
Universality of active and passive phase separation in a lattice model

Kyosuke Adachi1, 2 and Kyogo Kawaguchi1, 3, 4

1Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team,
RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

2RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program, 2-1 Hirosawa, Wako 351-0198, Japan
3RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

4Universal Biology Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
(Dated: January 29, 2022)

The motility-induced phase separation (MIPS) is the spontaneous aggregation of active particles, while equi-
librium phase separation (EPS) is thermodynamically driven by attractive interactions between passive particles.
Despite such difference in the microscopic mechanism, similarities between MIPS and EPS like free energy
structure and critical phenomena have been discussed. Here we introduce and analyze a 2D lattice gas model
that undergoes both MIPS and EPS by tuning activity and interaction parameters. Based on simulations and
mean-field theory, we find that the MIPS and EPS critical points are connected through a line of nonequilib-
rium critical points. According to the size scaling of physical quantities and time evolution of the domain size,
both the static and dynamical critical exponents seem consistent with the 2D spin-exchange Ising universality
over the whole critical line. The results suggest that activity effectively enhances attractive interactions between
particles and leaves intact the critical properties of phase separation.

Introduction. In active matter systems, each element con-
verts external energy into self-propulsion, which can lead
to unique nonequilibrium phase transitions like flocking [1–
6], active nematic ordering [7–9], and microphase separa-
tion [10–12]. In particular, the motility-induced phase sep-
aration (MIPS) [13] is a representative activity-induced phase
transition found in simulation studies [14–16] and observed
both in biological [17, 18] and artificial [19] systems. MIPS
represents the aggregation of self-propelled particles with
crowding/repulsive interactions [13], markedly different from
equilibrium phase separation (EPS), which is thermodynam-
ically driven by attractive interactions between passive parti-
cles. Despite such differences in the microscopic mechanism,
similarities between MIPS and EPS have been discussed [14],
and recently a generalized free energy functional for MIPS
has been proposed [20, 21] and applied to microscopic mod-
els [22].

It is interesting to consider how the concepts of critical phe-
nomena and universality [23] can be applied to active matter
systems [24, 25]. According to numerical studies of active
lattice gas models [26] and Active Ornstein-Uhlenbeck parti-
cles [27], the MIPS critical point in two dimensions seems to
belong to the 2D Ising universality class, which is the same
as for the EPS critical point. Theoretically, the perturbative
renormalization group (RG) analysis of the Active Model B+

has shown that weak activity does not change the universality
class of phase separation [28]. On the other hand, the critical
exponents of MIPS observed in simulations of Active Brown-
ian particles have been incompatible with the Ising universal-
ity [29, 30]. Additionally, in simulations of Active Brownian
particles with attractive interactions, phase separation is stabi-
lized for weak or strong activity but suppressed for moderate
activity [31], suggesting that activity can also effectively sup-
press the attractive interaction. Thus, it is still unclear if there
exists a microscopic model that shows MIPS and EPS with
the same Ising universality.

To clarify the relation between the MIPS and EPS criti-
cal points, it is natural to ask if we can find a critical line

which connects them by tuning parameters of a microscopic
model [32, 33]. If the critical line exists, the next question is
whether the whole line, which corresponds to nonequilibrium
critical points for any nonzero activity, belongs to the Ising
universality class. In this Letter, we address these questions by
constructing and analyzing a lattice gas model with both ac-
tivity and attractive interactions, which undergoes both MIPS
and EPS. First, based on numerical simulations and mean-
field theory, we find that the MIPS and EPS critical points
are indeed connected through a critical line. Then, using the
finite-size scaling analysis and examining time evolution, we
conclude that the whole critical line belongs to the 2D Ising
universality class, which suggests that activity-induced viola-
tion of detailed balance is irrelevant for critical properties of
phase separation.

