4.7a)

F 𝑐+
𝑔; 𝑗 ,𝑎 = F𝑔; 𝑗 ,𝑛𝑟+𝑎+1, 𝑎 ≤ 𝑛𝑐; (4.7b)

F 𝑐−
𝑔; 𝑗 ,𝑎 = F𝑔; 𝑗 ,𝑛𝑟+𝑛𝑐+𝑎+1, 𝑎 ≤ 𝑛𝑐; (4.7c)

F 𝑤+
𝑔; 𝑗 ,𝑎 = F𝑔; 𝑗 ,𝑛𝑟+2𝑛𝑐+𝑎+1, 𝑎 ≤ 𝑛𝑤 ; (4.7d)

F 𝑤−
𝑔; 𝑗 ,𝑎 = F𝑔; 𝑗 ,𝑛𝑟+2𝑛𝑐+𝑛𝑤+𝑎+1, 𝑎 ≤ 𝑛𝑤 . (4.7e)
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4.1. Gaudin extraction of first type

The superscripts indicates the nature of the excited state Bethe root, which appears in the columns
of the Slavnov matrix in eq. (3.9a) for F𝑔.
Remark. Note that the column F𝑔; 𝑗 ,𝑛𝑟+1 does not actually correspond to a real root, but it is
associated with extra parameter 𝜇̌𝑛𝑟+1 = 𝑖

2 . Its inclusion in the block of columns for real roots is
deliberate. It is motivated from the observation, which we have already seen in two-spinon case,
that it admits functionally same expression in the thermodynamic limit, after the Gaudin extraction.

Because the sum over the ground state roots in eq. (3.12) is practically unchanged, in comparison
with the two-spinon case eq. (3.25), all of the arguments made there to write eqs. (3.13) and (3.23)
can also be made here for the first 𝑛𝑟 + 1 columns. Hence, we get an expression for these columns
that is identical to eq. (3.21), as it is shown in the following:

F 𝑟
𝑔; 𝑗 ,𝑘 =

1 + 𝔞𝑔 ( 𝜇̌𝑘)
𝔞′𝑔 (𝜆 𝑗)

{
𝜋

sinh 𝜋( 𝜇̌𝑘 − 𝜆 𝑗) + 𝑜
(

1
𝑀

)}
. (4.8)

We will now look at action of the inverse Gaudin matrix on the close-pair and wide-pair columns.

4.1.1. For close-pairs

In this section, while we speak of all the close-pair roots collectively, we will use the notation
𝜇𝑐 = {𝝊+ + 𝑖𝜹} ∪ {𝝊− − 𝑖𝜹}. Once again, let us define the function 𝐺𝑔 on the grounds similar to
eq. (3.13). We can rewrite the system of equations (4.3a) for the close-pair column in terms of the
function 𝐺𝑔 (𝜆, 𝜇𝑐𝑎) as follows:

𝐺𝑔 (𝜆 𝑗 , 𝜇
𝑐
𝑎) − 2𝜋𝑖

∑︁

𝐾 (𝜆 𝑗 − 𝝀)
𝐺𝑔 (𝝀, 𝜇𝑐𝑎)
𝔞′𝑔 (𝝀)

= 𝔞𝑔 (𝜇𝑐𝑎) 𝑡 (𝜇𝑐𝑎 − 𝜆 𝑗) − 𝑡 (𝜆 𝑗 − 𝜇𝑐𝑎). (4.9)

In the above eq. (4.9), we can first see that there is a simple pole of the function 𝐺𝑔 (𝜆, 𝜇𝑐𝑎) at
𝜆 = 𝜇𝑐𝑎. We can see that close-pair roots lie sufficiently away from the real line except in an extreme
scenario of the 3-string formation discussed in section 2.2.3 that we do not consider here. Therefore
the situation here, as long as the condensation property for the summation is concerned, is very
similar to the one we encountered in the case of a column for parameter 𝑖

2 in the two-spinon case.
There we saw that in such a case it suffices to use the regular condensation property and it also
applies here. It allows us to write the following integral equation:

𝐺𝑔 (𝜆, 𝜇𝑐𝑎) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝐺 (𝜏, 𝜇𝑐𝑎)𝑑𝜏 = 𝔞𝑔 (𝜇𝑐𝑎) 𝑡 (𝜇𝑐𝑎 − 𝜆) − 𝑡 (𝜆 − 𝜇𝑐𝑎). (4.10)

But in contrast to the case of parameter 𝑖
2 , we see that the right hand side remains unaltered as we

pass from eq. (4.9) to eq. (4.10). Let us also notice that the exponential counting function 𝔞𝑔 of the
ground state is exponentially diverging or vanishing for the close-pairs. It can be expressed in terms
of the 𝜙 function [see the definition 14] as

𝔞𝑔 (𝜐+𝑎 + 𝑖𝛿𝑎) = −(2𝑖𝛿𝑎)
𝜙′(𝜐𝑎 − 𝑖

2 )
𝜙(𝜐𝑎 + 3𝑖

2 )
, (4.11a)

𝔞𝑔 (𝜐−𝑎 − 𝑖𝛿𝑎) = −
1

2𝑖𝛿𝑎
𝜙(𝜐𝑎 − 3𝑖

2 )
𝜙′(𝜐𝑎 + 𝑖

2 )
. (4.11b)
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It is important to note that the divergent coefficient 𝔞𝑔 (𝜐−𝑎 − 𝑖𝛿𝑎) is compensated in the determinant,
due to the fact that the matrixM is singular to the leading order in 𝛿𝑎, as we have degenerate pair
of columns in the Slavnov matrixM. It can be seen from the following:

𝑡 (𝜆 − 𝜐+𝑎 − 𝑖𝛿𝑎) = 𝑡 (𝜐−𝑎 − 𝑖𝛿𝑎 − 𝜆) +𝑂 (𝛿𝑎). (4.12)

This ensures that there is no divergence due to the counting function 𝔞𝑔 (𝜐−𝑎 − 𝑖𝛿𝑎) at the level of
determinant. Therefore, in order to eliminate an apparent singular term, we can take the following
recombination in the Slavnov matrix:

M𝑐−
𝑗 ,𝑎 ( 𝝁̌ |𝝀) ← M𝑐−

𝑗 ,𝑎 ( 𝝁̌ |𝝀) + 𝔞𝑔 (𝜐−𝑎 − 𝑖𝛿𝑎)M𝑐+
𝑗 ,𝑎 ( 𝝁̌ |𝝀). (4.13)

The substitution in eq. (4.13) is done silently∗. Since we know from eq. (2.71a), that the exponential
ground state counting function evaluated on close-pair roots, are reciprocate with respect to each
other in the thermodynamic limit, since we have

𝔞𝑔 (𝜐+𝑎)𝔞𝑔 (𝜐−𝑎) = 1, (4.14)

we can see that in the new expression obtained through eq. (4.13), half the number of columns for
the close-pairs are given by the their components:

M𝑐−
𝑗 ,𝑎 = 𝔞𝑔 (𝜐−𝑎 − 𝑖𝛿𝑎)

[
𝑡 (𝜐−𝑎 − 𝑖𝛿𝑎 − 𝜆 𝑗) − 𝑡 (𝜆 𝑗 − 𝜐+𝑎 − 𝑖𝛿𝑎)

]
+ 𝑡 (𝜐+𝑎 + 𝑖𝛿𝑎 − 𝜆 𝑗) − 𝑡 (𝜆 𝑗 − 𝜐−𝑎 + 𝑖𝛿𝑎) +𝑂 (𝛿𝑎). (4.15a)

We can drop the deviation parameters in the last two regular 𝑡 terms, where they can be recombined
to write eq. (4.15a) as follows:

M𝑐−
𝑗 ,𝑎 = 𝔞𝑔 (𝜐−𝑎 − 𝑖𝛿𝑎)

[
𝑡 (𝜐−𝑎 − 𝑖𝛿𝑎 − 𝜆 𝑗) − 𝑡 (𝜆 𝑗 − 𝜐+𝑎 − 𝑖𝛿𝑎)

]
+ 2𝜋𝑖

{
𝐾 (𝜆 𝑗 − 𝜐+𝑎) − 𝐾 (𝜆 𝑗 − 𝜐−𝑎)

} +𝑂 (𝛿𝑎). (4.15b)

Similarly since 𝔞𝑔 (𝜐+𝑎 + 𝑖𝛿𝑎) is vanishing and its coefficient term inM𝑐+ has been already taken
into account through the recombination (4.13), we will silently∗ drop it to write

M𝑐+
𝑗 ,𝑎 = −𝑡 (𝜆 𝑗 − 𝜐+𝑎) +𝑂 (𝛿𝑎). (4.16)

With all the rearrangements shown in eqs. (4.15b) and (4.16), we can rewrite the integral equations
(4.10) for the blocks F 𝑐±

𝑔 as follows:

𝐺𝑔 (𝜆, 𝜐+𝑎) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝐺𝑔 (𝜆, 𝜐+)𝑑𝜏 = −𝑡 (𝜆 − 𝜐+) +𝑂 (𝛿𝑎) (4.17a)

and

𝐺𝑔 (𝜆, 𝜐−𝑎) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝐺𝑔 (𝜆, 𝜐−)𝑑𝜏 = 𝔞𝑔 (𝜐−𝑎 − 𝑖𝛿𝑎)

[
𝑡 (𝜐−𝑎 − 𝑖𝛿𝑎 − 𝜆 𝑗) − 𝑡 (𝜆 𝑗 − 𝜐+𝑎 − 𝑖𝛿𝑎)

]
+ 2𝜋𝑖

{
𝐾 (𝜆 𝑗 − 𝜐+𝑎) − 𝐾 (𝜆 𝑗 − 𝜐−𝑎)

} +𝑂 (𝛿𝑎). (4.17b)

∗ i.e., a change or transformation that is done without changing the original notation
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4.1. Gaudin extraction of first type

The solution of the integral eqs. (4.17a) and (4.17b) can be obtained from the generalised version of
the Lieb equation that is studied in appendix B. From its solution, we can write the components of
the blocks F 𝑐±

𝑔 of all the close-pair columns as shown in the following:

F 𝑐+
𝑔; 𝑗 ,𝑎 =

1
𝔞′𝑔 (𝜆 𝑗)

{
𝜋

sinh(𝜐−𝑎 − 𝜆 𝑗) + 𝑜
(

1
𝑀

)}
(4.18a)

and

F 𝑐−
𝑔; 𝑗 ,𝑎 =

𝔞𝑔 (𝜐− − 𝑖𝛿𝑎)
𝔞′𝑔 (𝜆 𝑗)

{
𝜋

sinh 𝜋(𝜐+𝑎 + 𝑖𝛿𝑎 − 𝜆 𝑗) +
𝜋

sinh 𝜋(𝜐−𝑎 − 𝑖𝛿𝑎 − 𝜆 𝑗)

}
+ 2𝜋𝑖
𝔞′𝑔 (𝜆 𝑗)

{
𝜌1(𝜆 𝑗 , 𝜐

+
𝑎) − 𝜌1(𝜆 𝑗 , 𝜐

−
𝑎) + 𝑜

(
1
𝑀

)}
. (4.18b)

4.1.2. For wide-pairs

Let us denote the complete set of wide-pairs with 𝝁𝑤 = 𝝎+ ∪ 𝝎̄−. From the system of equations
for the extraction of the Gaudin matrix of the ground state (3.9a) can be rewritten in terms of the
function 𝐺𝑔 as

𝐺𝑔 (𝜆 𝑗 , 𝜇
𝑤
𝑎 ) − 2𝜋𝑖

∑︁

𝐾 (𝜆 𝑗 − 𝝀)
𝐺𝑔 (𝝀, 𝜇𝑤𝑎 )

𝔞′𝑔 (𝝀)
= 𝔞𝑔 (𝜇𝑤𝑎 ) 𝑡 (𝜇𝑤𝑎 − 𝜆 𝑗) − 𝑡 (𝜆 𝑗 − 𝜇𝑤𝑎 ). (4.19)

We can see that there are no poles of 𝐺𝑔 (𝜆, 𝜇𝑤𝑎 ) on the real line. Hence, we can use the regular
condensation property on eq. (4.19) to obtain an integral equation for the function 𝐺𝑔,

𝐺𝑔 (𝜆, 𝜇𝑤𝑎 ) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝐺 (𝜏, 𝜇𝑤𝑎 )𝑑𝜏 = 𝔞𝑔 (𝜇𝑤𝑎 ) 𝑡 (𝜇𝑤𝑎 − 𝜆) − 𝑡 (𝜆 − 𝜇𝑤𝑎 ). (4.20)

We have shown earlier in eq. (2.82) in chapter 2, that the exponential counting function is constant
in the region |=𝜆 | > 1 occupied by the wide-pairs. It is a direct consequence of a difference in the
choice of branch cuts for the wide-pairs, in contrast to the close-pairs or the real roots, that allows
us to write,

𝔞𝑔 (𝜇𝑤𝑎 ) = 1. (4.21)

Therefore, using the relation (4.21), we can rewrite the integral eq. (4.20) as shown in the following
expressions. For all the terms due to wide-pairs in the positive half of the complex plane we get,

𝐺𝑔 (𝜆, 𝜔+𝑎) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝐺 (𝜏, 𝜔+𝑎)𝑑𝜏 = 𝐾2(𝜆, 𝜔𝑎 + 𝑖) − 𝐾2(𝜆, 𝜔𝑎) (4.22a)

while for the terms due to the wide-pairs in the negative half we get,

𝐺𝑔 (𝜆, 𝜔̄−𝑎) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝐺 (𝜏, 𝜔̄−𝑎)𝑑𝜏 = 𝐾2(𝜆, 𝜔̄𝑎) − 𝐾2(𝜆, 𝜔̄𝑎 − 𝑖). (4.22b)

By comparing these integral equations to the generalised Lieb eq. (B.2) studied in appendix B, we
find that solutions can be written in the following form:

𝐺𝑔 (𝜆, 𝜔+𝑎) = 2𝜋𝑖 𝜌2(𝜆, 𝜔 + 𝑖) − 2𝜋𝑖 𝜌2(𝜆, 𝜔), (4.23a)
𝐺𝑔 (𝜆, 𝜔̄−𝑎) = 2𝜋𝑖 𝜌2(𝜆, 𝜔̄) − 2𝜋𝑖 𝜌2(𝜆, 𝜔̄ − 𝑖). (4.23b)
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Chapter 4. Modified Cauchy determinant representation

Note that in the above density functions 𝜌2, the imaginary value of the shift always fall in the outer
region. In this region, as we can see from eq. (B.7), the density function 𝜌2 can be expressed in
terms of the digamma† functions as follows:

𝜌2(𝜆, 𝜔 + 𝑖) = 1
4𝜋

{
𝜓

(
1
4
− 𝜆 − 𝜔

2𝑖𝜎

)
− 2𝜓

(
3
4
− 𝜆 − 𝜔

2𝑖𝜎

)
+ 𝜓

(
5
4
− 𝜆 − 𝜔

2𝑖𝜎

)}
(4.24a)

𝜌2(𝜆, 𝜔) = 1
4𝜋

{
𝜓

(
−1

4
− 𝜆 − 𝜔

2𝑖𝜎

)
− 2𝜓

(
1
4
− 𝜆 − 𝜔

2𝑖𝜎

)
+ 𝜓

(
3
4
− 𝜆 − 𝜔

2𝑖𝜎

)}
(4.24b)

and

𝜌2(𝜆, 𝜔̄) = 1
4𝜋

{
𝜓

(
−1

4
+ 𝜆 − 𝜔̄

2𝑖𝜎

)
− 2𝜓

(
1
4
+ 𝜆 − 𝜔̄

2𝑖𝜎

)
+ 𝜓

(
3
4
+ 𝜆 − 𝜔̄

2𝑖𝜎

)}
(4.24c)

𝜌2(𝜆, 𝜔̄ − 𝑖) = 1
4𝜋

{
𝜓

(
1
4
+ 𝜆 − 𝜔̄

2𝑖𝜎

)
− 2𝜓

(
3
4
+ 𝜆 − 𝜔̄

2𝑖𝜎

)
+ 𝜓

(
5
4
+ 𝜆 − 𝜔̄

2𝑖𝜎

)}
(4.24d)

Let us now gather all the results from eqs. (4.8), (4.18) and (4.23) to produce

F 𝑟
𝑔; 𝑗 ,𝑘 =

1 + 𝔞𝑔 ( 𝜇̌𝑘)
𝔞′𝑔 (𝜆 𝑗)

{
𝜋

sinh 𝜋( 𝜇̌𝑘 − 𝜆 𝑗) + 𝑜
(

1
𝑀

)}
, (4.25a)

F 𝑐,+
𝑔; 𝑗 ,𝑎 =

1
𝔞′𝑔 (𝜆 𝑗)

{
𝜋

sinh(𝜐−𝑎 − 𝜆 𝑗) + 𝑜
(

1
𝑀

)}
, (4.25b)

F 𝑐,−
𝑔; 𝑗 ,𝑎 =

𝔞𝑔 (𝜐− − 𝑖𝛿𝑎)
𝔞′𝑔 (𝜆 𝑗)

{
𝜋

sinh 𝜋(𝜐+𝑎 + 𝑖𝛿𝑎 − 𝜆 𝑗) +
𝜋

sinh 𝜋(𝜐−𝑎 − 𝑖𝛿𝑎 − 𝜆 𝑗)

}
+ 2𝜋𝑖
𝔞′𝑔 (𝜆 𝑗)

{
𝜌1(𝜆 𝑗 , 𝜐

+
𝑎) − 𝜌1(𝜆 𝑗 , 𝜐

−
𝑎) + 𝑜

(
1
𝑀

)}
,

(4.25c)

F 𝑤,+
𝑔; 𝑗 ,𝑎 =

2𝜋𝑖
𝔞′𝑔 (𝜆 𝑗)

{
𝜌2(𝜆 𝑗 , 𝜔 + 𝑖) − 𝜌2(𝜆 𝑗 , 𝜔) + 𝑜

(
1
𝑀

)}
, (4.25d)

F 𝑤,−
𝑔; 𝑗 ,𝑎 =

2𝜋𝑖
𝔞′𝑔 (𝜆 𝑗)

{
𝜌2(𝜆 𝑗 , 𝜔̄) − 𝜌2(𝜆 𝑗 , 𝜔̄ − 𝑖) + 𝑜

(
1
𝑀

)}
, (4.25e)

We will now compute the components of the matrix F𝑒 in the thermodynamic limit.

4.2. Gaudin extraction of second type

Let us first divide the matrix F𝑒 into sub-blocks according to the partitioning of the set 𝝁 =
𝝔 ∪ 𝝊+ ∪ 𝝊− ∪ 𝝎+ ∪ 𝝎̄−. The partitioning of the F𝑒 is shown here by the following expressions:

F 𝑟
𝑒; 𝑗 ,𝑘 = F𝑒; 𝑗 ,𝑘 , 𝑗 ≤ 𝑛𝑟 ; (4.26a)

F 𝑐+
𝑒;𝑎,𝑘 = F𝑒;𝑛𝑟+𝑎,𝑘 , 𝑎 ≤ 𝑛𝑐; (4.26b)
F 𝑐−
𝑒;𝑎,𝑘 = F𝑒;𝑛𝑟+𝑛𝑐+𝑎,𝑘 , 𝑎 ≤ 𝑛𝑐; (4.26c)
F 𝑤+
𝑒;𝑎,𝑘 = F𝑒;𝑛𝑟+2𝑛𝑐+𝑎,𝑘 , 𝑎 ≤ 𝑛𝑤 ; (4.26d)
F 𝑤−
𝑟 ;𝑎,𝑘 = F𝑒;𝑛𝑟+2𝑛𝑐+𝑛𝑤+𝑎,𝑘 , 𝑎 ≤ 𝑛𝑤 . (4.26e)

† the logarithmic derivative of the Gamma functions, see also appendix A
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4.2. Gaudin extraction of second type

In addition to these blocks, we will also have a Foda-Wheeler blockU(𝝀̌) of two columns, which
is unaffected by the Gaudin extraction (4.3b), since it is only acted upon by the identity matrix.
Therefore, it retains its original form which we have seen in eq. (3.47).
From eq. (3.9b), we can obtain the following system of linear equations for all of the blocks of F𝑒:

𝔞′𝑒 (𝜇 𝑗)F𝑒; 𝑗 ,𝑘 − 2𝜋𝑖
𝑁1∑︁
𝑙=1

𝐾 (𝜇 𝑗 − 𝜇𝑙)F𝑒;𝑙,𝑘 = 𝔞𝑒 (𝜇𝑘) 𝑡 (𝜆̌𝑘 − 𝜇 𝑗) − 𝑡 (𝜇 𝑗 − 𝜆̌𝑘). (4.27)

We will define the function 𝐺𝑒 on the same grounds as eq. (3.13) whenever possible. However, the
fact that we can have complex roots in the current setting forces us to reformulate our approach in
certain cases. The change here is more significant in comparison to extraction of the first type (4.1),
because the Gaudin extraction itself contains the complex roots. Since the counting function is
contained into the definition of𝐺𝑒, we need to distinguish between the real, close-pair and wide-pair
rows of the inverse matrix when it comes to the definition auxiliary function such as 𝐺𝑒.
For the real rows, the counting function 𝜉 is real and there is no exponential divergence in the
exponential counting function 𝔞𝑒. Its derivative is given by the density function and the corrections
are sub-leading for the values of real Bethe root 𝜚𝑎 from the bulk, thus we can write

𝔞′𝑒 (𝜚𝑎) = 2𝜋𝑖 𝑀 𝜌𝑒 (𝜚𝑎) +𝑂 (1). (4.28)

Here we shall define the function 𝐺𝑒 exactly as it was defined in eq. (3.13) for the two-spinon
form-factor.

Definition 28. The meromorphic function 𝐺𝑒 (𝜈, 𝜆) satisfying the initial condition:

𝐺𝑒 (𝜚 𝑗 , 𝜆𝑘) = 𝔞′𝑒 (𝜚 𝑗)F 𝑟
𝑒; 𝑗 ,𝑘 . (4.29)

It is not hard to see that 𝐺𝑒 (𝜈, 𝜆𝑘) has a simple pole on the real line with the residue:

Res
𝜈=𝜆𝑘

𝐺𝑒 (𝜈, 𝜆𝑘) = −(1 + 𝔞𝑒 (𝜆𝑘)). (4.30)

The system of linear equations given in eq. (4.27) for the block F 𝑟
𝑒 can be written in terms of the

function 𝐺𝑒 as

𝐺𝑒 (𝜈, 𝜆𝑘) +
∫
ℝ+𝑖 𝜖

𝐾 (𝜈− 𝜏)𝐺𝑒 (𝜏, 𝜆̌𝑘)𝑑𝜏 = (1+ 𝔞𝑒 (𝜆̌𝑘)) 𝑡 (𝜆̌𝑘 − 𝜈) −2𝜋𝑖
∑︁ 𝐾 (𝜈 − 𝝑)

𝔞′𝑒 (𝝑)
𝐺𝑒 (𝝑, 𝜆̌𝑘)

+ 2𝜋𝑖
𝑛𝑐∑︁
𝑎=1

{
𝐾 (𝜈 − 𝜐+𝑎 + 𝑖𝛿𝑎)F 𝑐+

𝑒;𝑎,𝑘 + 𝐾 (𝜈 − 𝜐−𝑎 − 𝑖𝛿𝑎)F 𝑐−
𝑒;𝑎,𝑘

}
+ 2𝜋𝑖

𝑛𝑤∑︁
𝑎=1

{
𝐾 (𝜈 − 𝜔+𝑎)F 𝑤+

𝑒;𝑎,𝑘 + 𝐾 (𝜈 − 𝜔−𝑎)F 𝑤−
𝑒;𝑎,𝑘

}
. (4.31)

The integrals for the finite-size correction terms that would normally appear in eq. (4.31) are
identical to those appearing in eq. (3.30) which was written in the context of two-spinon form-factors.
Here, they will be omitted right from the beginning (4.31) and we will always assume that the
corrections are of order 𝑜

(
1
𝑀

)
for the roots 𝜆𝑘 taken in the bulk; while in the extreme cases outside

the bulk, they are believed to add a negligible corrections to the final result.
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Chapter 4. Modified Cauchy determinant representation

Note that we have included the terms for an extra parameter 𝜆̌𝑁0+1 = 𝑖
2 in the same integral eq. (4.31).

Let us now compare this integral equation to the generalised Lieb eq. (B.2) studied in appendix B.
We can see that the solution for the function 𝐺𝑒 can be written in terms of the generalised density
functions 𝜌𝜅 as follows:

𝐺𝑔 (𝜈, 𝜆̌𝑘) = 2𝜋𝑖(1 + 𝔞𝑒 (𝜆̌𝑘))𝜌2(𝜈, 𝜆̌𝑘 + 𝑖
2 − 𝑖𝜖) − 2𝜋𝑖

∑︁ 𝜌1(𝜈, 𝝑)
𝔞′𝑒 (𝝑)

𝐺𝑒 (𝝑, 𝜆̌𝑘)

+ 2𝜋𝑖
𝑛𝑐∑︁
𝑎=1

{
𝜌1(𝜈, 𝜐+𝑎 + 𝑖𝛿𝑎)F 𝑐,+

𝑒;𝑎,𝑘 + 𝜌1(𝜈, 𝜐−𝑎 − 𝑖𝛿𝑎)F 𝑐,−
𝑒;𝑎,𝑘

}
+ 2𝜋𝑖

𝑛𝑤∑︁
𝑎=1

{
𝜌1(𝜈, 𝜔+𝑎)F 𝑤+

𝑒;𝑎,𝑘 + 𝜌1(𝜈, 𝜔−𝑎)F 𝑤−
𝑒;𝑎,𝑘

}
. (4.32)

The first line in this expression is common with eq. (3.31), while the new terms are expressed
as a linear combination of the columns for close-pairs F 𝑐±

𝑒 and wide-pairs F 𝑤±
𝑒 . Let us recall

the behaviour of close-pairs in the case of spectrum, where it was forced to form the 2-strings or
quartets due to the presence of singularities. The same can be expected here and we will see that
the close-pair blocks can be recombined to produce simpler terms. In this regard eq. (4.32) is only
an intermediate expression. We will return to it after we have dealt with the close-pair blocks F 𝑐±

𝑒 .

4.2.1. For close-pairs

In the case of close-pairs, the counting function 𝜉𝑒 has non-real part which makes the exponential
counting function singular. However, at the same time, since the close-pairs are among the roots of
the Bethe equation, we also have the condition: 𝔞𝑒 (𝜐±𝑎) = −1. As we have seen in section 2.2.2, this
is assured by the formation of close-pairs into either 2-string or quartets (2.79) in the thermodynamic
limit. An unavoidable consequence of their formation is that the derivative 𝔞𝑒 (𝜐±𝑎 ± 𝑖𝛿𝑎) becomes
singular. This singularity can be seen as a pole in the string deviation parameter 𝛿𝑎. We can also
see from the following expansion:

𝔞′𝑒 (𝜐±𝑎 ± 𝑖𝛿𝑎) = −2𝜋𝑖𝜉 ′𝑒 (𝜐±𝑎 ± 𝑖𝛿𝑎) = −𝑖𝑀 𝑝′0(𝜐±𝑎 ± 𝑖𝛿𝑎) + 2𝜋𝑖
∑︁

𝐾 (𝜐±𝑎 ± 𝑖𝛿𝑎 − 𝝁) (4.33)

that the pole in 𝑖𝛿𝑎 is contained in only one of the terms inside the sum, in eq. (4.33). Let us adopt
the following notation for the inverse string deviation parameter:

𝜅𝑎 =
1

2𝑖𝛿𝑎
. (4.34)

Then we can separate the derivative of the counting function 𝔞′𝑒 (𝜐± ± 𝑖𝛿𝑎) in eq. (4.33), into the
regular part in 𝛿𝑎 and its pole in the parameter 𝛿𝑎, as follows:

𝔞′𝑒 (𝜐± ± 𝑖𝛿) = reg(𝔞′𝑒 (𝜐±)) − 𝜅𝑎 . (4.35)

From this stage, let us take the limit 𝛿𝑎 → 0 in the regular parts of the expressions. Note that
the pole in 𝛿𝑎 has same parity in both values of the parameters 𝜐±𝑎, since the function 𝐾 is even.
Therefore we can write,

2𝜋𝑖 𝐾 (𝜐+𝑎 + 𝑖𝛿𝑎 − 𝜐−𝑎 + 𝑖𝛿𝑎) = 𝜅𝑎 −
1

2𝑖 + 2𝑖𝛿𝑎
. (4.36)
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Let us also note that this type of pole is present in the sum over function 𝐾 in the expression (4.27),
seen in the case of extraction for close-pair columns. We can also see that these two terms are the
only sources of pole in 𝜅𝑎 in this expression.‡ Combining all the coefficients of 𝜅𝑎, we can write
the system of linear equations (4.27) in the case of close-pairs as follows:

reg(𝔞′𝑒 (𝜐+𝑎)) F 𝑐,+
𝑒;𝑎,𝑘 + 𝜅𝑎 (F 𝑐+

𝑒;𝑎,𝑘 − F 𝑐−
𝑒;𝑎,𝑘)

− 2𝜋𝑖
∑︁

𝐾 (𝜐+𝑎 − 𝝔)𝐺𝑒 (𝝔, 𝜆𝑘)
𝔞′𝑒 (𝝔)

− 2𝜋𝑖
𝑛𝑐∑︁
𝑏=1

𝐾 (𝜐𝑎 − 𝜐𝑏)F 𝑐+
𝑒;𝑏,𝑘 − 2𝜋𝑖

𝑛𝑐∑︁
𝑏=1
𝑏≠𝑎

𝐾 (𝜐𝑎 − 𝜐𝑏 + 𝑖)F 𝑐−
𝑒;𝑏,𝑘 −

1
2𝑖
F 𝑐−
𝑒;𝑎,𝑘

− 2𝜋𝑖
𝑛𝑤∑︁
𝑏=1

𝐾 (𝜐𝑎 − 𝜔𝑏)F 𝑤+
𝑒;𝑏,𝑘 − 2𝜋𝑖

𝑛𝑤∑︁
𝑏=1

𝐾 (𝜐𝑎 − 𝜔̄𝑏 + 𝑖)F 𝑤−
𝑒;𝑏,𝑘

= (1 + 𝔞𝑒 (𝜆𝑘)) 𝑡 (𝜆𝑘 − 𝜐+𝑎) − 2𝜋𝑖𝐾 (𝜐+𝑎 − 𝜆𝑘). (4.37a)

And,

reg(𝔞′𝑒 (𝜐−𝑎)) F 𝑐,+
𝑒;𝑎,𝑘 − 𝜅𝑎 (F 𝑐+

𝑒;𝑎,𝑘 − F 𝑐−
𝑒;𝑎,𝑘)

− 2𝜋𝑖
∑︁

𝐾 (𝜐−𝑎 − 𝝔)𝐺𝑒 (𝝔, 𝜆𝑘)
𝔞′𝑒 (𝝔)

− 2𝜋𝑖
𝑛𝑐∑︁
𝑏=1
𝑏≠𝑎

𝐾 (𝜐𝑎 − 𝜐𝑏 − 𝑖)F 𝑐+
𝑒;𝑏,𝑘 −

1
2𝑖
F 𝑐+
𝑒;𝑎,𝑘 − 2𝜋𝑖

𝑛𝑐∑︁
𝑏=1

𝐾 (𝜐𝑎 − 𝜐𝑏)F 𝑐−
𝑒;𝑏,𝑘

− 2𝜋𝑖
𝑛𝑤∑︁
𝑏=1

𝐾 (𝜐𝑎 − 𝜔𝑏 − 𝑖)F 𝑤+
𝑒;𝑏,𝑘 − 2𝜋𝑖

𝑛𝑤∑︁
𝑏=1

𝐾 (𝜐𝑎 − 𝜔̄𝑏)F 𝑤−
𝑒;𝑏,𝑘

= (1 + 𝔞𝑒 (𝜆𝑘)) 𝑡 (𝜆𝑘 − 𝜐−𝑎) − 2𝜋𝑖𝐾 (𝜐−𝑎 − 𝜆𝑘). (4.37b)

Since there are no other poles in the string deviation parameters‡, we can conclude that close-pair
rows coincide pairwise up-to the vanishing order 𝑂 (𝛿𝑎) in the string deviation parameter.

F 𝑐+
𝑒;𝑎,𝑘 = F 𝑐−

𝑒 +𝑂 (𝛿𝑎). (4.38)

This prompts us to define the new rows for the close-pairs obtained by the combining the inital
close-pair rows pairwise.

Definition 29. The new block of close-pair rows F 𝑐
𝑒 is obtained by the combination

F 𝑐
𝑒;𝑎,𝑘 = 𝜅𝑎 (F 𝑐+

𝑒;𝑎,𝑘 − F 𝑐−
𝑒;𝑎,𝑘). (4.39)

It is worthwhile to note that we have brought in the 𝜅𝑎 from the prefactor of eq. (4.2) to scale the
recombined column. This scaling regularises simultaneously the prefactor and the matrix F𝑒 for
each of the close-pair.
‡ here onwards, we shall drop the string deviation terms for from all the regular terms in the expressions starting from

eq. (4.37)
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Let us also rename the remaining blocks of the close-pair F 𝑐−
𝑒 and wide-pairs F 𝑤±

𝑒 into collective
block by adopting the following notation.

Notation 30 (Higher-level block). The block matrix F̃𝑒 is used to denote collectively the remaining
close-pair block and wide-pair blocks as

F̃𝑒;𝑎,𝑘 = F 𝑐−
𝑎,𝑘 , (4.40a)

F̃𝑒;𝑁𝑐+𝑎,𝑘 = F 𝑤+
𝑎,𝑘 , (4.40b)

F̃𝑒;𝑁𝑐+𝑁𝑤+𝑎,𝑘 = F 𝑤−
𝑎,𝑘 . (4.40c)

Note that the block F̃𝑒 contains 𝑛̃ = 𝑛𝑐 + 2𝑛𝑤 number of columns. Based on this observation, one
can draw the following remark.
Remark. The motivation behind notation 30 is comparable to the one behind notation 17 for the
higher-level roots 𝝁̃, defined earlier in chapter 2. We expect that the close-pair and wide-pair blocks
could come together to form a collective unit which is best described by a higher-level structure that
emerges in the thermodynamic limit. Our computation in fact demonstrate the emergence of this
higher-level structure and this notation is a choice made in anticipation of it.

Let us now add eqs. (4.37a) and (4.37b) together. We can see that this new system of equation
can be written in terms of the newly defined blocks F 𝑐

𝑒 and F̃𝑒 in eqs. (4.39) and (4.40) as

𝔞̃′(𝜐𝑎)F̃𝑒;𝑎,𝑘 − 2𝜋𝑖
∑︁

𝐾𝑐 (𝜐𝑎 − 𝝔)𝐺𝑒 (𝝔, 𝜆̌𝑘)
𝔞′𝑒 (𝝔)

− 2𝜋𝑖
𝑛𝑐∑︁
𝑏=1

{
2𝐾 (𝜐𝑎 − 𝜐𝑏) + 𝐾1/2(𝜐𝑎 − 𝜐𝑏)

} F̃ 𝑐
𝑒;𝑏,𝑘

− 2𝜋𝑖
𝑛𝑤∑︁
𝑏=1
{𝐾 (𝜐𝑎 − 𝜔𝑏) + 𝐾 (𝜐𝑎 − 𝜔𝑏 − 𝑖)} F̃ 𝑤+

𝑒;𝑏,𝑘

− 2𝜋𝑖
𝑛𝑤∑︁
𝑏=1
{𝐾 (𝜐𝑎 − 𝜔̄𝑏) + 𝐾 (𝜐𝑎 − 𝜔̄𝑏 + 𝑖)} F̃ 𝑤−

𝑒;𝑏,𝑘

= 2𝜋𝑖(1 + 𝔞𝑒 (𝜆̌𝑘)) 𝐾 (𝜐+𝛼 − 𝜆̌𝑘) − 2𝜋𝑖𝐾𝑐 (𝜐𝑎 − 𝜆̌𝑘). (4.41)

Here 𝐾𝑐 is the combination of the Lieb kernel 𝐾 that is given by,

𝐾𝑐 (𝜈) = 𝐾 (𝜈 − 𝑖
2 ) + 𝐾 (𝜈 + 𝑖

2 ). (4.42)

It has the Fourier transform that factorises as follows:

𝐾𝑐 (𝑡) = 𝑒−
|𝑡 |
2 (1 + 𝑒−|𝑡 |). (4.43)

We note that the terms reg(𝔞′𝑒 (𝜐±𝑎)) from eq. (4.37) were added together since we have the degeneracy
(4.38) in the rows. We have seen in eqs. (2.100) and (2.101) of chapter 2, that the product of
the exponential counting function for the close-pairs is related with the higher-level exponential
counting function as shown in the following:

𝔞𝑒 (𝜐+ + 𝑖𝛿)𝔞𝑒 (𝜐− − 𝑖𝛿) = 𝔞̃𝑒 (𝜐) (1 +𝑂 (𝛿)). (4.44)
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4.2. Gaudin extraction of second type

It allows us to see that the sum of its derivatives can be written as

𝔞̃′𝑒 (𝜐𝑎) = reg(𝔞̃′𝑒 (𝜐+)) + reg(𝔞̃′𝑒 (𝜐−)) (4.45)

At the same time, due to the pairwise degeneracy (4.38) of the columns in the close-pair blocks, we
can now simplify eq. (4.32) by combining the sum over close-pair blocks into a single summation.
At this juncture, let us also recall that all the density terms can also be combined to write a common
density term of the higher-level roots.

𝜌̃(𝜈 − 𝜐𝑎) = 𝜌1(𝜈, 𝜐+𝑎) + 𝜌1(𝜈, 𝜐−𝑎), (4.46a)
𝜌̃(𝜈 − 𝜔𝑎) = 𝜌1(𝜈, 𝜔+𝑎), (4.46b)
𝜌̃(𝜈 − 𝜔̄𝑎) = 𝜌1(𝜈, 𝜔̄−𝑎). (4.46c)

Together with notation 30, it permits us to rewrite eq. (2.121) as

𝐺𝑔 (𝜈, 𝜆̌𝑘) = 2𝜋𝑖(1 + 𝔞𝑒 (𝜆̌𝑘))𝜌2(𝜈, 𝜆̌𝑘 + 𝑖
2 − 𝑖0)

− 2𝜋𝑖
∑︁ 𝜌1(𝜈, 𝝑)

𝔞′𝑒 (𝝑)
𝐺𝑒 (𝝑, 𝜆̌𝑘) + 2𝜋𝑖

𝑛̃∑︁
𝑎=1

𝜌̃(𝜈 − 𝜇̃𝑎)F̃𝑒;𝑎,𝑘 . (4.47)

We have already seen a similar phenomenon in eq. (2.126) of chapter 2, thus it must be seen as a
signature of the higher-level structure for the form-factors. Let us now come back to eq. (4.41). We
can see that the sum over 𝐾𝑐 in this equation can be written as integral in the thermodynamic limit
using the generalised condensation property. It permits us to write,

∑︁

𝐾𝑐 (𝜐𝑎 − 𝝔̂)𝐺𝑒 ( 𝝔̂, 𝜆𝑘)
𝔞′𝑒 ( 𝝔̂)

= − 1
2𝜋𝑖

∫
ℝ+𝑖0

𝐾𝑐 (𝜐𝑎 − 𝜏)𝐺 (𝜏, 𝜆𝑘)𝑑𝜏 + 𝐾𝑐 (𝜆𝑘 − 𝜐𝑎). (4.48a)

Whereas for the sum over 𝐺𝑒 (𝝂, 𝑖2 ), it is sufficient to use the regular condensation property in order
to write

∑︁

𝐾𝑐 (𝜐𝑎 − 𝝔̂)𝐺𝑒 ( 𝝔̂, 𝑖2 )
𝔞′𝑒 ( 𝝔̂)

= − 1
2𝜋𝑖

∫
ℝ+𝑖0

𝐾𝑐 (𝜐𝑎 − 𝜏)𝐺 (𝜏, 𝜆𝑘)𝑑𝜏. (4.48b)

The convolution integrals with the kernel 𝐾𝑐 for the density terms occurring in eqs. (4.48a)
and (4.48b) are computed in section 4.A.1 at the end of this chapter. Here we borrow the result that
was obtained in eq. (4.97) to write down the following result:

∑︁

𝐾𝑐 (𝜐𝑎 − 𝝔)𝐺𝑒 (𝝔, 𝜆̌𝑘)
𝔞′𝑒 (𝝔)

= (1 + 𝔞𝑒 (𝜆̌𝑘))𝐾 (𝜐+𝑎 − 𝜆̌𝑘) + 𝐾𝑐 (𝜐𝑎 − 𝜆̌𝑘)

−
𝑛ℎ∑︁
𝑏=1

𝐾2(𝜐𝑎 − 𝜗𝑏)𝐺𝑒 (𝜗𝑏, 𝜆̌𝑘)
𝔞′𝑒 (𝜗𝑏)

−
𝑛𝑐∑︁
𝑏=1

{
𝐾 (𝜐𝑎 − 𝜐𝑏) − 𝐾1/2(𝜐𝑎 − 𝜐𝑏)

} F̃ 𝑐
𝑒;𝑏,𝑘

−
𝑛𝑤∑︁
𝑏=1

𝐾 (𝜐𝑎 − 𝜔𝑏 − 𝑖)F̃ 𝑤+
𝑒;𝑏,𝑘 −

𝑛𝑤∑︁
𝑏=1

𝐾 (𝜐𝑎 − 𝜔̄𝑏 + 𝑖)F̃ 𝑤−
𝑒;𝑏,𝑘 . (4.49)
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Substituting this result into eq. (4.41) we find that all the summations over the components of the
higher-level block F̃𝑒 can be combined into a single sum. It lead us to the following system of linear
equations:

𝔞̃′𝑒 (𝜐𝑎)F̃ 𝑐
𝑒;𝑎,𝑘 − 2𝜋𝑖

𝑛̃∑︁
𝑏=1

𝐾 (𝜐𝑎 − 𝜇̃𝑏)F̃𝑒;𝑏,𝑘 = −2𝜋𝑖
∑︁

𝐾2(𝜐𝑎 − 𝝑)𝐺𝑒 (𝝑, 𝜆𝑘)
𝔞′𝑒 (𝝑)

(4.50)

Note that this system only involves higher-level roots and their counting function. It is one of the
important result leading to the higher-level structure for the form-factors, to which we will come
back later.

