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The newly realized twisted graphene systems such as twisted bilayer graphene (TBG), twisted
double bilayer graphene (TDBG), and twisted trilayer graphene (TTG) have attracted widespread
theoretical attention. Therefore, a simple and accurate model of the systems is of vital importance
for the further study. Here, we construct the symmetry-adapted localized Wannier functions and
the corresponding ab initio minimal two-valley four-band effective tight-binding models for generic
twisted graphene systems with small twist angle. Such two-valley model evades the Wannier obstruc-
tion caused by the fragile topology in one-valley model. The real space valley operator is introduced
to explicitly describe the valley Uv (1) symmetry. Each symmetry-adapted Wannier orbital shows
a peculiar three-peak form with its maximum at AA spots and its center at AB or BA spots. An
extended Hubbard model is also given and the related parameters are presented explicitly. We
provide an approach to systematically build the Wannier tight-binding model for generic twisted
graphene systems. Our model provides a firm basis for further study of the many-body effects in
these systems.

Introduction.— The recent discovery of correlated in-
sulating states and possibly unconventional superconduc-
tivity in magic-angle twisted bilayer graphene (TBG)[1,
2] has triggered broad interest in TBG systems[1–40].
Immediately after the magic-angle TBG, twisted double
bilayer graphene (TDBG)[41–49] and twisted multilayer
graphene (TMG)[50–55] as well as other twisted two-
dimensional materials[56–61] have been fabricated and
investigated, forming a new research field—twistronics.
Generic TBG systems are usually described by effective
continuum model[62–64], tight-binding (TB) model[52,
59, 65–69] and density functional theory (DFT)[58, 70–
74]. However, these models need lots of basis to model
the single-particle band structure. Even for the contin-
uum model, hundreds of basis are needed, and the other
two need tens of thousands and even more, which has se-
riously hindered the study of the novel many-body quan-
tum states in twisted graphene systems.

For TBG with small twist angle, two kinds of ef-
fective Wannier TB models with several orbitals were
proposed[18–23]. One is building the effective Wan-
nier TB model for one valley, which we refer to 1V-
TB model. Due to the so-called fragile topology in the
low-energy bands, more deliberated-selected extra triv-
ial orbitals should be added to form a wannierizable
group[18, 22, 24, 25]. Obviously, this method cannot be
directly promoted to generic twisted graphene systems.
The other is considering two valleys together named 2V-
TB model[19–21]. The low-energy flat bands for 2V-TB
model in TBG represent a trivial band topology[22, 25].
The 1V-TB model separates two valleys, which explicitly
preserves the Uv (1) valley symmetry, while such symme-
try might be lost in 2V-TB model.

Here, we attempt to provide a numerical method
to systematically construct ab initio minimal four-band

Wannier TB models for arbitrary stacked graphene sys-
tems with a small twist angle. First, from ab initio cal-
culations, the band structures of untwisted multilayer
graphene subsystems are obtained. Our ab initio cal-
culations naturally take into account the trigonal warp-
ing around the graphene valleys induced by interlayer
coupling[75]. It was often ignored in previous studies and
should be included since the energy scales for the trigonal
warping and the flat bands after twist are comparable.
We numerically explicitly demonstrate the chiral decom-
position rule for TMG, and identify the low energy bands
and the distribution in real space. Given this knowl-
edge, the Wannier functions (WFs) are constructed by
combining the microscopic pz orbitals with an envelope
function. The TB model for TBG(1+1), TDBG(2+2),
twisted trilayer graphene (TTG)(1+2) and TMG(4+4)
are constructed as examples. Based on the WFs for these
systems with small twist angle, we explicitly present the
real space Hamiltonian and the valley operator, which to-
gether encode the whole low-energy physics and the sym-
metry, especially the Uv (1) valley symmetry. Finally, the
electron-electron interactions between the localized WFs
is discussed and the extended Hubbard model is given.

Chiral decomposition of few-layer and twisted multi-
layer graphene.— Stacking single-layer graphene (SLG)
along ẑ direction forms a few-layer graphene (FLG)
system. The energetically favorable stacking order is
generated by intralayer translations along (a1 + a2) /3
with an additional interlayer d0ẑ resulting in three non-
equivalent layers labeled by A, B and C respectively[76],
as shown in Fig.1(a). Here d0 represents the layer dis-
tance of FLG. One stacking order is referenced as chi-
rally stacking order if all of the intralayer translations
are the same. Clearly a general stacking sequence can
be decomposed into several subsets of chirally stack-
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FIG. 1. (a) Stacked nonequivalent layers in few-layer
graphene labeled as A, B and C respectively. (b) Generic
twisted multilayer graphene system with M and N layers ar-
bitrary stacked graphene on the bottom and top respectively
denoted as TMGN