Model. To discuss both MIPS and EPS within a single
framework, we consider a lattice gas model with both activ-
ity and nearest-neighbor interaction [Fig. 1(a)]. In this model,
each particle with a spin s (= x̂, ŷ, −x̂, or −ŷ) can stochasti-
cally (i) hop to a nearest-neighbor site if empty or (ii) flip the
spin with a rate h, where â is the unit translation parallel to the
a-axis. For hopping from site i to an adjacent site j, we set a
higher rate (1+ε)wi→ jJ if the hopping is in the same direction
as the spin, and a lower rate wi→ jJ otherwise, using the activ-
ity parameter ε (≥ 0). We set wi→ j = 1 − tanh(∆Ei→ j/2) with
kBT = 1, where ∆Ei→ j is the increase in the total interaction
energy due to hopping, with the nearest-neighbor interaction
energy U (repulsive for U > 0 and attractive for U < 0). Note
that the equilibrium heat-bath dynamics [35–37] recovers for
ε = 0. Following previous studies [26, 27, 29], we refer to the
phase separation that occurs under U ≥ 0 (with no attractive
interactions) as MIPS.

As expected, EPS occurs for large negative U [Fig. 1(b)(i)]
in the case with ε = 0, whereas in the case with U ≥ 0, MIPS
occurs for large ε [Fig. 1(b)(ii)]. The effective parameters in
this model are ε, U, h/J, and the average density ρ (0 < ρ <
1). In the following Monte Carlo (MC) simulations [34], we
set h/J = 0.01. To reduce the interface effects and apply the
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FIG. 1. (a) Lattice gas model with activity, nearest-neighbor interaction, and on-site exclusion. Each particle with a spin can stochastically (i)
hop to a nearest-neighbor site with a larger rate in the spin direction or (ii) flip the spin. (b) Typical configurations of growing (i) EPS and (ii)
MIPS in a square system (Lx = Ly = 200) with periodic boundary conditions. The yellow, green, blue, and purple dots represent the particles
with s = x̂, ŷ, −x̂, and −ŷ, respectively. We used ε = 0, U = −2, h/J = 0.01, and ρ = 0.4 with 5 × 104 MC steps for (i); ε = 2, U = 0,
h/J = 0.01, and ρ = 0.4 with 5 × 103 MC steps for (ii) [34].
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FIG. 2. (a, b) Numerically obtained phase diagrams in the (a) ρ-U and (b) ρ-ε planes for a rectangular system (Lx = 40 and Ly = 4). The
heatmap shows the density difference (ρh − ρl) between the high-density and low-density phases. We took 480 samples with 106 or 105 MC
steps for (a) or (b), respectively [34]. (c, d) Mean-field critical points (circles) and spinodal lines (dashed lines) in the (c) ρ-U plane with
ε = 0, 0.25, 0.5, 0.75, 1 and (d) ρ-ε plane with U = −1,−0.5, 0, 0.5, 1. In (c) and (d), we also show the critical line (black line) projected in
each plane. (e) The mean-field critical line in the U-ε plane with ρ satisfying Eq. (5). For ε = 0, the critical EPS transition occurs as we
increase the attractive interaction (negative U); for U ≥ 0, the critical MIPS transition occurs as we increase the activity (ε). For all figures,
we used h/J = 0.01.

sub-box method in the finite-size scaling analysis, we consider
rectangular systems with an aspect ratio of 10:1, except when
measuring the dynamical critical exponent.

Connection between MIPS and EPS critical points. In
Fig. 2, we show the steady-state phase diagrams in the (a)
ρ-U and (b) ρ-ε planes. The heatmap represents the density
difference between the high-density and low-density phases
(ρh − ρl), which is the order parameter for phase separation.
Note that Fig. 2(a)(i) is the phase diagram for EPS since ε = 0,
and Figs. 2(b)(ii) and (iii) are the phase diagrams for MIPS
since U ≥ 0. From Fig. 2(a) [Fig. 2(b)], we find that the crit-
ical point, located at the tip of the phase boundary in the ρ-U
(ρ-ε) plane, moves continuously as we change ε (U). Con-
sequently, in the ρ-U-ε space, there is a critical line which
connects the EPS and MIPS critical points.

In the following, we consider the qualitative behavior of
the critical line by a mean-field approximation [34]. From the
master equation, we can obtain the time evolution equation for
the local density at a site i with a spin s, ρi,s(t), by neglecting

the microscopic fluctuation and correlation [3, 4] as

∂ρi,s

∂t
=

∑
l=x̂,ŷ,−x̂,−ŷ

J(1 + εδs,l)[ρi−l,s(1 − ρi)wMF
i−l→i

− ρi,s(1 − ρi+l)wMF
i→i+l] − h(4ρi,s − ρi), (1)

where, ρi :=
∑

s ρi,s and wMF
i→ j is the mean-field version of

wi→ j [34]. Focusing on the moderate spatial variation of ρi,s
with respect to the lattice constant a, we may replace ρi,s by
ρs(x) and expand ρi+l,s as ρi+l,s ' [1+al ·∇+ (al ·∇)2/2]ρs(x).
In the same spirit, we may expand wMF

i→i+l as wMF
i→i+l ' 1−2Ual·

∇ρ(x) − U(al · ∇)2ρ(x). Further, we focus on the temporally
slow mode, i.e., the density field ρ(x, t) :=