Now let us turn our attention to the block difference columns F 𝑐
𝑒 which was defined in eq. (4.39)

by taking the pairwise difference of the original close-pair rows. From eq. (4.37a), we can now write

F 𝑐
𝑒;𝑎,𝑘 = (1 + 𝔞𝑒 (𝜆̌𝑘)) 𝑡 (𝜆̌𝑘 − 𝜐+𝑎) − 𝐾 (𝜆̌𝑘 − 𝜐+𝑎)

+ 2𝜋𝑖
∑︁

𝐾 (𝜐+𝑎 − 𝝔)𝐺𝑒 (𝝔, 𝜆̌𝑘)
𝔞′𝑒 (𝝔)

+ 2𝜋𝑖
𝑛̃∑︁

𝑎=1
𝜒𝑎F̃𝑒;𝑎,𝑘 (4.51)

The exact form of the coefficients 𝜒𝑎 is irrelevant to us since this sum is taken over the rows which
are already contained in F̃𝑒. Some of these are already determined by the system of eq. (4.50) and
the remaining columns will be determined when we treat the wide-pair case. Let us now write
the sum over real Bethe roots as an integral in the thermodynamic limit. Since 𝐺𝑒 (𝜈, 𝜆𝑘) has a
simple pole on the real line at 𝜈 = 𝜆𝑘 with the known residue (4.30), let us use the generalised
condensation property§ in proposition 2.2 to write,

∑︁

𝐾 (𝜐+𝑎 − 𝝔̂)𝐺𝑒 ( 𝝔̂, 𝜆𝑘)
𝔞′𝑒 ( 𝝔̂)

= − 1
2𝜋𝑖

∫
ℝ+𝑖0

𝐾 (𝜐+ − 𝜏)𝐺𝑒 (𝜏, 𝜆𝑘)𝑑𝜏 + 𝐾 (𝜐+𝑎 − 𝜆𝑘). (4.52a)

On the other hand for the case 𝐺𝑒 (𝝂, 𝑖2 ) we can simply use the regular condensation of roots to
write,

∑︁

𝐾 (𝜐+𝑎 − 𝝔̂)𝐺𝑒 ( 𝝔̂, 𝑖2 )
𝔞′𝑒 ( 𝝔̂)

= − 1
2𝜋𝑖

∫
ℝ
𝐾 (𝜐+ − 𝜏)𝐺𝑒 (𝜏, 𝑖2 )𝑑𝜏. (4.52b)

As we have seen in eq. (4.47), the function 𝐺𝑒 can be expanded into different density terms. It
leads to convolutions with density terms of the shifted 𝐾 kernel. Among these density terms, 𝜌2
and 𝜌1 are known to satisfy the integral equations:

𝜌2(𝜐+𝑎, 𝜆𝑘 + 𝑖
2 ) +

∫
ℝ+𝑖𝛼

𝐾 (𝜐+𝑎 − 𝜈)𝜌2(𝜈, 𝜆𝑘 + 𝑖
2 )𝑑𝜈 =

1
2𝜋𝑖

𝑡 (𝜆𝑘 − 𝜐+𝑎), (4.53a)

and

𝜌1(𝜐+𝑎, 𝜗𝑏) +
∫
ℝ+𝑖𝛼

𝐾 (𝜐+𝑎 − 𝜈)𝜌1(𝜈 − 𝜗𝑏)𝑑𝜈 = 𝐾 (𝜐+𝑎 − 𝜗𝑏). (4.53b)

Both integral equations are studied in appendix B. Here we only need to observe that the value of
the parameter 𝛼 > 0 can be freely varied in the region of analyticity of its integrands. Therefore we
§ the bulk assumption is invoked in order to appropriate this property here, we assume that the pole 𝜈 = 𝜆𝑘 of the

function 𝐺𝑒 (𝜈, 𝜆𝑘 ) is inside the bulk of the Fermi distribution for the ground state.
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can use eq. (4.53) to compute convolutions over 𝜌2 and 𝜌1 (or 𝜌ℎ) coming from the substitution of
eq. (4.47) into eq. (4.52). It also involves convolutions with density terms for higher-level roots
𝜌̃ but these need not be computed since they only affect coefficients in the sum over F̃𝑒 which
will be cancelled in the determinant. Finally, this substitution give us the following expression for
components of the block F 𝑐

𝑒 :

F 𝑐
𝑒;𝑎,𝑘 =

𝜋(1 + 𝔞𝑒 (𝜆̌𝑘))
sinh 𝜋(𝜆𝑘 − 𝜐+𝑎)

− 2𝜋𝑖
∑︁ 𝜌ℎ (𝜐+𝑎 − 𝝑)

𝔞′𝑒 (𝝑)
𝐺𝑒 (𝝑, 𝜆𝑘) + 2𝜋𝑖

𝑛̃∑︁
𝑏=1

𝜒′𝑏F̃𝑒;𝑏,𝑘 (4.54)

Note that eq. (4.54) also includes the case 𝜆̌𝑁0+1 = 𝑖
2 . Although initial eqs. (4.52a) and (4.52b) were

different due to the difference in location of the poles of the function 𝐺𝑒, we find that the expression
(4.54) also holds in 𝜆̌𝑁0+1 = 𝑖

2 case.
We can see that the expression that obtained here in eq. (4.54) has a form resembling the

expression that was obtained in eq. (4.47) for the block of real rows F 𝑟
𝑒 . This is an important

observation. It will allow us to combine all the Cauchy terms in a single block in final the modified
Cauchy determinant representation. It is in this context that we find it useful to denote the union of
the real roots and the positive close-pair roots as 𝝔+ = 𝝔 ∪ 𝝊+.

A very important result was found in eq. (4.50) where we obtained a system of linear equations
for the block F̃ 𝑐

𝑒 , that contains only the higher-level terms. Let us emphasize that it bears a striking
resemblance to the Gaudin extraction (3.9b). This comparison tells us that eq. (4.50) can be seen as
an extraction of the higher-level Gaudin matrix (4.4). In the next section 4.2.2, we will extend this
result to the wide-pair blocks F̃ 𝑤+ and F̃ 𝑤−.

4.2.2. For wide-pairs

Unlike in the case of the close-pair, the derivative of the exponential counting function for the
wide-pair do not contain any singular terms. From eq. (2.102a) we can readily see that

𝔞′𝑒 (𝜔+𝑎) = 𝔞̃′(𝜔𝑎) (4.55a)
𝔞′𝑒 (𝜔̄−𝑎) = 𝔞̃′(𝜔̄𝑎). (4.55b)

With this the system of equations (4.27) for the extraction of Gaudin matrix on the block of
wide-pairs rows can be written as

𝔞̃′(𝜔𝑎)F̃ 𝑤+
𝑒;𝑎,𝑘 − 2𝜋𝑖

∑︁

𝐾 (𝜔+ − 𝝔)𝐺𝑒 (𝝔, 𝜆𝑘)
𝔞′𝑒 (𝝔)

− 2𝜋𝑖
𝑛𝑐∑︁
𝑏=1
{𝐾 (𝜔𝑎 − 𝜐𝑏) + 𝐾 (𝜔𝑎 − 𝜐𝑏 + 𝑖)} F̃ 𝑐

𝑒;𝑏,𝑘

− 2𝜋𝑖
𝑛𝑤∑︁
𝑏=1

𝐾 (𝜔𝑎 − 𝜔𝑏)F̃ 𝑤+
𝑏,𝑘 − 2𝜋𝑖

𝑛𝑤∑︁
𝑏=1

𝐾 (𝜔𝑎 − 𝜔̄𝑏 + 𝑖)F̃ 𝑤−
𝑏,𝑘

= (1 + 𝔞𝑒 (𝜆𝑘)) 𝑡 (𝜆𝑘 − 𝜔+𝑎) − 𝐾 (𝜆𝑘 − 𝜔+𝑎). (4.56a)
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And,

𝔞̃′(𝜔̄𝑎)F̃ 𝑤−
𝑒;𝑎,𝑘 − 2𝜋𝑖

∑︁

𝐾 (𝜔̄− − 𝝔)𝐺𝑒 (𝝔, 𝜆𝑘)
𝔞′𝑒 (𝝔)

− 2𝜋𝑖
𝑛𝑐∑︁
𝑏=1
{𝐾 (𝜔̄𝑎 − 𝜐𝑏) + 𝐾 (𝜔̄𝑎 − 𝜐𝑏 − 𝑖)} F̃ 𝑐

𝑒;𝑏,𝑘

− 2𝜋𝑖
𝑛𝑤∑︁
𝑏=1

𝐾 (𝜔̄𝑎 − 𝜔𝑏 − 𝑖)F̃ 𝑤+
𝑏,𝑘 − 2𝜋𝑖

𝑛𝑤∑︁
𝑏=1

𝐾 (𝜔̄𝑎 − 𝜔̄𝑏)F̃ 𝑤−
𝑏,𝑘

= (1 + 𝔞𝑒 (𝜆𝑘)) 𝑡 (𝜆𝑘 − 𝜔̄−𝑎) − 𝐾 (𝜆𝑘 − 𝜔̄−𝑎). (4.56b)

Here we have used eq. (4.55) to replace the derivatives of the exponential counting function by
their higher-level counterparts. We also used the pairwise degeneracy (4.38) of the close-pair rows
to recombine the terms F 𝑐±

𝑒 in the summations. After this recombination, we will be using the
notations defined in eqs. (4.39) and (4.40).
Let us remark that eq. (4.56) involves the sum over the meromorphic function 𝐺𝑒. In the case of
𝐺𝑒 (𝜈, 𝜆𝑘), it has a simple pole at 𝜈 = 𝜆𝑘 on the real line, with the residue that is given by eq. (4.30).
We can use proposition 2.2 to convert the sum over the function 𝐺𝑒 into integrals:

∑︁

𝐾 (𝜔+𝑎 − 𝝔̂)𝐺𝑒 ( 𝝔̂, 𝜆𝑘)
𝔞′𝑒 ( 𝝔̂)

= − 1
2𝜋𝑖

∫
ℝ+𝑖0

𝐾 (𝜔+𝑎 − 𝜈)𝐺𝑒 (𝜈, 𝜆𝑘)𝑑𝜈 + 𝐾 (𝜆𝑘 − 𝜔+𝑎), (4.57a)

and,
∑︁

𝐾 (𝜔̄−𝑎 − 𝝔̂)𝐺𝑒 ( 𝝔̂, 𝜆𝑘)
𝔞′𝑒 ( 𝝔̂)

= − 1
2𝜋𝑖

∫
ℝ+𝑖0

𝐾 (𝜔̄−𝑎 − 𝜈)𝐺𝑒 (𝜈, 𝜆𝑘)𝑑𝜈 + 𝐾 (𝜆𝑘 − 𝜔̄−𝑎). (4.57b)

For the particular case of a sum over 𝐺𝑒 (𝝂, 𝑖2 ), it suffices to use the regular condensation property
to obtain the convolution integrals

∑︁

𝐾 (𝜔+𝑎 − 𝝔̂)𝐺𝑒 ( 𝝔̂, 𝑖2 )
𝔞′𝑒 ( 𝝔̂)

= − 1
2𝜋𝑖

∫
ℝ
𝐾 (𝜔+𝑎 − 𝜈)𝐺𝑒 (𝜈, 𝑖2 )𝑑𝜈 (4.58a)

and
∑︁

𝐾 (𝜔̄−𝑎 − 𝝔̂)𝐺𝑒 ( 𝝔̂, 𝑖2 )
𝔞′𝑒 ( 𝝔̂)

= − 1
2𝜋𝑖

∫
ℝ
𝐾 (𝜔̄−𝑎 − 𝜈)𝐺𝑒 (𝜈, 𝑖2 )𝑑𝜈. (4.58b)

The convolution integrals appearing in eqs. (4.57) and (4.58) are studied in section 4.A.1 of
appendix B. Here we borrow the results obtained in eqs. (4.104a) and (4.104b) to express:

∑︁

𝐾 (𝜔+𝑎 − 𝝔)𝐺𝑒 (𝝔, 𝜆̌𝑘)
𝔞′𝑒 (𝝔)

= −1 + 𝔞𝑒 (𝜆̌𝑘)
2𝜋𝑖

𝑡 (𝜆̌𝑘 − 𝜔+𝑎) + 𝐾 (𝜆̌𝑘 − 𝜔+𝑎)

−
𝑛ℎ∑︁
𝑏=1

𝐾2(𝜔𝑎 − 𝜗𝑏)𝐺𝑒 (𝜗𝑏, 𝜆̌𝑘)
𝔞′𝑒 (𝜗𝑏)

−
𝑛𝑐∑︁
𝑏=1

𝐾 (𝜔𝑎 − 𝜐𝑏 + 𝑖)F̃ 𝑐
𝑒;𝑏,𝑘

−
𝑛𝑤∑︁
𝑏=1
{𝐾 (𝜔𝑎 − 𝜔̄𝑏 + 𝑖) − 𝐾 (𝜔𝑎 − 𝜔̄𝑏)} F̃ 𝑤−

𝑒;𝑏,𝑘 . (4.59a)
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And,

∑︁

𝐾 (𝜔̄−𝑎 − 𝝔)𝐺𝑒 (𝝔, 𝜆̌𝑘)
𝔞′𝑒 (𝝔)

= −1 + 𝔞𝑒 (𝜆̌𝑘)
2𝜋𝑖

𝑡 (𝜆̌𝑘 − 𝜔̄−𝑎) + 𝐾 (𝜆̌𝑘 − 𝜔̄−𝑎)

−
𝑛ℎ∑︁
𝑏=1

𝐾2(𝜔̄𝑎 − 𝜗𝑏)𝐺𝑒 (𝜗𝑏, 𝜆̌𝑘)
𝔞′𝑒 (𝜗𝑏)

−
𝑛𝑐∑︁
𝑏=1

𝐾 (𝜔̄𝑎 − 𝜐𝑏 − 𝑖)F̃ 𝑐
𝑒;𝑏,𝑘

−
𝑛𝑤∑︁
𝑏=1
{𝐾 (𝜔̄𝑎 − 𝜔𝑏 − 𝑖) − 𝐾 (𝜔̄𝑎 − 𝜔𝑏)} F̃ 𝑤+

𝑒;𝑏,𝑘 . (4.59b)

Let us now substitute these two expressions from eq. (4.59) into eq. (4.56). This substitution allow
us to write down the system of equations resembling (4.50) for the extraction of higher-level Gaudin
matrix:

𝔞̃′𝑒 (𝜔𝑎)F̃ 𝑤+
𝑒;𝑎,𝑘 − 2𝜋𝑖

𝑛̃∑︁
𝑏=1

𝐾 (𝜔𝑎 − 𝜇̃𝑏)F̃𝑒;𝑏,𝑘 = −2𝜋𝑖
∑︁ 𝐾2(𝜔𝑎 − 𝝑)

𝔞′𝑒 (𝝑)
𝐺𝑒 (𝝑, 𝜆𝑘), (4.60a)

and,

𝔞̃′𝑒 (𝜔̄𝑎)F̃ 𝑤−
𝑒;𝑎,𝑘 − 2𝜋𝑖

𝑛̃∑︁
𝑏=1

𝐾 (𝜔̄𝑎 − 𝜇̃𝑏)F̃𝑒;𝑏,𝑘 = −2𝜋𝑖
∑︁ 𝐾2(𝜔̄𝑎 − 𝝑)

𝔞′𝑒 (𝝑)
𝐺𝑒 (𝝑, 𝜆𝑘). (4.60b)

We can observe that function 𝐾2 on the right-hand side of eq. (4.60) is same as the function for the
common density term of the higher-level roots 𝜌̃. In fact, it is a rational function that coincides with
the derivative of the bare momentum 𝑝′0 since we can write

𝜌̃(𝜈) = 𝐾2(𝜈) = 1
2𝜋
𝑝′0(𝜈). (4.61)

Finally, we can combine the results of eqs. (4.50) and (4.60) to write a combined system of linear
equation for the block F̃𝑒. This lead us to a very important result that is summarised in the following
section.

4.2.3. Emergence of the higher-level Gaudin matrix and its extraction

By combining eqs. (4.50) and (4.60), we obtain the following system of linear equations satisfied by
the block F̃𝑒 (4.40) of the F𝑒 matrix:

𝔞̃′𝑒 ( 𝜇̃𝑎)F̃𝑒;𝑎,𝑘 − 2𝜋𝑖
𝑛̃∑︁

𝑏=1
𝐾 ( 𝜇̃𝑎 − 𝜇̃𝑏)F̃𝑒;𝑏,𝑘 = −2𝜋𝑖

∑︁ 𝜌̃( 𝜇̃𝑎 − 𝝑)
𝔞′𝑒 (𝝑)

𝐺𝑒 (𝝑, 𝜆𝑘). (4.62)

We shall now define the higher-level version of the Gaudin matrix (1.86b) and also the same for the
density matrix (3.38).

Definition 31 (Higher-level Gaudin matrix). For a given set of the higher-level Bethe roots 𝝁̃
satisfying eq. (2.97), we define the higher-level Gaudin matrix Ñ [ 𝝁̃‖ 𝝁̃] as a square matrix of the
order 𝑛̃ = 𝑛𝝁̃ described by the following expression for its components:

Ñ𝑎𝑏 [ 𝝁̃‖ 𝝁̃] = 𝔞̃′( 𝜇̃𝑎)𝛿𝑎,𝑏 − 2𝜋𝑖𝐾 ( 𝜇̃𝑎 − 𝜇̃𝑏). (4.63)
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Notation 32. Let us define the rectangular matrix R̃ [ 𝝁̃‖𝝑] of 𝑛̃ rows and 𝑛ℎ columns whose
components are given by,

R̃𝑎𝑏 [ 𝝁̃‖𝝑] = −2𝜋𝑖𝜌̃( 𝜇̃𝑎 − 𝜗𝑏). (4.64)

Note that due to the relation (2.95) between the cardinalities 𝑛ℎ and 𝑛̃, this matrix is always
rectangular. In the case of a triplet excitation, we have 𝑛ℎ

2 − 1 rows for 𝑛ℎ columns. This can also
be seen as a higher-level variant of the Izergin matrix since 𝜌̃ is a rational function as we saw it in
eq. (4.61).

In terms of these matrices, we can write down the higher-level equivalent of the Gaudin extraction
that gives the matrix F̃ :

F̃ = Ñ−1 [ 𝝁̃‖ 𝝁̃] · R̃ [ 𝝁̃‖𝝑] · A−1
𝑒 [𝝑] · 𝐺𝑒 [𝝑‖𝝀̌] (4.65)

The matrix 𝐺𝑒 [𝝑‖𝝀̌] is obtained by promoting the function 𝐺𝑒 to a parametrised matrix as

𝐺𝑒 [𝝑‖𝝀̌] =
[

𝐺𝑒 (𝝑, 𝝀̌)
]

𝝑,𝝀̌ . (4.66)

Note that all of the matrices except the Ñ in eq. (4.65) are all strictly rectangular and only the
matrices Ñ and R̃ are finite in the thermodynamic limit. It prompts us to define the matrix S̃
which is higher-level equivalent of the matrices F which gives the determinant representation of
the form-factor due to eq. (3.5). We will see in chapter 5 that higher-level matrix S̃ enters the
determinant representation of the form-factor. It is evident to us that due to its rectangular form it
must be embedded inside a square matrix, which in this case is F𝑒.
Definition 33. The matrix S̃ is defined as the result of the higher-level extraction:

S̃ [ 𝝁̃‖𝝑] = Ñ−1 [ 𝝁̃‖ 𝝁̃] · R̃ [ 𝝁̃‖𝝑] . (4.67)

We can check that the matrix S̃ has 𝑛̃ rows and 𝑛ℎ columns and it remains a finite matrix in the
thermodynamic limit for any low-lying excitation.

The matrix 𝐺𝑒 [𝝑‖𝝀̌] can be obtained from eq. (4.47). In the case of two-spinon form-factors, we
found in chapter 3 that it satisfies the system (3.41), which gets decoupled to the leading order in
the thermodynamic for the choice of the holes 𝝑 that lie in bulk of the Fermi distribution.
In the current scenario, we find that the system (4.47) for 𝐺𝑒 [𝝑‖𝝀̌] is only a part of a larger system.
The remaining sub-system solves higher-level equations (4.65). We see that both subsystems are
intricately coupled, among themselves, as well to each other.
Let us first partially decouple the system (4.47) from the higher-level Gaudin extraction (4.65). This
can be done by incorporating them together through the effective Reff matrix as shown below(I − ReffA−1

𝑒 [𝝑‖𝝑]
)
𝐺𝑒 [𝝑‖𝝀̌] =

[

𝜋(1 + 𝔞𝑒 (𝝀̌))
sinh 𝜋(𝝀̌ − 𝝑)

]

. (4.68)

The effective matrix Reff in eq. (4.68) is obtained by subtracting the dressed higher-level Gaudin
matrix as follows:

Reff [𝝑‖𝝑] = R[𝝑‖𝝑] − R̃ [𝝑‖ 𝝁̃] · Ñ−1 [ 𝝁̃‖ 𝝁̃] · R̃ [ 𝝁̃‖𝝑] . (4.69)
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Therefore, we can use the same argument that was used in the two-spinon case, with the only
difference being the replacement of the R matrix with an effective version of it. Hence, we can
claim that when the hole parameters 𝝑 are taken inside the bulk of the Fermi-zone, we can expect
that all the components of the dressed matrix are of the order 𝑂 (1/𝑀). This ensures that the system
(4.68) is decoupled to the leading order. It allows us to write,

𝐺𝑒 (𝜗𝑎, 𝜆̌𝑘) = 𝜋(1 + 𝔞𝑒 (𝜆̌𝑘))
sinh 𝜋(𝜆̌𝑘 − 𝜗𝑎)

+𝑂
(

1
𝑀

)
. (4.70)

Let us substitute eq. (4.70) into eq. (4.47), it permits us to write,

𝐺𝑔 (𝜚 𝑗 , 𝜆̌𝑘) = 𝜋(1 + 𝔞𝑒 (𝜆̌𝑘))
sinh 𝜋(𝜆̌𝑘 − 𝜚 𝑗)

− 2𝜋𝑖
∑︁ 𝜌ℎ (𝜚 𝑗 − 𝝑)

𝔞′𝑒 (𝝑)
𝜋(1 + 𝔞𝑒 (𝜆̌𝑘))
sinh 𝜋(𝜆̌𝑘 − 𝝑)

+
𝑛̃∑︁

𝑎=1
𝜒𝑟𝑗,𝑎F̃𝑎,𝑘 + 𝑜

(
1
𝑀

)
. (4.71)

In this way all the components of the block F 𝑟
𝑒 can be obtained from here through eq. (4.29). Since

it is the determinant of the matrix F𝑒 that it the primary object of our interest, we can also silently∗

remove the linear sum over the rows from the block F̃ , since all of its rows are already present
inside the matrix F𝑒. It permits us to write,

F 𝑟
𝑒; 𝑗 ,𝑘 =

1 + 𝔞𝑒 (𝜆̌𝑘)
𝔞′𝑒 (𝜚 𝑗)

{
𝜋

sinh 𝜋(𝜆𝑘 − 𝜚 𝑗)

−2𝜋𝑖
∑︁ 𝜌ℎ (𝜚 𝑗 − 𝝑)

𝔞′𝑒 (𝝑)
𝜋

sinh 𝜋(𝜆̌𝑘 − 𝝑)
+ 𝑜

(
1
𝑀

)}
. (4.72a)

Note that this expression (4.72a) is similar to the result (3.45) in the case of two-spinon form-factor.
We can see from eq. (4.54) that the same reasoning can also be extended to the block F 𝑐

𝑒 , which was
obtained through the combination (4.39). Once again we will substitute solutions from eq. (4.70)
into eq. (4.54) in order to cancel the extra terms in the sum running over F̃ . It permits us to write,

F 𝑐
𝑒;𝑎,𝑘 = (1 + 𝔞𝑒 (𝜆̌𝑘))

{
𝜋

sinh 𝜋(𝜆𝑘 − 𝜐+𝑎)

−2𝜋𝑖
∑︁ 𝜌ℎ (𝜐+𝑎 − 𝝑)

𝔞′𝑒 (𝝑)
𝜋(1 + 𝔞𝑒 (𝜆̌𝑘))
sinh 𝜋(𝜆̌𝑘 − 𝝑)

+ 𝑜
(

1
𝑀

)}
. (4.72b)

And finally we can see that decoupling in eq. (4.70) also partially decouples the system of eq. (4.65)
for the higher-level Gaudin extraction. It is simplified to the form shown in the following:

F̃𝑎,𝑘 =
𝑛̃∑︁

𝑏=1
S̃𝑎,𝑏 ( 𝝁̃‖𝝑) 𝜋(1 + 𝔞𝑒 (𝜆̌𝑘))

sinh 𝜋(𝜆̌𝑘 − 𝜗𝑏)
+ 𝑜

(
1
𝑀

)
. (4.72c)

The matrix S̃ was introduced in definition 33. This completes the computation of all the non-trivial
rows of the matrix F𝑒. Apart from these three F 𝑟

𝑒 , F 𝑐
𝑒 and F̃ , let us also remember that we also

have the Foda-Wheeler block, which has retained its original form:

F𝑒;𝑁0,𝑘
= 𝔞𝑒 (𝜆̌𝑘) − 1, (4.72d)

F𝑒;𝑁0+1,𝑘 = 𝔞𝑒 (𝜆̌𝑘) (𝜆̌𝑘 + 𝑖) − 𝜆̌𝑘 . (4.72e)

113



Chapter 4. Modified Cauchy determinant representation

We will now combine all the results from sections 4.1 and 4.2 to write down a modified Cauchy
determinant representation.

4.3. Modified Cauchy determinant representation

Let us now put together the determinant representation (4.2) that is produced by eqs. (4.25) and (4.72)
for the form-factor of any generic triplet excitation. Here it becomes useful to consider the following
notation.

Notation 34. Let 𝝔+ denote the set of all real roots 𝝔 with the positive close-pair roots:

𝝔+ = 𝝔 ∪ 𝝊+, with the cardinality 𝑛𝝔+ = 𝑁0 − 𝑛̃ − 1. (4.73a)

Similarly, let 𝝔̌+ denote the union:

𝝔̌+ = 𝝔 ∪ { 𝑖2 } ∪ 𝝊+, with the cardinality 𝑛𝝔+ = 𝑁0 − 𝑛̃. (4.73b)

Both the sets are indexed in the ascending order of their union.

Notation 35. Let 𝝔̂+ denote the set of all real roots 𝝔, all the positive close-pairs 𝝊+ and holes 𝝑:

𝝔̂+ = 𝝔 ∪ 𝝊+ ∪ 𝝑, with the cardinality 𝑛𝝔̂+ = 𝑁0 + 𝑛̃ + 1. (4.74)

It is indexed in the ascending order given by their union.

In the determinant of the matrix F𝑔, we take all the common terms into the prefactor to write

detF𝑔 = 𝜋𝑁0

∏(1 + 𝔞𝑔 (𝝔))
∏

𝔞′𝑔 (𝝀)
det𝑁0H𝑔 . (4.75a)

The matrixH𝑔 consists of four blocks of columns

H𝑔 =

(
H cau

𝑔

����H 𝑐
𝑔

����H𝑤+
𝑔

����H𝑤−
𝑔

)
(4.75b)

The first block H cau
𝑔 is the largest one that is made up of 𝑁0 − 𝑛̃ columns. It is obtained by

aggregating all the Cauchy blocks F 𝑟
𝑔 and F 𝑐+

𝑔 in the original matrix F𝑒 as seen from eqs. (4.25a)
and (4.25b). Using definition 24 that was first invoked in chapter 3, the Cauchy block can be written
as

H cau
𝑔 = −C [

𝝀


 𝝔̌+] . (4.76)

Note that it is similar to eq. (3.52) for the two-spinon form-factor however it differs from eq. (3.52)
in the following two ways:

1. In this case we have a rectangular Cauchy blockH cau
𝑔 which is contained inside the matrix

H𝑔.
2. One of the two close-pair blocks F 𝑐+

𝑔 (4.25b) has been assimilated with F 𝑟
𝑔 (4.25a) to form

the Cauchy blockH cau
𝑔 .
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The another half of the close-pair block F 𝑐−
𝑒 (4.25c) gets transformed in the recombination (4.13).

Here in terms of theH𝑔 matrix, it is now denoted asH 𝑐
𝑔 . Together with the wide-pair blocksH𝑤+

𝑔

and H𝑤−
𝑔 it represents the columns which deviate from a pure Cauchy matrix [see eqs. (4.25c)

to (4.25e)]. These three blocks of non-Cauchy columnsH 𝑐
𝑔 ,H𝑤+

𝑔 andH𝑤−
𝑔 contains 𝑛𝑐, 𝑛𝑤 and

𝑛𝑤 columns respectively, which in total adds up to 𝑛̃ = 𝑛𝑐 + 2𝑛𝑤 .
Finally, all the components of the matrixH𝑔 (4.75b) can be obtained from eq. (4.25). It permits

us to write,

H cau
𝑔; 𝑗 ,𝑘 = −C𝑗𝑘 [𝝀‖ 𝝔̌+] = 1

sinh 𝜋( 𝜚̌+𝑘 − 𝜆 𝑗) , 𝑘 ≤ 𝑁0 − 𝑛̃; (4.77a)

H 𝑐
𝑔; 𝑗 ,𝑎 = 𝔞𝑔 (𝜐−𝑎)

{
1

sinh 𝜋(𝜐−𝑎 − 𝜆 𝑗 − 𝑖𝛿𝑎) +
1

sinh 𝜋(𝜐+𝑎 − 𝜆 𝑗 + 𝑖𝛿𝑎)

}
+ 2𝑖

{
𝜌ℎ (𝜆 𝑗 − 𝜐+𝑎) − 𝜌ℎ (𝜆 𝑗 − 𝜐−𝑎)

}, 𝑎 ≤ 𝑛𝑐; (4.77b)

H𝑤+
𝑔; 𝑗 ,𝑎 = 2𝑖

{
𝜌2(𝜆 𝑗 , 𝜔𝑎 + 𝑖) − 𝜌2(𝜆 𝑗 , 𝜔𝑎)

}
, 𝑎 ≤ 𝑛𝑤 ; (4.77c)

H𝑤−
𝑔; 𝑗 ,𝑎 = 2𝑖

{
𝜌2(𝜆 𝑗 , 𝜔̄𝑎) − 𝜌2(𝜆 𝑗 , 𝜔̄𝑎 − 𝑖)

}
, 𝑎 ≤ 𝑛𝑤 . (4.77d)

Similarly we shall now write the determinant of the matrix F𝑒 as following:

detF𝑒 = 𝜋𝑁0+1
∏(1 + 𝔞𝑒 (𝝀))

∏

𝔞′𝑒 (𝝔)
det𝑁0+1H𝑒 (4.78a)

The matrixH𝑒 in the above eq. (4.78a) is obtained from F𝑒, after we have taken all the common
terms into the prefactor. Meanwhile, we also choose to transpose the original matrix F𝑒 for a
notational convenience in our later computations. Therefore, it can be seen that the matrix H𝑒

consists of three blocks of columns as shown by the following expression:

H𝑒 =

(
H cau

𝑒

���� H̃ ���� Ū)
. (4.78b)

The matrixH cau
𝑒 forms the largest block of 𝑁0− 𝑛̃−1 columns. We can see that it can be represented

as the following sum of over the Cauchy matrices,

H cau
𝑒 = C [

𝝀̌


𝝔+] + C [

𝝀̌


𝝑] · A−1

𝑒 R
[
𝝑


𝝔+] . (4.79)

Note that it is similar to the expression (3.54) obtained in the two-spinon case. The R matrix is
composed of density terms 𝜌ℎ as defined in eq. (3.38) whereas A𝑒 is the diagonal matrix (3.36).
Their product is written with contraction of the summed over variables. We can see that it is a
rectangular matrix with 𝑛ℎ rows and 𝑁0 − 𝑛̃ − 1 columns given by the following expression.

{A−1
𝑒 R}𝑎𝑘 [𝝑‖𝝔+] = −2𝜋𝑖

𝜌ℎ (𝜚+𝑘 − 𝜗𝑎)
𝔞′𝑒 (𝜗𝑎)

. (4.80)

The Cauchy matrices C appearing in eq. (4.79) can be combined to construct a larger Cauchy matrix.

C [
𝝀̌


 𝝔̂+] = [

C [
𝝀̌


𝝔+] ��� C [

𝝀̌


𝝑] ]

. (4.81)

It has the components which are described by,

C𝑗𝑘 [𝝀̌‖ 𝝔̂+] = 1
sinh 𝜋(𝜆̌ 𝑗 − 𝜚̂+𝑘)

. (4.82)
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This construction (4.81) is similar in certain aspects to eq. (3.56a) which was seen in the two-spinon
case. However, in this case, the Cauchy matrix C[𝝀̌‖ 𝝔̂+] turns out to be rectangular, the number of
columns 𝑛𝝔̂+ = 𝑁0 + 𝑛̃ + 1 surpassing the number 𝑛𝝀̌ = 𝑁0 + 1 of rows, unless 𝑛̃ = 0 which is the
two-spinon case 𝑛ℎ = 2. In the face of this realisation, it may seem contrary to the intuition to insist
on the extraction of a rectangular matrix. But it turns out that it is still a good approach to extract a
larger matrix containing C[𝝀̌‖ 𝝔̂+], in comparison to a smaller square Cauchy matrix. There are
some technical reason for it, which we will revisit in chapter 5. Here, let us list few keys points
drawn from the computations in this chapter that support this observation:
1. (1a). We have seen that the close-pair block for the form-factors is always split in two halves,

including the case of the first type of the extractionH𝑔, where one of the block always bore a
striking resemblance to the Cauchy block for the real roots.
(1b). Such a halving of the close-pair block is comparable to the similar phenomenon
observed in eq. (2.75) observed in the case of spectrum.

2. The difference of cardinalities in the pairs of sets 𝝔̂+ and 𝝀̌, and well as, 𝝀 and 𝝔̌+, is 𝑛̃. This
number is an invariant in the eigenspace of 𝑛ℎ-spinon sector, as it determined by the relation
(2.95): 𝑛̃ = 𝑛ℎ

2 − 1.
Therefore, it makes sense to always associate one half of the set of close-pairs with the real roots
whenever it would be possible in our forthcoming computations. This justifies notations 34 and 35.
It also partly explains the need for rectangular Cauchy extractions. We will see that this can be
indeed realised with all the technical details in chapter 5.

Now let us come back to the modified Cauchy determinant representation. We have seen that the
second half of the close-pair block for the matrix F𝑒 can be mixed with the wide-pair blocks F 𝑐±

𝑒 ,
to form a common higher-level block F̃ (4.40). Naturally, it gives rise to the block higher-level
block H̃ . It inherits the higher-level structure (4.72c) of its parent as follows:

H̃ = C [
𝝀̌


𝝑] · A−1

𝑒 S̃ [𝝑‖ 𝝁̃] . (4.83a)

Note that S̃ [𝝑‖ 𝝁̃] is the transpose of S̃ [ 𝝁̃‖𝝑] that was introduced in definition 33. In terms of
the higher-level version of the Gaudin matrix Ñ (4.63) and matrix of densities R̃ (4.64), it can be
expressed as the following:

S̃ [𝝑‖ 𝝁̃] = R̃ [𝝑‖ 𝝁̃] · Ñ−1 [ 𝝁̃‖ 𝝁̃] (4.83b)

Finally let us also recall that we have the matrix Ū inH𝑒 (4.78b) consisting of two columns, which
arise from the original Foda-Wheeler block [see eqs. (4.72d) and (4.72e)]. Its components are

Ū𝑎,𝑘 [𝝀̌] =
𝔞𝑒 (𝜆̌𝑘) (𝜆̌𝑘 + 𝑖)𝑎−1 − 𝜆̌𝑎−1

𝑘

𝜋 (𝔞𝑒 (𝜆̌𝑘) + 1) . (4.84)

Let us now substitute eqs. (4.75a) and (4.78a) into the determinant representation (4.2). It permits
us to write a new determinant representation involving matricesH𝑔 (4.75b) andH𝑒 (4.78b), both
of which contains a large block of matrix C[ 𝝔̌+‖𝝀], or C[𝝀̌‖ 𝝔̂+] respectively.

|𝐹𝑧 |2 = −2𝜋𝑀+1
∏

𝜒(𝝀)
∏

𝜒(𝝔)
∏(𝝔 − 𝝀)∏(𝝀 − 𝝁)
∏′(𝝔 − 𝝁)∏′(𝝀 − 𝝀)

×
∏

𝑞𝑔 (𝝊+ − 𝑖)𝑞𝑔 (𝝊− − 𝑖)
∏

𝑞′𝑒 (𝝊+ − 𝑖)𝑞𝑒 (𝝊− − 𝑖)

∏

𝑞𝑔 (𝝎+ − 𝑖)𝑞𝑔 (𝝎̄− − 𝑖)
∏

𝑞𝑒 (𝝎+ − 𝑖)𝑞𝑒 (𝝎̄− − 𝑖)
× det𝑁0H𝑔 det𝑁0+1H𝑒 (4.85)
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We recall that the string deviations parameters in prefactors of eq. (4.2) have been absorbed into the
matrix F𝑒, when we wrote the combination (4.39). Therefore, these singular terms are absent in
this new determinant representation (4.85). The primed notation 𝑞′𝑒 for the Baxter polynomials in
the denominators of eq. (4.85) indicates the omission of these terms.
Let us also recall that the function 𝜒 represents the ratio of eigenvalues of the transfer matrix,
introduced in notation 15. Here it is obtained by combining prefactors of eqs. (4.75a) and (4.78a)
with those in eq. (4.2). The thermodynamic limit of the 𝜒 function was obtained in section 2.C.

The determinant representation (4.85) is called the modified Cauchy determinant representation,
since the matricesH𝑔 (4.75b) andH𝑒 (4.72) contain the columns due to the complex roots which
deviate from the Cauchy terms that we normally obtain for the real roots. Interestingly, the deviation
from a pure Cauchy matrix is more prevalent in the H𝑔 matrix, compared to the H𝑒. While the
former matrix H𝑔 contains the blocks H 𝑐

𝑔 , H𝑤+
𝑔 and H𝑤−

𝑔 made up of partially or completely
non-Cauchy terms; we find that in the case of the matrixH𝑒, the contribution from the complex-roots
depicts a novel picture in the form of higher-level Gaudin extraction (4.83), that is uniform for
close-pairs and wide-pairs.

4.A. Auxiliary results: Convolutions with the density terms

Here we compute convolutions with the intermediate function𝐺𝑒. As we can see from its expansion
(4.47) into the density terms, we need to compute these convolutions for 𝜌2(𝜈, 𝜆 + 𝑖

2 − 𝑖0) (𝜆 ∈ ℝ),
𝜌ℎ (𝜈 − 𝜗) and 𝜌̃(𝜈 − 𝜗).
Fourier transforms of the density terms involved
Let us summarise their Fourier transforms here. Fourier transforms of the 𝜌𝑔 and 𝜌ℎ were obtained
in eqs. (2.35a) and (2.40a) which are given below:

𝜌̂𝑔 (𝑡) = 𝑒−
|𝑡 |
2

1 + 𝑒−|𝑡 | , (4.86a)

and,

𝜌̂ℎ (𝑡) = 𝑒−|𝑡 |

1 + 𝑒−|𝑡 | . (4.86b)

We note that these closely related to the function 𝜌𝜅 (𝜆, 𝜇) which is studied in appendix B. For the
shifted 𝜌2(𝜈, 𝜆 − 𝑖

2 + 𝑖0) function we know from eq. (B.5b) that its Fourier transform is given by the
same expression (4.86a) but with the shift:

𝜌2(𝑡, 𝜆 − 𝑖
2 + 𝑖0) =

𝑒−
|𝑡 |
2 𝑒−𝑖𝜆𝑡𝑒−

𝑡
2

1 + 𝑒−|𝑡 | . (4.87)

The common density term for the complex root 𝜌̃ was first written in eq. (2.85) which is based on
the computation from section 2.A. There we also mentioned that although it density term for the
close-pair and wide-pair have same functional form, it has different Fourier transform as seen from
eqs. (2.86a) to (2.86c) reproduced below:̂̃𝜌(𝑡, 𝜐) = 𝑒−| 𝑡2 |𝑒−𝑖𝜐𝑡 , (4.88a)̂̃𝜌(𝑡, 𝜔) = 𝐼𝑡<0(1 − 𝑒−𝑡 )𝑒−𝑖𝜔𝑡 , (4.88b)̂̃𝜌(𝑡, 𝜔̄) = 𝐼𝑡>0(1 − 𝑒𝑡 )𝑒−𝑖 𝜔̄𝑡 . (4.88c)
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Chapter 4. Modified Cauchy determinant representation

Some useful identities
Here we write down some of the identities that are used in this chapter:

𝐾 (𝜆) = 1
2𝜋𝑖

{
𝑡 (𝜆) + 𝑡 (−𝜆)}, (4.89a)

𝐾𝑐 (𝜆) = 𝐾2(𝜆) − 𝐾2/3(𝜆), (4.89b)
𝐾1/2(𝜆) = 𝐾 (𝜆 + 𝑖) + 𝐾 (𝜆 − 𝑖), (4.89c)
𝑡 (−𝜆) = 𝑡 (𝜆 − 𝑖). (4.89d)

4.A.1. Density convolutions with close-pair kernel 𝐾𝑐
Here we will compute the convolution of the function 𝐾𝑐 with the densities terms that arises in
eq. (4.48). Here it is important to recall that the Fourier transform of the 𝐾𝑐 (4.43) is

𝐾𝑐 (𝑡) = 𝑒−
|𝑡 |
2 (1 + 𝑒−|𝑡 |). (4.90)

Let us now write down the convolutions one-by-one for each of the terms:

Convolution with the density 𝜌2.
First, we get from eq. (4.86a) for 𝜌𝑔 we get∫

ℝ
𝐾𝑐 (𝜐𝑎 − 𝜏)𝜌𝑔 (𝜏)𝑑𝜏 = 1

2𝜋

∫
ℝ
𝑒𝑖𝜐𝑎𝑡𝑒−|𝑡 | 𝑑𝑡 = 𝐾 (𝜐𝑎) = 𝐾 (𝜐+𝑎 − 𝑖

2 ). (4.91)

Next for 𝜌2(𝜈, 𝜆 − 𝑖
2 + 𝑖0) we get from eq. (4.87) a similar expression:∫

ℝ
𝐾𝑐 (𝜐𝑎 − 𝜏)𝜌𝑔 (𝜏, 𝜆 + 𝑖

2 − 𝑖0)𝑑𝜏 =
1

2𝜋

∫
ℝ
𝑒𝑖 (𝜐𝑎−𝜆+ 𝑖

2 )𝑡𝑒−|𝑡 |𝑑𝑡 = 𝐾 (𝜐+𝑎 − 𝜆). (4.92)

Convolution with the hole density term 𝜌ℎ.
Here we get from eq. (4.86b)∫

ℝ
𝐾𝑐 (𝜐𝑎 − 𝜏)𝜌ℎ (𝜏 − 𝜗𝑏)𝑑𝜏 = 1

2𝜋

∫
ℝ
𝑒𝑖 (𝜐𝑎−𝜗𝑏)𝑒−

3|𝑡 |
2 𝑑𝑡 = 𝐾2/3(𝜐𝑎 − 𝜗𝑏). (4.93)

Convolution with the complex root density term 𝜌̃

From eq. (4.88) we get three different scenarios:

Close-pair ∫
ℝ
𝐾𝑐 (𝜐𝑎 − 𝜏) 𝜌̃(𝜏 − 𝜐𝑏)𝑑𝜏 = 𝐾 (𝜐𝑎 − 𝜐𝑏) − 𝐾1/2(𝜐𝑎 − 𝜐𝑏). (4.94)

Wide-pair (positive) ∫
ℝ
𝐾𝑐 (𝜐𝑎 − 𝜏) 𝜌̃(𝜏 − 𝜔𝑏)𝑑𝜏 = 𝐾 (𝜐 − 𝜔 − 𝑖). (4.95)

Wide-pair (negative) ∫
ℝ
𝐾𝑐 (𝜐𝑎 − 𝜈) 𝜌̃(𝜈 − 𝜔̄𝑏)𝑑𝜈 = 𝐾 (𝜐 − 𝜔̄ + 𝑖). (4.96)
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Combined result
Combining the results from eqs. (4.91) to (4.96) and through the expansion (4.47) for the 𝐺𝑒 we
obtain its convolution with the 𝐾𝑐:

1
2𝜋𝑖

∫
ℝ+𝑖 𝜖

𝐾𝑐 (𝜐𝑎 − 𝜈)𝐺𝑒 (𝜈, 𝜆𝑘)𝑑𝜈 =

(1 + 𝔞𝑒 (𝜆𝑘)) 𝐾 (𝜐+𝑎 − 𝜆𝑘) −
∑︁

𝐾2(𝜐𝑎 − 𝝑)𝐺𝑒 (𝝑, 𝜆𝑘)
𝔞′𝑒 (𝝑)

−
∑︁

{(
𝐾 (𝜐𝑎 − 𝝊) − 𝐾1/2(𝜐𝑎 − 𝝊)

) F̃ 𝑐
𝑒;𝑎,𝑘

}
−
∑︁

𝐾 (𝜐𝑎 − 𝝎 − 𝑖)F̃ 𝑤,+
𝑒;𝑎,𝑘 −

∑︁

𝐾 (𝜐𝑎 − 𝝎̄ + 𝑖)F̃ 𝑤,−
𝑒;𝑎,𝑘 . (4.97)

4.A.2. Convolutions with Lieb kernel 𝐾 shifted into the wide-pair region

We recall that some of these convolutions are also computed in section B.2. Here we recall these
results it in the specific context of wide-pairs.