M. (c) Chiral decomposition for TMGN
M,

where M={ABCA} and N={ABCA}{C}. The band struc-
tures are projected onto two nearest active chiral subsets, i.e.,
the {ABCA} chiral subset on the bottom and the {ABCA}
chiral subset on the top.

ing order, the so-called chiral decomposition in FLG[77]:
The low energy states of the N-layer stacked graphene
can be well described by direct sum of ND subspaces,
Heff
N ≈ HJ1 ⊕ · · · ⊕ HJND

, where each of HJi is a pseu-
dospin doublet with kJi leading order dispersion induced
from the ith chiral subset in N-layer stacked graphene
with the sum rule

∑ND

i=1 Ji = N . Furthermore, these
low energy states are localized at the boundary of the
chirally stacking subsets. For example, a chirally stack-
ing Ji-layer subset has Ji − 1 pairs of dimmer and two
unpaired sites left. The two unpaired sites contribute
two zero modes, which are responsible for the low energy
subspace, and the rest parts are pushed into high en-
ergy by strong direct interlayer coupling. The previous
studies usually considered the ideal case, where are only
the nearest interlayer hopping parameters taken into ac-
count, and ignored the trigonal warping and particle-hole
(PH) asymmetry in realistic case. We would like to point
out that the effects should be included because of the
comparable energy scale with that of the low-energy flat
bands. In this work, the electronic structure for FLG are
obtained from ab initio calculations, where the trigonal
warping and PH asymmetry are automatically included
(see Appendix.A for details). The ab initio results show
a well preserved chiral decomposition rule as presented
in Appendix.B.

Considering a general TMG system, as presented in

FIG. 2. (a) Maximum site symmetry for SLG and BLG as
circled in blue. The black and red solid lines stand for layers.
(b) and (c) Band projections onto the initial WFs for TBG
and TDBG (TMG

{AB}
{AB}). The flat bands can be well described

by the initial WFs by means of the large overlap. And it is
guaranteed since these WFs notably overlap with the zero
modes, which are responsible for the low energy states.

Fig.1(b), it has N-layer graphene on the top and M-layer
graphene on the bottom with small twist angles ±θ/2 re-
spectively. In the absence of twisted interlayer coupling,
this system is described by several groups of pseudospin
doublets with kJi leading order dispersion. With the
twisted interlayer coupling turned on, in fact two active
chiral subsets are responsible for the flat bands: the bot-
tom chiral subset of the upper N layers and the top chiral
subset of the lower M layers. From the continuum model,
we numerically calculated the orbital characters for TMG
system. We choose TMG

{ABCAC}
{ABCA} with a relative twist

angle 2.646◦as an example. It can be decomposed into
three chiral subsets {ABCA}, {ABCA} and {C} in quar-
tic and linear dispersion. As presented in Fig.1(c), the
former two active twisted chiral subsets strongly renor-
malize into the flat bands, and the left one preserves well
the linear dispersion. In brief, the low-energy states in
TMG can be well described by two decoupled parts: the
renormalized flat bands and the left pseudospin doublet.

Four-band Wannier tight-binding model for generic
TMG.— We start by discussing the symmetry of TMG.
The space groups of all FLG are symmorphic, i.e., apart
from the lattice translations, all of the symmetric opera-
tions leave one site fixed [see Fig.2(a)]. When twisted, the
symmetry group depends on the twist center. To get the
maximal symmetric structure in real space, one should
take the twist center at that of the maximal site symme-
try. The symmetry of the band structure is not sensitive
to this atomic level selection since the moiré pattern is
much larger than the atomic length scale. The nonzero
twist angle removes the inversion symmetry. Based on
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TABLE. I. Symmetry of the twisted multilayer graphenes.

Stacking order Point Group Generators
TBG D6 C6z, C2x

TMG
{AB}
{AB} (TDBG) D3 C3z, C2x

TMG
{BA}
{AB} (TDBG) D3 C3z, C2x

generic TMGM
N C3 C3z

this knowledge, the maximal symmetry groups for the
twisted graphene systems are given in Table.I. The C3z
symmetry is in general preserved.