∑
s ρs(x, t), which

is important around the critical point, and use the adiabatic
approximation [38, 39]. Finally, we obtain the equation for
ρ(x, t) as

∂ρ

∂t
= ∇ · M(ρ)∇

δFeff

δρ
. (2)

Here, M(ρ) := (1 + ε/4)Ja2(1 − ρ)ρ represents the mobility,
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FIG. 3. (a) An example of configuration and four sub-boxes. The x-coordinate of the left edge of each sub-box is xc − L, xc, xc + 4L, and
xc + 5L (mod 10L), where xc is the center-of-mass x-coordinate. (b, c) The Binder ratio as a function of a parameter for several sub-box sizes
[(b) varying ε with L = 4, 6, 8, 10, 12, 14 or (c) varying U with L = 4, 6, 8, 10, 12]. (d, e) Size scaling of the (i) derivative of the Binder ratio
(∼ L1/ν), (ii) susceptibility (∼ Lγ/ν), and (iii) density fluctuation (∼ L−β/ν). For comparison, we show the size scalings for the 2D Ising model
(ν = 1, β = 1/8, and γ = 7/4; black dashed line), the Active Brownian particles (ABP) [29] (ν = 1.5, β = 0.45, and γ = 2.2; gray dotted
line), and the mean-field Ising model (ν = 1/2, β = 1/2, and γ = 1; gray dashed-dotted line). For (b) and (d) [(c) and (e)], we performed 480
independent simulations and sampled 41 (21) configurations at intervals of 105 MC steps after 2 × 106 (6 × 106) MC steps in each simulation
with the random (fully phase-separated) initial configurations [34]. For all figures, we used h/J = 0.01 and ρ = 0.5.

and Feff :=
∫

dx f (ρ) denotes the effective free energy, with

f (ρ) =

[
1 +

ε2J
(8 + 2ε)h

]
ρ ln ρ + (1 − ρ) ln(1 − ρ)

+ 2
[
U −

ε2J
(16 + 4ε)h

]
ρ2, (3)

showing that the activity simply works as an additional attrac-
tive interaction [38–41], as well as breaking the particle-hole
symmetry in the entropic terms.

To investigate the mean-field critical point, we expand f (ρ)
with respect to φ(x, t) [:= ρ(x, t) − ρ] as f = A2φ

2 + A3φ
3 +

A4φ
4 + O(φ5), where we omit the O(φ0, φ1) terms since they

do not contribute to Eq. (2). The spinodal line is obtained by

A2 = 1 + 4U(1 − ρ)ρ +
ε2J

(8 + 2ε)h
(1 − ρ)(1 − 2ρ) = 0, (4)

and the critical point by further restraining

A3 = 2ρ − 1 −
ε2J

(8 + 2ε)h
(1 − ρ)2 = 0. (5)

Based on Eqs. (4) and (5), we obtain the mean-field critical
points and spinodal lines in the ρ-U plane [Fig. 2(c)] and in
the ρ-ε plane [Fig. 2(d)]. The critical points form a line in the
ρ-U-ε space in a similar way to those observed in the simu-
lation [Figs. 2(a) and (b)], which suggests that the mean-field
approximation captures the qualitative behavior of the critical
line. To clearly show the connection between the EPS and
MIPS critical points within the mean-field approximation, we
obtain the critical line in the U-ε plane [Fig. 2(e)] by making ρ

depend on ε so that Eq. (5) is satisfied. Here, the intersection
of the critical line and ε = 0 represents the EPS critical point,
and part of the critical line for U ≥ 0 corresponds to the MIPS
critical points.