Convolutions with 𝜌2.
From eq. (4.86a) we get∫

ℝ
𝐾 (𝜔+𝑎 − 𝜏)𝜌𝑔 (𝜏)𝑑𝜏 =

1
𝜋

∫ ∞
0

sinh
𝑡

2
𝑒𝑖𝜔

+
𝑎𝑡𝑑𝑡 = 𝐾2(𝜔𝑎) = 1

2𝜋𝑖
𝑡 ( 𝑖2 − 𝜔+𝑎), (4.98a)

and,∫
ℝ
𝐾 (𝜔̄−𝑎 − 𝜏)𝜌𝑔 (𝜏)𝑑𝜏 =

1
𝜋

∫ ∞
0

sinh
𝑡

2
𝑒−𝑖 ( 𝜔̄

−
𝑎)𝑡𝑑𝑡 = 𝐾2(𝜔̄𝑎 − 𝑖) = 1

2𝜋𝑖
𝑡 ( 𝑖2 − 𝜔̄−𝑎). (4.98b)

Similarly for the shifted 𝜌2(𝜈, 𝜆 − 𝑖
2 + 𝑖0) (4.87) we get∫

ℝ
𝐾 (𝜔+𝑎 − 𝜏)𝜌2(𝜏, 𝜆 − 𝑖

2 + 𝑖0)𝑑𝜏 =
1
𝜋

∫ ∞
0

sinh
𝑡

2
𝑒𝑖 (𝜔𝑎−𝜆𝑘 )𝑡𝑑𝑡

= 𝐾2(𝜔𝑎 − 𝜆𝑘) = 1
2𝜋𝑖

𝑡 (𝜆𝑘 − 𝜔+𝑎), (4.99a)

and,∫
ℝ
𝐾 (𝜔̄−𝑎 − 𝜏)𝜌2(𝜏, 𝜆 − 𝑖

2 + 𝑖0)𝑑𝜏 =
1
𝜋

∫ ∞
0

sinh
𝑡

2
𝑒−𝑡𝑒−𝑖 ( 𝜔̄−𝜆𝑘 )𝑡𝑑𝑡

= 𝐾2(𝜔̄𝑎 − 𝜆𝑘 − 𝑖) = 1
2𝜋𝑖

𝑡 (𝜆𝑘 − 𝜔̄−𝑎). (4.99b)

Convolutions with the density term 𝜌ℎ
Now for the convolution with density term for the hole we get∫

ℝ
𝐾 (𝜔+𝑎 − 𝜏)𝜌ℎ (𝜏 − 𝜗𝑏)𝑑𝜏 =

1
𝜋

∫ ∞
0

sinh
𝑡

2
𝑒−𝑡𝑒𝑖 (𝜔𝑎−𝜗𝑏)𝑑𝑡 =

1
2𝜋𝑖

𝑡 (𝜔+𝑎 − 𝜗𝑏), (4.100a)

and,∫
ℝ
𝐾 (𝜔̄−𝑎 − 𝜏)𝜌ℎ (𝜏 − 𝜗𝑏)𝑑𝜏 =

1
𝜋

∫ ∞
0

sinh
𝑡

2
𝑒−𝑡𝑒−𝑖 ( 𝜔̄𝑎−𝜗𝑏)𝑑𝑡 =

1
2𝜋𝑖

𝑡 (𝜗𝑏 − 𝜔̄−𝑎). (4.100b)
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Convolutions with the density term 𝜌̃.

According to eq. (4.88) we consider the three scenarios:

Close-pair.∫
ℝ
𝐾 (𝜔+𝑎 − 𝜏) 𝜌̃(𝜏 − 𝜐𝑏)𝑑𝜏 =

1
𝜋

∫ ∞
0

sinh 𝑡𝑒−𝑡𝑒𝑖 (𝜔𝑎−𝜐𝑏)𝑡𝑑𝑡 = 𝐾 (𝜔𝑎 − 𝜐𝑏 + 𝑖). (4.101a)

And ∫
ℝ
𝐾 (𝜔̄−𝑎 − 𝜏) 𝜌̃(𝜏 − 𝜐𝑏)𝑑𝜏 =

1
𝜋

∫ ∞
0

sinh 𝑡𝑒−𝑡𝑒−𝑖 ( 𝜔̄𝑎−𝜐𝑏)𝑡𝑑𝑡 = 𝐾 (𝜔̄𝑎 − 𝜐𝑏 − 𝑖). (4.101b)

Wide-pair (like-terms). ∫
ℝ
𝐾 (𝜔+𝑎 − 𝜏) 𝜌̃(𝜏 − 𝜔𝑏)𝑑𝜏 = 0, (4.102a)

and, ∫
ℝ
𝐾 (𝜔̄−𝑎 − 𝜏) 𝜌̃(𝜏 − 𝜔̄𝑏)𝑑𝜏 = 0. (4.102b)

Wide-pair (cross-terms).∫
ℝ
𝐾 (𝜔+𝑎 − 𝜏) 𝜌̃(𝜏 − 𝜔̄𝑏)𝑑𝜏 = 1

𝜋

∫ ∞
0

sinh 𝑡 (𝑒−𝑡 − 1)𝑒𝑖 (𝜔𝑎−𝜔̄𝑏)𝑡𝑑𝑡

= 𝐾 (𝜔𝑎 − 𝜔̄𝑏 + 𝑖) − 𝐾 (𝜔𝑎 − 𝜔̄𝑏), (4.103a)

and,∫
ℝ
𝐾 (𝜔̄−𝑎 − 𝜏) 𝜌̃(𝜏 − 𝜔𝑏)𝑑𝜏 = 1

𝜋

∫ ∞
0

sinh 𝑡 (𝑒−𝑡 − 1)𝑒−𝑖 ( 𝜔̄𝑎−𝜔𝑏)𝑡𝑑𝑡

= 𝐾 (𝜔̄𝑎 − 𝜔𝑏 − 𝑖) − 𝐾 (𝜔̄𝑎 − 𝜔𝑏). (4.103b)

Combined result
With all the results from eqs. (4.98) to (4.103) we find the following expressions for the convolution
of the 𝐺𝑒 (4.47) with kernel 𝐾 shifted to wide-pair region:

1
2𝜋𝑖

∫
ℝ+𝑖 𝜖

𝐾 (𝜔+𝑎 − 𝜈)𝐺𝑒 (𝜈, 𝜆𝑘)𝑑𝜈 = (1 + 𝔞𝑒 (𝜆𝑘))2𝜋𝑖
𝑡 (𝜆𝑘 − 𝜔+𝑎)

−
∑︁

𝐾2(𝜔𝑎 − 𝝑)𝐺𝑒 (𝝑, 𝜆𝑘)
𝔞′𝑒 (𝝑)

−
𝑛𝑐∑︁
𝑏=1

𝐾 (𝜔𝑎 − 𝜐𝑏 + 𝑖)F̃ 𝑐
𝑒;𝑎,𝑘

−
𝑛𝑤∑︁
𝑏=1
{𝐾 (𝜔𝑎 − 𝜔̄𝑏 + 𝑖) − 𝐾 (𝜔𝑎 − 𝜔̄𝑏)} F̃ 𝑤,−

𝑒;𝑎,𝑘 . (4.104a)
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And,

1
2𝜋𝑖

∫
ℝ+𝑖 𝜖

𝐾 (𝜔̄−𝑎 − 𝜈)𝐺𝑒 (𝜈, 𝜆𝑘)𝑑𝜈 = (1 + 𝔞𝑒 (𝜆𝑘))2𝜋𝑖
𝑡 (𝜆𝑘 − 𝜔̄−𝑎)

−
∑︁

𝐾2(𝜔̄𝑎 − 𝜆𝑘)𝐺𝑒 (𝝑, 𝜆𝑘)
𝔞′𝑒 (𝝑)

−
𝑛𝑐∑︁
𝑏=1

𝐾 (𝜔̄𝑎 − 𝜐𝑏 − 𝑖)F̃ 𝑐
𝑒;𝑎,𝑘

−
𝑛𝑤∑︁
𝑏=1
{𝐾 (𝜔̄𝑎 − 𝜔𝑏 − 𝑖) − 𝐾 (𝜔̄𝑎 − 𝜔𝑏)} F̃ 𝑤,+

𝑒;𝑎,𝑘 . (4.104b)
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Chapter 5.
Cauchy-Vandermonde extraction and
reduced determinant representation for
higher form-factors

In this chapter we will compute the thermodynamic limit of form-factors of higher-spinon excitations
starting from the modified Cauchy determinant representation (4.85). In the two-spinon case, we
saw in chapter 3 that it involves extracting the Cauchy matrices into the prefactors, followed by
obtaining the thermodynamic limit from the infinite product form of prefactors. A similar procedure
will be used here to show that form-factors of higher-spinon excitations admit a reduced determinant
representation (5.118). It is reproduced in the following expression:

|𝐹𝑧 |2 = (−1)
𝑛ℎ+2

2 𝑀−𝑛ℎ2
𝑛ℎ (𝑛ℎ−1)+2

2 𝜋
𝑛ℎ (𝑛ℎ−3)+2

2

∏𝑛̃
𝑎=1

∏𝑛ℎ
𝑏=1( 𝜇̃𝑎 − 𝜗𝑏 − 𝑖

2 )∏𝑛̃
𝑎,𝑏=1( 𝜇̃𝑎 − 𝜇̃𝑏 − 𝑖)

× 1
𝐺2𝑛ℎ ( 12 )

𝑛ℎ∏
𝑎,𝑏=1
𝑎≠𝑏

𝐺 ( 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 (1 + 𝜗𝑎−𝜗𝑏

2𝑖 )
𝐺 ( 12 + 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 ( 32 + 𝜗𝑎−𝜗𝑏

2𝑖 )
det𝑛̃ Q𝑔 det𝑛ℎ Q𝑒

det V[𝝑] . (5.1)

The word ‘reduced’ signifies that the matrices Q𝑔 and Q𝑒 are of the finite size. In comparison to the
two-spinon case, there are some crucial differences in the computations that lead us to this result.
As we have already realised in the previous chapter 4, the procedure of Cauchy extraction must be
reformulated to accomodate the rectangular nature of the Cauchy matrices C[ 𝝔̌+‖𝝀] and C[𝝀̌‖ 𝝔̂+],
with which we are coerced into dealing since they are the largest Cauchy matrices contained inside
the determinant representation (4.85).
In this chapter, we will see that a rectangular Cauchy extraction can be indeed realised using the
Cauchy-Vandermonde matrix, since the latter is known to generalise the Cauchy determinant formula
to the rectangular case. We begin this chapter with a brief introduction to the Cauchy-Vandermonde
(CV) matrix and its properties in section 5.1. Initially, we introduce the CV matrix in the rational
parametrisation due to its relative simplicity. Its properties are then generalised to the hyperbolic
case using the the dressing relation. The discussion in this section is supplemented by appendix C
as well as section 5.A at the end of the chapter where we provide a toy example of extraction with
Cauchy-Vandermonde matrices.
In section 5.2, the theory of CV extraction is applied to the form-factors. We start with the
determinant representation (4.85) and compute the actions of the inverse CV matrices C𝑉 [𝝀‖ 𝝔̌+]
and C𝑉 [ 𝝔̂+‖𝝀̌] onto the matricesH𝑔 andH𝑒 respectively. The sets 𝝔̌+ and 𝝔̂+ contains the positive
half of the close-pairs, they were defined in notations 34 and 35 in the previous chapter 4.
In section 5.3, we compute the thermodynamic limit of the Cauchy-Vandermonde determinants
extracted in the previous step, together with the prefactors of the determinant representation. This
procedure is similar to the two-spinon case studied in chapter 3 as we first express the infinite
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determinants prefactors as infinite products of auxiliary function Ω. In this way, the thermodynamic
limit of the form-factors can be accessed in terms of auxiliary function leading us to a reduced
determinant representation (5.1). However, the complex roots adds significant differences in these
computations of prefactors which will be addressed here. The discussion is supplemented by
section 5.B where all long formulae and auxiliary computations are presented. Finally, an example
of the four-spinon form-factor is discussed, starting from the reduced determinant representation
(5.1) for the a higher-spinon case. There we find that we can perform a little CV extraction: a
smaller, finite, and rational version of the CV extraction that further reudces the determinants of
matrices Q𝑔 and Q𝑒 to a sum over a relatively small number of terms.

5.1. Cauchy-Vandermonde matrix

Let us begin with the traditional Cauchy and Vandermonde matrices in the rational parametrisation.
We will be using the notation ª𝜆 (or «𝜆) to denote a partition of integers, which was introduced
on the page 11. In particular, we will frequently use the partitions of consecutive integers ª𝛿 and
consecutive even or odd integers ª𝛾 which are defined in the following.

Notation 36. Given an integer 𝑛 we denote the partition of consecutive integers of length 𝑛 by,

«𝛿(𝑛) = {𝑛 − 1, 𝑛 − 2, . . . , 0} . (5.2a)

The argument for its length 𝑛 is often dropped from the notation unless we feel necessary to mention
it explicitly. We denote by ª𝛿 the same partition with the reversed order.
Similarly we also define a partition of consecutive, even or odd integers:

«𝛾 = {𝑛 − 1, 𝑛 − 3, . . . , 0} , (for 𝑛 odd).
«𝛾 = {𝑛 − 1, 𝑛 − 3, . . . , 1} , (for 𝑛 even). (5.2b)

We shall denote by ª𝛾 same partition with the reversed order. We can see that the partition (5.2b) is
contained in the partition (5.2a) ª𝛾 ⊂ ª𝛿 and its length is ℓ( ª𝛾) = ⌊

𝑛
2
⌋
.

Notation 37 (Vandermonde matrix). Given a set of variables 𝒙 and partition ª𝛿(𝑛) of length 𝑛, we
define a Vandermonde matrix V ª𝛿 as

V ª𝛿 (𝑛) [𝒙] =
[

𝒙
ª𝛿 (𝑛) ] =

©­­«
1 𝑥1 · · · 𝑥𝑛−1

1
...

...
. . .

...
1 𝑥𝑛 · · · 𝑥𝑛−1

𝑛

ª®®¬ . (5.3a)

Note that when the Vandermonde matrix V ª𝛿 (𝑛) (𝒙) is a square matrix, the length of partition
is predetermined by 𝑛 = 𝑛𝒙 , hence we will simply denote V ª𝛿 [𝒙], unless we want to denote a
rectangular Vandermonde matrix.
The determinant of a Vandermonde matrix is a totally skew-symmetric polynomial, also known as
an alternant. Here we denote it using the notation

aaa
defined on pages 7 to 11.

det V ª𝛿 [𝒙] =
iii
(𝒙) =

∏
𝑎>𝑏

(𝑥𝑎 − 𝑥𝑏). (5.3b)
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Notation 38 (Rational Cauchy matrix). Given a set of complex variables 𝒙 (𝑛𝒙 = 𝑛) and 𝒚 (𝑛𝒚 = 𝑚)
which are disjoint 𝒙 ∩ 𝒚 = ∅, we define the Cauchy matrix C[𝒙‖𝒚] as

C[𝒙‖𝒚] =
[

1
𝒙 − 𝒚

]

=
©­­«

1
𝑥1−𝑦1

· · · 1
𝑥1−𝑦𝑚

...
. . .

...
1

𝑥𝑛−𝑦1
· · · 1

𝑥𝑛−𝑦𝑚

ª®®¬ . (5.4a)

When the cardinalities of the two sets are equal 𝑛𝒙 = 𝑛𝒚 = 𝑛, we obtain a square matrix. Its
determinant is given by a well-known formula, which can be written in the superalternant notation
as

det C[𝒙‖𝒚] =
iii
(𝒙‖𝒚) =

aaa(𝒙)aaa(−𝒚)
aaa(𝒙 − 𝒚) =

∏𝑛
𝑗>𝑘 (𝑥 𝑗 − 𝑥𝑘)

∏𝑛
𝑗>𝑘 (𝑦𝑘 − 𝑦 𝑗)∏𝑛

𝑗,𝑘=1(𝑥 𝑗 − 𝑦𝑘)
. (5.4b)

We shall now define a mixed version of a Cauchy (5.4a) and Vandermonde (5.3a) matrices. It
will be always defined as a square matrix of order 𝑛 + 𝑚 consisting of rectangular Cauchy block of
𝑚 columns and Vandermonde block of 𝑛 columns.

Definition 39 (Rational Cauchy-Vandermonde determinant). Given set of variables 𝒙 (𝑛𝒙 = 𝑛 + 𝑚)
and 𝒚 (𝑛𝒚 = 𝑚) and, a partition of integers ª𝛿 of length 𝑛. We define the matrix C ª𝛿 [𝒙‖𝒚] as

C ª𝛿 [𝒙‖𝒚] =
(
C[𝒙‖𝒚]

���� V ª𝛿 (𝑛) [𝒙]
)
. (5.5a)

The subscript ª𝛿 tells us that the Vandermonde block is made by partition of consecutive integers
(5.2a). Its length is 𝑛 as it is determined by the difference of cardinalities of the sets 𝒙 and 𝒚. We
show in lemma C.3 that its determinant generalises the Cauchy determinant formula (5.4b) that is
produced below:

det C ª𝛿 (𝒙 |𝒚) =
iii
(𝒙‖𝒚) =

∏𝑛+𝑚
𝑗>𝑘 (𝑥 𝑗 − 𝑥𝑘)

∏𝑚
𝑗>𝑘 (𝑦𝑘 − 𝑦 𝑗)∏𝑛+𝑚

𝑗=1
∏𝑚

𝑘=1(𝑥 𝑗 − 𝑦𝑘)
. (5.5b)

It is worthwhile to note that just like the Vandermonde determinant is related with the symmetric
Schur function 𝑠 ª𝜆(𝒙):

𝑠 ª𝜆(𝒙) =
det V ª𝜆+ ª𝛿 [𝒙]
det V ª𝛿 [𝒙]

, (5.6a)

Cauchy-Vandermonde determinants are also related with the supersymmetric Schur function
𝑠 ª𝜆(𝒙‖𝒚) according to the following determinant representation:

𝑠 ª𝜆(𝒙‖𝒚) =
det C ª𝜆+ ª𝛿 [𝒙‖𝒚]
det C ª𝛿 [𝒙‖𝒚]

. (5.6b)

The representation (5.6b) of the supersymmetric Schur function was proved in [MV03] for any
arbitrary partition ª𝜆. However, in this thesis, we do not need the generality that is offered by
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supersymmetric Schur functions, since we are only concerned with the inversion of a Cauchy-
Vandermonde matrix. For this purpose, it would be sufficient to consider a special type of the
partitions ª𝜆𝑟 = ª𝛿 + ª1𝑘 , which has a single jump across an index 𝑟 while it is otherwise consecutive.

ª𝜆𝑟 = {0, 1, . . . , 𝑟 − 1, 𝑟 + 1, . . . , 𝑛} . (5.7)

For such a partition, the Schur function is reduced to elementary function [see eq. (C.26) for
definition]. Hence we get the following identity:

𝑒𝑟 (𝒙‖𝒚) =
det C ª𝜆𝑟 [𝒙‖𝒚]
det C ª𝛿 [𝒙‖𝒚]

; (5.8)

which is demonstrated in lemma C.7 from appendix C of this thesis. There we find that the
Cauchy-Vandermonde matrix C ª𝜆𝑟 in this case has a form similar to eq. (5.5a), while it skips over a
column in the Vandermonde block, which is exactly what we require for the inversion:

C ª𝜆𝑟 [𝒙‖𝒚] =
[
C[𝒙‖𝒚]

��� V ª𝜆𝑟 [𝒙]
]

=
©­­«

1
𝑥1−𝑦1

· · · 1
𝑥1−𝑦𝑚 1 · · · 𝑥𝑟−1

1 𝑥𝑟+11 · · · 𝑥𝑛−1
1

...
. . .

...
...

. . .
...

...
. . .

...
1

𝑥𝑛+𝑚−𝑦1
· · · 1

𝑥𝑛+𝑚−𝑦𝑚 1 · · · 𝑥𝑟−1
𝑛+𝑚 𝑥𝑟+1𝑛+𝑚 · · · 𝑥𝑛−1

𝑛+𝑚

ª®®¬ . (5.9)

However it should be noted that the form (5.9) cannot be used to write the identity (5.6b) for an
arbitrary partition. For an arbitrary partition, Moens and Van der Jeugt [MV03] have shown that we
need to add Vandermonde blocks on both sides of the Cauchy matrix, where these two Vandermonde
blocks are defined with partitions, that are dual to each other.

5.1.1. Inversion and duality of the Cauchy-Vandermonde matrix

In proposition C.8, we compute the inverse of a Cauchy-Vandermonde matrix 𝐶 ª𝛿 [𝒙‖𝒚] in rational
parametrisation. There we also saw that it can be represented as a dressing of the dual Cauchy-
Vandermonde matrix by diagonal matrices formed by 𝜙 functions as(

C ª𝛿 [𝒙‖𝒚]
)−1

= diag
[
𝜙′(𝒚 |𝒙, 𝒚)

��� I𝑛] · (C∗ª𝛿 [−𝒙‖ − 𝒚]
)𝑇
· diag

[
𝜙′(𝒙 |𝒚, 𝒙)

]
(5.10)

where the dual Cauchy-Vandermonde matrix is obtained by replacing the columns with monomial
𝑥𝑟 in the Vandermonde block from eq. (5.5a) by supersymmetric elementary polynomials of degree
𝑛 − 𝑟 − 1 [see definition 46 in appendix C].

C∗ª𝛿 [𝒙‖𝒚] =
[
C[𝒙‖𝒚]

��� V∗ª𝛿 [𝒙‖𝒚]
]

(5.11a)

where
V∗ª𝛿;𝑎,𝑟

[𝒙‖𝒚] = 𝑒𝑛−𝑟−1(𝒙𝒂̂‖𝒚). (5.11b)

Equation (5.10) also tells that the determinants of the two matrices are equal.

det C ª𝛿 [𝒙‖𝒚] = det C∗ª𝛿 [𝒙‖𝒚] . (5.12)
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We say that eqs. (5.10) to (5.12) portrays a duality between these two matrices since we can
also show that the inverse of 𝐶∗ª𝛿 matrix (5.11) can be written as the diagonal dressing of the
Cauchy-Vandermonde matrix (5.5a) as(

C∗ª𝛿 [𝒙‖𝒚]
)−1

= diag
[
𝜙′(𝒚 |𝒙, 𝒚)

��� I𝑛] · (C ª𝛿 [−𝒙‖ − 𝒚]
)𝑇
· diag

[
𝜙′(𝒙 |𝒚, 𝒙)

]
. (5.13)

This duality becomes a very powerful tool when it comes to extraction. First of all we can compare
the expressions from the two eqs. (5.10) and (5.13) with a similar expression (3.50) we wrote earlier
in the case of square Cauchy matrix of the hyperbolic parametrisation in lemma 3.1. We can see
with the determinants computed from both eqs. (3.50) and (5.13) that both these matrices can be
used for the extraction of a rational Cauchy-Vandermonde matrix.

det
(
C ª𝛿 [𝒙‖𝒚]

)−1
=

det C∗ª𝛿 [−𝒙‖ − 𝒚]
∏

𝜙′(𝒙 |𝒚, 𝒙)∏ 𝜙′(𝒚 |𝒙, 𝒚) =
1

aaa(𝒙‖𝒚) (5.14a)

and

det
(
C∗ª𝛿 [𝒙‖𝒚]

)−1
=

det C ª𝛿 [−𝒙‖ − 𝒚]
∏

𝜙′(𝒙 |𝒚, 𝒙)∏ 𝜙′(𝒚 |𝒙, 𝒚) =
1

aaa(𝒙‖𝒚) . (5.14b)

But it is very clear that the extraction with the dual (5.13) is a more convenient choice since it
prevents the supersymmetric polynomials entering the intermediate computation. This distinction
is more pronounced in the case of extraction with the Cauchy-Vandermonde matrix in hyperbolic
parametrisation.

5.1.2. Cauchy-Vandermonde matrix in a hyperbolic parametrisation and its
extraction

First let us introduce the following notation.

Notation 40. A vector-valued∗ function Xª𝛾 : ℂ→ ℂ𝑛 is defined as

Xª𝛾;𝑎 (𝜆) = cosh 𝜋 «𝛾𝑎𝜆 = cosh 𝜋(𝑛 + 1 − 2𝑎)𝜆, for 𝑎 ≤
⌈𝑛
2

⌉
; (5.15a)

Xª𝛾;𝑛+1−𝑎 (𝜆) = sinh 𝜋 «𝛾′𝑎𝜆 = sinh 𝜋(𝑛 + 1 − 2𝑎)𝜆, for 𝑎 ≤
⌊𝑛
2

⌋
. (5.15b)

where ª𝛾 and «𝛾 are the partitions introduced in notation 36. The function X̄ª𝛾 : ℂ→ ℂ𝑛 is obtained
by reversing the order X̄ª𝛾;𝑎 (𝜆) = Xª𝛾;𝑛+1−𝑎 (𝜆). Written explicitly, it is composed of

X̄ª𝛾;𝑎 (𝜆) = sinh 𝜋 «𝛾′𝑎𝜆 = sinh 𝜋(𝑛 + 1 − 2𝑎)𝜆, for 𝑎 ≤
⌊𝑛
2

⌋
; (5.16a)

X̄ª𝛾;𝑛+1−𝑎 (𝜆) = cosh 𝜋 «𝛾𝑎𝜆 = cosh 𝜋(𝑛 + 1 − 2𝑎)𝜆, for 𝑎 ≤
⌈𝑛
2

⌉
. (5.16b)

The sub-index ª𝛾 maybe dropped from the notation Xª𝛾 or X̄ª𝛾 when it is otherwise implicitly known
from the context.

Similar to the definition 39 we can define the hyperbolic version of the Cauchy-Vandermonde
matrix can defined as
∗ Inside a matrix, it can be either a row or a column vector depending on the context. We will not explicitly write the

transposition whenever it is clear from other indications.
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Definition 41. Given two sets 𝜶 (𝑛𝜶 = 𝑛 + 𝑚) and 𝜷 (𝑛𝜷 = 𝑚) of spectral parameters, the
Cauchy-Vandermonde matrix Cª𝛾 (𝜶 |𝜷) is defined by its block structure

Cª𝛾 [𝜶‖𝜷] =
[
diag

[
𝑒−𝑛𝜋𝜶

] · C[𝜶‖𝜷] · diag
[
𝑒𝑛𝜋𝜷

] ���� Xª𝛾 [𝜶]] (5.17)

where the matrix Xª𝛾 [𝜶] is composed of the row vectors given composed of the hyperbolic functions
(5.15):

Xª𝛾 [𝜶] =
[Xª𝛾 (𝜶)

]

. (5.18)

We have obtained the form (5.17) of the Cauchy-Vandermonde matrix in section C.3 using the
re-parametrisation:

𝑥 𝑗 = 𝑒
2𝜋𝛼𝑗 , 𝑦 𝑗= 𝑒

2𝜋𝛽 𝑗 . (5.19)

on the Cauchy-Vandermonde matrix (5.5a) and its determinant (5.5b). There we also show that its
determinant produces

detCª𝛾 [𝜶‖𝜷] =
iii

sinh 𝜋(𝜶‖𝜷) =
∏𝑛+𝑚

𝑗>𝑘 sinh 𝜋(𝛼 𝑗 − 𝛽𝑘)
∏𝑚

𝑗>𝑘 sinh 𝜋(𝛽𝑘 − 𝛽 𝑗)∏𝑛+𝑚
𝑗=1

∏𝑚
𝑘=1 sinh 𝜋(𝛼 𝑗 − 𝛽𝑘)

. (5.20)

Remark. Let us observe that the matrices Cª𝛾 (−𝜶 | − 𝜷) and Cª𝛾 (𝜷|𝜶) are not related to each other
simply by transposition property unlike in the case of a Cauchy matrix [see definition 24]. Reversing
the sign also modifies the diagonal dressing terms whereas in the Vandermonde-like block we
shall reverse the ordering Xª𝛾 → X̄ª𝛾 [see notation 40] to account for the change of sign (up-to
determinant).

Cª𝛾 [−𝜶‖ − 𝜷] =
[
diag

[
𝑒𝑛𝜋𝜶

] · C[−𝜶‖ − 𝜷] · diag
[
𝑒𝑛𝜋𝜷

] ���� X̄ª𝛾 [𝜶]] . (5.21)

For its determinant (or the superalternant), we can still write
iii

sinh(𝜶‖𝜷) =
iii

sinh(−𝜷‖ − 𝜶). (5.22)

For the extraction of this matrix we find it convenient to use the formula (5.13) which gives the
following when written in the hyperbolic parametrisation

C∗−1
ª𝛾 [𝜷‖𝜶] = diag𝛽

[
Φ′(𝜷|𝜶, 𝜷)

���I𝑛] · (Cª𝛾 [−𝜶‖ − 𝜷])𝑇 · diag𝜶
[
Φ′(𝜶 |𝜷,𝜶)

]
. (5.23)

Alternatively we can denote it in terms of the dressed blocks C(dr) andZ which are the hyperbolic
equivalent of the similar dressed Cauchy and Vandermonde blocks in eq. (5.13).

C∗−1
ª𝛾 [𝜷‖𝜶] =

(C(dr) [𝜷‖𝜶]
Zª𝛾 [𝜶]

)
. (5.24)

The dressed matrices C(dr) andZ are described by,

C(dr) [𝜷‖𝜶] = diag𝜷
[
𝑒𝑛𝜋𝜷 Φ′(𝜷|𝜶, 𝜷)] · C[𝜷‖𝜶] · diag𝜶

[
𝑒−𝑛𝜋𝜶 Φ′(𝜶 |𝜷,𝜶)] , (5.25a)

Zª𝛾 [𝜶] = X̄ª𝛾 [𝜶] · diag𝜶
[
Φ′(𝜶 |𝜷,𝜶)] . (5.25b)

We will now use eq. (3.50) in the next section to extract the Cauchy-Vandermonde matrices Cª𝛾 (𝝀 | 𝝔̌+)
and Cª𝛾 (𝝀̌ | 𝝔̂+) from matricesH𝑔 andH𝑒 respectively.
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5.2. Cauchy-Vandermonde extraction for the form-factors

In the previous chapter, we also highlighted some motives behind the choice of these sets and the
corresponding Cauchy matrices for the extraction. To recall it briefly, the reasoning used the two
basic observations about:

1. splitting of close-pair blocks, one of which can be made to join the Cauchy block.
2. invariance of the number 𝑛̃ of higher-level roots, which is also equal to the difference of

cardinalities of the sets 𝝔̂+ and 𝝀̌, as well as, 𝝔+ and 𝝀.

We will add to this list, a technical point that applies particularly for the extraction of the second type
(i.e. for the matrixH𝑒). An extraction of a larger CV matrix Cª𝛾 [𝝀̌‖ 𝝔̂+] containing all the Cauchy
terms is always preferable to an extraction of smaller Cauchy matrix C[𝝀̌‖ 𝝔̂]. A construction of
smaller matrix may have to exclude some of the Cauchy terms for the holes, since the cardinalities
of the sets 𝝀̌ and 𝝔̂ do not always match. Such an exclusion must be avoided because:

1. it is subjective on the choice of the close-pair and wide-pair, a choice which we do not have,
while speaking in absolute terms.

2. the inclusion of all the holes makes the computation easier since we have a rank-𝑛ℎ Cauchy
matrix added inH cau

𝑔 (4.79), as it is shown again in the following:

H cau
𝑒 = C [

𝝀̌


𝝔+] + C [

𝝀̌


𝝑] · A−1

𝑒 R
[
𝝑
��𝝔+] . (5.26)

Let us denote the matrices P𝑔 and P𝑒 obtained from the extraction of the Cauchy-Vandermonde
matrices fromH𝑔 (4.75b) andH𝑒 (4.78b). These extractions are performed by taking a left-action
of the inverse of dual Cauchy-Vandermonde matrices (5.13) giving us the following expressions.
Note that the choice of the negative sign in eq. (5.27a) below can be attributed to the negative sign
in the Cauchy blockH cau

𝑔 (4.76).

P𝑔 = C∗−1
ª𝛾 [− 𝝔̌+‖ − 𝝀] · H𝑔, (5.27a)

P𝑒 = C∗−1
ª𝛾 [ 𝝔̂+‖𝝀̌] · diag

[
H𝑒

��� I𝑛̃] . (5.27b)

The number of rows or columns in the Z blocks (5.24) for the extractions in both eqs. (5.27a)
and (5.27b) are equal to 𝑛̃. After this extraction, we determinants of the following two matrices into
prefactors.

detCª𝛾 [−𝝀‖ − 𝝔̌+] =
iii

sinh 𝜋( 𝝔̌+‖𝝀), (5.28a)
and

detCª𝛾 [𝝀̌‖ 𝝔̂+] =
iii

sinh 𝜋(𝝀̌‖ 𝝔̂+). (5.28b)

The orders of these two matrices are 𝑁0 and 𝑁0 + 𝑛̃ + 1 respectively. Substituting them into the
representation (4.85) for form-factors leads to

|𝐹𝑧 |2 = −2𝜋𝑀+1
∏

𝜒(𝝀)
∏

𝜒(𝝔)
∏(𝝔 − 𝝀)∏(𝝀 − 𝝁)
∏′(𝝔 − 𝝁)∏′(𝝀 − 𝝀)

iii
sinh 𝜋( 𝝔̌+‖𝝀)

iii
sinh 𝜋(𝝀̌‖ 𝝔̂+)

×
∏

𝑞𝑔 (𝝊+ − 𝑖)𝑞𝑔 (𝝊− − 𝑖)
∏

𝑞′𝑒 (𝝊+ − 𝑖)𝑞𝑒 (𝝊− − 𝑖)

∏

𝑞𝑔 (𝝎+ − 𝑖)𝑞𝑔 (𝝎̄− − 𝑖)
∏

𝑞𝑒 (𝝎+ − 𝑖)𝑞𝑒 (𝝎̄− − 𝑖)
× det𝑁0 P𝑔 det𝑁0+𝑛̃+1 P𝑒 . (5.29)
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The expression (5.29) that was presented above, generalises the representation (3.62) from the
two-spinon case to the form-factors in a higher-spinon sector. However, unlike the two-spinon case,
we get two types of Cauchy extraction and resulting matrices P𝑔 and P𝑒. We will compute them
separately.
It is important to observe that in both cases, we have chosen the action in such a way that ground
state roots are summed over. The reason behind it is however simple, we want to factorise the largest
Cauchy portion inside the original determinants, which contains the contribution of the all ground
state roots 𝝀, in contrast to the excited state where it only contains the contributions of real roots
and half the number of close-pairs 𝝔̂+.
Since cardinalities of these sets are ordered as 𝑛𝝔̌+ < 𝑛𝝀 < 𝑛𝝀̌ < 𝑛𝝔̂+ , we see that there will be no
mixing of Cauchy and Vandermonde blocks during the action of inverse matrix in eq. (5.27a).
In the case of extraction (5.27b), we see that the cardinality of the set 𝝀̌ is inferior to 𝝔̂+. Since we
always take the Cauchy extraction such that ground state roots 𝝀 are summed over, we find that
the extraction (5.27b) can, in principle, involve mixing of Cauchy and Vandermonde sub-blocks.
Fortunately, this problematic scenario is averted in (5.27b) due to the diagonal block structure of
the matrix on which it applies.

5.2.1. CV extraction of the first type

Since both matrices C∗ª𝛾 (5.24) and H𝑔 (4.75b) admit the block structure, we can divide P𝑔 into
following blocks:

P𝑔 =

(
P𝑛 |cau
𝑔 P𝑛 |𝑐

𝑔 P𝑛 |𝑤+
𝑔 P𝑛 |𝑤−

𝑔

P𝑠 |cau
𝑔 P𝑠 |𝑐

𝑔 P𝑠 |𝑤+
𝑔 P𝑠 |𝑤−

𝑔

)
. (5.30)

All of the above blocks can be computed using lemma 3.2 that was proved in the two-spinon case.
Moreover we can see that first two blocks P𝑛 |cau

𝑔 and P𝑠 |cau
𝑔 involve the action on a Cauchy matrix

(5.29) : H cau
𝑔 = C[−𝝀‖ − 𝝔̌+] . They are described by the expressions:

P𝑛 |cau
𝑔; 𝑗 ,𝑘 = Φ′( 𝜚̌+𝑗 |𝝀, 𝝔̌+)

∑︁

𝝀
Φ′(𝝀 | 𝝔̌+, 𝝀) 1

sinh 𝜋( 𝜚̌+𝑘 − 𝝀)
𝑒𝑛̃𝜋𝝀

sinh 𝜋(𝝀 − 𝜚̌+𝑗 )
, (5.31)

P𝑠 |cau
𝑔;𝑎,𝑘 = (−1) 𝑛̃−1

∑︁

𝝀
Φ′(𝝀 | 𝝔̌+, 𝝀) 1

sinh 𝜋( 𝜚̌+𝑘 − 𝝀)
X𝑎 (𝝀). (5.32)

We recall the X𝑎 = Xª𝛾;𝑎 is a vector valued function [see notation 40] which corresponds to the
hyperbolic Vandermonde block Cauchy-Vandermonde matrix (5.17). These summations can be
evaluated using the result of the lemma 3.2. It is easy see that we get

P𝑛 |cau
𝑔 = I𝑁0−𝑛̃, (5.33)

P𝑠 |cau
𝑔 = 0. (5.34)

This also ensures that we can reduce the computation to a smaller matrix:

Q𝑔 = (−1) 𝑛̃−1
(
P𝑠 |𝑐
𝑔 P𝑠 |𝑤+

𝑔 P𝑠 |𝑤−
𝑔

)
(5.35)

which is equivalent to P𝑔 up-to the computation of determinant, since

det𝑛̃ Q𝑔 = det𝑁0 P𝑔 . (5.36)
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In particular, this reduction means that the rest of the north block P𝑛 |𝑐
𝑔 and P𝑛 |𝑤±

𝑔 need not be
computed. For convenience Q𝑔 is subdivided into sub-blocks:

Q𝑔 =
(
Q𝑐
𝑔 Q𝑤+

𝑔 Q𝑤−
𝑔

)
. (5.37)

We will now compute matrices Q𝑐
𝑔 and P𝑤±

𝑔 forming the blocks for the contribution of close-pairs
and wide-pairs.

Close-pair block
From eq. (4.77b) we can see that Q𝑐

𝑔 can be expressed as a sum:

Q𝑐
𝑔 = Q𝑐-i

𝑔 + Q𝑐-ii
𝑔 . (5.38)

While the first term Q𝑐-i
𝑔 comes from the action on Cauchy terms present in eq. (4.77b), which can

be expressed as

Q𝑐-i
𝑔;𝑎,𝑏 = 𝔞𝑔 (𝜐−𝑏 − 𝑖𝛿𝑏)

∑︁
𝜎=±

{
∑︁

𝝀
Φ′(𝝀 | 𝝔̌+, 𝝀) 1

sinh 𝜋(𝜐𝜎𝑏 + 𝑖𝜎𝛿𝑏 − 𝝀)
X𝑎 (𝝀)

}
, (5.39a)

the second term Q𝑐-ii
𝑔 comes from the action on non-Cauchy terms in eq. (4.77b), which can be

expressed as
Q𝑐-ii
𝑔;𝑎,𝑏 = 2𝑖

∑︁

𝝀
Φ′(𝝀 | 𝝔̌+, 𝝀)X𝑎 (𝝀)

{
𝜌ℎ (𝝀 − 𝜐+𝑏) − 𝜌ℎ (𝝀 − 𝜐−𝑏)

}
. (5.39b)

Since the action is taken with periodic function for the first term Q𝑐-i
𝑔 (5.39a), it can be computed

using lemma 3.2. Here we also take the limit 𝑖𝛿𝑎 → 0 to obtain†

Q𝑐-i
𝑔;𝑎,𝑏 = −𝜙(𝜐−𝑏 − 𝑖 |𝝁, 𝝀)𝜙′(𝜐−𝑏 + 𝑖 |𝝀, 𝝁)Φ′(𝜐+𝑏 | 𝝔̌+, 𝝀)X𝑎 (𝜐+𝑏). (5.40)

We can use the condensation property to express it in the form of integrals:

Q𝑐-ii
𝑔;𝑎,𝑏 =

(∫
ℝ−𝑖𝛼

−
∫
ℝ+𝑖𝛼

)
Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏){𝜌ℎ (𝜏 − 𝜐+𝑏) − 𝜌ℎ (𝜏 − 𝜐−𝑏)}𝑑𝜏. (5.41)

It is obtained by writing the sum over residues as integrals over a rectangular contour of thickness 𝛼.
We then see that the integrals over vertical edges vanish as the edges are pushed towards infinity
due to an exponentially dininishing integrand. This is true because cardinalities of the two sets
are ordered 𝑛 𝜚̌+ < 𝑛𝝀 and the difference 𝑛̃ is greater than max( ª𝛾). We will not compute these
expressions exactly giving a close-form representation. We can however simplify the integrand. To
do this, we first use the periodicity of the Φ function to convert the integrals as

Q𝑐-ii
𝑔;𝑎,𝑏 =

∫
ℝ+𝑖−𝑖𝛼

Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏)𝜌ℎ (𝜏 − 𝜐+𝑏)𝑑𝜏

+
∫
ℝ+𝑖𝛼

Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏)𝜌ℎ (𝜏 − 𝜐−𝑏)𝑑𝜏

+
∫
ℝ−𝑖𝛼

Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏)𝜌ℎ (𝜏 − 𝜐+𝑏)𝑑𝜏

+
∫
ℝ−𝑖+𝑖𝛼

Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏)𝜌ℎ (𝜏 − 𝜐−𝑏)𝑑𝜏. (5.42)

† 𝜙′ signify the omission of a vanishing term in the product.
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Now we can use the semi-periodicity property of the density function which we obtain in appendix B,
which says

𝜌ℎ (𝜏 − 𝜐+) + 𝜌ℎ (𝜏 − 𝜐−) = 1
2𝜋𝑖

𝑡 (𝜏 − 𝜐). (5.43)

It permits us to write,

Q𝑐-ii
𝑔;𝑎,𝑏=

(∫
ℝ+𝑖−𝑖𝛼

−
∫
ℝ+𝑖𝛼

)
Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏) 𝜌ℎ (𝜏 − 𝜐+𝑏)𝑑𝜏

+
∫
ℝ+𝑖𝛼

Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏) 𝑡 (𝜏 − 𝜐𝑏)𝑑𝜏

+
(∫

ℝ−𝑖+𝑖𝛼
−

∫
ℝ−𝑖𝛼

)
Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏) 𝜌ℎ (𝜏 − 𝜐−𝑏)𝑑𝜏

+
∫
ℝ−𝑖𝛼

Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏) 𝑡 (𝜏 − 𝜐𝑏)𝑑𝜏. (5.44)

We can close the contour for two anti-parallel integrals since the integral over the vertical edges
is vanishing at infinity. Integrals for both of these closed contours as their integrands are analytic
inside them. Hence what remains are only two parallel integrals:

Q𝑐-ii
𝑔;𝑎,𝑏 =

(∫
ℝ−𝑖𝛼

+
∫
ℝ+𝑖𝛼

)
Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏) 𝑡 (𝜏 − 𝜐𝑏)𝑑𝜏. (5.45)

Substituting eqs. (5.40) and (5.45) into eq. (5.38) we get the expression:

Q𝑐
𝑔;𝑎,𝑏 = −𝜙(𝜐−𝑎 − 𝑖 |𝝁, 𝝀)𝜙′(𝜐−𝑎 + 𝑖 |𝝀, 𝝁)Φ′(𝜐+ |𝜶̌, 𝝀)X𝑎 (𝜐+𝑏)

+
(∫

ℝ−𝑖𝛼
+
∫
ℝ+𝑖𝛼

)
Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏) 𝑡 (𝜏 − 𝜐𝑏)𝑑𝜏. (5.46)

Wide-pair block
In the case of wide-pairs, we have seen in eqs. (4.77c) and (4.77d), that the entire columnsH𝑤±

𝑔

consists only the density terms 𝜌2 for the wide pairs which can be expressed in terms of digamma
function. More importantly, there are no Cauchy type terms in these expressions. We obtain from
the extraction (5.27a) the following summations for these blocks:

Q𝑤+
𝑔;𝑎,𝑏 = 2𝑖

∑︁

𝝀
Φ′(𝝀 | 𝝔̌+, 𝝀)X𝑎 (𝝀) {𝜌2(𝝀, 𝜔𝑏 + 𝑖) − 𝜌2(𝝀, 𝜔𝑏)} (5.47a)

and
Q𝑤−
𝑔;𝑎,𝑏 = 2𝑖

∑︁

𝝀
Φ′(𝝀 | 𝝔̌+, 𝝀)X𝑎 (𝝀) {𝜌2(𝝀, 𝜔̄𝑏) − 𝜌2(𝝀, 𝜔̄𝑏 − 𝑖)} . (5.47b)

They be computed as integrals over a rectangular contour of width 2𝛼 < 1. We can also see that the
integral over vertical edges vanishes due to the exponential behaviour of the Φ function. Therefore
we are left with the integral on two anti-parallel branches of the contours.