In the absence of twisted interlayer coupling, the low
energy Bloch states in TMG can be viewed as folding
the band structure of FLG, which are induced from the
microscopic pz orbitals of FLG. Also, these low energy
Bloch states come from the graphene valleys thus taking a
high frequency factor eiK

FLG
ξ ·r, where KFLG

ξ is the valley
of FLG. It suggests that theWFs can be explicitly written
in the form

|gn〉 =
1

2

∑
ξ;τ,d,R

eiK
FLG
ξ ·rf (ξ;τ,d)

n (r) |τ, d,R + d〉 . (1)

Here |τ, d,R + d〉 is the microscopic pz orbitals of FLG
and the sum runs over valley index ξ, sublattice τ , layer
index d and graphene lattice R. n is the index of the
WFs, and τ = τα, τβ denotes the position of the sublat-
tice. f

(ξ;τ,d)
n is the smooth envelope function in moiré

length scale. Since we consider a 2V-TB model, the en-
tire system preserves the time reversal symmetry. It is
possible to choose a group of real-valued WFs with con-
straint f (ξ+;τ,d)

n = f
(ξ−;τ,d)
n ≡ f (τ,d)

n . It should be pointed
out that different from the 1V-TB model, in which the
valley degrees of freedom are promoted as orbitals, in the
2V-TB model, the valley degrees of freedom are denoted
as orbital components. Also, our choice of WFs equally
mixes two valleys. This mixture cannot be removed due
to the non-trivial topology of the flat bands from a single
valley. Despite of this choice, it is possible to preserve
well the valley Uv (1) symmetry as we will discuss later.

For generic TMG, we choose the envelope function
for the initial WFs as f

(τα,−1)
1 (r) = G

(
r− rhex

1

)
,

f
(τβ ,−1)
2 (r) = G

(
r− rhex

2

)
, f (τβ ,1)

3 (r) = −G
(
r− rhex

1

)
and f (τα,1)

4 (r) = −G
(
r− rhex

2

)
. Here G

(
r− rhex

i

)
is the

Gaussian function localized at the hexagonal site with
moiré scale spreading. The initial choice is based on the
following considerations. Firstly, it reflects the realistic
orbitals character since these chosen WFs have notable
overlap with the relevant flat bands, as explicitly shown
in Fig.2. Secondly, the initial choice respects the corre-
sponding symmetry: (i) Each gn itself has C3z symmetry
due to the site symmetry at hexagonal site. The C3z
symmetry is preserved for all TMG systems. (ii) In each

FIG. 3. Band structures interpolated from Wannier tight-
binding model (in red and blue lines) for (a) TBG, (b) TBG on
h-BN substrate, (c) TDBG, (d) magic angle TDBG, (e) magic
angle TTG and (f) TMG

{ABCA}
{ABCA} respectively, with the effects

of atomic relaxations taken in to account. As a compari-
son, the band structures by combining the effective continuum
model and ab initio calculation are given in black dash lines.
Our Wannier tight-binding band structures are obtained by
simultaneously diagonalizing the Hamiltonian and the valley
operator, and thus can be labeled with a well-defined valley
eigenvalues ±1 (K,K′) highlighted in red and blue lines.

graphene layer, C2z exchanges the sublattice degrees of
freedom, thus exchanges g1, g3 with g2, g4 respectively.
The C2z symmetry is only preserved in TBG. (iii) C2x
exchanges g1, g2 with g3, g4 respectively. The C2x sym-
metry is preserved in TBG and TDBG.

Given these envelope functions, one can construct the
WFs and the related TB model following the method-
ology developed by D. Vanderbilt et al. [78, 79] (see
Appendix.D for details). The Wannier TB models and
the WFs for TMGM

N are automatically produced by our
home-made code. With the TB model of the few-layer
graphene from ab initio calculations (see Appendix.A),
one can readily obtain the four-band Wannier TB model
for generic TMG with small twist angle. Here we build
TB models for several prototypical TMG systems for
examples, i.e., mTBG with twist angle 1.08◦, mTBG
with magic angle 1.08◦ and h-BN substrate ∆d=−1

BN =
30meV, TDBG with twist angle 2.0◦, mTDBG with
magic angle 1.248◦ and displacements field tuned on
(UD = 10meV), mTTG (TMG

{AB}
{A} ) with magic angle

1.248◦ (UD = 80meV, ∆d=−1
BN = 80meV and ∆d=1

BN =
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FIG. 4. (a) Plot of the envelope part f (ξ;τ,d)
n (r) of C3z-symmetry-adapted localized WFs for mTBG with magic angle θ = 1.08◦,

mTDBG with magic angle θ = 1.248◦ and mTTG with magic angle θ = 1.248◦ respectively. Only K valley case is presented,
the another one is the same. The 3×3 moiré cell is shown in black lines. (b) Nonzero Coulomb interactions between these WFs.
The extended Hubbard interactions are taken into account due to the extended features of the WFs. For exchange interactions,
the nonzero terms presented here are J0, J2 and J5. The other terms, i.e., J1, J3 and J4 are interactions between the two WFs,
which are located at different layers or sublattices resulting in zero exchange interactions. Notice that WFs have three peaks
at the moiré triangular lattice sites (a) but are centered at the dual honeycomb lattice sites (b).