Universality of the critical line. By using a modified ver-
sion of the recently proposed sub-box method [26, 27, 29],
we calculate the critical exponents of the critical line, espe-
cially for two cases with both activity and attractive interac-
tion: varying ε with U = −1 and varying U with ε = 0.1. For
both of these cases, the critical density ρc is around 0.5 based
on Figs. 2(a) and (b), and we set ρ = 0.5 in the following.
By considering rectangular systems with the size 10L × L, we
take the steady-state configurations from four sub-boxes with
the size L×L [Fig. 3(a)], and 〈· · ·〉 represents the average over
all the independent samples and sub-boxes.

We first focus on varying ε with U = −1. Defining ∆ρL :=
ρL−ρ, where ρL is the density in the sub-box, we first calculate
the Binder ratio QL [:= 〈(∆ρL)2〉

2
/ 〈(∆ρL)4〉] [Fig. 3(b)]. From

the approximate intersection of QL(ε) curves in Fig. 3(b),
we estimate the critical point [29] as εc ' 1.07. At ε =

εc, according to the scaling hypothesis [29], we can obtain
∂QL/∂ε ∼ L1/ν, χL := 〈(NL − 〈NL〉)2〉 / 〈NL〉 ∼ Lγ/ν, and
〈(∆ρL)2〉 ∼ L−β/ν, where NL is the particle number in the sub-
box, and ν, β, and γ are the critical exponents. Comparing
these size scalings with the numerical data [Fig. 3(d)], we find
that the critical exponents at (Uc, εc) ' (−1, 1.07) are con-
sistent with the 2D Ising universality (ν = 1, β = 1/8, and
γ = 7/4).

The corresponding results for varying U with ε = 0.1 are
shown in Figs. 3(c) and (e), from which we find that the crit-
ical exponents at (Uc, εc) ' (−1.76, 0.1) are also consistent
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FIG. 4. Time evolution of the domain size R(t) ∼ t1/z for two critical
points [(a) (U, ε) = (−1, 1.07) and (b) (−1.76, 0.1)] and an off-critical
point [(c) (−1, 2)]. For comparison, we show the time scalings for
the 2D spin-exchange Ising universality (z = 15/4; black dashed
line) and the LSW law (z = 3; gray dotted line). In (c), we show
typical configurations for 104 and 105 MC steps. For all figures, we
performed 50 independent simulations for the 500×500 square lattice
with h/J = 0.01 and ρ = 0.5.

with the Ising universality. Further, as is well known [29], the
EPS critical point with ε = 0 belongs to the Ising universality
class (see [34] for confirmation in our model). Lastly, also for
the MIPS critical point with U = 0, the obtained size scalings
seem consistent with the Ising universality [34], as observed in
similar active lattice gas models [26] and in Active Ornstein-
Uhlenbeck particles [27]. These results imply that the whole
critical line, which connects the EPS and MIPS critical points,
belongs to the 2D Ising universality class.

For the critical points obtained above, we examine the dy-
namical scaling of the domain size R(t) ∼ t1/z after a quench
from a random configuration in a square system with ρ = 0.5,
where z is the dynamical critical exponent. Here we define
R(t) as the first zero of Ca(r, t) {:= [C(rx̂, t) + C(rŷ, t)]/2},
where C(r, t) [:= L−2 ∑

r0
〈ρ(r + r0, t)ρ(r0, t)〉−ρ2] is the den-

sity correlation function and 〈· · ·〉 represents the average over
all the independent samples. The time evolution of R(t) at
both (U, ε) = (−1, 1.07) [Fig. 4(a)] and (−1.76, 0.1) [Fig. 4(b)]
is consistent with z = 15/4, the exponent for the 2D spin-
exchange Ising universality [42], as observed in active lattice
gas models [26].

We also perform a deep quench to the phase-separated
regime with (U, ε) = (−1, 2) [Fig. 4(c)] and find that R(t)
shows the Lifshitz–Slyozov–Wagner (LSW) law (z = 3) [43,
44], which has been known to appear in EPS [45] and also
observed in active lattice gas models [15, 26]. The LSW law
holds even when the configuration is anisotropic [Fig. 4(c)],

as also demonstrated in equilibrium [46] and driven [47]
anisotropic lattice gas models.

Discussion and conclusions. In this Letter, we have studied
the lattice gas model with activity and nearest-neighbor inter-
action. By MC simulations, we have found that the MIPS and
EPS critical points are connected by a critical line, which we
can qualitatively reproduce within the mean-field approxima-
tion. We have also investigated both the static and dynamical
critical exponents for the critical line by the finite-size scaling
analysis, and found that the whole critical line belongs to the
2D spin-exchange Ising universality class. Further, we con-
firmed that the LSW law appears for a deep quench toward
both attractive interaction and activity.