Q𝑤+
𝑔;𝑎,𝑏 =

(∫
ℝ−𝑖𝛼

−
∫
ℝ+𝑖𝛼

)
Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏) {𝜌2(𝜏, 𝜔𝑏 + 𝑖) − 𝜌2(𝜏, 𝜔𝑏)} 𝑑𝜏 (5.48a)
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and

Q𝑤−
𝑔;𝑎,𝑏 =

(∫
ℝ−𝑖𝛼

−
∫
ℝ+𝑖𝛼

)
Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏) {𝜌2(𝜏, 𝜔̄𝑏) − 𝜌2(𝜏, 𝜔̄𝑏 − 𝑖)} 𝑑𝜏 (5.48b)

Finally using the periodicity of the Φ function it can be rewritten in the form of a combination of
mutually parallel or anti-parallel integrals.

Q𝑤+
𝑔;𝑎,𝑏 =

(∫
ℝ−𝑖+𝑖𝛼

−
∫
ℝ−𝑖𝛼

−
∫
ℝ+𝑖−𝑖𝛼

+
∫
ℝ+𝑖𝛼

)
Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏) 𝜌2(𝜏, 𝜔𝑏)𝑑𝜏 (5.49a)

and

Q𝑤−
𝑔;𝑎,𝑏 =

(∫
ℝ−𝑖+𝑖𝛼

−
∫
ℝ−𝑖𝛼

−
∫
ℝ+𝑖−𝑖𝛼

+
∫
ℝ+𝑖𝛼

)
Φ(𝜏 | 𝝔̌+, 𝝀)X𝑎 (𝜏) 𝜌2(𝜏, 𝜔̄𝑏)𝑑𝜏. (5.49b)

The expressions obtained in eqs. (5.46) and (5.49) will be the final expression that we write down
for the components of the matrix Q𝑔. We do not have a reasonable approach to compute the
integrals involved in these functions. Despite all the efforts, we find that there always remains
parallel integrals which we cannot closed to evaluate them directly as sum over residues. Any other
asymptotic approaches towards its computation, also hit a roadblock, since we do not have a faithful
asymptotic representation of the Φ function in the thermodynamic limit, unlike its rational version
𝜙 where it is better understood. When a thermodynamic limit of Φ is computed from an infinite
product represented in terms of 𝜙 functions, we find that the result has bad asymptotic properties.
More catastrophically, we also find that the infinite product form in terms of 𝜙 functions is also
ill-defined for triplets and does not converge‡ after the substitution of the thermodynamic limit for
the 𝜙 functions.
Due to these reasons, we are forced to leave the computations for the components of the residual
matrix Q𝑔, at the level of integral forms in terms of auxiliary functions Φ as shown in eqs. (5.46)
and (5.49).

5.2.2. CV extraction of the second type

Let us now compute the matrix P𝑒 from the extraction (5.27b). In this extraction (5.27b) the inverse
of a dual Cauchy-Vandermonde matrix C∗−1

ª𝛾 [ 𝝔̂+‖𝝀̌] [see eqs. (5.23) and (5.24)] acts on the matrix
composed of diagonal blocksH𝑒 (4.78b) and the identity I𝑛̃. We can therefore divide the matrix
P𝑒 into blocks:

P𝑒 =
(
Pcau
𝑒 P̃ W Z

)
=

(
P𝑛 |cau
𝑒 P̃𝑛 W𝑛 Z𝑛

P𝑠 |cau
𝑒 P̃𝑠 W𝑠 Z𝑠

)
. (5.50)

We use the cardinal directions north and south to denote the top 𝑁0 − 𝑛̃ − 1 = 𝑛𝑟 + 𝑛𝑐 rows and
bottom 𝑛̃ rows respectively. The north block corresponds to the extraction with fixed parameter
from the set 𝝔+ for the inverse matrix. Similarly the south corresponds to the extraction with the
rows of the inverse matrix containing hole parameters 𝝑. Column-wise it is also divided in the four
blocks which are described in the following.

‡ unlike the infinite products in the prefactors which converge as we have seen in section 3.3 for the two-spinon case as
well as in the higher-spinon cases which we shall encounter in section 5.3
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Z The last two blocksZ𝑛 andZ𝑠 contain 𝑛̃ columns each. They arise from the trivial part of the
extraction in eq. (5.27b), using the I𝑛̃. Thus we can see that hyperbolic Vandermonde columns
(5.25b) retain their original form:

Zª𝛾 [ 𝝔̂+] =
(Zª𝛾 [𝝔+]
Zª𝛾 [𝝑]

)
. (5.51)

We shall denote hereZ𝑛 = Zª𝛾 [𝝔+],Z𝑠 = Zª𝛾 [𝝑] andZ = Zª𝛾 [ 𝝔̂+]. Let us also drop the sub-index
ª𝛾 from its notation as the partition ª𝛾 (5.2b) is fixed by the quantum number 𝑛̃ which is invariant for
any given excitation.

W The blocksW𝑛 andW𝑠 originate from the action on the Foda-Wheeler block Ū (4.84)
insideH𝑒 (4.78b). Therefore we can express,

W = C∗−1
ª𝛾 [ 𝝔̂+‖𝝀̌] · Ū [𝜆̌] . (5.52)

It contains exactly two columns. It is important note thatW also occurs in the two-spinon case.
The method of extraction for these block follows the similar trails but differs in one crucial aspect.
This difference is due to the fact that we extract a Cauchy-Vandermonde matrix here.

P̃ The columns P̃ arises from the action on higher-level block H̃ in eq. (4.78b). It contains 𝑛̃
columns. We also know that the matrix H̃ is related to the matrix S̃ which solves the higher-level
Gaudin extraction (4.83). It can be expressed as,

H̃ = C[𝝀̌‖𝝑] · A−1S̃ [𝝑‖ 𝝁̃] . (5.53)

Since we take the left-action for this extraction we can see that it involves only an extraction on a
Cauchy matrix and S̃ remains unperturbed.

Pcau The columns Pcau comes from the action on the Cauchy blockH cau
𝑒 in eq. (4.78b). From

eq. (4.76) we can see that it can be expressed as a sum of Cauchy matrices which are all contained
in the Cauchy-Vandermonde matrix that we extract.

H cau
𝑒 = C[𝝀̌‖𝝔+] + C[𝝀̌‖𝝑] · A−1R[𝝑‖𝝔+] (5.54)

Let us first compute the components of matrices Pcau
𝑒 , P̃ andW one-by-one. Equation (4.79) tells

us that Pcau
𝑒 is described by the following summations:

P𝑛 |cau
𝑒; 𝑗 ,𝑘 = 𝑒𝑛̃𝜋 𝜚+

𝑗Φ′(𝜚+𝑗 |𝝀̌, 𝝔+)

×
∑︁

𝝀̌
Φ′(𝝀̌ | 𝝔̂+, 𝝀̌) 𝑒−𝑛̃𝜋 𝝀̌

sinh 𝜋(𝜚+𝑗 − 𝝀̌)

{
1

sinh 𝜋(𝝀̌ − 𝜚+𝑘)
+
∑︁

𝝑

A−1R[𝝑‖𝜚+𝑘]
sinh 𝜋(𝝀̌ − 𝝑)

}
. (5.55a)

And

P𝑠 |cau
𝑒;𝑎,𝑘 = 𝑒𝑛̃𝜋𝜗𝑎Φ′(𝜗𝑎 |𝝀̌, 𝝑)

×
∑︁

𝝀̌
Φ′(𝝀̌ | 𝝔̂+, 𝝀̌) 𝑒−𝑛̃𝜋 𝝀̌

sinh 𝜋(𝜗𝑎 − 𝝀̌)

{
1

sinh 𝜋(𝝀̌ − 𝜚+𝑘)
+
∑︁

𝝑

A−1R[𝝑‖𝜚+𝑘]
sinh 𝜋(𝝀̌ − 𝝑)

}
. (5.55b)
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From eq. (4.83a) we find the following summations for P̃:

P̃𝑛

𝑗,𝑏 = 𝑒𝑛̃𝜋 𝜚+
𝑗Φ′(𝜚+𝑗 |𝝀̌, 𝝔+)

∑︁

𝝀̌
Φ′(𝝀̌ |𝝔+, 𝝀̌) 𝑒−𝑛̃𝜋 𝝀̌

sinh 𝜋(𝜚+𝑗 − 𝝀̌)
∑︁

𝝑

A−1S̃ [𝝑‖ 𝜇̃𝑏]
sinh 𝜋(𝝀̌ − 𝝑)

, (5.56a)

and,

P̃ 𝑠

𝑎,𝑏 = 𝑒𝑛̃𝜋𝜗𝑎Φ′(𝜗𝑎 |𝝀̌, 𝝔+)
∑︁

𝝀̌
Φ′(𝝀̌ |𝝔+, 𝝀̌) 𝑒−𝑛̃𝜋 𝝀̌

sinh 𝜋(𝜗𝑎 − 𝝀̌)
∑︁

𝝑

A−1S̃ [𝝑‖ 𝜇̃𝑏]
sinh 𝜋(𝝀̌ − 𝝑)

. (5.56b)

Comparing eqs. (5.55) and (5.56) we find a similarity among them. In the extraction (5.56) the first
type of term with a single sum is absent and the double sum which involves the hole parameter in
both eqs. (5.55) and (5.56). An important difference among them is that we have replaced the matrix
R[𝝑‖𝝔+] in the double sum in eq. (5.55) with its higher-level equivalent S[𝝑‖𝝑] in eq. (5.56),
where the latter solves the higher-level Gaudin extraction (4.83b).

The matrixW will be considered later. We will now compute the summations running over 𝝀̌ in
the above eqs. (5.55) and (5.56). Since the cardinality of the set 𝝀̌ is less than the set 𝝔̂+ we see that
the lemma 3.2 cannot be applied as it as to compute these summations. There are two approached to
this which are equivalent. Both these approaches are investigated in appendix C for a toy example
of the type:

𝑃 = 𝐶−1
𝑉 · diag

[
𝐶L + 𝐶R · 𝑅

�� I] (5.57)

which is a simplified ‘toy’ version of the situation that is presented. In section 5.A, we first
investigate this toy example in the rational parametrisation using two different methods which are
described in the following. It is then generalised in section 5.A.2 to the hyperbolic parametrisation.

Method I: The first method uses the identities for the inversion of the Cauchy-Vandermonde
matrices obtained through the dressing [see eqs. (5.10), (5.13) and (5.23)], to write down matrices
𝐶−1
𝑉 𝐶

L and 𝐶−1
𝑉 𝐶

R. Since the resulting summations do not extend over the Vandermonde terms, we
can see that as a result of this action, we shall obtain a linear combination of the Vandermonde
columnsZ of the inverse matrix, in addition to the identity block. Since it can be expressed as a
linear sum over the remaining columns, we find that these extra terms can be easily cancelled in the
determinant.
Method II: In the second method we construct a larger square Cauchy matrix (let’s call it 𝐶𝐿) by
adding extra variables wherever needed.

𝑃 = 𝐶−1
𝐿 (𝐶L + 𝐶R · 𝑅 |I) (5.58)

The actions 𝐶−1
𝐿 𝐶

L and 𝐶−1
𝐿 𝐶

II can then be easily computed. We find that the resulting summations
do not encompass all the terms, hence it does not give us a large sub-block of an identity matrix.
Instead, there are correction to the identity block of the same rank as the number of extra variables
that were added. Finally, we find that these rank-𝑛 corrections can be cancelled using the other
columns. In the limit where these extra variables are send to infinity, we recover the same expression
as method I.

The choice of the computation for matrices Pcau
𝑒 and P̃ from eqs. (5.55) and (5.56) is irrelevant.

From either method, we get the matrix Pcau
𝑒 (5.55) given by the following expressions:

P𝑛 |cau
𝑒; 𝑗 ,𝑘 = 𝛿 𝑗 ,𝑘 −

𝑛̃∑︁
𝑟=1

𝜒𝑟 ,𝑘Z𝑟 [𝜚+𝑗 ] −
𝑛̃∑︁

𝑟=1

𝑛ℎ∑︁
𝑡=1

𝜒ℎ𝑟 ,𝑡 A−1R[𝜗𝑡 ‖𝜚+𝑘] Z𝑟 [𝜚+𝑗 ], (5.59a)

135



Chapter 5. CV extraction and reduced determinant representation

and,

P𝑠 |cau
𝑒;𝑎,𝑘 = A−1R[𝜗𝑎‖𝜚+𝑘] −

𝑛̃∑︁
𝑟=1

𝜒𝑟 ,𝑘Z𝑟 [𝜗𝑎] −
𝑛̃∑︁

𝑟=1

𝑛ℎ∑︁
𝑡=1

𝜒ℎ𝑟 ,𝑡 A−1R[𝜗𝑡 ‖𝜚+𝑘] Z𝑟 [𝜗𝑎] . (5.59b)

Similarly for the matrix P̃ (5.56) we get,

P̃𝑛
𝑗,𝑏 = −

𝑛̃∑︁
𝑟=1

𝜒̃𝑟 ,𝑏Z𝑟 [𝜚+𝑗 ] −
𝑛̃∑︁

𝑟=1

𝑛ℎ∑︁
𝑡=1

𝜒̃ℎ𝑟 ,𝑡 A−1S̃ [𝜗𝑡 ‖ 𝜇̃𝑏] Z𝑟 [𝜚+𝑗 ], (5.60a)

and,

P̃𝑠
𝑎,𝑏 = A−1S̃ [𝜗𝑎‖ 𝜇̃𝑏] −

𝑛̃∑︁
𝑟=1

𝜒̃𝑟 ,𝑏 Z𝑟 [𝜗𝑎] −
𝑛̃∑︁

𝑟=1

𝑛ℎ∑︁
𝑡=1

𝜒̃ℎ𝑟 ,𝑡 A−1S̃ [𝜗𝑡 ‖ 𝜇̃𝑏] Z𝑟 [𝜗𝑎] . (5.60b)

In the toy example for rational case, we get the coefficient matrices 𝜒 and 𝜒ℎ that are composed
of the terms containing supersymmetric elementary functions (C.26) given in definition 46. In
the hyperbolic parametrisation, we would expect that supersymmetric functions in the exponential
variables (5.19) or their linear combination appearing in 𝜒, 𝜒̃ and 𝜒ℎ, 𝜒̃ℎ coefficient matrices. But
their exact form is not important to us since they appear as a coefficient terms of a linear sum of the
columnsZ of the same matrix P𝑒 (5.50) and hence these terms get cancelled in the determinant.

We will now compute the matrixW from the extraction on Foda-Wheeler columnsV (4.84). In
this case the method I cannot be used due to the nature of the matrix V. For the method II, we
construct take a larger set of variables 𝜻 containing the set 𝝀̌ ⊂ 𝜻 (𝑛𝜁 = 𝑁0 + 𝑛̃ + 1). Let 𝜼 (𝑛𝜂 = 𝑛̃)
denote the extra variables added to obtain it 𝜻 = 𝝀̌ ∪ 𝜼. In terms of this bigger set 𝜻 we construct a
larger square Cauchy matrix C[𝜻 ‖ 𝝔̂+] which is now extracted to get

W = C−1( 𝝔̂+‖𝜻) ·
(V[𝝀̌]

0

)
. (5.61)

In its computation, we find it convenient to further the divide the north-blockW𝑛 into two to
rewrite

W =
©­«
W𝑛

W𝑐

W𝑠

ª®¬ =
©­«
W[𝝔]
W[𝝊+]
W[𝝑]

ª®¬ (5.62)

where the central partW𝑐 consists as many columns as the number 𝑛𝑐 of close-pairs. We can see
that the components of these three blocks from the extraction (5.61) are given by,

W𝑛
𝑗,𝑟 = −Φ′(𝜚 𝑗 |𝜻 , 𝝔̂+) 1

𝜋

∑︁

𝝀̌
Φ′(𝝀̌ | 𝝔̂+, 𝜻) 1

sinh 𝜋(𝝀̌ − 𝜚 𝑗)
𝔞𝑒 (𝝀̌) (𝝀̌ + 𝑖)𝑟 − 𝝀̌𝑟

1 + 𝔞𝑒 (𝝀̌)
, (5.63a)

W𝑐
𝑎,𝑟 = −Φ′(𝜐+𝑎 |𝜻 , 𝝔̂+)

1
𝜋

∑︁

𝝀̌
Φ′(𝝀̌ | 𝝔̂+, 𝜻) 1

sinh 𝜋(𝝀̌ − 𝜐+𝑎)
𝔞𝑒 (𝝀̌) (𝝀̌ + 𝑖)𝑟 − 𝝀̌𝑟

1 + 𝔞𝑒 (𝝀̌)
, (5.63b)

and

W𝑠
𝑎,𝑟 = −Φ′(𝜗𝑎 |𝜻 , 𝝔̂+) 1

𝜋

∑︁

𝝀̌
Φ′(𝝀̌ | 𝝔̂+, 𝜻) 1

sinh 𝜋(𝝀̌ − 𝜗𝑎)
𝔞𝑒 (𝝀̌) (𝝀̌ + 𝑖)𝑟 − 𝝀̌𝑟

1 + 𝔞𝑒 (𝝀̌)
. (5.63c)
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These can be computed using a method which is similar to the one employed in the case of
two-spinon form-factor [see eqs. (3.71) to (3.76) from chapter 3]. Let us consider the following
function

𝑓𝑟 (𝜈 |𝜶) = − 1
𝜋

∑︁

𝜶⊂𝜻 Φ
′(𝜶 | 𝝔̂+, 𝜻) 1

sinh 𝜋(𝜻 − 𝜈)
𝔞𝑒 (𝜶) (𝜶 + 𝑖)𝑟 − 𝜶𝑟

1 + 𝔞𝑒 (𝜶) (5.64)

which can be used to descried all of the terms in eqs. (5.63a) to (5.63c). This allows us to write,

W𝑗 ,𝑟 = Φ( 𝜚̂+𝑗 |𝜻 , 𝝔̂+) 𝑓𝑟 ( 𝜚̂+𝑗 |𝝀̌) = Φ( 𝜚̂+𝑗 |𝜻 , 𝝔̂+)
{
𝑓𝑟 ( 𝜚̂+𝑗 |𝜻) − 𝑓𝑟 ( 𝜚̂+𝑗 |𝜼)

}
. (5.65)

Let us assume that all of the extra parameters 𝜼 ⊂ ℝ are real. We will later see how the periodicity
of the Φ function makes it safe to assume so. We can therefore write following integrals when
𝜈 ∈ ℝ,

𝑓𝑟 (𝜈 |𝜻) = − 1
2𝜋𝑖

(∫
ℝ−𝑖𝛼

−
∫
ℝ+𝑖𝛼
−

∮
𝜀𝜈

)
Φ(𝜏 | 𝝔̂+, 𝜻) 1

sinh 𝜋(𝜏 − 𝜈)
𝔞𝑒 (𝜏) (𝜏 + 𝑖)𝑟 − 𝜏𝑟

𝔞𝑒 (𝜏) + 1
𝑑𝜏 (5.66a)

otherwise for 𝜈 ∉ ℝ we can write

𝑓𝑟 (𝜈 |𝜻) = − 1
2𝜋𝑖

(∫
ℝ−𝑖𝛼

−
∫
ℝ+𝑖𝛼

)
Φ(𝜏 | 𝝔̂+, 𝜻) 1

sinh 𝜋(𝜏 − 𝜈)
𝔞𝑒 (𝜏) (𝜏 + 𝑖)𝑟 − 𝜏𝑟

𝔞𝑒 (𝜏) + 1
𝑑𝜏. (5.66b)

The integrals on the vertical edges can be ignored since this new Φ is bounded at infinity. In both
cases for eqs. (5.66a) and (5.66b) we will first use the estimation of the function 𝔞𝑒 as exponentially
vanishing or growing in 𝑀 inside the bulk. We also subsequently use the periodicity of the Φ to
write,(∫

ℝ−𝑖𝛼
−

∫
ℝ+𝑖𝛼

)
Φ(𝜏 | 𝝔̂+, 𝜻) 1

sinh 𝜋(𝜏 − 𝜈)
𝔞𝑒 (𝜏) (𝜏 + 𝑖)𝑟 − 𝜏𝑟

𝔞𝑒 (𝜏) + 1
𝑑𝜏

=

(∫
ℝ+𝑖𝛼
−

∫
ℝ+𝑖−𝑖𝛼

)
Φ(𝜏 | 𝝔̂+, 𝜻) 𝜏𝑟

sinh 𝜋(𝜏 − 𝜈) 𝑑𝜏. (5.67)

We can close the contour for the newly obtained anti-parallel integrals. The contribution of the
vertical edges is still vanishing. For all values of 𝜈 ∈ 𝝔̂+ we can see that the integrand is holomorphic
inside the new contour and thus we get,(∫

ℝ+𝑖𝛼
−

∫
ℝ+𝑖−𝑖𝛼

)
Φ(𝜏 | 𝝔̂+, 𝜻) 𝜏𝑟

sinh 𝜋(𝜏 − 𝜚̂+𝑘)
𝑑𝜏 = 0. (5.68)

Substituting eqs. (5.66) to (5.68) backwards into eq. (5.65) permits us to write blocks of matrixW
as

W𝑛
𝑗,𝑟 = −

(𝜚 𝑗 + 𝑖)𝑟 + 𝜚𝑟𝑗
𝔞′𝑒 (𝜚 𝑗) − 1

𝜋
Φ′(𝜚 𝑗 |𝝀̌, 𝝔̂+) 𝑓𝑟 (𝜚 𝑗 |𝜼), (5.69a)

W𝑐
𝑎,𝑟 = − 1

𝜋
Φ′(𝜐+𝑎 |𝝀̌, 𝝔̂+) 𝑓𝑟 (𝜐+𝑎 |𝜼), (5.69b)

W𝑠
𝑎,𝑟 = − (𝜗𝑎 + 𝑖)

𝑟 + 𝜗𝑟𝑎
𝔞′𝑒 (𝜗𝑎)

− 1
𝜋
Φ′(𝜗𝑎 |𝝀̌, 𝝔̂+) 𝑓𝑟 (𝜗𝑎 |𝜼). (5.69c)

It is important to note that extra terms due to 𝜼 appear as a linear sum over 𝑓𝑟 ( 𝜚̂+𝑗 |𝜼) given by
eq. (5.65). Therefore it is a linear sum over the columns which arises from the action on identity
block and can be immediately cancelled in the method II. We therefore need not give an explicit
form for the coefficients.
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Remark. We claimed that it was safe to assume that added parameters are real 𝜼 ⊂ ℝ. This was due
to two main reasons:

1. The extra parameters are unwanted so removing those who do not fall inside the contour and
they do not affect the computation.

2. These excluded parameters in the original contour can enter the newly drawn contour in
eq. (5.67), hence reintroducing them into 𝑓𝑟 function.

However, in the end, this difference will be unimportant since we can cancel the extra terms in the
determinant.

The correspondence between the method I and method II tells us that when extra parameters are
send to infinity, the sum 𝑓𝑟 ( 𝜚̂+𝑗 ) becomes the linear sum over columnsZ in eq. (5.50).

W𝑛
𝑗,𝑟 = −

(𝜚 𝑗 + 𝑖)𝑟 + 𝜚𝑟𝑗
𝔞′𝑒 (𝜚 𝑗) −

𝑛̃∑︁
𝑠=1

𝜒𝑤𝑟,𝑠Z𝑠 [𝜚 𝑗], (5.70a)

W𝑐
𝑎,𝑟 = −

𝑛̃∑︁
𝑠=1

𝜒𝑤𝑟,𝑠Z𝑠 [𝜐+𝑎], (5.70b)

W𝑠
𝑎,𝑟 = − (𝜗𝑎 + 𝑖)

𝑟 + 𝜗𝑟𝑎
𝔞′𝑒 (𝜗𝑎)

−
𝑛̃∑︁
𝑠=1

𝜒𝑤𝑟,𝑠Z𝑠 [𝜗𝑎] . (5.70c)

Remark. This procedure of sending extra parameters to infinity is not new. We would also like
to point out that we already used it in section 1.A for the proof of the Foda-Wheeler version of
the Slavnov formula [FW12b]. This comparison also sheds a light on the issue at hand, that we
face while using the method I for the extraction for the Foda-Wheeler block matrixW. Since both
matrices in the extraction were obtained through limit, the order of this limits plays an important
role. The exponential divergence of the Φ can be attributed to its pole accumulating at the infinity
due to this limit.

In the case of Pcau
𝑒 and P̃ matrices the extraction is more robust and both methods can be applied.

This robustness is due to the Cauchy structure of the original blocksH cau
𝑒 and H̃ but it won’t be

incorrect to say that this robustness can be also attributed to the fact that we perform the limiting
procedure only once unlike the Foda-Wheeler termsW.

5.2.3. Reduced matrices

In section 4.1 we saw that the matrix P𝑔 can be reduced to a small matrix Q𝑔 (5.37) of finite order
𝑛̃ which is equivalent with the original matrix up-to the determinant (5.36). We saw that it is made
up of sub-blocks:

Q𝑔 =
(
Q𝑐
𝑔 Q𝑤+

𝑔 Q𝑤−
𝑔

)
(5.71)

We also saw that its components are described by eqs. (5.46) and (5.49) for the close-pair Q𝑐
𝑔 and

wide-pair P𝑤±
𝑔 respectively.
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Now we shall do the same for the matrix P𝑒. The first step is to cancel the linear combinations
of the Vandermonde-likeZ block from eqs. (5.59), (5.60) and (5.70). This leads to the following
block structure for the matrix P𝑒:

P𝑒 =



I𝑛𝑟+𝑛c

A−1R[𝝑 |𝝔+]

0
W𝑛

0

Z𝑛

A−1S̃ W𝑠 Z𝑠


. (5.72)

According to the lemma C.1 we can construct a smaller matrix Q𝑒 of order 𝑛ℎ, which is composed
of the blocks:

Q𝑒 =
1
𝜋

(
S̃ AWeff AZeff

)
(5.73)

so that it is equivalent to the P𝑒 upto the determinants, since we have

det𝑁0+𝑛̃+1 P𝑒 =
1

∏

𝔞′𝑒 (𝝑)
det𝑛ℎ Q𝑒 . (5.74)

In this process, we also extracted a determinant of a diagonal matrix A−1 into the prefactor. The
effective matricesWeff andZeff are thus given by,

AWeff [𝝑] = A[𝝑]W[𝝑] − R[𝝑‖𝝔] · W[𝝔], (5.75)
and

AZeff [𝝑] = A[𝝑]Z[𝝑] − R[𝝑‖𝝔+] · Z[𝝔+] . (5.76)

Let us now compute effective matricesWeff andZeff. We can see that see that components of the
Weff matrix (5.75) can be obtained from the following:

Weff
𝑎,𝑟+1 = −2(𝜗𝑎 + 𝑖

2 )𝑟
𝔞′𝑒 (𝜗𝑎)

− 2𝜋𝑖
∑︁

𝝔

2(𝝔 + 𝑖
2 )𝑟

𝔞′𝑒 (𝝔)
𝜌ℎ (𝝔 − 𝜗𝑎), (𝑟 = 0, 1). (5.77)

Its computation is similar to the one performed in eqs. (3.81) to (3.86) for the two-spinon form-factor.
The summation is taken over the real Bethe roots only. It can be computed using the regular
condensation property and thus we obtain the result

AWeff
𝑎,𝑟+1 = −

(
𝜗𝑎 + 𝑖2

)𝑟
, (𝑟 = 0, 1). (5.78)

For the effective hyperbolic Vandermonde blockZeff we get from eq. (5.76)

Zeff
𝑎,𝑏 = Φ′(𝜗𝑎 |𝝀̌, 𝝔̂+)X̄𝑎 (𝜗𝑏) + 2𝜋𝑖

𝔞𝑒 (𝜗𝑎)
∑︁

𝝔+
𝜌ℎ (𝜗𝑎 − 𝝔+)Φ′(𝝔+ |𝝀̌, 𝝔̂+)X̄𝑎 (𝝔+). (5.79)
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where we have also used eq. (5.25b) to writeZ𝑎 (𝜈) = X̄𝑎 (𝜈)Φ′(𝜈 |𝝀̌, 𝝔̂+). These can be computed
in the similar manner as we did for the close-pair Cauchy extraction of the first type in section 4.1.
Let us consider the function 𝑓𝑎 defined by the summation:

𝑓𝑎 (𝜈 | 𝝔̂+) = 2𝜋𝑖
∑︁

𝝔̂+
𝜌ℎ (𝜈 − 𝝔̂+)Φ′( 𝝔̂+ |𝝀̌, 𝝔̂+)X̄𝑎 ( 𝝔̂+). (5.80)

It is sufficient to define it over the real values of 𝜈 ∈ ℝ since we want to compute these sums for
𝜈 ∈ 𝝑, which are always real. Note that this sum is taken over all the roots 𝝔̂+ which includes the
holes unlike the original sum which runs over 𝝔+, excluding the holes. In terms of this function we
can write the effectiveZ block as

AZeff
𝑎,𝑏 =

(
A − R

)
Z𝑎𝑏 [𝝑] + 𝑓𝑎 (𝜗𝑏 | 𝝔̂+). (5.81)

Now we write the function 𝑓𝑎 as an integral over the residues of the Φ function. Since the set 𝜚̂+
contains the positive close pair, we choose the contour which passes through ℝ − 𝑖𝛼 and ℝ + 𝑖 − 𝑖𝛼
with 𝛼 < 1

2 . We also remark that the function 𝜌ℎ is analytic in this region. Thus we can rewrite the
function 𝑓𝑎 as

𝑓𝑎 (𝜈 | 𝝔̂+) = 𝜋
(∫

ℝ−𝑖𝛼
−

∫
ℝ+𝑖𝛼

)
𝜌ℎ (𝜈 − 𝜏)Φ(𝜏 |𝝀̌, 𝝔̂+)X̄𝑎 (𝜏)𝑑𝜏. (5.82)

Using the periodicity of the Φ and X̄𝑎 functions and the semi-periodicity of the 𝜌ℎ function
(5.43), it can be converted according to the following:

𝑓𝑎 (𝜈 | 𝝔̂+) = 𝜋
∫
ℝ−𝑖𝛼

𝑝′0(𝜈 − 𝜏)Φ(𝜈 |𝝀̌, 𝝔̂+)X̄𝑎 (𝜏)𝑑𝜏. (5.83)

Substituting it in eq. (5.81) gives us the following expression:

AZeff
𝑎,𝑏 =

(
A − R

)
Z𝑎 [𝜗𝑏] + 𝜋

∫
ℝ−𝑖𝛼

𝑝′0(𝜈 − 𝜏)Φ(𝜈 |𝝀̌, 𝝔̂+)X̄𝑎 (𝜏)𝑑𝜏. (5.84)

We do not compute the integral with the Φ explicitly. This will be the final expression that we write
for the blockZeff, similar to blocks of Q𝑔 which were also represented in terms of integrals over Φ
function.

Finally let us recall that the matrix S̃ is a result of the higher-level Gaudin extraction. It is
unaffected in the reduction of size and thus retains its original form (4.83). It reads,

S̃ [𝝑‖ 𝝁̃] = R̃ [𝝑‖ 𝝁̃] · Ñ−1 [ 𝝁̃‖ 𝝁̃] . (5.85)

Equivalently, we can write the following system of linear equation for the matrix S̃:

𝔞̃′( 𝜇̃𝑎)S̃𝑎,𝑏 −
𝑛̃∑︁

𝑟=1
𝐾 ( 𝜇̃𝑎 − 𝜇̃𝑟 )S̃𝑏,𝑟 = −2𝜋𝑖𝜌̃( 𝜇̃𝑎 − 𝜗𝑏) = −𝑖𝑝′0( 𝜇̃𝑎 − 𝜗𝑏). (5.86)

This is a system of finite size 𝑛̃ and hence it can be solved with the traditional methods of the linear
algebra.
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5.3. Thermodynamic limit from the infinite product form

Remark. Let us also remark that we are usually concerned with the excitations with very small
number 𝑛̃ of higher-level roots as it can be seen from the relation (2.95), e.g. 𝑛̃ = 1 for a four-spinon
triplet, 𝑛̃ = 2 for a six-spinon triplet and so on. Therefore the higher-level Gaudin extraction need
not be seen as another difficulty.

On the contrary, an emergence of the higher-level Bethe Gaudin matrix and its role in describing
one of the blocks in the final determinant Q𝑒 is a very significant result. Drawing parallels with
the emergence of higher-level Bethe equations in the case of spectrum [DL82]; [BVV83], we can
see that this result does a same thing for the form-factors. In the case of spectrum we see that
density of the excited state is dominated by the density function for ground state, we thus take
the ratio of two exponential counting functions 𝔞𝑒 and 𝔞𝑔 and found that the higher-level Bethe
equation emerges for the complex roots due to this factorisation. Similarly here we find that a
higher-level Gaudin extraction emerges for the complex roots due to the factorisation of Gaudin and
then Cauchy-Vandermonde matrices.

5.3. Thermodynamic limit from the infinite product form

Substituting eqs. (5.36) and (5.74) into the expression (5.29) gives us the representation:

|𝐹𝑧 |2 = −2𝜋𝑀+1
1

∏

𝔞′𝑒 (𝝑)
∏

𝜒(𝝀)
∏

𝜒(𝝔)
∏(𝝔 − 𝝀)∏(𝝀 − 𝝁)
∏′(𝝔 − 𝝁)∏′(𝝀 − 𝝀)

×
∏

𝑞𝑔 (𝝊+ − 𝑖)
∏

𝑞𝑔 (𝝊− − 𝑖)
∏

𝑞′𝑒 (𝝊+ − 𝑖)
∏

𝑞𝑒 (𝝊− − 𝑖)

∏

𝑞𝑔 (𝝎+ − 𝑖)
∏

𝑞𝑔 (𝝎− − 𝑖)
∏

𝑞𝑒 (𝝎+ − 𝑖)
∏

𝑞𝑒 (𝝎− − 𝑖)
×

iii
sinh 𝜋( 𝝔̌+‖𝝀)

iii
sinh 𝜋(𝝀̌‖ 𝝔̂+)

× det𝑛̃ Q𝑔 det𝑛ℎ Q𝑒 . (5.87)

Let us first recall in the following table the cardinalities of all the different sets involved.

𝝀 𝝁 𝝑 𝝁̃ 𝝊 𝝎 𝜚 𝝔+ 𝝔± 𝝔̂ 𝝔̂+
𝑁0 𝑁1 𝑛ℎ 𝑛̃ 𝑛𝑐 𝑛𝑤 𝑛𝑟 𝑛𝑟 + 𝑛𝑐 𝑛𝑟 + 2𝑛𝑐 𝑛𝑟 + 𝑛ℎ 𝑁0 + 1 + 𝑛̃

Table 5.1.: Cardinalities of sets for some key examples (recalled)

Let us also recall that numbers 𝑁0 and 𝑁1 are related to the length of the chain 𝑀 through the
following expression:

𝑁𝑠 =
𝑀

2
− 𝑠. (5.88)

We know that these numbers are related to each other. One of these relations is the difference of
real roots:

𝑁0 − 𝑛𝑟 = 1 + 2𝑛𝑐 + 2𝑛𝑤 . (5.89)

It is related to the number of spinons 𝑛ℎ, or equivalently the number of higher-level roots 𝑛̃ = 𝑛ℎ
2 − 1,

through the following relations:

𝑁0 − 𝑛𝑟 = 1 + 𝑛̃ + 𝑛𝑐 (5.90a)
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or,

𝑁0 − 𝑛𝑟 =
1
2
(𝑛ℎ + 2𝑛𝑐). (5.90b)

The main advantage of the above two relations (5.90) over (5.89) is that it leaves the number of
wide-pair implicit. To this effect, we further introduce the following quantum numbers which will it
easier to follow some of the exponents and constants that arise in our computation.

Notation 42. Quantum numbers 𝑝 and 𝑞 are defined in terms of 𝑛ℎ and 𝑛𝑟 as

𝑝 + 𝑞
2

= 𝑛ℎ,
𝑝 − 𝑞

2
= 𝑁0 − 𝑛𝑟 =

1
2
𝑛ℎ + 𝑛𝑐 . (5.91)

We can see that they can be expressed as

𝑝 =
3
2
𝑛ℎ + 𝑛𝑐 = 3 + 3𝑛̃ + 𝑛𝑐 , 𝑞 =

1
2
𝑛ℎ − 𝑛𝑐 = 1 + 𝑛̃ − 𝑛𝑐 . (5.92)

Notation 43. We also define the quantum numbers 𝑃 and 𝑄 as

𝑃 = (𝑁0 − 𝑛𝑟 ) 𝑝 = (1 + 𝑛̃ + 𝑛𝑐) (3 + 3𝑛̃ + 𝑛𝑐), (5.93a)
𝑄 = (𝑁0 − 𝑛𝑟 ) 𝑞 = (1 + 𝑛̃ + 𝑛𝑐) (1 + 𝑛̃ − 𝑛𝑐). (5.93b)

We can see that the sum and difference of 𝑃 and 𝑄 are given by,

𝑃 −𝑄 =
1
2
(𝑛ℎ + 2𝑛𝑐)2, (5.94a)

𝑃 +𝑄 = 𝑛2
ℎ + 2𝑛ℎ𝑛𝑐 . (5.94b)

We will now compute the prefactor in the expression (5.87) in the thermodynamic limit. This
computation is divided into four stages to make it easier to follow. At the end of each stage we
revise the formula (5.87) for the form-factor. The last two stages are computationally intensive,
some of the intermediate formulae are put in section 5.B at the end of this chapter.

Stage one
The product over holes

∏

𝝑 cosh 𝜋𝝑 comes from the determinant det(𝜋A−1) which was extracted
when we defined Q𝑒 in eqs. (5.73) and (5.74). We then use the fact that all the holes are chosen
inside the bulk of the Fermi-distribution, thus up-to the leading order we can write

𝔞′𝑒 (𝜗𝑎) = −2𝜋𝑖𝑀𝜌𝑒 (𝜗𝑎) +𝑂 (1) = −𝑖𝜋𝑀
cosh 𝜋𝜗𝑎

+𝑂 (1). (5.95)

We also find that the same product is contained in the Cauchy-Vandermonde determinants in the
form of cross products for the combination of 𝜆̌𝑁0+1 = 𝑖

2 with any of the holes 𝜗𝑎 ∈ 𝝑. We can
separate all the terms due to 𝜚+𝑛𝑟+1 = 𝑖

2 and 𝜆̌𝑁0+1 = 𝑖
2 from these products. We see that they

mutually cancel out to produce the following simplification in eq. (5.87):
∏

𝑖cosh 𝜋𝝑
iii

sinh 𝜋( 𝝔̌+‖𝝀)
iii

sinh 𝜋(𝝀̌‖ 𝝔̂+) =
iii

sinh 𝜋(𝝔+‖𝝀)
iii

sinh 𝜋(𝝀‖ 𝝔̂+). (5.96)

Let us now use the periodicity of the hyperbolic function and the condition (2.79) for the formation
of the close-pairs to write

sinh 𝜋(𝜆 − 𝜐+) = sinh 𝜋(𝜐− − 𝜆). (5.97)
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We ignore the string deviation terms as they are exponentially small in the thermodynamic limit. It
permits us to recast the product of Cauchy-Vandermonde determinant in eq. (5.96) into the product:

iii
sinh 𝜋(𝝔+‖𝝀)

iii
sinh 𝜋(𝝀‖ 𝝔̂+)

=
∏′ sinh 𝜋(𝝔 − 𝝔±)
∏

sinh 𝜋(𝝔 − 𝝀)
∏′ sinh 𝜋(𝝀 − 𝝀)
∏

sinh 𝜋(𝝀 − 𝝔±)
∏

sinh 𝜋(𝝔± − 𝝑)
∏

sinh 𝜋(𝝀 − 𝝑)
×
∏

sinh 𝜋(𝝊+ − 𝝑)
∏′

sinh 𝜋(𝝊 − 𝝊)
iii

sinh 𝜋𝝑. (5.98)

Here 𝝔± = 𝜚 ∪ 𝝊+ ∪ 𝝊− denotes the set of real and all close-pair roots, in contrast to 𝝔+ which only
contains the positive close-pairs. In other words it is the set of Bethe roots except the wide pairs
𝝔± = 𝝁 \ (𝝎+ ∪ 𝝎−). Let us now substitute eqs. (5.96) and (5.98) into the expression (5.87). It
allows us to write

|𝐹𝑧 |2 =
−2𝜋𝑀−𝑛ℎ+1

𝑀𝑛ℎ

∏(𝝔 − 𝝀)∏(𝝀 − 𝝁)
∏′(𝝔 − 𝝁)∏′(𝝀 − 𝝀)
×

∏

𝜒(𝝀)
∏

𝜒(𝝔)
∏′ sinh 𝜋(𝝔 − 𝝔±)
∏

sinh 𝜋(𝝔 − 𝝀)
∏′ sinh 𝜋(𝝀 − 𝝀)
∏

sinh 𝜋(𝝀 − 𝝔±)
∏

sinh 𝜋(𝝔 − 𝝑)
∏

sinh 𝜋(𝝀 − 𝝑) (∗)

×
∏

𝑞𝑔 (𝝊+ − 𝑖)
∏

𝑞𝑔 (𝝊− − 𝑖)
∏

𝑞′𝑒 (𝝊+ − 𝑖)
∏

𝑞𝑒 (𝝊− − 𝑖)

∏

𝑞𝑔 (𝝎+ − 𝑖)
∏

𝑞𝑔 (𝝎− − 𝑖)
∏

𝑞𝑒 (𝝎+ − 𝑖)
∏

𝑞𝑒 (𝝎− − 𝑖)
×
∏

𝝊+,𝝑
sinh 𝜋(𝝊+ − 𝝑)

∏′
sinh 𝜋(𝝊 − 𝝊)

iii
sinh 𝜋𝝑

× det𝑛̃ Q𝑔 det𝑛ℎ Q𝑒 . (5.99)

The terms on the line marked with (∗) are computed in the next stage.