Our results suggest that activity-induced violation of de-
tailed balance is inessential for the critical phenomena in
the motility-induced phase separation; the activity ε only en-
ters as a parameter in the mean-field free energy [Eq. (3)],
which is consistent with the RG analysis of the Active Model
B+ [28]. This picture is consistent with the observed LSW
law, which reflects the process of reducing the interface free
energy between the high-density and low-density phases in
the case of EPS [45]. Recently, intracellular phase separa-
tion of proteins/mRNAs has been observed, and the functions
and mechanism of the liquid droplet formation have been dis-
cussed [48–50]. Our result clarifies that the MIPS and EPS
are indistinguishable at the macro-scale observed in common
cell experiments, indicating the potential role of activity, fu-
eled for instance by enzyme catalysis [51, 52] in the liquid
droplet formation in cells.
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S1. SIMULATION OF THE LATTICE GAS MODEL

A. Simulation procedure

By discretizing time, we perform Monte Carlo (MC) simulations corresponding to the lattice gas model [Fig. 1(a) in the main
text]. In this model, each particle with a spin s (= x̂, ŷ, −x̂, or −ŷ) can stochastically (i) hop to a nearest-neighbor site if empty or
(ii) flip the spin with a rate h, where â is the unit translation parallel to the a-axis. For hopping from site i to an adjacent site j,
we set a higher rate (1 + ε)wi→ jJ if the hopping is in the same direction as the spin, and a lower rate wi→ jJ otherwise, using the
activity parameter ε (≥ 0). We set wi→ j = 1 − tanh(∆Ei→ j/2) with kBT = 1, where ∆Ei→ j is the increase in the total interaction
energy due to hopping, with the nearest-neighbor interaction energy U (repulsive for U > 0 and attractive for U < 0). In all the
simulations, we set h/J = 0.01.

First, we randomly choose a particle, say, at site i with spin s. Then, we randomly choose a direction from {x̂, ŷ,−x̂,−ŷ} \ {s}
and update s to the chosen direction with a probability 3h/8J(1 + ε). Lastly, we randomly choose a direction (we call l) from
{x̂, ŷ,−x̂,−ŷ} and move the particle to the adjacent site i + l if empty with a probability wi→i+l/2 or wi→i+l/2(1 + ε) for l = s or
l , s, respectively. We repeat this procedure N (the total particle number) times as 1 MC step. Note that each flipping/hopping
probability is smaller than 1 since 0 < wi→ j < 2.

B. Finite-size scaling analysis for EPS and MIPS

We show the results of the finite-size scaling analysis for EPS with ε = 0 [Figs. S1(a) and (b)] and MIPS with U = 0
[Figs. S1(c) and (d)]. For EPS, we set ρ = 0.5, and the crossing of the Binder ratio QL [Fig. S1(a)] shows the critical point
(Uc, εc) ' (−1.76, 0). The obtained Uc is close to the exact value [53], Uexact

c = 2 ln(1 +
√

2) = 1.7627..., which suggests that
the sub-box method [Fig. 3(a) in the main text] is working. As expected, the critical exponents are consistent with the 2D Ising
universality [Fig. S1(b)]. For MIPS with U = 0, we set ρ = 0.55 considering the shift of ρc [Fig.2(b) in the main text]. Based
on the crossing of the Binder ratio QL for L ≥ 10 [Fig. S1(c)], we estimate the critical point as (Uc, εc) ' (0, 1.12), although the
crossing is not as clear as the cases with negative U. The size scalings seem consistent with the 2D Ising universality [Fig. S1(d)],
though we do not reach the scaling regime due to the limited system size.

C. Relaxation dynamics

In the finite-size scaling analysis, we sample configurations of the steady state, which is realized after relaxation from the
initial configuration. In Fig. S2, we show typical time evolution of the Binder cumulant for two kinds of parameter sets around
the critical line: (a) (U, ε) = (−1, 1.067) and (b) (U, ε) = (−1.767, 0.1). For U = −1, the dynamics of QL shows the relaxation
to the steady state from the random configuration [Fig. S2(a)]. For ε = 0.1, we perform simulations from the fully phase-
separated configuration to accelerate the relaxation for negatively large U, and the dynamics of QL represents the relaxation
process [Fig. S2(b)]. Similarly, we use the fully phase-separated initial configuration in simulations for Figs. 3(c) and (e) in the
main text and Figs. S1(a) and (b).

The domain size R(t) is determined by the first zero of the correlation function Ca(r, t) defined in the main text. Figure S3 is
an example of the time dependence of Ca for the parameters corresponding to Fig. 4(c) in the main text, and we see the growth
of R(t) as time passes.

S2. MEAN-FIELD APPROXIMATION

We explain the details of the mean-field approximation used in the main text. In the following, we use 〈· · ·〉t as the average
with respect to the probability P({ni,s}, t) for the configuration {ni,s} at time t, where ni,s (= 0 or 1) is the local occupancy. Based
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FIG. S1. (a) The Binder ratio as a function of U with L = 4, 6, 8, 10, 12 for EPS (ε = 0). The black dotted line shows the exact critical point
Uexact

c = 2 ln(1 +
√

2) (b) Size scalings of (i) derivative of the Binder ratio (∼ L1/ν), (ii) susceptibility (∼ Lγ/ν), and (iii) density fluctuation
(∼ L−β/ν) for EPS (ε = 0). For comparison, we show the size scalings for the 2D Ising model (ν = 1, β = 1/8, and γ = 7/4; black dashed
line). (c) The Binder ratio as a function of ε with L = 4, 6, 8, 10, 12, 14, 16 for MIPS (U = 0). (d) Size scalings [counterparts of (b)] for MIPS
(U = 0). For (a, b) [(c, d)], we performed 480 independent simulations and sampled 41 (31) configurations at intervals of 105 MC steps after
8× 106 (106) MC steps in each simulation with the fully phase-separated (random) initial configurations. We used ρ = 0.5 and ρ = 0.55 for (a,
b) and (c, d), respectively, and h/J = 0.01 for all figures.

(a) (b)

×106 ×106

FIG. S2. Time evolution of the Binder cumulant for two parameter sets around the critical line: (a) (U, ε) = (−1, 1.067) with L = 14 and (b)
(U, ε) = (−1.767, 0.1) with L = 12, which correspond to the cases in Figs. 3(b) and (c), respectively. We also show typical final configurations
as well as the (a) random or (b) fully phase-separated initial configurations, where the yellow, green, blue, and purple dots represent the
particles with s = x̂, ŷ, −x̂, and −ŷ, respectively. In the finite-size scaling analysis, we used configurations at time points shown as the gray
region.

on the master equation, which describes the time evolution of P({ni,s}, t), we can obtain the equation for 〈ni,s〉t as

∂ 〈ni,s〉t

∂t
=

∑
l=x̂,ŷ,−x̂,−ŷ

J(1 + εδs,l)[〈ni−l,s(1 − ni)wi−l→i〉t − 〈ni,s(1 − ni+l)wi→i+l〉t] − h(4 〈ni,s〉t − 〈ni〉t). (S1)

Here, ni :=
∑

s ni,s. We neglect the second and higher-order correlations within the mean-field approximation [3, 4], which leads
to Eq. (1) in the main text:

∂ρi,s

∂t
=

∑
l=x̂,ŷ,−x̂,−ŷ

J(1 + εδs,l)[ρi−l,s(1 − ρi)wMF
i−l→i − ρi,s(1 − ρi+l)wMF

i→i+l] − h(4ρi,s − ρi), (S2)

where ρi,s(t) := 〈ni,s〉t, ρi(t) :=
∑

s ρi,s(t), and wMF
i→ j = 1 − tanh[(EMF

j − EMF
i )/2] with EMF

i :=
∑

l=x̂,ŷ,−x̂,−ŷ Uρi+l.
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FIG. S3. Time evolution of the correlation function averaged in the axial direction, Ca(r, t), between 104 and 105 MC steps for (U, ε) = (−1, 2),
which corresponds to Fig. 4(c) in the main text. The first zero of Ca(r, t) at each time t represents the domain size R(t). Note that Ca(0, t) =

ρ(1 − ρ) and thus Ca(0, t) = 0.25 for ρ = 0.5.