Stage two
Let us substitute the following expression for the thermodynamic limit of the function 𝜒 in eq. (5.99).
We recall that it represents the ratio of eigenvalues (2.63) and its thermodynamic limit is computed
in eq. (2.141).

𝜒(𝜏) =
∏

tanh
𝜋(𝜏 − 𝝑)

2
. (5.100)

Let us also split all the sinh terms of the line (∗) of eq. (5.99) in two parts according to

sinh 𝜋𝜈 = 2 sinh
𝜋𝜈

2
cosh

𝜋𝜈

2
. (5.101)

Substitution of the above two eqs. (5.100) and (5.101) in eq. (5.99) allows us to rewrite its line (∗) as
∏

𝜒(𝝀)
∏

𝜒(𝝔)
∏′ sinh 𝜋(𝝔 − 𝝔±)
∏

sinh 𝜋(𝝔 − 𝝀)
∏′ sinh 𝜋(𝝀 − 𝝀)
∏

sinh 𝜋(𝝀 − 𝝔±)
∏

sinh 𝜋(𝝔 − 𝝑)
∏

sinh 𝜋(𝝀 − 𝝑)

= 2−
𝑃−𝑄

2 2−(𝑛𝑟+
𝑀
2 )

∏′ sinh 𝜋 (𝝔−𝝔±)
2

∏

cosh 𝜋 (𝝔−𝝔±)
2

∏

sinh 𝜋 (𝝔−𝝀)
2

∏

cosh 𝜋 (𝝔−𝝀)
2

×
∏′ sinh 𝜋 (𝝀−𝝀)

2
∏

cosh 𝜋 (𝝀−𝝀)
2

∏

sinh 𝜋 (𝝀−𝝔±)
2

∏

cosh 𝜋 (𝝀−𝝔±)
2

×
∏

cosh2 𝜋 (𝝔−𝝑)
2

∏

cosh2 𝜋 (𝝀−𝝑)
2

(5.102)
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which can be re-expressed in terms of the Gamma functions with the identity [to be added] as
∏

𝜒(𝝀)
∏

𝜒(𝝔)
∏′ sinh 𝜋(𝝔 − 𝝔±)
∏

sinh 𝜋(𝝔 − 𝝀)
∏′ sinh 𝜋(𝝀 − 𝝀)
∏

sinh 𝜋(𝝀 − 𝝔±)
∏

sinh 𝜋(𝝔 − 𝝑)
∏

sinh 𝜋(𝝀 − 𝝑)

= 2−
𝑃+𝑄

2 𝜋−(𝑃−𝑄)−(𝑛𝑟+𝑁0)
∏′(𝝔 − 𝝔±)∏′(𝝀 − 𝝀)
∏(𝝔 − 𝝀)∏(𝝀 − 𝝔±)

×
∏
𝜎=±1


1

∏

Γ2
(

1
2 + 𝝔−𝝑

2𝑖𝜎

) ∏

Γ
(
1 + 𝝔−𝝀

2𝑖𝜎

)
Γ

(
1
2 + 𝝔−𝝀

2𝑖𝜎

)
∏

Γ
(
1 + 𝝔−𝝔±

2𝑖𝜎

)
Γ

(
1
2 + 𝝔−𝝔±

2𝑖𝜎

) (∗)
×
∏

Γ2
(
1
2
+ 𝝀 − 𝝑

2𝑖𝜎

) ∏

Γ
(
1 + 𝝀−𝝔±

2𝑖𝜎

)
Γ

(
1
2 + 𝝀−𝝔±

2𝑖𝜎

)
∏

Γ
(
1 + 𝝀−𝝀

2𝑖𝜎

)
Γ

(
1
2 + 𝝀−𝝀

2𝑖𝜎

)  .(∗) (5.103)

The last two terms marked with (∗) in the above expression in eq. (5.103) have a similar but
reciprocate form. It prompts us to define the following auxiliary function.

Definition 44. The auxiliary function Ω(𝜏) is defined by the following rational form in Gamma
functions:

Ω(𝜏) =
∏
𝜎=±1


Γ𝑝 ( 12 )

∏

Γ2
(

1
2 + 𝜏−𝝑

2𝑖𝜎

) ∏

Γ
(
1 + 𝜏−𝝀

2𝑖𝜎

)
Γ

(
1
2 + 𝜏−𝝀

2𝑖𝜎

)
∏

Γ
(
1 + 𝜏−𝝔±

2𝑖𝜎

)
Γ

(
1
2 + 𝜏−𝝔±

2𝑖𝜎

)  (5.104)

Let us recall that the integer 𝑝 was introduced in notation 42. Let’s also recall that 𝝔± denotes the
union 𝝔± = 𝝔 ∪ 𝝊+ ∪ 𝝊−.

The rational terms in eqs. (5.99) and (5.103) cancel out only partially when the wide-pairs are
present since 𝝔± = 𝝁 \ (𝝎+ ∪ 𝝎̄−).

∏′(𝝔 − 𝝔±)∏′(𝝀 − 𝝀)
∏(𝝔 − 𝝀)∏(𝝀 − 𝝔±) ·

∏(𝝔 − 𝝀)∏(𝝀 − 𝝁)
∏′(𝝔 − 𝝁)∏′(𝝀 − 𝝀) =

∏

𝝀 (𝝎+ − 𝝀)
∏

𝝀 (𝝎̄− − 𝝀)
∏

𝝔 (𝝎+ − 𝝔)∏𝝔 (𝝎̄− − 𝝔) (5.105)

Equations (5.103) to (5.105) permits us to rewrite eq. (5.99) in the notation of the auxiliary functions
Ω and 𝜙 [see definitions 14 and 44], as it is shown in the following:

|𝐹𝑧 |2 = −2−
𝑃+𝑄−2

2 𝜋𝑄−𝑞+1𝑀−𝑛ℎ
∏

𝝊+,𝝑
sinh 𝜋(𝝊+ − 𝝑)

∏′
sinh 𝜋(𝝊 − 𝝊)

iii
sinh 𝜋𝝑

×
∏

𝝎+
𝜙

(
𝝎+

��𝝀, 𝝔) ·
∏

𝝎̄−
𝜙

(
𝝎̄−

��𝝀, 𝝔)
×
∏

𝝊+
𝜙′

(
𝝊+ − 𝑖

��𝝀, 𝝁) · ∏

𝝊−
𝜙

(
𝝊− − 𝑖

��𝝀, 𝝁)
×
∏

𝝎+
𝜙

(
𝝎+ − 𝑖

��𝝀, 𝝁) · ∏

𝝎̄−
𝜙

(
𝝎̄− − 𝑖

��𝝀, 𝝁)
×
∏

Ω(𝝔)
∏

Ω(𝝀) · det𝑛̃ Q𝑔 det𝑛ℎ Q𝑒 . (5.106)

Note that in 𝜙′(𝜐+𝑎 |𝝀, 𝝁), the ′ symbol denotes omission of the pole and the explicit dependence on
the string deviation parameters is dropped. We will now compute the thermodynamic limit of the
auxiliary function Ω in the next stage.
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Stage three
Let us use the infinite product representation of the Γ function to write an infinite product form for
the auxiliary function Ω:

Ω(𝜏) =
∞∏
𝑛=1

Ω𝑛 (𝜏). (5.107)

This infinite product can be commuted with the product over the function Ω for real roots in
eq. (5.106). This gives the infinite product form for

∏

Ω(𝝔)
∏

Ω(𝝀) =
∞∏
𝑛=1

∏

Ω𝑛 (𝝔)
∏

Ω𝑛 (𝝀) (5.108)

The general term Ω in this product can be written in terms of the 𝜙 functions as

Ω𝑛 (𝜏) = (2𝑛)2𝑞
(2𝑛 − 1)2𝑝

∏
𝜎=±1

𝜙
(
𝜏 + 2𝑖𝑛𝜎

���𝝔±, 𝝀)
×

∏
𝜎=±1

𝜙
(
𝜏 + (2𝑛 − 1)𝑖𝜎

���𝝔±, 𝝀) {
∏

𝝑

(
(2𝑛 − 1)2 + (𝜏 − 𝝑)2

) }2

. (5.109)

Its thermodynamic limit is computed by substituting that of the 𝜙 functions in section 5.B.1. There
we obtained the expression (5.180) for it. Substituting this expression for Ω𝑛 in eq. (5.108) gives us
the thermodynamic limit of the general term in this infinite product (5.181) which is reproduced in
the following expression:

∏

Ω𝑛 (𝝔)
∏

Ω𝑛 (𝝀) =
(2𝑛 − 1)2𝑃
(2𝑛)2𝑄

{
∏

𝝊+
𝜙

(
𝝊+ − 2𝑖𝑛

���𝝔, 𝝀) 𝜙 (
𝝊+ − (2𝑛 − 1)𝑖

���𝝔, 𝝀)
×
∏

𝝊−
𝜙

(
𝝊− + 2𝑖𝑛

���𝝔, 𝝀) 𝜙 (
𝝊− + (2𝑛 − 1)𝑖

���𝝔, 𝝀) }
×
∏

𝝎+

𝜙
(
𝝎+ + 2(𝑛 − 1)𝑖

���𝝔, 𝝀)
𝜙

(
𝝎+ + 2𝑛𝑖

���𝝔, 𝝀) ·
∏

𝝎̄−

𝜙
(
𝝎̄− − 2(𝑛 − 1)𝑖

���𝝔, 𝝀)
𝜙

(
𝝎̄− − 2𝑛𝑖

���𝝔, 𝝀)
×

{
∏

𝝑
𝜙

(
𝝑 + (2𝑛 − 1)𝑖

���𝝔, 𝝀) 𝜙 (
𝝑 − (2𝑛 − 1)𝑖

���𝝔, 𝝀)}. (5.110)

We now compute in section 5.B.2 its thermodynamic limit using the asymptotic form (5.178b) of
the 𝜙 function.

There we find that the ratio of Ω𝑛 has the thermodynamic limit (5.186) which is reproduced in
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the following expression:
∏

Ω𝑛 (𝝔)
∏

Ω𝑛 (𝝀) = 2−𝑁
2
ℎ
(2𝑛 − 1)2𝑃
(2𝑛)2𝑄

×
{
∏

𝝊

1
((𝝊 − 𝝊)2 + (2𝑛)2)

1
((𝝊 − 𝝊)2 + (2𝑛 − 1)2)

}
×

{
∏

𝝊,𝝎

(𝝊 − 𝝎 − (2𝑛 + 1)𝑖) (𝝊 − 𝝎 − (2𝑛 − 2)𝑖)
(𝝊 − 𝝎 − 2𝑛𝑖) (𝝊 − 𝝎 − (2𝑛 − 1)𝑖)

×
∏

𝝊,𝝎̄

(𝝊 − 𝝎̄ + (2𝑛 + 1)𝑖) (𝝊 − 𝝎̄ + (2𝑛 − 2)𝑖)
(𝝊 − 𝝎̄ + 2𝑛𝑖) (𝝊 − 𝝎̄ + (2𝑛 − 1)𝑖)

}
×

{
∏

𝝎,𝝎̄

(𝝎 − 𝝎̄ + (2𝑛 − 2)𝑖) (𝝎 − 𝝎̄ + (2𝑛 + 1)𝑖)
(𝝎 − 𝝎̄ + (2𝑛 − 1)𝑖) (𝝎 − 𝝎̄ + 2𝑛𝑖)

×
∏

𝝎,𝝎̄

(𝝎̄ − 𝝎 − (2𝑛 − 2)𝑖) (𝝎̄ − 𝝎 − (2𝑛 + 1)𝑖)
(𝝎̄ − 𝝎 − (2𝑛 − 1)𝑖) (𝝎̄ − 𝝎 − 2𝑛𝑖)

}
×

{
∏

𝝊,𝝑

1
((2𝑛 − 1

2 )2 + (𝝊 − 𝝑)2)
1

((2𝑛 − 3
2 )2 + (𝝊 − 𝝑)2)

}
×

∏
𝜎=±1

∏


Γ

(
𝑛 − 1

2 + 𝝑−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 𝝑−𝝑

2𝑖𝜎

)  . (5.111)

We compute in section 5.B.3 the infinite product (5.108) with the help of this expression. Here we
only note that the above expression (5.111) can be written entirely in terms of the Γ function [see
eq. (5.187)]. Thus we can access this infinite product by comparing it with the Weierstrass form of
the Barnes G-function, which is exactly what is done in section 5.B.3.

There we find in eq. (5.199) that the infinite product (5.108) is well defined and it converges to
the following expression: §

∏

Ω(𝝔)
∏

Ω(𝝀) =
(2𝑖)𝑛𝑐𝑛ℎ
𝜋

1
2𝑛

2
ℎ
+𝑄+𝑛𝑐

∏′
𝝊

𝝊 − 𝝊

sinh 𝜋(𝝊 − 𝝊) ·
∏

𝝊,𝝑

1
sinh 𝜋(𝝊+ − 𝝑)

×
∏

𝝊,𝝎

𝝊 − 𝝎

𝝊 − 𝝎 − 𝑖 ·
∏

𝝊,𝝎̄

𝝊 − 𝝎̄

𝝊 − 𝝎̄ + 𝑖
×
∏

𝝎,𝝎̄

𝝎 − 𝝎̄

𝝎 − 𝝎̄ + 𝑖 ·
∏

𝝎,𝝎̄

𝝎̄ − 𝝎

𝝎̄ − 𝝎 − 𝑖

× 1
𝐺2𝑛ℎ ( 12 )

iii2

𝝑

𝐺2
(
1 + 𝝑

2𝑖

)
𝐺2

(
1
2 + 𝝑

2𝑖

) . (5.112)

Note that the anomalous phase term 𝑖𝑛ℎ𝑛𝑐 in the above expression (5.112) can be dropped since the
product of quantum numbers 𝑛ℎ𝑛𝑐 is multiple of four. This can be easily seen from the following
expressions:

𝑛𝑐 =
1
2
𝑛ℎ − 2𝑛𝑤 − 1. (5.113)

§ Let us recall the notation
aaa2 𝑓 (𝜶) = aaa

𝑓 (𝜶)aaa 𝑓 (−𝜶) which introduced on the page 10.
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which tells us that either 𝑛ℎ is multiple of four or both 𝑛ℎ and 𝑛𝑐 are even integers.¶
Let us now substitute this result (5.112) into eq. (5.106). We see that both products

∏′ sinh 𝜋(𝝊−𝝊)
and

∏

sinh 𝜋(𝝊+ − 𝝑) are cancelled out in this process. Meanwhile let us also use the following
expression to see how

aaa
sinh 𝜋𝝑 in eq. (5.106) and the Barnes G-functions in the above expression

(5.112) can also be recombined during this substitution.
iii

sinh 𝜋(𝝑) = (2𝜋)
𝑛ℎ (𝑛ℎ−1) (aaa−𝜗)−1

aaa2 Γ
(
𝝑
2𝑖

) aaa2 Γ
(

1
2 + 𝝑

2𝑖

) . (5.114)

It allows us to rewrite eq. (5.106) with the following expression:

|𝐹𝑧 |2 = (−1)
𝑛ℎ (𝑛ℎ−1)

2 +1 2
𝑛ℎ (𝑛ℎ−2)

2 +1 𝜋
𝑛ℎ (𝑛ℎ−3)

2 +1𝑀−𝑛ℎ

×
∏′

𝝊, 𝝁̃
(𝝊 − 𝝁̃) ·

∏

𝝊+
𝜙′

(
𝝊+ − 𝑖

��𝝀, 𝝁) · ∏
𝝊−
𝜙

(
𝝊− − 𝑖

��𝝀, 𝝁)
×
∏

𝝎,𝝎̄
| (𝝎 − 𝝎̄) |2 ·

∏

𝝎+
𝜙

(
𝝎+

��𝝀, 𝝔) ·
∏

𝝎̄−
𝜙

(
𝝎̄−

��𝝀, 𝝔)
×
∏

𝝎,𝝎̄
|𝝎 − 𝝎̄ + 𝑖 |2 ·

∏

𝝎+
𝜙

(
𝝎+ − 𝑖

��𝝀, 𝝁) · ∏
𝝎̄−
𝜙

(
𝝎̄− − 𝑖

��𝝀, 𝝁)
× 1
𝐺2𝑛ℎ ( 12 )

iii2 𝐺 ( 𝝑2𝑖 )𝐺 (1 + 𝝑
2𝑖 )

𝐺 ( 12 + 𝝑
2𝑖 )𝐺 ( 32 + 𝝑

2𝑖 )
det𝑛̃ Q𝑔 det𝑛ℎ Q𝑒aaa(𝝑) . (5.115)

In the fourth and the final stage we compute the 𝜙 functions in the prefactor of the above expression
(5.115).

Stage four: Reduced determinant representation
. In section 5.B.4 we found that the product of the 𝜙 functions for the close-pairs is given by the
following expression in the thermodynamic limit:

∏

𝜙′(𝝊+ − 𝑖 |𝝀, 𝝁)
∏

𝜙(𝝊− − 𝑖 |𝝀, 𝝁) =
∏′ 1

𝝊 − 𝝊
∏ 1

𝝊 − 𝝎
∏ 1

𝝊 − 𝝎̄

∏(𝝊 − 𝝑 − 𝑖
2 )

∏(𝝊 − 𝝁̃ − 𝑖) .

(5.116)
Whereas for the product of 𝜙 functions for the wide-pairs were found to be given by the following
expression:

∏

𝜙(𝝎+ |𝝀, 𝝔)
∏

𝜙(𝝎̄− |𝝀, 𝝔)
∏

𝜙(𝝎+ − 𝑖 |𝝀, 𝝁)
∏

𝜙(𝝎̄− − 𝑖 |𝝀, 𝝁)

=
∏

(𝝎 − 𝝊 + 𝑖)
∏

(𝝎̄ − 𝝊 − 𝑖)
∏ 𝝎 − 𝝎̄ + 𝑖

𝝎 − 𝝎̄
∏ 𝝎̄ − 𝝎 − 𝑖

𝝎̄ − 𝝎
×
∏(𝝎 − 𝝑 − 𝑖

2 )
∏(𝝎 − 𝝁̃ − 𝑖)

∏(𝝎̄ − 𝝑 − 𝑖
2 )

∏(𝝎̄ − 𝝁̃ − 𝑖) (5.117)

Substituting these two expressions back into eq. (5.115) allows us to write the following reduced
determinant representation for the form-factors:

|𝐹𝑧 |2 = (−1)
𝑛ℎ+2

2 𝑀−𝑛ℎ2
𝑛ℎ (𝑛ℎ−2)+2

2 𝜋
𝑛ℎ (𝑛ℎ−3)+2

2

∏( 𝝁̃ − 𝝑 − 𝑖
2 )

∏( 𝝁̃ − 𝝁̃ − 𝑖)

× 1
𝐺2𝑛ℎ ( 12 )

∏′ 𝐺 (𝝑−𝝑2𝑖 )𝐺 (1 + 𝝑−𝝑
2𝑖 )

𝐺 ( 12 + 𝝑−𝝑
2𝑖 )𝐺 ( 32 + 𝝑−𝝑

2𝑖 )
det𝑛̃ Q𝑔 det𝑛ℎ Q𝑒

det V[𝝑] . (5.118)

¶ Let us also recall from chapter 2 that number of holes 𝑛ℎ is always even.
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This will be the final result of our computations here. We will discuss its merits and demerits
thoroughly in the conclusions. Let us only remark here that the strongest aspect of this result is
that we compute the prefactors, including an infinite Cauchy matrix in the thermodynamic limit.
However, the weakness lies in the fact that we do not obtain a closed form expression [see eqs. (5.46),
(5.49) and (5.84)] for all of the terms involved in the matrices Q𝑔 and Q𝑒. But the fact we find
higher-level Gaudin matrix (5.86) inside the matrix Q𝑒 is one of the strongest aspect of this result.

Finally before we end this chapter let us consider some examples of the representations (5.118)
for the form-factors in lower sectors. The trivial yet important example is the case 𝑛ℎ = 2 for which
we already obtained an exact result in chapter 3 for the two-spinon form-factor. Let us compare the
result (3.105) with what we have obtained here. We can very easily check that

1. The determinant of matrix P𝑔 is absent since 𝑛̃ = 0, hence we substitute detP𝑔 = 1.

2. The matrix P𝑒 is the Vandermonde matrix of order two P𝑒 = V[𝝑 + 𝑖
2 ] and hence its cancels

out with the denominator.
3. The prefactor for the two-spinon (𝑛ℎ = 2) case is 2𝑀−2.

Hence the results (5.118) is compatible with our previous result (3.105) and this comparison is a
helpful tool in determining the fidelity of our computations, particular in the prefactors. We will
now see a simplest non-trivial example that follows from our computations in chapters 4 and 5,
namely the four-spinon form-factor.

5.3.1. Example: Four-spinon case and little CV extraction

The four-spinon triplet excitations are determined by the four hole parameters 𝝑, 𝑛ℎ = 4. We saw in
section 2.2.2 that it consists of two complex roots which forms a 2-string {𝜐+, 𝜐−}. It is important
to remark these roots cannot form any other configuration such as a quartet or wide-pair since the
latter two require 𝑛̃ ≥ 4 whereas for 𝑛ℎ = 2, we have 𝑛̃ = 1 from the relation (2.95). The centre 𝜐 of
the 2-string is a real parameter satisfying the higher-level Bethe equation (2.97) for the four-spinon
excitation is simply given by

∏(𝜐 − 𝝑 + 𝑖
2 )

∏(𝜐 − 𝝑 − 𝑖
2 )

= 1. (5.119)

When simplified, it takes the form of a cubic polynomial (2.112):

4𝜐3 − 3𝜐2
∑︁
𝑎

𝜗𝑎 + 𝜐
(
2
∑︁
𝑎≠𝑏

𝜗𝑎𝜗𝑏 − 1

)
−

( ∑︁
𝑎≠𝑏≠𝑐

𝜗𝑎𝜗𝑏𝜗𝑐 − 1
4

∑︁
𝑎

𝜗𝑎

)
= 0. (5.120)

It admits three real solutions which tells us that there are three different positions available for the
centre of a 2-string, once all the hole parameters are fixed. We have discussed this in details in
section 2.2.3.

Since we have 𝑛̃ = 1, the matrix Q𝑔 in eq. (5.118) becomes a singleton. From eq. (5.46) we see
that it can be expressed as following:

J𝑔 = detQ𝑔 = −𝜙 (
𝜐 − 3𝑖

2
��𝝁, 𝝀)𝜙′ (𝜐 + 𝑖

2
��𝝀, 𝝁)

Φ′
(
𝜐+

�� 𝝔̌+, 𝝀)
+ 2<

∫
ℝ+𝑖𝛼

Φ
(
𝜏
�� 𝝔̌+, 𝝀) 𝑡 (𝜏 − 𝜐)𝑑𝜏. (5.121)
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Similarly the higher-level Gaudin matrix is also a singleton matrix since we have 𝑛̃ = 1. The
term 𝔞̃′(𝜐) can be computed from the logarithmic derivative of the higher-level counting function
(2.102a). It gives us,

𝔞̃′(𝜐) = − log 𝔞̃′(𝜐) = 2𝜋𝑖𝐾 (0) − 2𝜋𝑖
∑︁

𝐾2(𝜐 − 𝝑). (5.122)

Therefore we can write,

Ñ = 𝔞̃′(𝜐) − 2𝜋𝑖𝐾 (0) = −2𝜋𝑖
∑︁

𝐾2(𝜐 − 𝝑). (5.123)

Let recall from eq. (2.126) that the density term 𝜌̃ for the higher-level roots is a rational function 𝐾2
with the decomposition into the simple fractions:

𝜌̃(𝜆) = 𝐾2(𝜆) = 1
2𝜋𝑖

{
1

𝜆 − 𝑖
2
− 1
𝜆 + 𝑖

2

}
(5.124)

and let us also recall that the matrix R̃ is composed of the density terms 𝜌̃ (4.64). This tells us that
the higher-level Gaudin extraction S̃ = R̃Ñ−1 (5.85) becomes extremely simple and its results can
be written as

S̃𝑎 =
𝜌̃(𝜐 − 𝜗𝑎)
∑

𝜌̃(𝜐 − 𝝑) . (5.125)

Simultaneously, the decomposition of the function 𝜌̃ in eq. (5.124) into the simple fractions also
permits us to construct two new matrices T + and T − by developing on the first column S̃ in Q𝑒,
such that

detQ𝑒 =
det4 T + − det4 T −

∑

𝜌̃(𝜐 − 𝝑) . (5.126)

We can see that matrices T + and T − that we constructed here are modified rational Cauchy-
Vandermonde matrices. A block of first three columns forms Cauchy-Vandermonde matrices
while the last column contains A𝑒Zeff from eq. (5.27b), as it can be seen from the following two
expressions:

T + =
(
C ª𝛿 (2)

[
𝝑 + 𝑖

2




 {𝜐}] ��� AZeff
)
, (5.127a)

and
T − =

(
C ª𝛿 (2)

[
𝝑 + 𝑖

2




 {𝜐 + 𝑖}] ��� AZeff
)
. (5.127b)

Similarly, the prefactors can also be combined together in such a way that it forms a rational
Cauchy-Vandermonde determinant. There are two ways in which this can be arranged. Either we
can combine the rational terms in eq. (5.118) directly to obtain the determinants:

∏(𝜐 − 𝝑 − 𝑖
2 )

(−𝑖)aaa(𝝑) =
𝑖

aaa({𝜐} ‖𝝑 + 𝑖
2 )

=
𝑖

C ª𝛿
[
𝝑 + 𝑖

2




 {𝜐}] . (5.128a)

Or we can first use the higher-level Bethe equations (5.119) and thus obtain the following determinant:
∏(𝜐 − 𝝑 + 𝑖

2 )
(−𝑖)aaa(𝝑) =

𝑖
aaa({𝜐 + 𝑖} ‖𝝑 + 𝑖

2 )
=

𝑖

C ª𝛿
[
𝝑 + 𝑖

2




 {𝜐 + 𝑖}] . (5.128b)
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The higher-level Bethe equations (5.119) tells us that these two expressions are equal. Let us now
substitute eq. (5.121) and eqs. (5.126) to (5.128) into the representation (5.118). It allows to write

|𝐹𝑧 |2 = −32𝜋3

𝑀4
1

𝐺8( 12 )
iii2 𝐺 ( 𝝑2𝑖 )𝐺 (1 + 𝝑

2𝑖 )
𝐺 ( 12 + 𝝑

2𝑖 )𝐺 ( 32 + 𝝑
2𝑖 )

× J𝑔
∑

𝜌̃(𝜐 − 𝝑)

{
detT +

det C ª𝛿
[{𝜐} ‖𝝑 + 𝑖

2
] − detT −

det C ª𝛿
[{𝜐 + 𝑖} ‖𝝑 + 𝑖

2
] } . (5.129)

Let us now extract the rational Cauchy-Vandermonde matrices in the denominator. It is important
to note that we must take the action of the inverse Cauchy-Vandermonde matrix and not its dual,
since the matrices T ± already contains the Vandermonde columns.

J+𝑒 = C−1
ª𝛿

[
{𝜐}




𝝑 + 𝑖
2

]
· T +, (5.130a)

and
J−𝑒 = C−1

ª𝛿

[
{𝜐 + 𝑖}




𝝑 + 𝑖
2

]
· T −. (5.130b)

The inverse matrices in the above expressions (5.130) are given by the duality found in eqs. (5.10)
and (5.11), it means that, in a general setting we would have to deal with extraction sums involving
supersymmetric polynomials 𝑒𝑎 (𝒙‖𝒚) [see definition 46]. However, in the four-spinon case, this
issue do not arise, since we can easily check that there is an identity block of order three in the
resultant matrix J𝑒. Hence for the determinant, we only need to compute the non-trivial diagonal
element, which is obtained by the extraction with the constant supersymmetric polynomial 𝑒0. Thus
we can write that

detJ+𝑒 = J+𝑒;44 =
4∑︁

𝑎=1

𝜗𝑎 − 𝜐 + 𝑖
2

∏′(𝜗𝑎 − 𝝑)
AZeff [𝜗𝑎], (5.131)

and

detJ−𝑒 = J−𝑒;44 =
4∑︁

𝑎=1

𝜗𝑎 − 𝜐 − 𝑖
2

∏′(𝜗𝑎 − 𝝑)
AZeff [𝜗𝑎] . (5.132)

Let us now observe that the difference J𝑒 = detJ+𝑒 − detJ−𝑒 is given by the expression

J𝑒 =
4∑︁

𝑎=1

𝑖
∏′(𝜗𝑎 − 𝝑)

AZeff [𝜗𝑎] . (5.133)

Let us also recall that the effectiveZ matrix can be written as

AZeff [𝜗𝑎] = 𝔞′𝑒 (𝜗𝑎)Φ′
(
𝜗𝑎

��𝝀̌, 𝝔̂+) − 2𝜋𝑖
∑︁

𝜌ℎ (𝜗𝑎 − 𝝑)Φ′
(
𝝑
��𝝀̌, 𝝔̂+)

+ 𝜋
∫
ℝ+𝑖𝛼

𝜌̃(𝜗𝑎 − 𝜏)Φ
(
𝜗𝑎

��𝝀̌, 𝝔̂+) 𝑑𝜏. (5.134)

Finally, we substitute eqs. (5.130) to (5.133) in eq. (5.129) to obtain the following representation for
the four-spinon form-factor:

|𝐹𝑧 |2 = −32𝜋3

𝑀4
1

𝐺8( 12 )
∏′ 𝐺 (𝝑−𝝑2𝑖 )𝐺 (1 + 𝝑−𝝑

2𝑖 )
𝐺 ( 12 + 𝝑−𝝑

2𝑖 )𝐺 ( 32 + 𝝑−𝝑
2𝑖 )

J𝑔J𝑒
∑

𝜌̃(𝜐 − 𝝑) . (5.135)
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Note that all the prefactors as well as the term J𝑒 obtained in eq. (5.133) is independent of the choice
of the string centre 𝜐. The term J𝑔 (5.121) and the denominator

∑

𝜌̃(𝜐 − 𝝑) depends implicitly on
the string centre 𝜐 which is determined as one of the three roots of the cubic polynomial (5.120).

5.A. Toy example : Extraction of the Cauchy-Vandermonde matrix

5.A.1. CV extraction in rational parametrisation

We will now study a simpler example of the Cauchy-Vandermonde extraction (5.57). Here we want
to extract the common Cauchy matrix C[𝒙‖𝒚] from the sum:

𝐶 [𝒙‖𝒚L] + 𝐶 [𝒙‖𝒚R · 𝑹] (5.136)

The sets 𝒙 and 𝒚 have cardinalities 𝑛𝒙 = 𝑚 and 𝑛𝒚 = 𝑚 + 𝑛. The latter is partitioned into two subsets
𝒙 = 𝒙L ∪ 𝒙R such that their cardinalities are 𝑛𝒚L = 𝑚 and 𝑛𝒚R = 𝑛. The extraction is taken on the
larger matrix where eq. (5.136) is embedded diagonally as

𝑃 = C∗−1
ª𝛿 [𝒚‖𝒙] ·

(
C[𝒙‖𝒚L] + C[𝒙‖𝒚R] · 𝑅 0

0 I𝑛

)
. (5.137)

Here we compute the action in this toy example in two different manners which leads to the same
final conclusion.

Method I: We see that from the inversion C∗−1
ª𝛿 [𝒚‖𝒙]C

∗
ª𝛿 [𝒙‖𝒚] = I and the diagonal dressing

(C.56) we get

𝛿 𝑗 ,𝑘 = 𝜙′(𝑦 𝑗 |𝒙, 𝒚)
{

𝑚∑︁
𝑎=1

𝜙′(𝑥𝑎 |𝒚, 𝒙) 1
𝑦 𝑗 − 𝑥𝑎

1
𝑥𝑎 − 𝑦𝑘 +

𝑛∑︁
𝑎=1
(−1)𝑛−𝑎𝑦𝑎−1

𝑗 𝑒𝑛−𝑎 (𝒚𝒌̂ ‖𝒙)
}
. (5.138)

Hence the partial sums in the extraction on the Cauchy-block in eq. (5.137) can be expressed as

𝑃 𝑗 ,𝑘 = 𝛿 𝑗 ,𝑘 + 𝑅𝑟 ,𝑘𝛿 𝑗 ,𝑚+𝑟

− 𝜙′(𝑦 𝑗 |𝒙, 𝒚)
𝑛∑︁

𝑎=1
(−1)𝑛−𝑎𝑦𝑎−1

𝑗 𝑒𝑛−𝑎 (𝒚𝒌̂ ‖𝒙)

− 𝜙′(𝑦 𝑗 |𝒙, 𝒚)
𝑛∑︁

𝑎=1

𝑛∑︁
𝑏=1
(−1)𝑛−𝑎𝑦𝑎−1

𝑗 𝑒𝑛−𝑎 (𝒚�𝑚+𝑏 ‖𝒙)𝑅𝑏,𝑘 . (5.139)

Whereas the action on identity block simply gives back the supersymmetric Vandermonde block in
the inverse matrix which we shall denote

𝑍𝑎 [𝑦 𝑗] = 𝑃 𝑗 ,𝑚+𝑎 = (−1)𝑎−1𝜙′(𝑦 𝑗 |𝒚, 𝒙)𝑦𝑎−1
𝑗 . (5.140)

We see that the extra terms in the form of summations in eq. (5.139) are linear combinations of the
columns from 𝑍 .

𝑃 𝑗 ,𝑘 = 𝛿 𝑗 ,𝑘 + 𝑅𝑟 ,𝑘𝛿 𝑗 ,𝑚+𝑟 −
𝑛∑︁

𝑎=1
𝜒𝑎 (𝑦𝑘)𝑍𝑎 [𝑦 𝑗] −

𝑛∑︁
𝑎=1

(
𝑛∑︁

𝑏=1
𝜒𝑎 (𝑦𝑚+𝑏)𝑅𝑏,𝑘

)
𝑍𝑎 [𝑦 𝑗] . (5.141)

151



Chapter 5. CV extraction and reduced determinant representation

These linear sums over the columns from block 𝑍 can be silently cancelled without affecting its
determinant to obtain

𝑃 =

( I 𝑍N

𝑅𝑇 𝑍S

)
. (5.142)

Finally using lemma C.1 we can construct a smaller matrix 𝑄 as follows:

𝑄 = 𝑍S − 𝑅𝑇 𝑍N (5.143)

such that it is equivalent up-to the original matrix 𝑃 up-to the evaluation of its determinant:

det𝑚+𝑛 𝑃 = det𝑛𝑄. (5.144)

Method II: Let us form a larger square matrix C[𝒛‖𝒚] where we add the extra variables 𝒛 = 𝒙 ∪ 𝒘
such that the cardinality of the extended set 𝒛 is at par with 𝒚 i.e. 𝑛𝒛 = 𝑛𝒚 = 𝑚 + 𝑛. Thus the number
of added variables is 𝑛𝒘 = 𝑛. This larger matrix is extracted to form

𝑃(𝒘) = C−1 [𝒚‖𝒛] ·
(
C[𝒙‖𝒚L] + C[𝒙‖𝒚R] · 𝑅 0

0 I𝑛

)
(5.145)

The action on the Cauchy block gives us the partial sum. These can be written as

𝑃 𝑗 ,𝑘 (𝒘) = 𝛿 𝑗 ,𝑘 + 𝛿 𝑗 ,𝑚+𝑎𝑅𝑎,𝑘

− 𝜙′(𝑦 𝑗 |𝒛, 𝒚)
𝑛∑︁

𝑎=1
𝜙′(𝑤𝑎 |𝒚, 𝒛) 1

𝑦 𝑗 − 𝑤𝑎

1
𝑤𝑎 − 𝑦𝑘

− 𝜙′(𝑦 𝑗 |𝒛, 𝒚)
𝑛∑︁

𝑎=1

𝑛∑︁
𝑏=1

𝜙′(𝑤𝑎 |𝒚, 𝒛) 1
𝑦 𝑗 − 𝑤𝑎

1
𝑤𝑎 − 𝑦𝑚+𝑏 𝑅𝑏,𝑘 . (5.146)

Whereas the action on the identity block gives back the columns corresponding to 𝒘 which are
denoted with 𝑍:

𝑃 𝑗 ,𝑚+𝑎 = 𝑍 [𝑦 𝑗 ‖𝑤𝑎] = 𝜙′(𝑦 𝑗 |𝒛, 𝒚)𝜙′(𝑤𝑎 |𝒚, 𝒘) 1
𝑦 𝑗 − 𝑤𝑎

. (5.147)

Similar to item method I, we find that the summation in eq. (5.146) are taken over the extra columns
𝑍 .

𝑃 𝑗 ,𝑘 (𝒘) = 𝛿 𝑗 ,𝑘 + 𝛿 𝑗 ,𝑚+𝑎𝑅𝑎,𝑘 −
𝑛∑︁

𝑎=1

1
𝑤𝑎 − 𝑦𝑘 𝑍 [𝑦 𝑗 ‖𝑤𝑎] −

𝑛∑︁
𝑎,𝑏=1

𝑅𝑏,𝑘

𝑤𝑎 − 𝑦𝑚+𝑏 𝑍 [𝑦 𝑗 ‖𝑤𝑎] . (5.148)

Thus we can see that sum over the columns 𝑍 can be cancelled. Finally we take a series of limits
where the extra variables 𝒘 are send to infinity

𝑃(𝒘) → 𝑃(𝒘 (1) ) → · · · 𝑃(𝒘 (𝑘) ) → · · · → 𝑃. (5.149)

We note that such as a procedure was also used in appendix C to write an alternative proof of
lemma C.3 for the determinant of the Cauchy-Vandermonde matrix. We define the set 𝒘 (𝒌) as
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{𝑤𝑘+1, . . . , 𝑤𝑛}. Here we need to see the effect of these limits on the block 𝑍 . But an important
distinction here is that the extra variables 𝑤−1

1 are contained inside 𝜙 function, since we have

𝑍 [𝑦 𝑗 ‖𝑤𝑎] = 𝜙′(𝑦 𝑗 |𝒛 \ {𝑤𝑎} , 𝒚)𝜙′(𝑤𝑎 |𝒚, 𝒛). (5.150)

As a result here the limits are taken in different manner compared to what we do in the lemma C.3.
At the first iteration, we multiply the first column with 𝑤−1

1 before the limit 𝑤1 → ∞ is taken on
every column:

𝑍 (1)1 [𝑦 𝑗] = lim
𝑤1→∞

𝑤−1
1 𝑍 [𝑦 𝑗 ‖𝑤1] = 𝜙′(𝑦 𝑗 |𝒛 (1) , 𝒚) (5.151a)

(1 < 𝑎 ≤ 𝑛) 𝑍 (1)𝑎 [𝑦 𝑗] = lim
𝑤1→∞

𝑍 [𝑦 𝑗 ‖𝑤𝑎] = 𝜙′(𝑦 𝑗 |𝒛 (1) \ {𝑤𝑎} , 𝒚)𝜙′(𝑤𝑎 |𝒚, 𝒛 (1) ). (5.151b)

For the successive iterations we can write

𝑍 (𝑘)𝑘 [𝑦 𝑗] = lim
𝑤𝑘→∞

𝑤−𝑘𝑘 𝑍 (𝑘−1)
𝑘 [𝑦 𝑗 ‖𝑤𝑘] = 𝜙′(𝑦 𝑗 |𝒛 (𝒌) , 𝒚) (5.152a)

(1 ≤ 𝑎 < 𝑘) 𝑍 (𝑘)𝑎 [𝑦 𝑗] = lim
𝑤𝑘→∞

𝑍 (𝜅−1)
𝑎 [𝑦 𝑗] + 𝑤𝑘𝑍

(𝑘)
𝑎+1 [𝑦 𝑗] = 𝑦𝑘−𝑎𝑗 𝜙′(𝑦 𝑗 |𝒛 (𝒌) , 𝒚) (5.152b)

(𝑘 < 𝑎 ≤ 𝑛) 𝑍 (𝑘)𝑎 [𝑦 𝑗] = lim
𝑤𝑘→∞

𝑍 (𝑘)𝑎 [𝑦 𝑗] = 𝜙′(𝑦 𝑗 |𝒛 (𝒌−1) \ {𝑤𝑎} , 𝒚)𝜙′(𝑤𝑎 |𝒚, 𝒛 (𝒌) ). (5.152c)

At the end of this procedure, we end up with the matrix 𝑃 with the same form as eq. (5.142), seen
in the following:

𝑃 =

(I𝑛 𝑍N

𝑅𝑇 𝑍S

)
. (5.153)

The equivalence between the two methods presented above is not a plain coincidence, it follows from
the fact that the inverse of a Cauchy-Vandermonde matrix can be constructed using the procedure
of taking limit similar to eqs. (5.149) to (5.152). It is also important to remark that this limiting
procedure always gives us the inverse of the dual matrix (5.13). We now generalise this example to
the hyperbolic case through the re-parametrisation (5.19).

5.A.2. Toy example in hyperbolic parametrisation

Let us now consider the hyperbolic version of the example (5.137):

P = C∗−1
ª𝛿 [𝜷‖𝜶] ·

(C[𝜶‖𝜷L] + C[𝜶‖𝜷R] · 𝑅 0
0 I𝑛

)
. (5.154)

The cardinalities of the sets 𝜶 and 𝜷 are 𝑛𝜶 = 𝑚 and 𝑛𝜷 = 𝑚 + 𝑛. The latter set 𝜷 is partitioned into
two subsets 𝜷 = 𝜷L ∪ 𝜷R such that 𝑛𝜷R = 𝑛. Note that in this example we choose to work with the
C ª𝛿 [see eq. (C.68)] instead of Cª𝛾 [see the definition 41 or (C.73)]. These two are related to each
other through a simple recombination of rows. While the matrix C ª𝛿 consists of the exponentials in
the Vandermonde block, we can recover the matrix Cª𝛾 from it by recombining the exponential terms
to form the hyperbolic Vandermonde block X, which is expressed in terms of the sinh and cosh
functions. This recombination is discussed in section C.3. It does not alter substantially the process
of extraction and the its only visible effect can be seen in difference of normalisation constants in
their determinant [see eqs. (C.70) and (C.74)]:

detC ª𝛿 = 2−
𝑛(𝑛−1)

2 detCª𝛾 . (5.155)
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Since the hyperbolic and the rational versions Cauchy-Vandermonde are related through the
parametrisation (5.19) shown below:

𝑥 𝑗 = 𝑒
2𝜋𝛼𝑗 , 𝑦 𝑗= 𝑒

2𝜋𝛽 𝑗 . (5.156)

Hence, it would be sufficient to see how the results from both methods in the above example compare
with the hyperbolic case through this re-parametrisation.

Method I: Under the re-parametrisation (5.156) the hyperbolic Cauchy matrix can be expressed
according to eq. (C.66) as

C[𝜶(𝒙)‖𝜷(𝒙)] = diag
[
2𝒙

1
2

]
C[𝒙‖𝒚] diag

[
𝒚

1
2

]
. (5.157)

Similarly the hyperbolic Cauchy-Vandermonde matrix in the rational parametrisation (C.69) can be
expressed as‖

C ª𝛿 [𝜶(𝒙)‖𝜷(𝒚)] = diag
[
2𝒙

𝑛+1
2

��� I𝑛] C ª𝛿 [𝒙‖𝒚] diag
[
𝒚−

𝑛−1
2

]
. (5.158)

The inverse of a dual Cauchy-Vandermonde matrix can be expressed with the diagonal dressing of
the Φ functions as

C∗ª𝛿 [𝜷‖𝜶] = diag𝜷
[
Φ′(𝜷|𝜶, 𝜷)

]
·
(
C ª𝛿 [−𝜶‖ − 𝜷]

)𝑇
· diag𝜶

[
Φ′(𝜶 |𝜷,𝜶)

��� I𝑛] . (5.159)

Under the re-parametrisation (5.156) to the rational variables the Φ transforms into its rational
variant 𝜙 as

Φ′(𝛼(𝑥 𝑗) |𝜷(𝒚),𝜶(𝒙)) = 2−𝑛−1𝑥
− 𝑛+2

2
𝑗

(
∏

𝑥
∏

𝑦−1
) 1

2
𝜙′(𝑥 𝑗 |𝒚, 𝒙) (5.160a)

and

Φ′(𝛽(𝑦 𝑗) |𝜶(𝒙), 𝜷(𝒚)) = 2𝑛−1𝑦
𝑛−2

2
𝑗

(
∏

𝑥−1
∏

𝑦
) 1

2
𝜙′(𝑦 𝑗 |𝒚, 𝒙). (5.160b)

Substituting eqs. (5.158) and (5.160) into eq. (5.159) tells us that the inverse of the dual Cauchy-
Vandermonde matrix in the rational parametrisation can be expressed as

C∗−1
ª𝛿 [𝜶(𝒙)‖𝜷(𝒚)]

= diag𝒙

[
𝒚−

1
2 𝜙′(𝒚 |𝒙, 𝒚)

]
·
(
C ª𝛿 (−𝒙‖ − 𝒚)

)𝑇
· diag

[
2−1𝒙−

1
2 𝜙′(𝒙 |𝒚, 𝒙)

��� 𝐷𝑛

]
(5.161a)

where D𝑛 is a diagonal matrix:

𝐷𝑛 = 2𝑛−1
(
∏

𝑥−1
∏

𝑦
) 1

2 I𝑛. (5.161b)

When we take action (5.154) is taken on the Cauchy matrix, we can see from eqs. (5.157) and (5.161a)
that when it is expressed in the rational parametrisation:

C∗−1
ª𝛿 [𝜷‖𝜶]

(C[𝜶‖𝜷L/R] 0
0 I𝑛

)
= diag

[
𝒚−

1
2

]
·{

diag𝒚
[
𝜙′(𝒚 |𝒙, 𝒚)

]
·
(
C ª𝛿 (−𝒙‖ − 𝒚)

)𝑇
· diag𝒙

[
𝜙′(𝒙 |𝒚, 𝒙)

��� 𝐷𝑛

]
·
(
C[𝒙‖𝒚L/R] 0

0 I𝑛

)}
(∗)

· diag
[
(𝒚L/R) 1

2

��� I𝑛] . (5.162)

‖ let us recall that here 𝑛𝒙 = 𝑛𝜶 < 𝑛𝒚 = 𝑛𝜷 unlike the example (C.69) in appendix C.
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It is important to note that the system on the line marked (∗) in the above expression (5.162) is
identical to the rational case that we saw earlier. In particular it means that we can carry out the
intermediate steps from eqs. (5.138) to (5.141) in the rational parametrisation. When reconverted to
the hyperbolic parametrisation we get from eq. (5.141) the following expression:

P 𝑗 ,𝑘 = 𝛿 𝑗 ,𝑘 + R𝑟 ,𝑘𝛿 𝑗 ,𝑚+𝑟 −
𝑛∑︁

𝑎=1
𝜒𝑎 (𝛽𝑘)Z ª𝛿;𝑎 (𝛽 𝑗) −

𝑛∑︁
𝑎=1

(
𝑛∑︁

𝑏=1
𝜒𝑎 (𝛽𝑚+𝑏)R𝑏,𝑘

)
Z ª𝛿;𝑎 (𝛽 𝑗). (5.163)

The exact form of the terms 𝜒𝑎 is unimportant since they are cancelled in the determinant. It also
means that results of eqs. (5.142) to (5.142) can be extended to the hyperbolic parametrisation as

P =

(I𝑚 ZN
ª𝛿

R𝑇 ZS
ª𝛿

)
(5.164)

and thus detP = detQ where Q = ZS
ª𝛿 − R

𝑇ZN
ª𝛿 . Finally we can also easily check that the Z ª𝛿

obtained through the reconversion of the product as

Z ª𝛿 = 𝐷𝑛 · 𝑍 [𝒚] (5.165)

through the re-parametrisation (5.156) leads to the hyperbolic Vandermonde of the C∗−1
ª𝛿 [see

eq. (C.68)]:

Z ª𝛿; 𝑗 ,𝑎 = 𝑒𝜋𝛽 𝑗 (2𝑎−𝑛−1)Φ′(𝛽 𝑗 |𝜶, 𝜷). (5.166)

It is related to the Vandermonde blockZª𝛾 that we saw in eq. (5.25b) in its version Cª𝛾 by simple
recombination (C.71).
Method II: Similar to eq. (5.145) in item method II used in the rational case, we start with the
extraction of larger Cauchy matrix:

P(𝜼) = C−1 [𝜷‖𝜻] ·
(C[𝜶‖𝜷L] + C[𝜶‖𝜷L]R 0

0 I𝑛

)
(5.167)

where 𝜻 = 𝜶 ∪ 𝜼 and 𝑛𝜼 = 𝑛. It is not hard to see that similar to eqs. (5.147) and (5.148) were we
have,

P 𝑗 ,𝑘 (𝜼) = 𝛿 𝑗 ,𝑘 + 𝛿 𝑗 ,𝑚+𝑎R𝑎,𝑘 −
𝑛∑︁

𝑎=1

1
sinh 𝜋(𝜂𝑎 − 𝛽𝑘)Z[𝛽 𝑗 ‖𝜂𝑎]

−
𝑛∑︁

𝑎,𝑏=1

R𝑏,𝑘

sinh 𝜋(𝜂𝑎 − 𝛽𝑚+𝑏)Z[𝛽 𝑗 ‖𝜂𝑎] . (5.168a)

Where,

Z[𝛽 𝑗 ‖𝜂𝑎] = P 𝑗 ,𝑚+𝑎 (𝜼) = Φ′(𝛽 𝑗 |𝜻 , 𝜷)Φ′(𝜂𝑎 |𝜷, 𝜻) 1
sinh 𝜋(𝜂𝑎 − 𝛽 𝑗) . (5.168b)

First of all we can see that the linear sum overZ can be cancelled in the (5.168a) to write

P(𝜼) =
(I𝑚 Z (0) [𝜷L |𝜼]
R𝑇 Z (0) [𝜷R |𝜼]

)
. (5.169)
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We now see that the variables 𝜼 are only contained in theZ part. We remove these extra variable
through the sequence of limit

Z (0) →Z (1) → · · · → Z (𝑛) = Z ª𝛿 . (5.170)

Let us remark that initially we had

Z (0)𝑗 ,𝑎 = Φ′(𝛽 𝑗 |𝜻 \ {𝜂𝑎} , 𝜷)Φ′(𝜂𝑎 |𝜷, 𝜻) (5.171)

Let us compute the first iteration 𝜂1 →∞. Since we can see that

Φ′(𝜂1 |𝜷, 𝜻) ∼𝜂1→∞ 𝑒
𝜋𝜂1

∏

𝜷
𝑒−𝜋𝜷

∏

𝜻
𝑒𝜋𝜻

(1)
(5.172)

we will find that

Z (1)𝑗 ,1 = lim
𝜂1→∞

𝑒−𝜋𝜂1Z (0)𝑗 ,𝑎 =
(
∏

𝜷
𝑒−𝜋𝜷

) (
∏

𝜻
𝑒𝜋𝜻

(1) )
Φ′(𝛽 𝑗 |𝜻 (1) , 𝜷), (5.173a)

Z (1)𝑗 ,𝑎 = lim
𝜂1→∞

Z (0)𝑗 ,𝑎 = 𝑒𝜋 (𝜂𝑎−𝛽 𝑗 )Φ′(𝛽 𝑗 |𝜻 (1) \ {𝜂𝑎} , 𝜷)Φ′(𝜂𝑎 |𝜷, 𝜻 (1) ). (5.173b)

In the subsequent iterations where we send 𝜂𝑘 →∞, we take the limit in the following manner

Z (𝑘)𝑗 ,𝑘 = lim
𝜂𝑘→∞

𝑒−𝜋 (2𝑘−1)𝜂𝑘Z (𝑘−1)

= 𝑒−𝜋 (𝑘−1)𝛽 𝑗

(
∏

𝜷
𝑒−𝜋𝜷

) (
∏

𝜻 (𝑘)
𝑒𝜋𝜻

(𝑘) )
Φ′(𝛽 𝑗 |𝜻 (𝑘) , 𝜷). (5.174a)

Z (𝑘)𝑗 ,𝑎 = lim
𝜂𝑘→∞

Z (𝑘−1)
𝑗𝑎

− 𝑒2𝜋𝜂𝑘Z (𝑘)𝑗 ,𝑎+1 (𝑎 < 𝑘)

= 𝑒𝜋 (𝑘−1−2𝑎)𝛽 𝑗

(
∏

𝜷
𝑒−𝜋𝜷

) (
∏

𝜻 (𝑘)
𝑒𝜋𝜻

(𝑘) )
Φ′(𝛽 𝑗 |𝜻 (𝑘) , 𝜷). (5.174b)

And,

Z (𝑘)𝑗 ,𝑎 = lim
𝜂𝑘→∞

Z (𝑘−1) = 𝑒𝜋𝑘 (𝜂𝑎−𝛽 𝑗 )Φ′(𝛽 𝑗 |𝜻 (𝑘) \ {𝜂𝑎} , 𝜷)Φ′(𝜂𝑎 |𝜷, 𝜻 (𝑘) ) (𝑘 > 𝑎). (5.174c)

In the end, when all the extra variables are send to infinity, we would get

Z (𝑛)𝑗 ,𝑎 = 𝑒𝜋 (𝑛−1−2𝑎)𝛽 𝑗

(
∏

𝜷
𝑒−𝜋𝜷

) (
∏

𝜶
𝑒𝜋𝜶

)
Φ′(𝛽 𝑗 |𝜶, 𝜷). (5.175)

Let us now extract the product over exponentials from all the 𝑛 columns of the blockZ (𝑛) , it gives
usZ ª𝛿:

Z ª𝛿; 𝑗 ,𝑎 = 𝑒𝜋 (𝑛−1−2𝑎)𝛽 𝑗Φ′(𝛽 𝑗 |𝜶, 𝜷). (5.176)

The extracted terms form the diagonal dressing for the Cauchy-Vandermonde matrix that we have
extracted which can be seen from the following expression:

C ª𝛿 [𝜶‖𝜷] = diag
[
𝑒𝜋𝑛𝜶

��� I𝑛] {(
𝑛∏

𝑎=1
lim

𝜂𝑎→∞
𝑒𝜋 (2𝑎−1)𝜂𝑎

)
C[𝜻 ‖𝜷]

}
diag

[
𝑒−𝜋𝑛𝜷

]
. (5.177)

This ensures that we have the correct normalisation in the determinant [see eq. (C.70)]. Finally we
can recombine the columns ofZ ª𝛿 according to eq. (C.71) to obtainZª𝛾 .
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5.B. Formulae : Infinite products involving 𝜙 functions

The thermodynamic limit of the 𝜙 was originally obtained in the expression (2.133) in section 2.B
at the end of chapter 2. Here we will need the thermodynamic limit of different variants of the 𝜙
which are reproduced in the following expressions.

𝜙(𝜏 |𝝔±, 𝝀) =



(2𝑖)
𝑛ℎ
2
∏

(𝜏 − 𝝊+)
∏ (𝜏 − 𝝎̄+)
(𝜏 − 𝝎̄−)

∏

Γ
(
𝜏−𝝑
2𝑖

)
Γ

(
1
2 + 𝜏−𝝑

2𝑖

) for, =𝜏 > 0

(−2𝑖)
𝑛ℎ
2
∏

(𝜏 − 𝝊−)
∏ (𝜏 − 𝝎−)
(𝜏 − 𝝎+)

∏

Γ
(
− 𝜏−𝝑

2𝑖

)
Γ

(
1
2 − 𝜏−𝝑

2𝑖

) for, =𝜏 < 0

. (5.178a)

𝜙(𝜏 |𝝔, 𝝀) =



(2𝑖)−
𝑛ℎ
2
∏ 1
(𝜏 − 𝝊−)

∏ (𝜏 − 𝝎̄+)
(𝜏 − 𝝎̄−)

∏

Γ
(
𝜏−𝝑
2𝑖

)
Γ

(
1
2 + 𝜏−𝝑

2𝑖

) for, =𝜏 > 0

(−2𝑖)−
𝑛ℎ
2
∏ 1
(𝜏 − 𝝊+)

∏ (𝜏 − 𝝎−)
(𝜏 − 𝝎+)

∏

Γ
(
− 𝜏−𝝑

2𝑖

)
Γ

(
1
2 − 𝜏−𝝑

2𝑖

) for, =𝜏 < 0

. (5.178b)

𝜙(𝜏 |𝝀, 𝝁) =



(2𝑖)
𝑛ℎ
2
∏ 1
(𝜏 − 𝝁̃ − 𝑖

2 )
∏

Γ
(

1
2 + 𝜆−𝝑

2𝑖

)
Γ

(
𝜆−𝝑
2𝑖

) for, =𝜆 > 0

(−2𝑖)
𝑛ℎ
2
∏ 1
(𝜏 − 𝝁̃ + 𝑖

2 )
∏

Γ
(

1
2 − 𝜏−𝝑

2𝑖

)
Γ

(
− 𝜏−𝝑

2𝑖

) for, =𝜆 < 0

. (5.178c)

5.B.1. The auxiliary function Ω𝑛

Here we compute the thermodynamic limit of Ω𝑛 using that of the 𝜙 function (5.178a). Hence,

∏
𝜎=±1

𝜙(𝜏 + 2𝑖𝑛𝜎 |𝝔±, 𝝀) = 1
2𝑛ℎ

{
∏

[
(𝜏 − 𝝊)2 +

(
2𝑛 − 1

2

)2
]}


∏

𝜏 − 𝝎̄ +
(
2𝑛 − 1

2

)
𝑖

𝜏 − 𝝎̄ +
(
2𝑛 + 1

2

)
𝑖
·
∏

𝜏 − 𝝎 −
(
2𝑛 − 1

2

)
𝑖

𝜏 − 𝝎 −
(
2𝑛 + 1

2

)
𝑖


∏
𝜎=±1


∏

Γ
(
𝑛 + 𝜏−𝝑

2𝑖𝜎

)
Γ

(
𝑛 + 1

2 + 𝜏−𝝑
2𝑖𝜎

)  (5.179a)

and∏
𝜎=±1

𝜙(𝜏 + (2𝑛 − 1)𝑖𝜎 |𝝔±, 𝝀) = 1
2𝑛ℎ

{
∏

[
(𝜏 − 𝝊)2 +

(
2𝑛 − 3

2

)2
]}


∏

𝜏 − 𝝎̄ +
(
2𝑛 − 3

2

)
𝑖

𝜏 − 𝝎̄ +
(
2𝑛 − 1

2

)
𝑖
·
∏

𝜏 − 𝝎 −
(
2𝑛 − 3

2

)
𝑖

𝜏 − 𝝎 −
(
2𝑛 − 1

2

)
𝑖


∏
𝜎=±1


∏

Γ
(
𝑛 − 1

2 + 𝜏−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 𝜏−𝝑

2𝑖𝜎

)  (5.179b)
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Therefore we have

Ω𝑛 (𝜏) = (2𝑛)2𝑞
(2𝑛 − 1)2𝑝

{
∏

(
(𝜏 − 𝝊)2 +

(
2𝑛 − 3

2

)2
)
∏

(
(𝜏 − 𝝊)2 +

(
2𝑛 − 1

2

)2
)}

∏
𝜎=±1


∏

𝜏 − 𝝎̄ +
(
2𝑛 − 3

2

)
𝑖

𝜏 − 𝝎̄ +
(
2𝑛 + 1

2

)
𝑖

∏

𝜏 − 𝝎 −
(
2𝑛 − 3

2

)
𝑖

𝜏 − 𝝎 −
(
2𝑛 + 1

2

)
𝑖


{
∏

(
(𝜏 − 𝝑)2 +

(
2𝑛 − 1

2

))}
(5.180)

It gives us the thermodynamic limit for the following fraction is the general term of the infinite
product (5.108)

∏

Ω𝑛 (𝝔)
∏

Ω𝑛 (𝝀) =
(2𝑛 − 1)2𝑃
(2𝑛)2𝑄

{
∏

𝜙
(
𝝊+ − 2𝑖𝑛

���𝝔, 𝝀) 𝜙 (
𝝊+ − (2𝑛 − 1)𝑖

���𝝔, 𝝀)
×
∏

𝜙
(
𝝊− + 2𝑖𝑛

���𝝔, 𝝀) 𝜙 (
𝝊− + (2𝑛 − 1)𝑖

���𝝔, 𝝀)}
×


∏

𝜙
(
𝝎+ + 2(𝑛 − 1)𝑖

���𝝔, 𝝀)
𝜙

(
𝝎+ + 2𝑛𝑖

���𝝔, 𝝀) ∏

𝜙
(
𝝎̄− − 2(𝑛 − 1)𝑖

���𝝔, 𝝀)
𝜙

(
𝝎̄− − 2𝑛𝑖

���𝝔, 𝝀)


×
{
∏

𝜙
(
𝝑 + (2𝑛 − 1)𝑖

���𝝔, 𝝀) 𝜙 (
𝝑 − (2𝑛 − 1)𝑖

���𝝔, 𝝀)} . (5.181)

5.B.2. Ratio of Ω𝑛

For the ratio of Ω𝑛 we obtained the above expression (5.181). We now compute its thermodynamic
limit for its different components using eq. (5.178b). Using

Close-pair terms

∏

𝜙(𝝊+ − 2𝑛𝑖 |𝝔, 𝝀)𝜙(𝝊− + 2𝑛𝑖 |𝝔, 𝝀)

= 2−𝑛ℎ𝑛𝑐
{
∏ 1
(𝝊 − 𝝊)2 + 4𝑛2

} {
∏ 𝝊 − 𝝎 − (2𝑛 − 1)𝑖

𝝊 − 𝝎 − 2𝑛𝑖

∏ 𝝊 − 𝝎̄ + (2𝑛 − 1)𝑖
𝝊 − 𝝎̄ + 2𝑛𝑖

}
×

∏
𝜎=±1


∏

Γ
(
𝑛 − 1

4 + 𝝊−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 1

4 + 𝝊−𝝑
2𝑖𝜎

)  (5.182a)

and

∏

𝜙(𝝊+ − (2𝑛 − 1)𝑖 |𝝔, 𝝀)𝜙(𝝊− + (2𝑛 − 1)𝑖 |𝝔, 𝝀)

= 2−𝑛ℎ𝑛𝑐
{
∏ 1
(𝝊 − 𝝊)2 + (2𝑛 − 1)2

} {
∏ 𝝊 − 𝝎 − (2𝑛 − 2)𝑖

𝝊 − 𝝎 − (2𝑛 − 1)𝑖
∏ 𝝊 − 𝝎̄ + (2𝑛 − 2)𝑖

𝝊 − 𝝎̄ + (2𝑛 − 1)𝑖

}
×

∏
𝜎=±1


∏

Γ
(
𝑛 − 3

4 + 𝝊−𝝑
2𝑖𝜎

)
Γ

(
𝑛 − 1

4 + 𝝊−𝝑
2𝑖𝜎

)  (5.182b)
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Put together, close-pair contribution to eq. (5.181) is given by

∏

𝜙(𝝊+ − 2𝑛𝑖 |𝝔, 𝝀)𝜙(𝝊− + 2𝑛𝑖) |𝝔, 𝝀)𝜙(𝝊+ − (2𝑛 − 1)𝑖 |𝝔, 𝝀)𝜙(𝝊− + (2𝑛 − 1)𝑖 |𝝔, 𝝀)

=

{
∏ 1
(𝝊 − 𝝊)2 + (2𝑛)2

∏ 1
(𝝊 − 𝝊)2 + (2𝑛 − 1)2

}
×

{
∏ 𝝊 − 𝝎 − 2(𝑛 − 1)𝑖

𝝊 − 𝝎 − 2𝑛𝑖

∏ 𝝊 − 𝝎̄ + 2(𝑛 − 1)𝑖
𝝊 − 𝝎̄ + 2𝑛𝑖

}
×

{
∏ 1
(2𝑛 − 3

2 )2 + (𝝊 − 𝝑)2

}
. (5.183)

Wide-pair terms
Wide-pair contribution to eq. (5.181) is

∏ 𝜙(𝜔+ + 2(𝑛 − 1)𝑖 |𝝔, 𝝀)
𝜙(𝜔+ + 2𝑛𝑖 |𝝔, 𝝀)

𝜙(𝜔̄− − 2(𝑛 − 1)𝑖 |𝝔, 𝝀)
𝜙(𝜔̄− − 2𝑛|𝝔, 𝝀)

=

{
∏ 𝝎 − 𝝊 + (2𝑛 + 1)𝑖

𝝎 − 𝝊 + (2𝑛 − 1)𝑖
𝝎̄ − 𝝊 − (2𝑛 + 1)𝑖
𝝎̄ − 𝝊 − (2𝑛 − 1)𝑖

}
×

{
∏ (𝝎 − 𝝎̄ + (2𝑛 − 2)𝑖) (𝝎 − 𝝎̄ + (2𝑛 + 1)𝑖)

(𝝎 − 𝝎̄ + (2𝑛 − 1)𝑖) (𝝎 − 𝝎̄ + 2𝑛𝑖)
∏ (𝝎̄ − 𝝎 − (2𝑛 − 2)𝑖) (𝝎̄ − 𝝎 − (2𝑛 + 1)𝑖)

(𝝎̄ − 𝝎 − (2𝑛 − 1)𝑖) (𝝎̄ − 𝝎 − 2𝑛𝑖)

}
×
∏

Γ
(
𝑛 − 3

4 + 𝝎−𝝑
2𝑖

)
Γ

(
𝑛 + 3

4 + 𝝎−𝝑
2𝑖

)
Γ

(
𝑛 − 3

4 − 𝝎̄−𝝑
2𝑖

)
Γ

(
𝑛 + 3

4 − 𝝎̄−𝝑
2𝑖

)
Γ

(
𝑛 − 1

4 + 𝝎−𝝑
2𝑖

)
Γ

(
𝑛 + 1

4 + 𝝎−𝝑
2𝑖

)
Γ

(
𝑛 − 1

4 + 𝝎̄−𝝑
2𝑖

)
Γ

(
𝑛 + 1

4 + 𝝎̄−𝝑
2𝑖

) . (5.184)

Hole terms
Hole contribution to eq. (5.181) is

∏

𝜙(𝝑 + (2𝑛 − 1)𝑖 |𝝔, 𝝀)𝜙(𝝑 − (2𝑛 − 1)𝑖 |𝝔, 𝝀)

= 2−𝑁
2
ℎ

{
1

(2𝑛 − 1
2 )2 + (𝝊 − 𝝑)2

} {
∏ (𝝑 − 𝝎 − (2𝑛 − 3

2 )𝑖) (𝝑 − 𝝎̄ + (2𝑛 − 3
2 )𝑖)

(𝝑 − 𝝎 − (2𝑛 − 1
2 )𝑖) (𝝑 − 𝝎̄ + (2𝑛 − 1

2 )𝑖)

}

×
∏
𝜎=±1


∏

Γ
(
𝑛 − 1

2 + 𝝑−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 𝝑−𝝑

2𝑖𝜎

)  . (5.185)

Result
Equations (5.183) to (5.185) can be put together in eq. (5.181) to produce

∏

Ω𝑛 (𝝔)
∏

Ω𝑛 (𝝀) = 2−𝑁
2
ℎ
(2𝑛 − 1)2𝑃
(2𝑛)2𝑄
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×
{
∏

𝝊

1
((𝝊 − 𝝊)2 + (2𝑛)2)

1
((𝝊 − 𝝊)2 + (2𝑛 − 1)2)

}
×

{
∏

𝝊,𝝎

(𝝊 − 𝝎 − (2𝑛 + 1)𝑖) (𝝊 − 𝝎 − (2𝑛 − 2)𝑖)
(𝝊 − 𝝎 − 2𝑛𝑖) (𝝊 − 𝝎 − (2𝑛 − 1)𝑖)

×
∏

𝝊,𝝎̄

(𝝊 − 𝝎̄ + (2𝑛 + 1)𝑖) (𝝊 − 𝝎̄ + (2𝑛 − 2)𝑖)
(𝝊 − 𝝎̄ + 2𝑛𝑖) (𝝊 − 𝝎̄ + (2𝑛 − 1)𝑖)

}
×

{
∏

𝝎,𝝎̄

(𝝎 − 𝝎̄ + (2𝑛 − 2)𝑖) (𝝎 − 𝝎̄ + (2𝑛 + 1)𝑖)
(𝝎 − 𝝎̄ + (2𝑛 − 1)𝑖) (𝝎 − 𝝎̄ + 2𝑛𝑖)

×
∏

𝝎,𝝎̄

(𝝎̄ − 𝝎 − (2𝑛 − 2)𝑖) (𝝎̄ − 𝝎 − (2𝑛 + 1)𝑖)
(𝝎̄ − 𝝎 − (2𝑛 − 1)𝑖) (𝝎̄ − 𝝎 − 2𝑛𝑖)

}
×

{
∏

𝝊,𝝑

1
((2𝑛 − 1

2 )2 + (𝝊 − 𝝑)2)
1

((2𝑛 − 3
2 )2 + (𝝊 − 𝝑)2)

}
×

∏
𝜎=±1

∏


Γ

(
𝑛 − 1

2 + 𝝑−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 𝝑−𝝑

2𝑖𝜎

)  . (5.186)

5.B.3. Ratio of Ω

Notice that here we obtain all possible cross terms between different species of parameters, i.e.
holes, close-pairs and wide-pairs. All of these are new occurrences except the hole-hole term which
is similar to the two-spinon case (3.102). A most problematic of these could be wide-pair/ wide
pair term as it does not lie on the unit circle.

In order to examine the convergence and find a close-form in terms of the Barnes function, we
can first rewrite this expression in terms of the Gamma functions.

∏

Ω𝑛 (𝝔)
∏

Ω𝑛 (𝝀) =
Γ2𝑃

(
𝑛 + 1

2

)
Γ2𝑄 (𝑛)

Γ2𝑃
(
𝑛 − 1

2

)
Γ2𝑄 (𝑛 + 1)

∏
𝜎=±1


∏

Γ
(
𝑛 + 𝝊−𝝊

2𝑖𝜎
)
Γ

(
𝑛 − 1

2 + 𝝊−𝝊
2𝑖𝜎

)
Γ

(
𝑛 + 1 + 𝝊−𝝊

2𝑖𝜎
)
Γ

(
𝑛 + 1

2 + 𝝊−𝝊
2𝑖𝜎

) 
×


∏

Γ
(
𝑛 − 1

2 − 𝝊−𝝎
2𝑖

)
Γ2 (

𝑛 − 𝝊−𝝎
2𝑖

)
Γ

(
𝑛 + 3

2 − 𝝊−𝝎
2𝑖

)
Γ

(
𝑛 − 1 − 𝝊−𝝎

2𝑖
)
Γ2

(
𝑛 + 1

2 − 𝝊−𝝎
2𝑖

)
Γ

(
𝑛 + 1 − 𝝊−𝝎

2𝑖
)

∏

Γ
(
𝑛 − 1

2 + 𝝊−𝝎̄
2𝑖

)
Γ2 (

𝑛 + 𝝊−𝝎̄
2𝑖

)
Γ

(
𝑛 + 3

2 + 𝝊−𝝎̄
2𝑖

)
Γ

(
𝑛 − 1 + 𝝊−𝝎̄

2𝑖
)
Γ2

(
𝑛 + 1

2 + 𝝊−𝝎̄
2𝑖

)
Γ

(
𝑛 + 1 + 𝝊−𝝎̄

2𝑖
) 

×

�������
∏

Γ
(
𝑛 − 1

2 + 𝝎−𝝎̄
2𝑖

)
Γ2 (

𝑛 + 𝝎−𝝎̄
2𝑖

)
Γ

(
𝑛 + 3

2 + 𝝎−𝝎̄
2𝑖

)
Γ

(
𝑛 − 1 + 𝝎−𝝎̄

2𝑖
)
Γ2

(
𝑛 + 1

2 + 𝝎−𝝎̄
2𝑖

)
Γ

(
𝑛 + 1 + 𝝎−𝝎̄

2𝑖
)
�������
2

×
∏
𝜎=±1


Γ

(
𝑛 − 1

4 + 𝝊−𝝑
2𝑖𝜎

)
Γ

(
𝑛 − 3

4 + 𝝊−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 3

4 + 𝝊−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 1

4 + 𝝊−𝝑
2𝑖𝜎

) 
∏
𝜎=±1


∏

Γ
(
𝑛 − 1

2 + 𝝑−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 𝝑−𝝑

2𝑖𝜎

)  . (5.187)
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Let us study all the cross-terms one-by-one. For each of these terms we test the criteria found in
lemma A.2. We can also observe that since all the terms are real and expressed as conjugated
products, it would be sufficient to look at the real parts of the numerators and denominators in these
terms.

Close-pair / close-pair term

∏
𝜎=±1


∏

Γ
(
𝑛 + 𝝊−𝝊

2𝑖𝜎
)
Γ

(
𝑛 − 1

2 + 𝝊−𝝊
2𝑖𝜎

)
Γ

(
𝑛 + 1 + 𝝊−𝝊

2𝑖𝜎
)
Γ

(
𝑛 + 1

2 + 𝝊−𝝊
2𝑖𝜎

)  (5.188)

∑︁

<(num) −
∑︁

<(den) = −4𝑛2
𝑐 (5.189a)

∑︁

<(num)2 −
∑︁

<(den)2 = −2𝑛2
𝑐 (4𝑛 + 1). (5.189b)

Cross terms involving wide-pairs

∏

Γ
(
𝑛 − 1

2 − 𝝊−𝝎
2𝑖

)
Γ2 (

𝑛 − 𝝊−𝝎
2𝑖

)
Γ

(
𝑛 + 3

2 − 𝝊−𝝎
2𝑖

)
Γ

(
𝑛 − 1 − 𝝊−𝝎

2𝑖
)
Γ2

(
𝑛 + 1

2 − 𝝊−𝝎
2𝑖

)
Γ

(
𝑛 + 1 − 𝝊−𝝎

2𝑖
) (5.190a)

∏

Γ
(
𝑛 − 1

2 + 𝝊−𝝎̄
2𝑖

)
Γ2 (

𝑛 + 𝝊−𝝎̄
2𝑖

)
Γ

(
𝑛 + 3

2 + 𝝊−𝝎̄
2𝑖

)
Γ

(
𝑛 − 1 + 𝝊−𝝎̄

2𝑖
)
Γ2

(
𝑛 + 1

2 + 𝝊−𝝎̄
2𝑖

)
Γ

(
𝑛 + 1 + 𝝊−𝝎̄

2𝑖
) (5.190b)

∏

Γ
(
𝑛 − 1

2 + 𝝎−𝝎̄
2𝑖

)
Γ2 (

𝑛 + 𝝎−𝝎̄
2𝑖

)
Γ

(
𝑛 + 3

2 + 𝝎−𝝎̄
2𝑖

)
Γ

(
𝑛 − 1 + 𝝎−𝝎̄

2𝑖
)
Γ2

(
𝑛 + 1

2 + 𝝎−𝝎̄
2𝑖

)
Γ

(
𝑛 + 1 + 𝝎−𝝎̄

2𝑖
) (5.190c)

∑︁

<(num) −
∑︁

<(den) = 0 (5.191a)
∑︁

<(num)2 −
∑︁

<(den)2 = 0. (5.191b)

Close-pair / hole term

∏
𝜎=±1


Γ

(
𝑛 − 1

4 + 𝝊−𝝑
2𝑖𝜎

)
Γ

(
𝑛 − 3

4 + 𝝊−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 3

4 + 𝝊−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 1

4 + 𝝊−𝝑
2𝑖𝜎

)  (5.192)

∑︁

<(num) −
∑︁

<(den) = −4𝑛𝑐𝑛ℎ (5.193a)
∑︁

<(num)2 −
∑︁

<(den)2 = −8𝑛 𝑛𝑐𝑛ℎ (5.193b)

Hole / hole term ∏
𝜎=±1


∏

Γ
(
𝑛 − 1

2 + 𝝑−𝝑
2𝑖𝜎

)
Γ

(
𝑛 + 𝝑−𝝑

2𝑖𝜎

)  (5.194)
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∑︁

<(num) −
∑︁

<(den) = −𝑛2
ℎ (5.195a)

∑︁

<(num)2 −
∑︁

<(den)2 = (−2𝑛 + 1
2
)𝑛2

ℎ . (5.195b)

Hence, overall for all the cross-terms combined we have
∑︁

<(num) −
∑︁

<(den) = −(𝑛ℎ + 2𝑛𝑐)2 (5.196a)
∑︁

<(num)2 −
∑︁

<(den)2 = −2𝑛(𝑛ℎ + 2𝑛𝑐)2 + (12𝑛
2
ℎ − 2𝑛2

𝑐). (5.196b)

Other terms

Γ2𝑃
(
𝑛 + 1

2

)
Γ2𝑄 (𝑛)

Γ2𝑃
(
𝑛 − 1

2

)
Γ2𝑄 (𝑛 + 1)

(5.197)

∑︁

<(num) −
∑︁

<(den) = 2(𝑃 −𝑄) (5.198a)
∑︁

<(num)2 −
∑︁

<(den)2 = 4𝑛(𝑃 −𝑄) − 2𝑄. (5.198b)

The comparison of the two computations which leads to the cancellation can be easily seen from
eqs. (5.93b) and (5.94a) which transforms quantum numbers 𝑛ℎ and 𝑛𝑐 into 𝑃 and 𝑄.

∏

Ω(𝝔)
∏

Ω(𝝀) =
(2𝑖)𝑛𝑐𝑛ℎ
𝜋

1
2𝑛

2
ℎ
+𝑄+𝑛𝑐

∏′ 𝝊 − 𝝊

sinh 𝜋(𝝊 − 𝝊)
∏ 1

sinh 𝜋(𝝊+ − 𝝑)
×
∏ 𝝊 − 𝝎

𝝊 − 𝝎 − 𝑖
∏ 𝝊 − 𝝎̄

𝝊 − 𝝎̄ + 𝑖
∏ 𝝎 − 𝝎̄

𝝎 − 𝝎̄ + 𝑖
∏ 𝝎̄ − 𝝎

𝝎̄ − 𝝎 − 𝑖

× 1
𝐺2𝑛ℎ ( 12 )

∏
𝜎=±1

iii 𝐺2
(
1 + 𝝑−𝝑

2𝑖𝜎

)
𝐺2

(
1
2 + 𝝑−𝝑

2𝑖𝜎

) . (5.199)

5.B.4. 𝜙 function involving complex roots in the prefactors

We compute the remaining 𝜙 in the prefactor of eq. (5.115).

Close-pair terms
From eq. (5.178c) we get

𝜙′(𝜐+𝑎 − 𝑖 |𝝀, 𝝁)𝜙(𝜐−𝑎 − 𝑖 |𝝀, 𝝁) =
∏′ 1

𝜐𝑎 − 𝝁̃

∏(𝜐𝑎 − 𝝑 − 𝑖
2 )

∏(𝜐𝑎 − 𝝁̃ − 𝑖) . (5.200)

It is important to note that for a close pair we need to choose the branch =𝜈 < 0 for both 𝜙′(𝜐+𝑎 − 𝑖)
and 𝜙(𝜐−𝑎 − 𝑖) since |=𝜈 | < 1 for a close-pair. The primed symbol 𝜙′ means we have removed the
vanishing term 𝜐+𝑎 − 𝜐−𝑎 − 𝑖 from the denominator.
Hence,

∏

𝜙′(𝝊+ − 𝑖 |𝝀, 𝝁)
∏

𝜙(𝝊− − 𝑖 |𝝀, 𝝁) =
∏′ 1

𝝊 − 𝝁̃

∏(𝝊 − 𝝑 − 𝑖
2 )

∏(𝝊 − 𝝁̃ − 𝑖) . (5.201)
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Wide-pair terms
From eqs. (5.178b) and (5.178c) we get the following expression for the product

𝜙(𝜔+𝑎 |𝝀, 𝝔)𝜙(𝜔̄−𝑎 |𝝀, 𝝔)𝜙(𝜔+𝑎 − 𝑖 |𝝀, 𝝁)𝜙(𝜔̄−𝑎 − 𝑖 |𝝀, 𝝁)
=
∏

(𝜔𝑎 − 𝝊 + 𝑖)
∏

(𝜔̄𝑎 − 𝝊 − 𝑖)
∏ 𝜔𝑎 − 𝝎̄ + 𝑖

𝜔𝑎 − 𝝎̄
∏ 𝜔̄𝑎 − 𝝎 − 𝑖

𝜔̄𝑎 − 𝝎

×
∏(𝜔𝑎 − 𝝑 − 𝑖

2 )
∏(𝜔𝑎 − 𝝁̃ − 𝑖)

∏(𝜔̄𝑎 − 𝝑 − 𝑖
2 )

∏(𝜔̄𝑎 − 𝝁̃ − 𝑖) . (5.202)

Here we choose the positive branch =𝜈 > 0 for 𝜙(𝜔+) and 𝜙(𝜔+ − 𝑖) while the negative branch
=𝜈 < 0 for 𝜙(𝜔−) and 𝜙(𝜔− − 𝑖).
Hence,

∏

𝜙(𝝎+ |𝝀, 𝝔)
∏

𝜙(𝝎̄− |𝝀, 𝝔)
∏

𝜙(𝝎+ − 𝑖 |𝝀, 𝝁)
∏

𝜙(𝝎̄− − 𝑖 |𝝀, 𝝁)

=
∏

(𝝎 − 𝝊 + 𝑖)
∏

(𝝎̄ − 𝝊 − 𝑖)
∏ 𝝎 − 𝝎̄ + 𝑖

𝝎 − 𝝎̄
∏ 𝝎̄ − 𝝎 − 𝑖

𝝎̄ − 𝝎
×
∏(𝝎 − 𝝑 − 𝑖

2 )
∏(𝝎 − 𝝁̃ − 𝑖)

∏(𝝎̄ − 𝝑 − 𝑖
2 )

∏(𝝎̄ − 𝝁̃ − 𝑖) . (5.203)
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Chapter 6.
Conclusions

Summary of results

We have computed the thermodynamic limit of a longitudinal form-factor of the XXX chain starting
from its determinant representation. First of all, in lemma 1.12 we found that only the triplet
excitations have non-trivial form-factors for the XXX model. The triplet excitations are classified
into spinon sectors according to the number of holes 𝑛ℎ which is always an even integer. A simplest
example of it is a two-spinon 𝑛ℎ = 2 excitation which is free of spinon bound states and hence it
does not contain any complex Bethe roots. We have computed the thermodynamic limit of the
form-factor for this two-spinon triplet excitation [KK19] which was reproduced here in chapter 3.
The result (3.105) can be shown as follows:

|𝐹𝑧 (𝜗1, 𝜗2) |2 =
2

𝑀2𝐺4
(

1
2

) ∏
𝜎=±

𝐺 ( 𝜗2−𝜗1
2𝑖𝜎 )𝐺 (1 + 𝜗2−𝜗1

2𝑖𝜎 )
𝐺 ( 12 + 𝜗2−𝜗1

2𝑖𝜎 )𝐺 ( 32 + 𝜗2−𝜗1
2𝑖𝜎 )

. (6.1)

This computation can be summarised as a three step process comprising of the extraction of Gaudin
matrices followed by extraction of a Cauchy matrix and the computation of the infinite Cauchy
determinants and its prefactors in the thermodynamic limit using the infinite product form. To
realise this computation we invoke a general version of the condensation property that allows us
compute summations involving meromorphic function as the integrals with the densities. It was
introduced in proposition 2.2 for the compact Fermi distribution and we conjecture that it also
applies to the non-compact Fermi distribution of our XXX model in zero external field, at-least
for the spectral parameters which are in the bulk of the Fermi distribution. We also compared our
with the previous result [BCK96]; [BKM98] obtained using the method based on the framework of
𝑞-vertex operator algebra and found that our result is in agreement with it. Particularly our result
(6.1) contains the rational form in the Barnes-G function and using the integral representation for
the logarithm of the Barnes-G function (A.17) one readily finds the special function 𝐼 with the
following integral representation as it appears in [BCK96]:

𝐼 (𝑧) =
∫ ∞

0

𝑑𝑡 𝑒𝑡

𝑡

cos(2𝑧𝑡) cosh 2𝑡 − 1
cosh 𝑡 sinh 2𝑡

. (6.2)

We generalised our approach over to the computation of longitudinal form-factor for a generic
triplet excitations in the higher spinon sectors in chapters 4 and 5. All the triplet excitations in the
higher spinon sectors contains complex Bethe roots which are determined in terms of the spectral
parameters for the holes through a set of higher-level version of [DL82] Bethe equations (2.97)
involving the set 𝝁̃ of centres and anchors of the close-pairs and wide-pairs respectively. These
higher-level Bethe equations are obtained by factorising out from Bethe equations for a low-lying
excited state its dominant part described by ground state root density function. Our method based
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on the extraction of the Gaudin matrix allows us to do the same for the form-factors of a low-lying
excited state as we find in chapter 4 that the higher-level Gaudin matrix Ñ emerges from our
treatment:

Ñ𝑎,𝑏 = 𝔞̃′( 𝜇̃𝑎) − 2𝜋𝑖𝐾 ( 𝜇̃𝑎 − 𝜇̃𝑏). (6.3)

We find that similar to the Gaudin extraction F = N−1M, we have a higher-level its higher-level
equivalent S̃ = Ñ−1R̃ of the Gaudin extraction and the resultant matrix S̃ plays an important part
in our computation by occupying a block (5.74) inside the final determinant representation (5.118)
of the reduced size seen below:��𝐹𝑧 ({𝜗𝑎}𝑛ℎ𝑎=1)

��2 = (−1)
𝑛ℎ+2

2 𝑀−𝑛ℎ2
𝑛ℎ (𝑛ℎ−2)+2

2 𝜋
𝑛ℎ (𝑛ℎ−3)+2

2

∏𝑛̃
𝑎=1

∏𝑛ℎ
𝑏=1( 𝜇̃𝑎 − 𝜗𝑏 − 𝑖

2 )∏𝑛̃
𝑎,𝑏=1( 𝜇̃𝑎 − 𝜇̃𝑏 − 𝑖)

× 1
𝐺2𝑛ℎ ( 12 )

𝑛ℎ∏
𝑎,𝑏=1
𝑎≠𝑏

𝐺 ( 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 (1 + 𝜗𝑎−𝜗𝑏

2𝑖 )
𝐺 ( 12 + 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 ( 32 + 𝜗𝑎−𝜗𝑏

2𝑖 )
det𝑛̃ Q𝑔 det𝑛ℎ Q𝑒

det V[𝝑] . (6.4)

The matrix Q𝑔 is made up of the components shown in eqs. (5.46) and (5.49), which were expressed
them in terms of the integrals over Φ functions which enters our final expression as it is. The matrix
Q𝑒 is made up of three blocks, one of which is the result S̃ of the higher-level Gaudin extraction that
we discussed above while the other two blocks are the effective Foda-Wheeler columnsWeff (5.77)
and the effective dressed Vandermonde columns Zeff (5.25b) of the hyperbolic parametrisation.
The latter blockZeff was only expressed in terms of the integrals over the Φ functions.