Focusing on the moderate spatial variation of ρi,s with respect to the lattice constant a, we replace ρi,s by ρs(x) and ρi by ρ(x),
expand ρi+l,s as ρi+l,s ' [1+al ·∇+ (al ·∇)2/2]ρs(x), and expand wMF

i→i+l as wMF
i→i+l ' 1−2Ual ·∇ρ(x)−U(al ·∇)2ρ(x). Substituting

these expressions in Eq. (S2), we obtain, up to O(a2),

∂ρs

∂t
=Ja2{(1 − ρ)∇2ρs + ρs∇

2ρ + 4U∇ · [(1 − ρ)ρs∇ρ]} +
εJa2

2
{(1 − ρ)(s · ∇)2ρs + ρs(s · ∇)2ρ + 4U(s · ∇)[(1 − ρ)ρs(s · ∇ρ)]}

− εJa(s · ∇)[(1 − ρ)ρs] − h(4ρs − ρ). (S3)

To obtain the critical point and spinodal line, which are determined by the temporally slow mode, i.e., the density field ρ(x, t)
in our model, we use the adiabatic approximation [38, 39]. First, using the “magnetization field” mα := ρα̂ − ρ−α̂ (α = x or y)
and “nematicity field” ν := ρx̂ + ρ−x̂ − ρŷ − ρ−ŷ in addition to the density field ρ =

∑
s ρs, we rewrite Eq. (S3) as

∂ρ

∂t
=Ja2{∇2ρ + 4U∇ · [(1 − ρ)ρ∇ρ]} +

εJa2

4
{∇2ρ + (1 − ρ)(∂x

2
− ∂y

2)ν + ν(∂x
2
− ∂y

2)ρ

+ 4U∇ · [(1 − ρ)ρ∇ρ] + 4U∂x[(1 − ρ)ν∂xρ] − 4U∂y[(1 − ρ)ν∂yρ]} − εJa∇ ·m, (S4)

∂mα

∂t
=Ja2{(1 − ρ)∇2mα + mα∇

2ρ + 4U∂α[(1 − ρ)mα∂αρ]} +
εJa2

2
{(1 − ρ)∂α2mα + mα∂α

2ρ + 4U∂α[(1 − ρ)mα∂αρ]}

−
1
2
εJa∂α{(1 − ρ)[ρ + α̂ · (x̂ − ŷ)ν]} − 4hmα, (S5)

∂ν

∂t
=Ja2{(1 − ρ)∇2ν + ν∇2ρ + 4U∇ · [(1 − ρ)ν∇ρ]} +

εJa2

4
{(∂x

2
− ∂y

2)ρ + (1 − ρ)∇2ν + ν∇2ρ

+ 4U∂x[(1 − ρ)ρ∂xρ] − 4U∂y[(1 − ρ)ρ∂yρ] + 4U∇ · [(1 − ρ)ν∇ρ]} − εJa{∂x[(1 − ρ)mx] − ∂y[(1 − ρ)my]} − 4hν. (S6)

Assuming the spatially slow variation of ρ, m, and ν, we see from Eqs. (S5) and (S6) that m and ν will be rapidly relaxed with
a timescale ∼ 1/4h. Thus, focusing on the relaxation timescale of ρ (� 1/4h), we can approximately set ∂tmα = 0 and ∂tν = 0
in Eqs. (S5) and (S6), respectively. Within this adiabatic approximation, we can show m = −εJa∇[(1 − ρ)ρ]/8h + O(a2) and
ν = O(a2), thereby obtaining

∂ρ

∂t
=

(
1 +

ε

4

)
Ja2{∇2ρ + 4U∇ · [(1 − ρ)ρ∇ρ]} +

ε2J2a2

8h
∇ · {(1 − ρ)∇[(1 − ρ)ρ]}, (S7)

up to O(a2). Using the mobility M(ρ) := (1 + ε/4)Ja2(1 − ρ)ρ and the effective free energy Feff :=
∫

dx f (ρ), where

f (ρ) =

[
1 +

ε2J
(8 + 2ε)h

]
ρ ln ρ + (1 − ρ) ln(1 − ρ) + 2

[
U −

ε2J
(16 + 4ε)h

]
ρ2, (S8)

we can rewrite Eq. (S7) as Eq. (2) in the main text, i.e.,

∂ρ

∂t
= ∇ · M(ρ)∇

δFeff

δρ
. (S9)
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