Comparing this result with the BJMST fermionic approach [JMS11] which also deals with the
complex Bethe roots (or spinon bound states) we find that our result agrees with their prediction
since we have found that the thermodynamic form-factors of a low-lying excitations are given by
smaller reduced determinants detQ𝑔 and detQ𝑒. Our approach can in principle can allow us to
go further and obtain a closed-form expression however this would require that the Φ integrals
are exactly computed. In this regard, the fact that integrals with an auxiliary Φ function enters
our final expression is a shortcoming of this result. This problem was successfully resolved in the
two-spinon case in chapter 3 since there we managed to eliminate all the Φ integrals using the
periodicity argument (3.75) for the finite Φ function and we never had to invoke the thermodynamic
limit of the Φ function. Unfortunately this method does not extend to the Cauchy extraction in
generic case and it always leaves behind the integrals over Φ. Moreover we find that unlike the
rational 𝜙 function, its hyperbolic version Φ does not have a well defined thermodynamic limit. A
computation based on the expansion of Φ function as an infinite product over 𝜙 function shows that
the limit is divergent for the excitation 𝑠 ≠ 0. For the singlet excitations 𝑠 = 0 where,

Φ(𝜆) ∼𝜆→∞ 1 (6.5a)

we find that Φ computed as an infinite product converges to Φ̃ which has an anomalous asymptotic
behaviour:

Φ̃(𝜆) ∼𝜆→∞ 1
𝜆
. (6.5b)

This means that we cannot rely on the Φ̃ to compute these integrals inZeff and Q𝑔. We also know
that this problem is independent of the bulk assumption that was used for the Gaudin extraction.
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This is because of the fact that the Gaudin extraction for the complex roots can be realised with the
regular condensation property [see theorem 2.1] since there are poles of the integrand on the real
line, as we may recall from eqs. (4.10) and (4.20) in chapter 4. Therefore to resolve this problem we
may need to consider the sub-leading terms while computing the Φ asymptotically as an infinite
product over 𝜙 functions, or otherwise consider a new approach that circumvents this problem
entirely (which may also involve the periodicity argument). Indeed from experience we know
that two-spinon form-factor when computed using the double sum method (1.107) always leads
to the same type of Φ integrals that cannot be resolved, and it was found that the Foda-Wheeler
determinant representation (1.89) [FW12b] helps us circumvent this issue. This anecdote begs that
the second option for this problem cannot be easily discarded.

Regardless of the (temporary) irreducibility of the Φ function integrals, we can still compute the
reduced determinants detQ𝑔/𝑒 in eq. (6.4) in the four-spinon case. This we done in section 5.3.1 to
shown an example of the four-spinon form-factor where we found that four-spinon form-factor can
be represented as

|𝐹𝑧 (𝜗1, 𝜗2, 𝜗3, 𝜗4) |2 = − 32𝜋3

𝑀4𝐺8( 12 )
∏
𝑎≠𝑏

𝐺 ( 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 (1 + 𝜗𝑎−𝜗𝑏

2𝑖 )
𝐺 ( 12 + 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 ( 32 + 𝜗𝑎−𝜗𝑏

2𝑖 )
J𝑔J𝑒∑𝑛ℎ

𝑎=1 𝜌̃(𝜐 − 𝜗𝑎)
. (6.6)

The term J𝑔 in this expression can be written in the form of the Φ integrals, as it was seen in
eq. (5.121) while, J𝑒 can be expressed as a sum over the terms, which themselves can be expressed
with the Φ integrals, as it was shown in eqs. (5.133) and (5.134). The result for the four-spinon
form-factor was also computed using the 𝑞-vertex operator algebra method in [ABS97]; [CH06].
An exact comparison of the results for the four-spinon form-factors (and higher spinons) from both
the methods is made difficult since these two methods work in different bases and little is known
about the mapping between these two bases. The mapping from a subspace of fixed 𝑛ℎ and 𝑛̃ in
the ABA framework to its equivalent in 𝑞-VOA is an endomorphism that mixes non-trivially all
the 𝑃(𝑛ℎ, 𝑛̃) eigenvectors. In the case of two-spinon form-factors, it becomes trivial since we had
one-dimensional subspace 𝑃(2, 0) = 1 as it can be seen from table 2.1. Therefore it is possible to
compare the results of the two-spinon form-factor exactly and we have managed to do the same in
[KK19]. As we proceed to the higher spinon sectors 𝑛ℎ > 2, we need to account for the mixing of
the bases and hence an exact comparison is rendered difficult without the precise knowledge of this
mapping of bases is not possible. However, we can still compare the prefactors in our result (6.1)
with that of [ABS97]; [CH06] since we have seen here that the prefactors are largely formed by the
infinite Cauchy matrix which is dominated by contribution of the ground state and real excited state
roots alone and does not depend upon the choice of basis. From the integral representation for the
Barnes-G function (A.17) we can see that

1
𝐺8( 12 )

∏
𝑎≠𝑏

𝐺 ( 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 (1 + 𝜗𝑎−𝜗𝑏

2𝑖 )
𝐺 ( 12 + 𝜗𝑎−𝜗𝑏

2𝑖 )𝐺 ( 32 + 𝜗𝑎−𝜗𝑏

2𝑖 )
= exp

(
−

∑︁
𝑎<𝑏

𝐼 (𝜗𝑎 − 𝜗𝑏)
)

(6.7)

where the special function 𝐼 is same as in eq. (6.2). This shows that the prefactors of the results
from the both methods are compatible for the four-spinon form-factor. We also believe that if a
close-form representation for the four-spinon form-factor were to be obtained, this can also shed
light on problem of the mapping between the bases in algebraic Bethe ansatz and 𝑞-vertex operator
algebra frameworks.
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Perspectives for the future work

The method presented in this thesis provides a promising approach for the computation of the
form-factors of integrable quantum spin chains models through the algebraic Bethe ansatz. It
inherits the wider applicability from the algebraic Bethe ansatz and we hope that it can extended to
the broad range of quantum integrable systems.

The closest relative of the XXX model is undoubtedly its anisotropic XXZ model which is divided
into two principle regimes: massive Δ > 1 and massless |Δ| < 1. Let us recall from eqs. (3.21)
and (3.32) that the Gaudin extraction for the columns of real roots always results in an expression
that we can express with the ground state density function with some shift. The same could be said
about the Gaudin extraction in anisotropic XXZ model.
In the massive regime it would means that the Gaudin extraction gives the density terms which
we can express in terms of elliptic functions. It is known that elliptic functions also forms the
Cauchy matrices similar to the hyperbolic version that we saw in eq. (3.48a) and it can be expected
that we can obtain an elliptic version of the Cauchy-Vandermonde with the arguments similar to
section C.3. This could give representation for the thermodynamic form-factors in massive regime
Δ > 1 obtained through the algebraic Bethe ansatz which we can also compare with the form-factors
[Cas20] from 𝑞-vertex operator algebra [JM95].
The massless XXZ model is more interesting since it falls in quantum critical regime. In this
case, we believe that for the non-commensurate values of 𝛾 ∉ 𝜋Q in the range 0 < 𝛾 < 𝜋

2 , the
longitudinal form-factors is largely described by excitations with one negative parity root. As
we have remarked in item 2. of section 2.3, these excitations are immediate equivalent of the
first descendants of triplets in the XXX case. This computation would again involve determinant
representations of hyperbolic Cauchy matrices, however unlike for the XXX model, the period of
these functions will be rescaled by the factor of 𝛾, as it can be easily seen from the density function
(2.6). The commensurability of the period with 𝜋 plays an important role here, which we have
already mentioned. In the non-commensurate case, we would expect that the results for these XXZ
form-factors from our method can be expressed in terms of 𝑞-Barnes G functions. It would be
an interesting prospect to compare it with the results of [CKSW12] obtained using the 𝑞-vertex
operator method [JM95].

The 𝔰𝔲2 quantum spin- 1
2 chain is the most fundamental example quantum integrable models.

Through the construction of solutions of the Yang-Baxter equation and with the different representa-
tion of the R-matrix, a large collection of quantum integrable models have been revealed. However,
most of the analysis of these models is in the early stages. The quantum spin chains was also first
example of a quantum integrable model where determinant representations and the resolution of the
inverse problem were found, expanding them to other quantum integrable models is still an ongoing
process which has culminated only for a handful of models such as the higher spin chains [MT00];
[CM07]. In addition to the existence of scalar product and quantum inverse scattering relations, a
meaningful application of our method to any other type of model would require us to access it on
an additional criteria. Since our computation relies heavily on the fact that the matrix of density
terms obtained from the Gaudin extraction contains an infinite Cauchy matrix, we need to first see
whether this models admits the density function which forms a Cauchy matrix. Although we have
only dealt with the Cauchy(-Vandermonde) matrix in the rational and hyperbolic parametrisation,
an elliptic version of it is also known to exist and it would be reasonable to expect that the essential
properties, such as duality, can also be extended to the elliptic case. This covers, in principle, the
generalisability of our method to the XXZ model in massive regime Δ > 1, where matrix of density
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function is written would involve elliptic functions. However, based on this observation, a more
nuanced stance can also be taken with respect to the generalisability and the requirement of the
Cauchy structure. A weaker version of this criteria can be framed by rewording it in terms of the
essential properties of the Cauchy matrix, which are summarised briefly in the following points:

1. The inverse of a matrix that is composed by the ground state density function can be expressed
with a diagonal dressing that is similar to eq. (5.159). In addition to this, it would be
advantageous if it also has a duality that is similar to the Cauchy-Vandermonde matrix.

2. The infinite determinant can be computed through infinite product form or integral represent-
ations of the special functions.

These are the two essential properties that we need in our computations, hence the it would be
interesting to see if a more general class of integrable systems can be found with these properties
and to see what class of special functions these properties belong.

The study quantum integrable models at finite temperature as well the out-of-equilibrium
integrable models has also emerged in recent years. Form-factors based approach plays an important
role in these computations [CDY16]; [DGK13]. It could be interesting to see whether our approach
can be used in these settings. Although this would require us to move away from the low-lying
excitations, the compatibility of the Destri-Lowenstein picture and string picture can help us make
this transition. However, the reduced determinant in this far from ground state limit will no longer
be finite size determinants. A closed form expression for the Φ integrals would be thus desired to
make such an approach efficient.

Finally, it is important to see whether the generalised condensation property that we apply for
the meromorphic functions can be proven rigorously in the non-compact Fermi distributions and
whether the finite-size corrections could be estimated and we believe an approach with non-linear
integral equation can be used to do so. However, we do realise that it would still us require to tame
the extreme cases with the poles lying at the edges of Fermi-distribution, in which case the problem
gets deeply interlinked with the problem of finite size corrections to the Cauchy determinants. A
more robust approach for computing the Φ function integrals would be helpful in tackling the latter
problem.
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Appendix A.
Special functions

A.1. Euler’s Γ function

The Gamma Γ function can be defined with its Weierstrass infinite product form [Bat81]:

Γ(𝑧) = 𝑒𝛾𝑧

𝑧

∞∏
𝑛=1

𝑛𝑒
𝑧
𝑛

𝑛 + 𝑧 . (A.1)

Here 𝛾 denotes the Euler-Mascheroni constant defined as the limit of the following sequence which
takes the approximate value of 𝛾 ' 0.577.

𝛾 = lim
𝑛→∞(

𝑛∑︁
𝑝=1

1
𝑛
− log 𝑛). (A.2)

The Euler’s Γ function has the properties:

Initial value: Γ(1) = 1, (A.3a)
Recurrence: Γ(𝑧 + 1) = 𝑧Γ(𝑧). (A.3b)

The Γ(𝑧) has simple poles in 𝑧 ∈ −𝑖ℕ = {0,−𝑖,−2𝑖, . . .}, the residue at any of these poles can be
obtained using the property (A.3b).

Integral representation
Its logarithm admits the integral representation [GRJ07]; [Nie06]:

logΓ(𝑧) =
∫ ∞

0

𝑑𝑡

𝑧

{
(𝑧 − 1)𝑒−𝑡 + 𝑒

−𝑧𝑡 − 𝑒−𝑡
1 − 𝑒−𝑡

}
, (<𝑧 > 0). (A.4)

Asymptotic form
The asymptotic form of the logΓ function for the large values of |𝑧 | is given by, [GRJ07]; [MO48]

logΓ(𝑧) = 𝑧 log 𝑧 − 𝑧 − log 𝑧
2
+ log

√
2𝜋

+ 1
2

∞∑︁
𝑛=1

𝑛

(𝑛 + 1) (𝑛 + 2)
∞∑︁

𝑚=1

1
(𝑧 + 𝑚)𝑛+1 , ( | arg 𝑧 | < 𝜋). (A.5)

Relationship with the trigonometric and hyperbolic functions
The Gamma function is related with the trigonometric or the hyperbolic sine and cosine function
through the identities:

sin 𝜋𝑧 =
𝜋𝑧

Γ(1 + 𝑧)Γ(1 − 𝑧) cos 𝜋𝑧 =
𝜋

Γ( 12 + 𝑧)Γ( 12 − 𝑧)
; (A.6a)

sinh 𝜋𝑧 =
𝜋𝑧

Γ(1 + 𝑖𝑧)Γ(1 − 𝑖𝑧) cosh 𝜋𝑧 =
𝜋

Γ( 12 + 𝑖𝑧)Γ( 12 − 𝑖𝑧)
. (A.6b)
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Convergence of infinite rational products
A comparison of any infinite product involving rational terms with the Weierstrass form (A.1) gives
an important criteria for the absolute convergence of such products.

Lemma A.1 ([WW02]; [Bat81]). Let 𝜶 ⊂ ℂ and 𝜷 ⊂ ℂ denote a set of complex variables with
cardinalities 𝑝 = 𝑛𝜶 and 𝑞 = 𝑛𝜷 respectively. The necessary and sufficient condition for infinite
product

∞∏
𝑛=1

∏(𝑛 − 𝜶)
∏(𝑛 − 𝜷) =

∞∏
𝑛=1

(𝑛 − 𝛼1) · · · (𝑛 − 𝛼𝑝)
(𝑛 − 𝛽1) · · · (𝑛 − 𝛽𝑞) (A.7)

to be absolutely convergent is 𝑝 = 𝑞 and
∑︁

𝛼 −
∑︁

𝛽 = 0. (A.8)

In which case, it converges to the ratio of Gamma functions:
∞∏
𝑛=1

∏(𝑛 − 𝜶)
∏(𝑛 − 𝜷) =

∏

Γ(1 − 𝜷)
∏

Γ(1 − 𝜶) . (A.9)

A.2. Digamma function 𝜓 : Logarithmic derivative of the Γ function

The logarithmic derivative of the Γ function is denoted as 𝜓(𝑧) = logΓ′(𝑧). It has the recurrence
property:

recurrence: 𝜓(𝑧 + 1) = 1
𝑧
+ 𝜓(𝑧). (A.10)

Some of the particular values of the digamma function are as follows:

𝜓(1) = −𝛾, 𝜓
(

1
4

)
= −𝛾 − 𝜋

2 − 3 log 2,

𝜓
(

1
2

)
= −𝛾 − 2 log 2, 𝜓

(
3
4

)
= −𝛾 + 𝜋

2 − 3 log 2.
(A.11)

Series representation
The digamma function can be represented as infinite series of the rational terms [GRJ07]:

𝜓(𝑧) = −𝛾 +
∞∑︁
𝑛=0

{
1

𝑛 + 1
− 1
𝑧 + 𝑛

}
. (A.12)

Integral representation
From the eq. (A.4) we can write the integral representation due to Gauss:

𝜓(𝑧) =
∫ ∞

0

{
1
𝑡
𝑒−𝑡 − 𝑒−𝑧𝑡

1 − 𝑒−𝑡
}
𝑑𝑡, (<𝑧 > 0). (A.13a)

This is equivalent to the integral representation:

𝜓(𝑧) = −𝛾 +
∫ ∞

0

𝑒−𝑡 − 𝑒−𝑧𝑡
1 − 𝑒−𝑡 𝑑𝑡, (<𝑧 > 0). (A.13b)
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A.3. Barnes 𝐺-function

Barnes [Bar99] generalised the Gamma function to a class of transcendental functions Γ𝑛 called
multiple Gamma functions with the recursive property (A.3b).

Γ𝑛+1(𝑧 + 1) = Γ𝑛+1(𝑧)
Γ𝑛 (𝑧) . (A.14)

In this notation Γ0 is the rational identity function Γ0(𝑧) = 𝑧 and Γ1 is the Euler’s Gamma function
from (A.1). For each 𝑛 ≥ 2 we obtain a higher transcendent of the Γ𝑛−1. Out of these variants, the
double Gamma function Γ2 is of our particular interest. It is customary and also convenient to write
down its reciprocate 𝐺 (𝑧) = Γ−1

2 (𝑧) which is called the Barnes 𝐺-function. It has the following
properties:

Initial value: 𝐺 (1) = 1, (A.15a)
Recurrence: 𝐺 (𝑧 + 1) = Γ(𝑧)𝐺 (𝑧). (A.15b)

Weierstrass infinite product form
The Barnes 𝐺-function can be represented in the Weierstrass infinite product form [Bar99]:

𝐺 (𝑧 + 1) = (2𝜋) 𝑧2 𝑒− 𝑧 (𝑧−1)
2 − 𝛾𝑧2

2

∞∏
𝑛=1

{
Γ(𝑛)

Γ(𝑧 + 𝑛) 𝑒
𝑧𝜓 (𝑛)+ 𝑧2

2 𝜓′ (𝑛)
}
. (A.16)

The 𝜓 and 𝜓 ′ represents the digamma function from the section A.2 above and its derivative
respectively.

Integral representation
Its logarithm admits the following integral representation [CS09]; [Vig79]:

log𝐺 (𝑧 + 1) =
∫ ∞

0

𝑒−𝑡

𝑡

𝑒−𝑧𝑡 + 𝑧𝑡 + 𝑧2𝑡2

2 − 1
(1 − 𝑒−𝑡 )2 𝑑𝑡 − (1 + 𝛾) 𝑧

2

2
+ 3

2
log 𝜋, (<𝑧 > −1). (A.17)

Particular value
Barnes [Bar99] also gave the particular value:

𝐺

(
1
2

)
= 2

1
24 · 𝜋− 1

4 · 𝑒 1
8 · 𝐴− 3

2 (A.18)

where 𝐴 is called the Glaisher-Kinkeline [Gla77] constant given by the integral:

𝐴 = 2
7
36 𝜋−

1
6 exp

{
1
3
+ 2

3

∫ 1
2

0
Γ(𝑡 + 1)𝑑𝑡

}
. (A.19)

Asymptotic form
The Stirling approximation formula for logarithm of the Barnes 𝐺-function for large values of 𝑥 ∈ ℝ
and a complex 𝛼 ∈ ℂ [CS09] is given by,

log𝐺 (𝑥 + 𝛼 + 1) =
{𝑥 + 𝛼

2

}
log(2𝜋) − log 𝐴 − 3𝑥2

4
− 𝛼𝑥 + 1

12

+
{ (𝑥 + 𝛼)2

2
− 1

12

}
log 𝑥 +𝑂 (𝑥−1). (A.20)
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Appendix A. Special functions

Convergence of infinite product involving Gamma functions
Similar to the lemma A.1 we can prove the following result for the absolute convergence of an
infinite product involving the Γ function:

Lemma A.2. Given the sets 𝜶 ⊂ ℂ and 𝜷 ⊂ ℂ of the complex variables with cardinalities 𝑝 = 𝑛𝜶
and 𝑞 = 𝑛𝜷 respectively. The necessary and sufficient condition for an infinite product

∞∏
𝑛=1

∏

Γ(𝑛 − 𝜶)
∏

Γ(𝑛 − 𝜷) =
∞∏
𝑛=1

Γ(𝑛 − 𝛼1) · · · Γ(𝑛 − 𝛼𝑝)
Γ(𝑛 − 𝛽1) · · · Γ(𝑛 − 𝛽𝑞) (A.21)

to converge is 𝑝 = 𝑞,
∑︁

𝜶 −
∑︁

𝜷 = 0, (A.22a)
and

∑︁

𝜶2 −
∑︁

𝜷2 = 0. (A.22b)

In which case it converges to the following rational form in 𝐺-functions

∞∏
𝑛=1

∏

Γ(𝑛 − 𝜶)
∏

Γ(𝑛 − 𝜷) =
∏

𝐺 (1 − 𝜷)
∏

𝐺 (1 − 𝜶) . (A.23)

Proof. From the Stirling’s approximation (A.5) we find that for large 𝑛 the general term is comparable
to

∏

Γ(𝑛 − 𝜷)
∏

Γ(𝑛 − 𝜶) ∼
(

2𝜋√
𝑛

)𝑞−𝑝 (𝑛
𝑒

) (𝑞−𝑝)𝑛
𝑛𝚫 ·

(
1 − 𝚫

2𝑛
+ 𝚫2

𝑛

)
. (A.24)

where 𝚫 =
∑

𝜶−∑ 𝜷 and 𝚫2 =
∑

𝜶2−∑ 𝜷2. This gives us the necessary condition for the absolute
convergence 𝑝 = 𝑞, 𝚫 = 0 and 𝚫2 = 0. It is also sufficient condition as we can insert the exponential
terms to obtain

∞∏
𝑛=1

∏

Γ(𝑛 − 𝜶)
∏

Γ(𝑛 − 𝜷) =
∞∏
𝑛=1

∏

𝜶

{
Γ(𝑛 − 𝜶)𝑒−𝜶𝜓 (𝑛)−𝜶2

2 𝜓′ (𝑛)
}

∏

𝜷

{
Γ(𝑛 − 𝜷)𝑒−𝜷𝜓 (𝑛)− 𝜷2

2 𝜓′ (𝑛)
} =

∏

𝐺 (1 − 𝜷)
∏

𝐺 (1 − 𝜶) . (A.25)

�

Remark. The condition 𝑝 = 𝑞 can be relaxed provided we add in the denominator extra 𝑝 − 𝑞-fold
Γ(𝑛) terms:

∏

𝐺 (1 − 𝜷)
∏

𝐺 (1 − 𝜶) =
∞∏
𝑛=1

1
Γ𝑝−𝑞 (𝑛)

∏

Γ(𝑛 − 𝜶)
∏

Γ(𝑛 − 𝜷) . (A.26)

In other words, when 𝑝 ≠ 𝑞, we can simply add |𝑝 − 𝑞 | fold zeroes to obtain the sets with equal
cardinalities, without altering the condition (A.22).
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Appendix B.
Integral equations and convolutions of the
density terms

Here we will study generalised versions of integral equation for the function 𝜌𝜅 :

𝜌𝜅 (𝜆) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝜌𝜅 (𝜏)𝑑𝜏 = 𝐾𝜅 (𝜆) (B.1)

where the parameter 𝜆 or the integrated variable 𝜏 (or both) are allowed to be non-real.

B.1. Shifted density terms

Let us define the shifted density term as a bivariate function 𝜌𝜅 (𝜆, 𝜇) where 𝜆 ∈ ℝ and 𝜇 ∈ ℂ
satisfying the integral equation:

𝜌𝜅 (𝜆, 𝜇) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝜌𝜅 (𝜏, 𝜇)𝑑𝜏 = 𝐾𝜅 (𝜆 − 𝜇). (B.2)

We can see that depending upon the value of the imaginary part =𝜇, the function 𝐾𝜅 has differing
configuration of its poles. Its Fourier transform is simply given by a shift as long as we confine that
the parameter 𝜇 to the |=𝜇 | < 1

𝜅 , we see that there is one pole on the both sides of the real line. For
the values of 𝜇 outside this strip |=𝜇 | > 1

𝜅 we see that one of the pole crosses the real line to move
to the other side. This means that the function 𝐾𝜅 (𝜆 − 𝜇) is holomorphic in one of the halves of the
complex plane while it has two simple poles in the other half. This leads to the Fourier transforms∗:

𝐾𝜅 (𝑡, 𝜇) =


𝑒−|

𝑡
𝜅
| 𝑒−𝑖𝜇𝑡 ; 𝜅 |=𝜇 | < 1,

−2𝐼𝑡>0 sinh
( 𝑡
𝜅

)
𝑒−𝑖𝜇𝑡 ; 𝜅=𝜇 < −1,

2𝐼𝑡<0 sinh
( 𝑡
𝜅

)
𝑒−𝑖𝜇𝑡 ; 𝜅=𝜇 > 1.

(B.3)

Note that this shift does not affect the Lieb kernel 𝐾 on the left-hand side of the integral equation
(B.2). Thus we can see that the Fourier transform of the function 𝜌𝜅 (𝜆, 𝜇) can be written as

𝜌𝛼 (𝑡, 𝜇) = 𝐾𝛼 (𝑡, 𝜇)
1 + 𝑒−|𝑡 | . (B.4)

Therefore it is also divided into the three branches according to value of =𝛼 where the Fourier
transform of the 𝜌𝜅 (𝜈, 𝛼) assumes different forms. In particular for values of the scaling factor that
∗ Here 𝐼𝑡>0 and 𝐼𝑡<0 denotes the characteristic functions with support on {𝑡 ∈ ℝ | 𝑡 > 0} and {𝑡 ∈ ℝ | 𝑡 < 0} resp. They

are related to the Heaviside step function.

179



Appendix B. Integral equations and convolutions of the density terms

interests us 𝜅 = 1 and 𝜅 = 2, we get

𝜌2(𝑡, 𝜇) =



𝑒−𝑖𝜇𝑡

2 cosh 𝑡
2

; |=𝜇 | < 1
2
,

𝐼𝑡<0
2 sinh 𝑡

2 𝑒
−𝑖𝜇𝑡

1 + 𝑒𝑡 ; =𝜇 > 1
2
,

−𝐼𝑡>0
2 sinh 𝑡

2 𝑒
−𝑖𝜇𝑡

1 + 𝑒−𝑡 ; =𝜇 < −1
2
.

(B.5a)

And

𝜌1(𝑡, 𝜇) =


𝑒−|𝑡 |𝑒−𝑖𝜇𝑡

1 + 𝑒−|𝑡 | ; |=𝜇 | < 1,

𝐼𝑡<0(1 − 𝑒−𝑡 )𝑒−𝑖𝜇𝑡 ; =𝜇 > 1,
𝐼𝑡>0(1 − 𝑒𝑡 )𝑒−𝑖𝜇𝑡 ; =𝜇 < −1.

(B.5b)

The solution for 𝜌2 in the central strip of analyticity |=𝛼 | < 1
2 can be expressed in terms of the

hyperbolic function:

𝜌2(𝜈, 𝛼) = 𝜌2(𝜈 − 𝛼) = 1
2 cosh 𝜋(𝜈 − 𝛼) , −1

2
< =𝛼 < 1

2
. (B.6)

We also note that inside this strip it only depends on the difference 𝜌2(𝜆, 𝜇) = 𝜌2(𝜆 − 𝜇) where the
latter is an analytic continuation of 𝜌2(𝜆) for 𝜆 ∈ ℝ to the region |=𝜆 | < 1

2 .
Outside this central strip, we can see from the integral representation (A.13) that 𝜌2(𝜈, 𝜇) can be

expressed as a sum of digamma functions 𝜓:

𝜌2(𝜆, 𝜇) = 1
4𝜋

{
𝜓

(
−1

4
− 𝜆 − 𝜇

2𝑖𝜎

)
− 2𝜓

(
1
4
− 𝜆 − 𝜇

2𝑖𝜎

)
+ 𝜓

(
3
4
− 𝜆 − 𝜇

2𝑖𝜎

)}
, 𝜎=𝜇 > 1

2
, 𝜎 = ±1.

(B.7)

For the solutions of 𝜌1(𝜆, 𝜇) (B.5b) this is reverse. We find that in the central strip it can only be
expressed in terms of digamma functions

𝜌1(𝜆, 𝜇) = 1
4𝜋

∑︁
𝜎=±1

{
𝜓

(
1
2
+ 𝜆 − 𝜇

2𝑖𝜎

)
− 𝜓

(
1 + 𝜆 − 𝜇

2𝑖𝜎

)}
(B.8)

where it depends on the difference 𝜌1(𝜆, 𝜇) = 𝜌1(𝜆 − 𝜇) and the latter 𝜌1(𝜆) (|=𝜆 | < 1) is the
analytic continuation of 𝜌2(𝜆) (𝜆 ∈ ℝ). Whereas in the region outside this central strip |=𝜇 | > 1,
we find that it admits a rational form

𝜌1(𝜆, 𝜇) = 1
2𝜋𝑖

𝑡 (𝜎(𝜆 − 𝜇)) = 1
2𝜋

1
(𝜏 − 𝜇) (𝜏 − 𝜇 + 𝑖𝜎) , 𝜎=𝜇 > 1. (B.9)

Effect of moving the contour of integration
Let us now consider the case where 𝜆 = 𝜈 + 𝑖𝛼 in 𝜌𝜅 (𝜆, 𝜇) is complex. It satisfies the integral
equation

𝜌𝜅 (𝜆, 𝜇) +
∫
ℝ+𝑖𝛼

𝐾 (𝜆 − 𝜏)𝜌𝜅 (𝜏, 𝜇)𝑑𝜏 = 𝐾𝜅 (𝜆 − 𝜇). (B.10)
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B.2. Complexified density function

With a change of parameter of integration we can see that this integral equation is identical to that
of 𝜌𝜅 (𝜈, 𝜇 − 𝑖𝛼) written according to eq. (B.2):

𝜌(𝜈, 𝜇 − 𝑖𝛼) +
∫
ℝ
𝐾 (𝜈 − 𝜏)𝜌𝜅 (𝜏, 𝜇 − 𝑖𝛼)𝑑𝜏 = 𝐾𝜅 (𝜈 − 𝜇 + 𝑖𝛾) = 𝐾𝜅 (𝜆 − 𝜇). (B.11)

Thus we see that it is sufficient to consider 𝜆 ∈ ℝ as we did in eq. (B.2) and the more general case is
nothing but shifting of the contour of integration.

B.2. Complexified density function

Let us now consider another version of the 𝜌𝜅 function where the parameter 𝜆 is allowed to complex
such that we have

𝜌𝜅 (𝜆) +
∫
ℝ
𝐾 (𝜆 − 𝜏)𝜌𝜅 (𝜏)𝑑𝜏 = 𝐾𝜅 (𝜆) with 𝜆 ∈ ℂ. (B.12)

Note that there is clear distinction between eqs. (B.10) and (B.12) that here the integral is taken
over the real line. This means that the equation (B.12) has ceased to an integral equation for 𝜆 ∉ ℂ
and it can be simply solved by calculating the convolution of the kernel 𝐾 with the density function
𝜌𝜅 . A crucial point to note here is that kernel 𝐾 is now shifted and we must pay attention to the its
poles. We will now compute these convolutions for the case of 𝜅 = 2 and 𝜅 = 1.

B.2.1. For 𝜅 = 2

When |=𝜆 | < 1 (Close-pair region) :
Since the poles of 𝐾 (𝜏 − 𝜆) for |=𝜆 | < 1 lies on each side of the real line, we get the Fourier
transform in this case from eqs. (B.3) and (B.5b) which is factorised to write the following integrals:∫

ℝ
𝐾 (𝜆 − 𝜏)𝜌2(𝜏)𝑑𝜏 = 1

2𝜋

∫ ∞
0
𝑒−

𝑡
2 (𝑒𝑖𝜆𝑡 + 𝑒−𝑖𝜆𝑡 )𝑑𝑡 − 1

2𝜋

∫ ∞
0

𝑒−
𝑡
2 (𝑒𝑖𝜆𝑡 + 𝑒−𝑖𝜆𝑡 )

1 + 𝑒−𝑡 𝑑𝑡 (B.13)

which gives ∫
ℝ
𝐾 (𝜆 − 𝜏)𝜌2(𝜏)𝑑𝜏 = 𝐾2(𝜆) − 1

2 cosh 𝜋𝜆
. (B.14)

Substituting this in eq. (B.12) for 𝜅 = 2 we find that

𝜌2(𝜆) = 1
2 cosh 𝜋𝜆

, |=𝜆 | < 1 (B.15)

In other words, we only found that the ground state density function can be analytically continued
to the entire |=𝜆 | < 1 that we associate in the Destri-Lowenstein picture with the close-pairs.

For |=𝜆 | > 1 (Wide-pair region) :
In the outside region |=𝜆 | > 1, the kernel 𝐾 (𝜏 − 𝜆) has both its poles lying on same side of the
real line. This changes its Fourier transform (B.3), which is reflected in the computation of its
convolution with the density 𝜌2 as seen from the following expressions:∫

ℝ
𝐾 (𝜆 − 𝜏)𝜌2(𝜏)𝑑𝜏 = 1

𝜋

∫ ∞
0
𝑒𝑖𝜆𝜎𝑡 sinh 𝑡

2𝑑𝑡, where 𝜎=𝜆 > 1 (𝜎 = ±1) (B.16a)
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Appendix B. Integral equations and convolutions of the density terms

which gives,∫
ℝ
𝐾 (𝜆 − 𝜏)𝜌2(𝜏)𝑑𝜏 = 1

2𝜋
1

𝜆2 + 1
4
, |=𝜆 | > 1. (B.16b)

This means that 𝜌2(𝜆) vanishes in the region |=𝜆 | > 1 that is associated with the wide-pairs in the
Destri-Lowenstein picture,

𝜌2(𝜆) = 0, |=𝜆 | > 1. (B.17)

B.2.2. For 𝜅 = 1

When |=𝜆 | < 1 (Close-pair region) :
Similar to the 𝜅 = 2 case, we get from eq. (B.5b) the Fourier transform of the convolution∫

ℝ
𝐾 (𝜆 − 𝜏)𝜌1(𝜏)𝑑𝜏 = 1

2𝜋

∫ ∞
0
𝑒−𝑡 (𝑒𝑖𝜆𝑡 + 𝑒−𝑖𝜆𝑡 )𝑑𝑡 − 1

2𝜋

∫ ∞
0

𝑒−𝑡 (𝑒𝑖𝜆𝑡 + 𝑒−𝑖𝜆𝑡 )
1 + 𝑒−𝑡 𝑑𝑡 (B.18)

which gives, ∫
ℝ
𝐾 (𝜆 − 𝜏)𝜌2(𝜏)𝑑𝜏 = 𝐾 (𝜆) − 𝜌ℎ (𝜆). (B.19)

Substituting this in eq. (B.12) for 𝜅 = 2 we find that

𝜌2(𝜆) = 𝜌ℎ (𝜆), |=𝜆 | < 1 (B.20)

For |=𝜆 | > 1 (Wide-pair region) :
From eqs. (B.3) and (B.5b) we get∫

ℝ
𝐾 (𝜆 − 𝜏)𝜌1(𝜏)𝑑𝜏 = 1

𝜋

∫ ∞
0
(𝑒𝜎𝑡 − 1)𝑒𝑖𝜆𝜎𝑡𝑑𝑡, where 𝜎=𝜆 > 1 (𝜎 = ±1) (B.21a)

which gives,∫
ℝ
𝐾 (𝜆 − 𝜏)𝜌2(𝜏)𝑑𝜏 = 1

2𝜋𝑖
𝑡 (−𝜎𝜆) = 1

2𝜋
1

𝜆(𝜆 − 𝑖𝜎) , |=𝜆 | > 1. (B.21b)

Substituting it into the integral equation (B.12) for 𝜅 = 1 gives us,

𝜌1(𝜆) = 1
2𝜋𝑖

𝑡 (𝜎𝜆) = 1
2𝜋

1
𝜆(𝜆 + 𝑖𝜎) , |=𝜆 | > 1. (B.22)
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Appendix C.
Matrices, determinants and their extractions

C.1. Reduction of matrices up-to their determinants

Here we present the result of the following lemma which we used to reduce the order of determinant.

Lemma C.1. Let 𝑀 be a matrix of order 𝑚 + 𝑛 composed of the blocks:

𝑀 =

(I𝑚 𝐶
𝐵 𝐷

)
. (C.1)

Then a smaller matrix 𝑃 of order 𝑛 can be constructed as

𝑃 = 𝐷 − 𝐵𝐶 (C.2)

such that it is equivalent to the original matrix 𝑀 up-to the evaluation of their determinants,

det𝑛 𝑃 = det𝑚+𝑛 𝑀. (C.3)

Proof. Since the matrix 𝑀 contains an identity block 𝐼𝑚, we need to consider only permutations
which stabilise the subset [1;𝑚] of indices. This permits us to write the determinant as

det𝑀 =
∑︁
𝜏∈𝔖𝑛

(−1)𝜏𝑀11 . . . 𝑀𝑚𝑚𝑀𝑚+𝜏1,𝑚+1 . . . 𝑀𝑚+𝜏𝑚,𝑚+𝑛

−
𝑛∑︁

ℓ=1

𝑚∑︁
𝑘=1

∑︁
𝜏∈𝔖𝑛

(−1)𝜏
{
𝑀11 . . . 𝑀𝑚+𝜏ℓ ,𝑘 . . . 𝑀𝑚𝑚

× 𝑀𝑚+𝜏1,𝑚+1 . . . 𝑀𝑘,𝑚+ℓ . . . 𝑀𝑚+𝜏𝑚,𝑚+𝑛

}
+

𝑛∑︁
ℓ1=1

𝑛∑︁
ℓ2=1

ℓ1≠ℓ2

𝑚∑︁
𝑘1=1

𝑚∑︁
𝑘2=1

𝑘1≠𝑘2

∑︁
𝜏∈𝔖𝔫

(−1)𝜏
{
𝑀11 . . . 𝑀𝑚+𝜏ℓ1 ,𝑘1 . . . 𝑀𝑚+𝜏ℓ2 ,𝑘2 . . . 𝑀𝑚𝑚

𝑀𝑚+𝜏1,𝑚+1 . . . 𝑀𝑘1,𝑚+ℓ1 . . . 𝑀𝑘2,𝑚+ℓ2 . . . 𝑀𝑚+𝜏𝑚,𝑚+𝑛

}
...

All the iterations up-to : {𝑘1, . . . , 𝑘𝑟max} , {ℓ1, . . . , ℓ𝑟max} ; (𝑟max = min(𝑚, 𝑛)). (C.4)

It can be rewritten as

det𝑀 =
𝑟max∑︁
𝑟=0
(−1)𝑟

𝑚∑︁
𝑘1=1

. . .
𝑚∑︁

𝑘𝑟=1
𝑘𝑖≠𝑘 𝑗 ∀𝑖, 𝑗≤𝑟

𝑛∑︁
ℓ1=1

. . .
𝑛∑︁

ℓ𝑟=1
ℓ𝑖≠ℓ 𝑗 ∀𝑖, 𝑗≤𝑟

∑︁
𝜏∈𝔖𝑛

(−1)𝜏
𝑟∏

𝑝=1
𝑀𝑚+𝜏𝑝 ,𝑘𝑝𝑀𝑘𝑝 ,ℓ𝑝

𝑛∏
𝑞=1

𝑞≠ℓ1,...ℓ𝑟

𝑀𝑚+𝜏𝑞 ,𝑚+𝑞 . (C.5)
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In this sum, we can relax the condition 𝑘𝑖 ≠ 𝑘 𝑗 by adding monomials with 𝑘 𝑝 = 𝑘 𝑝′ for some
𝑝, 𝑝′ ≤ 𝑟 (𝑟 ≤ 𝑟max). Let ℓ𝑝 and ℓ𝑝′ denote the corresponding pre-indices associated via the
terms 𝑀𝑘𝑝 ,ℓ𝑝 and 𝑀𝑘𝑝′ ,ℓ𝑝′ in the product over 𝑝, we find that such a monomial is invariant under a
permutation of 𝑛 + ℓ𝑝 and 𝑛 + ℓ𝑝′. Therefore it appears twice in the determinant sum and hence it
would cancels out with itself. With this observation, we can write

det𝑀 =
∑︁
𝜏∈𝔖𝑛

(−1)𝜏
𝑚∏
𝑞=1

{
𝑀𝑚+𝜏𝑞 ,𝑚+𝑞 −

𝑛∑︁
𝑘=1
(𝑀𝑚+𝜏𝑞 ,𝑘𝑀𝑘,𝑚+𝑞)

}
(C.6)

which corresponds to the determinant of the matrix 𝑃 constructed as 𝑃 = 𝐷 − 𝐵𝐶 in eq. (C.2). �

Corollary. Let 𝑀 be any matrix divided into the blocks:

𝑀 =

(
𝐴 𝐶
𝐵 𝐷

)
(C.7)

where the diagonal block 𝐴 is invertible. Then a smaller matrix 𝑃 can be written as

𝑃 = 𝐷 − 𝐵𝐴−1𝐶 (C.8)

which is equivalent to 𝑀 up-to the evaluation of its determinant,

det𝑚+𝑛 𝑀 = det𝑚 𝐴 det𝑛 𝑃. (C.9)

Lemma C.2. Let 𝑀 be a square matrix of order 𝑚 and 𝑃 a rank-1 matrix of the same order 𝑚.
Then,

det(𝑀 + 𝑃) = det𝑀 +
𝑚∑︁
𝑎=1

det𝑀 (𝑎) (C.10)

where the matrix 𝑀 (𝑎) is obtained by replacing the 𝑎th column with the corresponding column
vector forming 𝑃.

Proof. It follows from the standard development of the determinant:

det(𝑀 + 𝑃) = det𝑀 +
𝑚∑︁
𝑎=1

det𝑀 (𝑎) +
∑︁
𝑎<𝑏

det𝑀 (𝑎𝑏) + · · · . (C.11)

However since the matrix 𝑃 is rank-1, all the higher order terms vanish. �

C.2. Cauchy-Vandermonde matrix in rational parametrisation

A Cauchy-Vandermonde matrix C ª𝛿 [see definition 39] is composed of the two rectangular blocks C
and V ª𝛿 as follows:

C ª𝛿 [𝒙‖𝒚] =
(
C[𝒙‖𝒚]

���� V ª𝛿 [𝒙]
)
. (C.12)

Here C[𝒙‖𝒚] is Cauchy matrix:

C(𝑥 𝑗 ‖𝑦𝑘) = 1
𝑥 𝑗 − 𝑦𝑘 (C.13)

and V ª𝛿 [𝒙] is a rectangular Vandermonde matrix:

V ª𝛿;𝑎 [𝑥 𝑗] = 𝑥𝑎−1
𝑗 . (C.14)

184



C.2. Cauchy-Vandermonde matrix in rational parametrisation

Determinant of rational Cauchy-Vandermonde matrix
Lemma C.3. The determinant of the Cauchy-Vandermonde matrix C ª𝛿 [𝒙‖𝒚] with the set of variables
𝒙 (𝑛𝒙 = 𝑚 + 𝑛) and 𝒚 (𝑛𝒚 = 𝑚) is given by the formula:

det C ª𝛿 (𝒙‖𝒚) =
iii
(𝒙‖𝒚) =

∏𝑛+𝑚
𝑗>𝑘 (𝑥 𝑗 − 𝑥𝑘)

∏𝑚
𝑗<𝑘 (𝑦 𝑗 − 𝑦𝑘)∏𝑛+𝑚

𝑗=1
∏𝑚

𝑘=1(𝑥 𝑗 − 𝑦𝑘)
. (C.15)

Proof. We give two versions of the proof here. The first one is inductive and computes the
determinant with increasing the sizes of Vandermonde block. The second is limiting procedure that
produces the Cauchy-Vandermonde matrix, starting from a larger square Cauchy matrix.

Method I. Here we will do recursion on the integer 𝑛 which is the difference of the cardinalities
𝑛 = 𝑛𝒙 − 𝑛𝒚 . This also represents the number of Vandermonde columns. For 𝑛 = 0, we have a
trivial case of a square Cauchy determinant. Therefore let us start with a mixed matrix with one
Vandermonde column. Evidently this column is a constant vector V[𝑥 𝑗] = 1, hence by developing
the determinant on this column we get,

det C ª𝛿 (1) [𝒙‖𝒚] =
𝑚+1∑︁
𝑘=1
(−1)𝑚+𝑘+1 det C[𝒙𝒌̂ ‖𝒚] =

iii
(𝒙‖𝒚)

𝑚+1∑︁
𝑘=1

𝜙′(𝑥𝑘 |𝒚, 𝒙). (C.16)

We can now see compute the summation over the 𝜙 function in the above expression. We find that it
has zero residue for all the poles 𝑥𝑘 = 𝑥𝑘′ and hence as an entire function which is bounded, we can
see that it is a constant function, since

𝑚+1∑︁
𝑘=1

𝜙′(𝑥𝑘 |𝒚, 𝒙) =
𝑚+1∑︁
𝑘=1

∏(𝑥𝑘 − 𝒚)
∏(𝑥𝑘 − 𝒙𝒌̂ )

= 1. (C.17)

This demonstrates that the formula (C.15) holds for 𝑛 = ℓ( ª𝛿) = 1. Let us assume that it holds up-to
certain 𝑛 = ℓ( ª𝛿) ∈ ℕ, we now show that it holds for ℓ( ª𝛿) = 𝑛 + 1 using the similar approach. We
see that the development on the last column of the Vandermonde matrix leads to the summation:

det C ª𝛿 (𝑛+1) [𝒙‖𝒚] =
𝑚+𝑛+1∑︁
𝑘=1
(−1)𝑚+𝑛+𝑘+1𝑥𝑛𝑘 det C ª𝛿 (𝑛) [𝒙𝒌̂ ‖𝒚] =

iii
(𝒙‖𝒚)

𝑚+𝑛+1∑︁
𝑘=1

𝑥𝑛𝑘𝜙
′(𝑥𝑘 |𝒚, 𝒙).

(C.18)

We can again easily see that the resulting summation forms a bounded multivariate entire function
and it takes thus a constant value 1. This proves inductively the result (C.15) for the determinant of
a Cauchy-Vandermonde matrix.

Method II. Let us construct a bigger Cauchy matrix C[𝒙‖𝒛] where 𝒛 = 𝒚 ∪ 𝒘. The number of extra
variables added 𝑛𝒘 = 𝑛 is taken such that it forms a square Cauchy matrix. Let us now show that by
taking the limits where the extra roots 𝒘 are send to infinity, we obtain a Cauchy-Vandermonde
matrix through a sequential procedure of taking this limit

C[𝒙‖𝒛] → C ª𝛿 (1) [𝒙‖𝒛 (1) ] → · · · → C ª𝛿 (𝑘) [𝒙‖𝒛 (𝒌) ] → · · · → C ª𝛿 (𝑛) [𝒙‖𝒚] (C.19)
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where 𝒛 (𝒌) = 𝒚 ∪ {𝑤𝑘+1, . . . , 𝑤𝑛}. For the first iteration we multiply the column for 𝑤1 with the
first order monomial 𝑤1 and take the limit 𝑤1 →∞ to obtain

lim
𝑤1→∞

(−𝑤1) 1
𝑥 𝑗 − 𝑤1

= 1. (C.20)

For the successive iteration we multiply the column for 𝑤𝑘 with a monomial of order 𝑘:

(−𝑤𝑘)𝑘 1
𝑥 𝑗 − 𝑤𝑘

=
∞∑︁
𝑟=0
(−𝑤𝑘)𝑘−𝑟−1𝑥𝑟𝑗 . (C.21)

At this point we also subtract the linear combination of the Vandermonde columns of the inferior
order 𝑟 < 𝑘 to cancel the divergent terms, note that this manipulation does not affect its determinant.
In this way we obtain at each recursion we obtain the intermediate matrix:

C ª𝛿 (𝑘) [𝒙‖𝒛 (𝒌) ] =
(
C[𝒙‖𝒚]

�� V ª𝛿 (𝑘) [𝒙]
�� C[𝒙‖𝒘 (𝒌) ]

)
. (C.22)

At the end of this procedure, the final expression would give us the Cauchy-Vandermonde matrix
C ª𝛿 [𝒙‖𝒚].
We now see that this limiting procedure for the determinant leads us to

det C ª𝛿 [𝒙‖𝒚] =
{

𝑛∏
𝑎=1

lim
𝑤𝑎→∞

(−𝑤𝑎)𝑎
}

iii
(𝒙‖𝒛) =

iii
(𝒙‖𝒚). (C.23)

This demonstrates the result (C.15) using the two methods. �

C.2.1. Inversion of the rational Cauchy-Vandermonde matrix

To express the inverse matrices, we will use the symmetric and supersymmetric function that we
have defined below.

Symmetric and supersymmetric function

Definition 45 (Elementary and total symmetric functions). Let 𝒛 denote a set of variables. The
elementary symmetric function of 𝑒𝑟 (𝒛) and total symmetric functions ℎ𝑟 (𝒛) are the polynomials
of degree 𝑟 defined as

𝑒𝑟 (𝒙) =
∑︁

𝑎1<𝑎2< · · ·<𝑎𝑟
𝑥𝑎1𝑥𝑎2 · · · 𝑥𝑎𝑟 , (C.24a)

and
ℎ𝑟 (𝒙) =

∑︁
𝛼1+···+𝛼𝑛𝒙=𝑟
𝛼𝑗≥0, ∀ 𝑗≤𝑛𝒙

𝑥𝛼1
1 𝑥𝛼2

2 · · · 𝑥
𝛼𝑛𝒙
𝑛𝒙 . (C.24b)

Their generating functions 𝐸 (𝑧) and 𝐻 (𝑧) can be written as

𝐸 (𝑧) =
∏

(𝑧 − 𝒙) =
𝑛𝒙∑︁
𝑟=0
(−1)𝑟 𝑧𝑛𝒙−𝑟 𝑒𝑟 (𝒙), (C.25a)

𝐻 (𝑧) = 1
∏(𝑧 − 𝒙) =

∞∑︁
𝑟=0

𝑧−𝑛𝒙−𝑟 ℎ𝑟 (𝒙). (C.25b)
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For the trivial case of the degree 𝑟 = 0, both of these functions takes the value 𝑒0(𝒙) = ℎ0(𝒙) = 1.
We can also easily see that for the degree 1 both the elementary and total symmetric functions are
equal 𝑒1(𝒙) = ℎ1(𝒙). We now generalise this to the supersymmetric case.

Definition 46 (Supersymmetric elementary function). A supersymmetric elementary function
𝑒𝑟 (𝒙‖𝒚) of degree 𝑟 over two sets of variables 𝒙 and 𝒚 is defined, as an alternating convolution sum
of the total and elementary symmetric functions:

𝑒𝑟 (𝒙‖𝒚) =
𝑟∑︁

𝑎=0
(−1)𝑎𝑒𝑟−𝑎 (𝒙)ℎ𝑟 (𝒚). (C.26)

It has the 𝜙(𝑧 |𝒙, 𝒚) as its generating function:

𝜙(𝑧 |𝒙, 𝒚) =
∏(𝑧 − 𝒙)
∏(𝑧 − 𝒚) =

∞∑︁
𝑟=0
(−1)𝑟 𝑧𝑛𝒙−𝑛𝒚−𝑟 𝑒𝑟 (𝒙‖𝒚). (C.27)

Evidently for the trivial case of the degree 0, it is a constant 𝑒0(𝒙‖𝒚) = 1. For the non-trivial
degrees 𝑟 > 0, we have the following property for the coinciding sets of variables.

Lemma C.4 (Conjugacy of symmetry functions). Elementary supersymmetric function of a non-
trivial degree 𝑟 > 0 vanishes when the two sets of variables coincide, as it can be seen from the
following:

𝑒𝑟>0(𝒙‖𝒙) = 0. (C.28)

This translates to the following identity for the elementary symmetric and total symmetric functions:
𝑟∑︁

𝑎=0
(−1)𝑎𝑒𝑟−𝑎 (𝒙)ℎ𝑎 (𝒙) = 0. (C.29)

Proof. It can easily shown from the generating function 𝜙 (C.27) for the elementary supersymmetric
function since we have since 𝜙(𝑧 |𝒙, 𝒙) = 1. �

Inverse of Cauchy and Vandermonde matrices

Let us begin the inverse of a square Cauchy and a square Vandermonde matrix. Although these
are well known results, their computation give valuable insights on the inversion of the hybrid
Cauchy-Vandermonde matrix.

Lemma C.5. The inverse of the Cauchy matrix C(𝒙‖𝒚) is given by,

C−1(𝑦𝑘 ‖𝑥 𝑗) =
∏(𝑥𝑘 − 𝒚)
∏′(𝑥𝑘 − 𝒙)

∏(𝑦 𝑗 − 𝒙)
∏′(𝑦 𝑗 − 𝒚)

1
𝑦 𝑗 − 𝑥𝑘 , (C.30)

Proof. It suffices to compute the determinant of the cofactors, since all of them are determinant of
the Cauchy matrices of lower order, it can be computed directly. �

Lemma C.6. The components of the inverse of the Vandermonde matrix can be written as

V∗−1
ª𝛿;𝑎,𝑘
[𝒙] = (−1)𝑛−𝑎𝑒𝑛−𝑎 (𝒙 𝑘̂)

∏′(𝑥𝑘 − 𝒙)
, (C.31)

where 𝑒𝛼 (𝒛) denotes the elementary symmetric polynomial of the degree 𝛼 in variables 𝒛.
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Proof. There exists many different proofs for this result. Here we develop the determinant formula
for the Vandermonde matrix in such a way that

iii
(𝒙) =

∏
(𝑥𝑘 − 𝒙 𝑘̂)

iii
(𝒙 𝑘̂) =

𝑛−1∑︁
𝑎=0
(−1)𝑛−𝑎𝑥𝑎𝑘 𝑒𝑛−𝑎 (𝒙 𝑘̂)

iii
(𝒙 𝑘̂). (C.32)

Now comparing this sum to the development of the determinant on the column 𝑗 and row 𝑘 give
us the cofactor of the Vandermonde matrix. In this way all cofactors can be found and hence the
inverse can be obtained. �

Remark. This gives us some useful insights for the inversion of a Cauchy-Vandermonde matrix. In
its determinant formula (C.15), here we do a similar expansion:

iii
(𝒙‖𝒚) =

∏(𝑥𝑘 − 𝒙𝒌̂ )
∏(𝑥𝑘 − 𝒚)

iii
(𝒙𝒌̂ ‖𝒚) =

∞∑︁
𝑎=0
(−1)𝑛−𝑎𝑥𝑎𝑘 𝑒𝑛−𝑎 (𝒙 𝑘̂ ‖𝒚)

iii
(𝒙 𝑘̂ ‖𝒚), (C.33)

where 𝑒𝛼 (𝒖‖𝒗) denotes the supersymmetric elementary polynomial [see the definition 46]. This
gives a hint that inverse Cauchy-Vandermonde matrix contains supersymmetric elementary functions,
which is exactly what we find in the following lemma.

To demonstrate this result, let us first prove the following lemma.

Definition 47. A partition ª𝜆𝑟 is defined as sum of partition ª𝜆𝑟 = ª𝛿 + ª1𝑟 , it represents a partition of
consecutive integers which jumps over an index 𝑟 :

ª𝜆𝑟 = {0, 1, 2, . . . , 𝑟 − 1, 𝑟 + 1, . . . , 𝑛 + 1} . (C.34)

Consequently, a Cauchy-Vandermonde matrix C ª𝜆𝑟 can be defined as a matrix containing a
Vandermonde block of columns which skips over the column of degree 𝑟 :

C ª𝜆𝑟 [𝒙‖𝒚] =
[
C[𝒙‖𝒚]

��� V ª𝜆𝑟 [𝒙]
]

=
©­­«

1
𝑥1−𝑦1

· · · 1
𝑥1−𝑦𝑚 1 · · · 𝑥𝑟−1

1 𝑥𝑟+11 · · · 𝑥𝑛−1
1

...
. . .

...
...

. . .
...

...
. . .

...
1

𝑥𝑛+𝑚−𝑦1
· · · 1

𝑥𝑛+𝑚−𝑦𝑚 1 · · · 𝑥𝑟−1
𝑛+𝑚 𝑥𝑟+1𝑛+𝑚 · · · 𝑥𝑛−1

𝑛+𝑚

ª®®¬ . (C.35)

Lemma C.7. The supersymmetric elementary function 𝑒𝑟 (𝒙‖𝒚) can be representation by ratio of
determinants:

𝑒𝑟 (𝒙‖𝒚) =
det C ª𝜆𝑟 [𝒙‖𝒚]
det C ª𝛿 [𝒙‖𝒚]

. (C.36)

Proof. This result is obviously true for 𝑟 = 0 where we have the trivial polynomial of degree
zero 𝑒0(𝒙‖𝒚) = 1. Let us start with the first non-trivial case 𝑟 = 1. We develop the determinant
appearing in the numerator of eq. (C.36) on the last column:

det C ª𝜆1
[𝒙‖𝒚] = (−1)𝑛+𝑚

aaa(−𝒚)
∏(𝒙 − 𝒚)

𝑛+𝑚∑︁
𝑎=1
(−1)𝑎𝑥𝑛𝑎

iii
(𝒙𝒂̂)𝐸 (𝑥𝑎 |𝒚). (C.37)
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Here the function 𝐸 denotes the generating function (C.25a) for the elementary symmetric function.
Let us substitute eq. (C.25a) while exchanging the order of two summations in the resulting
expression. It permits us to rewrite eq. (C.37) as

det C ª𝜆1
[𝒙‖𝒚] = (−1)𝑛+𝑚

aaa(−𝒚)
∏(𝒙 − 𝒚)

𝑚∑︁
𝑟=0
(−1)𝑟 𝑒𝑟 (𝒚) det

(
V ª𝛿 (𝑛+𝑚−1) [𝒙]

�� 𝑥𝑛+𝑚−𝑟 ) . (C.38)

where the determinant of the Vandermonde matrix comes from the interior summation inside the
double-sum:

det
(
V ª𝛿 (𝑛+𝑚−1) [𝒙]

�� 𝑥𝑛+𝑚−𝑟 ) = (−1)𝑛+𝑚
𝑛+𝑚∑︁
𝑎=1
(−1)𝑎𝑥𝑛+𝑚−𝑟𝑎

iii
(𝒙𝒂̂) (C.39)

which can be evaluated as

det
(
V ª𝛿 (𝑛+𝑚−1) [𝒙]

�� 𝑥𝑛+𝑚−𝑟 ) = 
0, 𝑟 ≥ 2
iii
(𝒙), 𝑟 = 1

𝑒1(𝒙)
iii
(𝒙), 𝑟 = 0.

. (C.40)

Substituting it back into eq. (C.38) leads to the result:

det C ª𝜆1
[𝒙‖𝒚] = det C ª𝛿 [𝒙‖𝒚]𝑒1(𝒙‖𝒚) (C.41)

where we use have used the relation:

𝑒1(𝒙‖𝒚) = 𝑒1(𝒙) − 𝑒1(𝒚) (C.42)

that follows from its definition 46 since we 𝑒0(𝒙) = ℎ0(𝒙) = 1 and 𝑒1(𝒙) = ℎ1(𝒙). We shall now
prove the result (C.36) by induction.

Let us assume that this result holds for all the degrees 𝑟 ≤ 𝛼 − 1 up-to certain positive integer 𝛼.
We develop the determinant of C ª𝜆𝛼

on the last column to obtain the summation:

det C ª𝜆𝛼
[𝒙‖𝒚] = (−1)𝑛+𝑚

aaa(−𝒚)
∏(𝒙 − 𝒚)

𝑛+𝑚∑︁
𝑎=1
(−1)𝑎𝑥𝑛𝑎𝐸 (𝑥𝑎 |𝒚)𝑒𝛼−1(𝒙𝒂̂‖𝒚)

iii
(𝒙𝒂̂). (C.43)

Let us substitute now eqs. (C.25a) and (C.26) for the generating function 𝐸 (𝑥𝑎 |𝒚) and the
supersymmetric function 𝑒𝛼−1(𝒙𝒂̂‖𝒚) into the above expression. We also exchange the order of
summations in the resulting triple-sum to write eq. (C.43) as

det C ª𝜆𝛼
[𝒙‖𝒚] = (−1)𝑛+𝑚

aaa(−𝒚)
∏(𝒙 − 𝒚)

×
{

𝑚∑︁
𝑟=0
(−1)𝑟 𝑒𝑟 (𝒚)

𝛼−1∑︁
𝑠=0
(−1)𝑠ℎ𝑠 (𝒚) det

(
V ª𝜆𝛼−𝑠−1 (𝑛+𝑚−1) [𝒙]

�� 𝑥𝑛+𝑚−𝑟 ) }
. (C.44)

The innermost sum that runs over 𝑥𝑎 variables is hidden inside the Vandermonde determinant in the
above expression (C.44) which can be evaluated as

det
(
V ª𝜆𝛼−𝑠−1 (𝑛+𝑚−1) [𝒙]

�� 𝑥𝑛+𝑚−𝑟 ) = {
𝛿𝑟 ,0𝑒𝛼−𝑠 (𝒙) − (−1)𝛼−𝑠𝛿𝑟 ,𝛼−𝑠𝑒0(𝒙)

}iii
(𝒙). (C.45)
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Substituting it back into eq. (C.44) gives us

det C ª𝜆𝛼
[𝒙‖𝒚] =

{
𝛼−1∑︁
𝑠=0
(−1)𝑠ℎ𝑠 (𝒚)𝑒𝛼−𝑠 (𝒙) − 𝑒0(𝒙)

𝛼−1∑︁
𝑠=0
(−1)𝑠ℎ𝑠 (𝒚)𝑒𝛼−𝑠 (𝒚)

}
iii
[𝒙‖𝒚] . (C.46)

Using the conjugacy relation (C.29) in eq. (C.46) we obtain the result:

det C ª𝜆𝛼
[𝒙‖𝒚] = det C ª𝛿 [𝒙‖𝒚]𝑒𝛼 (𝒙‖𝒚). (C.47)

�

Remark. A most general form of this result for any partition ª𝜆 was found in [MV03]. For a more
detailed overview of the subject, one can also refer to the thesis [Moe07].

Proposition C.8. The inverse of the Cauchy-Vandermonde matrix (C.12) contains two blocks. The
Cauchy block has the components given by the expressions identical to those obtained for the inverse
of a square Cauchy matrix (C.30)

C−1
ª𝛿; 𝑗 ,𝑘
[𝒚‖𝒙] =

∏(𝑥𝑘 − 𝒚)
∏′(𝑥𝑘 − 𝒙)

∏(𝑦 𝑗 − 𝒙)
∏′(𝑦 𝑗 − 𝒚)

1
𝑦 𝑗 − 𝑥𝑘 ; 𝑘 ≤ 𝑚. (C.48)

The Vandermonde block of the inverse Cauchy-Vandermonde matrix has components given by the
expression:

C−1
ª𝛿;𝑚+𝑎,𝑘 [𝒚‖𝒙] = (−1)𝑛−𝑎

∏(𝑥𝑘 − 𝒚)
∏′(𝑥𝑘 − 𝒙)

𝑒𝑛−𝑎 (𝒙 𝑘̂ ‖𝒚); 𝑎 ≤ 𝑛 (C.49)

which is similar to the expression (C.31) for the inverse of the square Vandermonde matrix, while
the symmetric functions are replaced by their supersymmetric equivalents.

Proof. It is the corollary to the lemma C.7. �

C.2.2. Duality of the Cauchy-Vandermonde matrices

Let us begin with the inverse of a Cauchy matrix. We can see that it can be expressed as a diagonal
dressing of itself, as we can see from the following expression:

C−1 [𝒚‖𝒙] = diag
[
𝜙′(𝒚 |𝒙, 𝒚)]C[𝒚‖𝒙] diag

[
𝜙′(𝒙 |𝒚, 𝒙)] . (C.50)

It is also important to note that the determinant of the two diagonal matrices can be written as∏
𝑗≤𝑛

∏(𝑦 𝑗 − 𝒙)
∏′(𝑦 𝑗 − 𝒚)

∏
𝑘≤𝑛

∏(𝑥𝑘 − 𝒚)
∏′(𝑥𝑘 − 𝒙)

=
iii
(𝒙‖𝒚)

iii
(𝒚‖𝒙) =

iii2(𝒙‖𝒚), (C.51)

which simply affirms the trivial result:

det C−1 [𝒙‖𝒚] =
aaa(𝒚‖𝒙)
aaa2(𝒙‖𝒚)

=
1

aaa(𝒙‖𝒚) . (C.52)
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For the inverse of the Vandermonde matrix (C.31) however we start to see non-trivial nature of this
dressing. In this case we find that the inverse is a diagonally dressed version of an another matrix
V∗ which we call its dual:

V−1
ª𝛿 [𝒙] = V∗ª𝛿 [−𝒙] diag

[∏′(𝑥𝑘 − 𝒙)−1]
𝑘≤𝑛. (C.53)

We can see from eq. (C.31) that the dual Vandermonde matrix is composed of the elementary
polynomials as follows:

V∗ª𝛾;𝑎 (𝑥𝑘) = 𝑒𝑛−𝑎 (𝒙𝒌̂ ). (C.54)

For the determinant we find that

det V−1 [𝒙] = det V∗ [−𝒙]
aaa2(𝒙)

=
1

aaa(𝒙) . (C.55)

Moreover we can see that inverse of the dual Vandermonde matrix can be expressed as a diagonal
dressing of the Vandermonde matrix:

V∗−1
ª𝛿 [𝒙] = V ª𝛿 [−𝒙] diag

[
∏′(𝑥𝑘 − 𝒙)−1

]
𝑘≤𝑛

. (C.56)

A similar project can be realised for the mixed Cauchy-Vandermonde matrix. Let us define the
supersymmetric dual of the Vandermonde matrix

V ª𝛿;𝑎,𝑘 [𝒙‖𝒚] = 𝑒𝑛−𝑎 (𝒙 𝑘̂ ‖𝒚) (C.57)

From the result of proposition C.8 we can see that the inverse Cauchy-Vandermonde matrix can be
expressed as the dressing of the dual Cauchy-Vandermonde matrix C∗ª𝛿:

C−1
ª𝛿 [𝒚‖𝒙] = diag

[
𝜙′(𝒚 |𝒙, 𝒚)

�� I𝑛] (
C∗ª𝛿 [−𝒙‖ − 𝒚]

)𝑇
diag

[
𝜙′(𝒙 |𝒚, 𝒙)] . (C.58)

The dual matrix is composed of the two blocks:

C∗ª𝛿 [𝒙‖𝒚] =
[
C[𝒙‖𝒚]

��� V∗𝛿 [𝒙]
]
. (C.59)

We find that the determinant of the Cauchy-Vandermonde matrix and its dual are equal and hence
we can write that

det C∗−1
ª𝛿 [𝒙‖𝒚] =

aaa(−𝒙‖ − 𝒚)
aaa2(𝒙‖𝒚)

=
1

aaa(𝒙‖𝒚) . (C.60)

Finally, the most important result for us is that the inverse of the dual Cauchy-Vandermonde matrix
is given by the diagonal dressing of the original Cauchy-Vandermonde matrix:

C∗−1
ª𝛿 [𝒚‖𝒙] = diag

[
𝜙′(𝒚 |𝒙, 𝒚)

���I𝑛] · (C ª𝛿 [−𝒙‖ − 𝒚]
)𝑇
· diag

[
𝜙′(𝒙 |𝒚, 𝒙)

]
. (C.61)
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C.3. Cauchy-Vandermonde matrix in hyperbolic parametrisation

The hyperbolic version of the Cauchy matrix is given by,

C[𝜶‖𝜷] =
[

1
sinh 𝜋(𝜶 − 𝜷)

]

. (C.62)

It can be compared with the rational Cauchy matrix [see eq. (5.4b)] through change of variables
which is shown below:

𝑥 𝑗 = 𝑒
2𝜋𝛼𝑗 , 𝑦 𝑗= 𝑒

2𝜋𝛽 𝑗 . (C.63)

This allows us to write that

C𝑗 ,𝑘 [𝜶(𝒙)‖𝜷(𝒚)] =
2√𝑥 𝑗 𝑦𝑘
𝑥 𝑗 − 𝑦𝑘 . (C.64)

From this expression we can also verify that

detC[𝝀‖𝝁] =
iii

sinh 𝜋(𝝀‖𝝁). (C.65)

From the expression (C.64), we can see that in this parametrisation, hyperbolic Cauchy matrix is a
diagonally dressed rational Cauchy matrix:

C[𝜶‖𝜷] = diag
[
𝒙

1
2

]
C[𝒙‖𝒚] diag

[
2𝒚

1
2

]
. (C.66)

This also allows to compute the inverse of the hyperbolic matrix starting from eq. (C.50) in the
dressed form:

C−1 [𝜷‖𝜶] = diag
[
Φ′(𝜷|𝜶, 𝜷)

]
C[𝜷‖𝜶] diag

[
Φ′(𝜶 |𝜷,𝜶)

]
. (C.67)

C.3.1. Construction of the hyperbolic Cauchy-Vandermonde matrix

We now generalise this to the mixed Cauchy-Vandermonde matrix. Let 𝜶 and 𝜷 be the set of
complex variables of the cardinalities 𝑛𝜶 = 𝑛 + 𝑚 and 𝑛𝜷 = 𝑚. Let us first define the hyperbolic
equivalent of the CV matrix C ª𝛿 as

C ª𝛿; 𝑗 ,𝑘 =
𝑒−𝑛𝜋 (𝛼𝑗−𝛽𝑘 )

sinh 𝜋(𝛼 𝑗 − 𝛽𝑘) , 𝑘 ≤ 𝑚 (C.68a)

C ª𝛿; 𝑗 ,𝑚+𝑎 = 𝑒𝑛𝜋𝛼𝑗 (2𝑎−𝑛−1) , 𝑎 ≤ 𝑛. (C.68b)

In the parametrisation (C.63) we can thus write

C ª𝛿 [𝜶(𝒙)‖𝜷(𝒚)] = diag
[
𝒙−

𝑛−1
2

]
C ª𝛿 [𝒙‖𝒚] diag

[
2𝒚

𝑛+1
2

��� I𝑛] . (C.69)

We can verify that the its determinant is given by,

detC ª𝛿 [𝜶‖𝜷] = 2−
𝑛(𝑛)−1)

2
iii

sinh 𝜋(𝜶‖𝜷). (C.70)
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C.3. Cauchy-Vandermonde matrix in hyperbolic parametrisation

We can recombine the hyperbolic version of the Vandermonde block:[
𝑒−(𝑛−1) 𝜋𝜶 𝑒−(𝑛−3) 𝜋𝜶 · · · 𝑒 (𝑛−1) 𝜋𝜶 ] → Xª𝛾 [𝜶], (C.71)

where Xª𝛾 (𝛼) is a row vector [see notation 40]:

Xª𝛾;𝑎 (𝛼) = cosh 𝜋(𝑛 + 1 − 2𝑎)𝛼, for 𝑎 ≤
⌈𝑛
2

⌉
; (C.72a)

Xª𝛾;𝑎 (𝛼) = sinh 𝜋(𝑛 + 1 − 2𝑎)𝛼, for 𝑎 ≤
⌊𝑛
2

⌋
. (C.72b)

This allows us to redefine the hyperbolic Cauchy-Vandermonde matrix as

Cª𝛾 [𝜶‖𝜷] =
[
diag

[
𝑒−𝑛𝜋𝜶

] · C[𝜶‖𝜷] · diag
[
𝑒𝑛𝜋𝜷

] ���� Xª𝛾 [𝜶]] . (C.73)

Note that the definition of the partition ª𝛾 (5.2b) [see page 11, or eq. (5.2b)] also follows from here.
The effect of this recombination (C.71) on the determinant is that all the factors of the 2 in eq. (C.70)
are absorbed in the determinant. This permits us to write

detCª𝛾 [𝜶‖𝝁] =
iii

sinh 𝜋(𝜶‖𝝁) (C.74)

Let us remark that it is more natural and convenient to use the matrix (C.73) over the matrix (C.68)
that was originally defined. Indeed it is this latter form (C.73) that we have introduced and used in
chapter 5. The block Xª𝛾 in it is called the hyperbolic Vandermonde block in this context.

C.3.2. Inverse of the hyperbolic CV matrix and its duality

We can take the inverse of the hyperbolic Cauchy-Vandermonde matrix from its relationship (C.69),
however it would inadvertently involves the supersymmetric polynomials in the exponential variables
(C.63). But the duality that we saw in the rational case provides a convenient alternative. We can
show that the inverse of the dual hyperbolic Cauchy-Vandermonde matrix can be represented as a
dressing:

C∗−1
ª𝛾 [𝜷‖𝜶] = diag

[
Φ′(𝜷‖𝜶, 𝜷)

��� I𝑛] · (Cª𝛾 [−𝜶 | − 𝜷])𝑇 · diag
[
Φ′(𝜶 |𝜷,𝜶)

]
. (C.75)

so that the its determinant can be written as

detC∗−1
ª𝛾 [𝜷‖𝜶] =

aaa
sinh 𝜋(−𝜶‖ − 𝜷)

aaa2 sinh 𝜋(𝜶‖𝜷)
=

1
aaa

sinh 𝜋(𝜶‖𝜷) . (C.76)

If we explicitly write the elements of this dual inverse of the trigonometric (hyperbolic) Cauchy-
Vandermonde matrix, we obtain

C∗−1
ª𝛾; 𝑗 ,𝑘 [𝜷‖𝜶] = Φ′(𝛽 𝑗 |𝜶, 𝜷)Φ′(𝛼𝑘 |𝜷,𝜶) 𝑒−𝜋ℓ (𝛽 𝑗−𝛼𝑘 )

sinh 𝜋(𝛽 𝑗 − 𝛼𝑘) ; 𝑗 ≤ 𝑚. (C.77a)

C∗−1
ª𝛾;𝑚+𝑎,𝑘 [𝜷‖𝜶] = Φ′(𝛼𝑘 |𝜷,𝜶)X̄ª𝛾;𝑎 [𝛼𝑘], 𝑎 ≤ 𝑛. (C.77b)

Here X̄ denotes the vector with indices reversed in eq. (C.72). Alternatively, we can also obtain the
X̄ by exchanging the sinh and cosh terms in eq. (C.72) [see notation 40].
Remark. All the results obtained for the hyperbolic parametrisation apply automatically to tri-
gonometric parametrisation. This means these results gives us a complete picture portrayed by
Cauchy-Vandermonde matrices and their extractions, in rational and circular parametrisations. An
extension of these results to the elliptic parametrisation is also known to exist, however we do not
discuss it here since our computations for the XXX model do not require it.
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Index of notations

The page numbers are added for the definitions and key mentions of the symbols. The bold page
numbers refers to the page(s) where the definitions can be found.

Algebraic Bethe ansatz (ABA)
A, B, C or D operators, see T
𝑞: Baxter polynomial, 26
𝜉: counting function, 26, 49
𝑟: exponentiation of the bare momentum, 21
T : monodromy matrix, 18
R-matrix, 17
𝑇 : transfer matrix, 19
𝜏: eigenvalue of transfer matrix, 23, 35
𝜑 : weight function, 17

Auxiliary functions
𝔞: exponential counting function, 24
𝔞̃: higher-level equivalent of , 65, 106

𝐺𝑒: fn. involved in the extraction of an excited state Gaudin mat., 82, 103
𝐺𝑔: fn. involved in the extraction of the ground state Gaudin mat., 80, 99
𝜙: ratio of Baxter polynomials (or similar), 56, 72
Φ: hyperbolic equivalent of , 86

Ω: fn. involved in the computation of the prefactors, 93, 144
𝜒: ratio of eigenvalues of the transfer matrix, 56, 73, 87

Cauchy-Vandermonde, see also Index-freeaaa
𝜑(·‖·): Cauchy(-Vandermonde) determinant, 125, 185aaa(·): Vandermonde determinant, 124
C[·‖·]: Cauchy matrix (circular), 85, 190
Cª𝛾 [·‖·]: Cauchy-Vandermonde matrix (circular), 193
C ª𝛿 [·‖·]: Cauchy-Vandermonde matrix (rational), 184
Xª𝛾 [·] or X̄ª𝛾 [·]: Vandermonde matrix (circular, equiv. upto det.), 127
V ª𝛿 [·]: Vandermonde matrix (rational), 124
Zª𝛾 [·] or Z̄ª𝛾 [·]: dressed Vandermonde matrix (circular, equiv. upto det.), 128
«𝛿(𝑛) or ª𝛿(𝑛): partition of consecutive integers of length 𝑛, 124
«𝛾(𝑛) or ª𝛾(𝑛): partition of consecutive even/odd integers of length b 𝑛2 c, 124
𝑒𝑟 (·‖·): elementary supersymmetric functions, 126, 187, 191
𝑒𝑟 (·): elementary symmetric functions, 186
ℎ𝑟 (·): total symmetric functions, 186

Excitations
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- condensation
𝜎𝑒: density function for the real roots of the excited state state (excl. holes)., 52
𝜌𝑒: total density function for the excited state (incl. holes)., 44, 51
𝜌𝜅 (·, 𝛼): generic density function with shift 𝛼, 52, 179
𝜌𝑔: density function for the ground state., 44
𝜌̃: common density function for close-pairs and wide-pairs, 61, 107
𝔉: Fermi-zone., 44
𝐾: Lieb kernel, see also N , 45

- Destri-Lowenstein (DL)
𝝊: set of centres of the close-pairs, 59

𝝊−: set of negative close-pair roots, 59
𝝊+: set of positive close-pair roots, 59

𝝎: set of positive anchors of the wide-pairs, 60
𝝎̄−: set of negative wide-pair roots, 60
𝝎+: set of positive wide-pair roots, 60

𝜇̃: set of all higher-level roots, 61
𝑛𝑐: number of close-pair centres, 59
𝑛ℎ: num. of holes/ spinons, 50, 63, 68
𝑛̃: number of higher-level Bethe roots, 61, 68
𝑛̂𝑟 : occupancy number, 50, 68
𝑛𝑟 : number of real Bethe roots, 50, 68
𝑠: total spin, 28, 50, 63, 68
𝑁𝑠: often denotes cardinality of on-shell Bethe roots, 28
𝑁𝑠: often denotes the cardinality of on-shell Bethe roots, 22
𝑛𝑤 : number of wide-pair anchors, 61, 68
𝝔̂: set of all real Bethe roots (incl. holes), 50
𝝔: set of real Bethe roots (excl. holes), 50
𝝑: set of holes or spinon spect. param., 50
|𝜓ℓ

𝑠 〉: a vector of a XXX multiplet, 29
𝜶̌: set of spectral parameter with an extra parameter, see Form-factors
𝝔̂+: set of all real roots (incl holes) and positive close-pair roots 0 ≤ = 𝜚̂+ < 1, see FF.
𝝔+: set of all Bethe real and positive close-pair roots 0 ≤ =𝜚+ < 1, see Form-factors

Form-factors
𝐹𝑧 : longitudinal form-factor, 37, 77, 97
𝐺𝑒: fn. involved in the extraction of an excited state Gaudin mat., see Auxiliary functions
𝐺𝑔: fn. involved in the extraction of the ground state Gaudin mat., see Auxiliary functions
Pcau: Cauchy block inside , 134
P𝑒: mat. obtained from CV extraction for an excited state, 88, 129
W: Foda-Wheeler block inside , 91, 134, 138, 139
P̃: higher-level block inside , 134, 139
Z: hyperbolic Vandermonde block inside , see also CV., 133, 139
Q𝑒: reduced mat. obtained from CV extraction for an excited state, 139
Weff: effective Foda-Wheeler block inside , 139
Zeff: effective Vandermonde block inside , 139
P𝑔: mat. obtained from CV extraction for the ground state, 129
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Q𝑒: reduced mat. obtained from CV extraction for the ground state, 130
Q𝑐
𝑔: close-pair block inside , 132
Q𝑤±
𝑔 : wide-pair blocks inside , 133

R̃ [·‖·]: a matrix formed by the higher-level density terms 𝜌̃, 112
R[·‖·]: a matrix formed by the density terms for the holes 𝜌ℎ, 84
A∗ [·]: diagonal matrix formed by derivatives of the counting function, 84
F𝑒: matrix obtained from the extraction of an excited state Gaudin matrix, 79, 97
F 𝑟
𝑒 : Cauchy block of , 102
F 𝑐±
𝑒 : close-pair blocks of , 102
F 𝑐
𝑔 : recombined close pair block of , 105
F N
𝑒 : north block of , 79
F S
𝑒 : south block of , 79
F 𝑤±
𝑒 : wide-pair blocks of , 102

F𝑔: matrix obtained from the extraction of the ground state Gaudin matrix, 79, 97
F 𝑟
𝑔 : Cauchy block of , 98, 102
F 𝑐±
𝑔 : close-pair blocks of , 98, 102
F 𝑤±
𝑔 : wide-pair blocks of , 98, 102

F̃𝑒: higher-level block inside the matrix F𝑒, 106, 111
F̃ 𝑐
𝑒 : close-pair sub-block of , 106, 108
F̃ 𝑤±
𝑒 : wide-pair sub-blocks of , 106, 111

N[·‖·]: Gaudin matrix, 34, 78
Ñ [·‖·]: higher-level equivalent of , 98, 111
S̃: result of the higher-level Gaudin extraction, 112, 139
H𝑒: (modified) Cauchy matrix for an excited state, 86, 115
Ū: renorm. U, as a block inside , 87, 116
H̃ : higher-level block inside , 116
H cau

𝑒 : Cauchy block inside , 115
H𝑔: (modified) Cauchy matrix for the ground state, 86, 114
H cau

𝑔 : Cauchy block inside , 114
H 𝑐

𝑔 : close-pair block inside , 114
H𝑤±

𝑔 : wide-pair block inside , 114
M[·‖·]: Slavnov matrix, 32, 78
M (ℓ) [·‖·]: Foda-Wheeler version of Slavnov matrix, 34, 78
U[·]: Foda-Wheeler block in , 34

𝝔̂+: set of all real roots (incl holes) and positive close-pair roots 0 ≤ = 𝜚̂+ < 1, 114
𝝔+: set of all Bethe real and positive close-pair roots 0 ≤ =𝜚+ < 1, 114
𝜶̌: set of spectral parameter with an extra parameter, 77

Index-free
[·‖·] or [·] : parametrised matrix, 9
∏

: product, 8aaa
𝑓 (·) : alternant product, 10aaa
𝑓 (·‖·) : superalternant product, 10

𝝀 (e.g.) : set, 8
∑

: summation, 8
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Miscellaneous functions
𝐾𝑐: a combination of Lieb ker. K, usually written for close-pairs, 106
𝐾𝜅 : generic Lieb kernel, 52, 179
𝑡: rational form in 𝜑 in the Slavnov matrix eq. (1.80b), 32
Θ𝜅 : terms in the logarithmic Bethe eqs. (1.53) and (2.23), 25, 28, 49
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Résumé

Titre : Étude asymptotique des facteurs de forme des chaînes de spin quantiques

mots clefs: ansatz de Bethe algebrique, méthode de la dispersion inverse, facteurs de forme,
chaîne de spin XXX, limite thermodynamique, systèmes intégrables.

Les systèmes intégrables quantiques restaient
longtemps un domaine où des méthodes math-
ématiques modernes permettaient d’accéder aux
résultats intéressants pour l‘étude de systèmes
physiques. Le calcul exacte, numérique et asymp-
totique de fonction de corrélation reste un de sujets
les plus importants de la théorie de modèles in-
tégrables quantiques. Dans ce cadre l’approche
basée sur le calcul des facteurs de forme s’est
révélée la plus efficace. Dans ce thèse, une
méthode alternative fondée sur l’ansatz de Bethe
algébrique est développée pour calculer des fac-
teurs de formes dans la limite thermodynamique.
Elle est appliqué et décrit dans le contexte de

chaîne de spin isotrope XXX, qui est un des cas
plus intéressant des modèles critiques où la zone
de Fermi est non-compacte. Dans le cas par-
ticulière des facteurs de formes à deux-spinons,
on obtient un résultat exact en forme close qui est
comparable à celui-ci obtenu initialement dans
le formalisme de l’algèbre des opérateurs de 𝑞-
vertex. Cette méthode est aussi généralisée au
calcul des facteurs de formes dans les secteurs de
spinons plus hauts, donnant une représentation
en déterminants réduits, dont une structure de
haut-niveau à l’échelle des facteurs de formes est
révélée.

Abstract

Title : Asymptotic analysis of the form-factors of the quantum spin chains

Keywords: algebraic Bethe ansatz, quantum inverse scattering method, form-factors, XXX
spin chain, thermodynamic limit, integrable systems.

Since a long-time, the quantum integrable systems
have remained an area where modern mathemat-
ical methods have given an access to interesting
results in the study of physical systems. The exact
computations, both numerical and asymptotic, of
the correlation function is one of the most import-
ant subject of the theory of the quantum integrable
models. In this context an approach based on the
calculation of form factors has been proved to be
a more effective one. In this thesis, we develop a
new method based on the algebraic Bethe ansatz
for the computation of the form-factors in thermo-
dynamic limit. It is both applied to and described

in the context of isotropic XXX Heisenberg chain,
which is one of the examples of an interesting
case of critical models where the Fermi-zone is
non-compact. In a particular case of two-spinon
form-factors, we obtain an exact result in a closed-
form which matches the previous result obtained
from an approach based on 𝑞-vertex operator
algebra. This method is then generalised to form-
factors in higher spinon sectors where we find a
reduced determinant representation for the form-
factors, in which a higher-level structure for the
form-factors is revealed.

Université de Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 Besnaçon
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