∆d=2
BN = −20meV), and TMG

{ABCA}
{ABCA} with twist angle

2.646◦. They band structures are shown in Fig.3, which
fit well with the effective continuum model. The C3z
symmetry is enforced in building symmetry-adapted WFs
since it is preserved in all TMG system, and also reflected
in the hopping parameters between WFs, as plotted in
Figs.S.4-S.6. The WFs show a peculiar three-peak form,
as shown in Fig.4(a). Beside the one component of each
Wannier orbital we set up initially, there emerges another
component located at same hexagonal site but in different
layer and sublattice. It should be pointed out this is dif-
ferent from the previous studies[20, 21], where each com-
ponent is nonzero for all of the WFs. Our Wannier TB
model well describes the Berry curvature distributions
and Chern numbers of generic TMG, e.g., TBG, TDBG
and so on, with zero valley Chern number, i.e., the sum
of Chern number of the two flat bands for single valley is
zero. The Berry curvature distributions and Chern num-
bers for both valleys are given in Appendix.E. Although
the topological description of TMG with nonzero valley
Chern number is beyond our current Wannier TB model,
the model fits the four flat bands very well for generic
TMG with or without nonzero valley Chern number. As
an example of TMG with nonzero valley Chern number,
mTTG has zero Chern number for the valence band and
nonzero one for the conduction band, which suggests one
may include higher energy bands rather than the four flat

bands to characterize the topological aspect.
An important feature for twisted graphene systems

with small twist angle is the well preserved valley Uv (1)
symmetry due to the negligible intervalley coupling.
The Uv (1) symmetry is explicitly present in continuum
model. However, such symmetry does not seem to ex-
ist in our two-valley Wannier TB model. In fact, our
method indeed manifests well the Uv (1) symmetry since
the initial Bloch sum is unitarily transformed from the
original flat bands obtained by the continuum model [see
Eq.(D6)]. To reveal the valley degrees of freedom in our
2V-TB model, we define the valley operator for the con-
tinuum model, and the valley operator for our Wannier
TB model can be interpolated from the exactly same
procedure as that of Hamiltonian as illustrated in Ap-
pendix.D. The eigenvalues of interpolated valley opera-
tor are stabilized at ±1 as shown in Fig.S.3. By simul-
taneously diagonalizing the Hamiltonian and the valley
operator, the bands and eigenstates in our Wannier TB
model can be labeled with valley eigenvalues, and thus
the Uv (1) symmetry is preserved. The bands with dif-
ferent valley eigenvalues ±1 (K,K′) are colored in blue
and red in Fig.3.
The extended Hubbard model for generic TMG.— Fi-

nally, we discuss the electron-electron interactions be-
tween the constructed localized WFs. Because each Wan-
nier orbital has two nonzero components out of the total
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TABLE. II. Coulomb interaction between WFs in unit of
e2

4πεLM , which are integrated in a 5× 5 moiré lattice. Taking
εr = 5 for a BN substrate, the unit for mTBG (θ = 1.08◦) is
22 meV and are 26 meV for mTDBG (θ = 1.248◦) and mTTG
(θ = 1.248◦) . The µ and µ̄ represent for different orbitals.

mTBG(1.08◦) mTDBG(1.248◦) mTTG(1.248◦)
U 2.210 1.991 2.330
V 2.208 2.011 2.150
W1 1.742 1.636 1.689
W2 1.238 1.151 1.149
W3 1.160 1.053 1.029
W4 0.700 0.761 0.717
W5 0.623 0.653 0.615
Jµµ̄0 0.000 0.016 0.253
Jµµ2 0.192 0.117 0.070
Jµµ̄2 0.044 0.036 0.049
Jµµ5 0.002 0.017 0.002
Jµµ̄5 0.003 0.006 0.006

four components and shows the peculiar three-peak form,
the interaction Hamiltonian takes the following form

Hint = U
∑
iµ

niµ↑niµ↓ + V
∑
iµ>ν

niµniν

+
1

2

∑
α

Wα

∑
〈ij〉α,µν

niµnjν

+
∑

iµ>ν,σσ′

J0a
†
iµσaiνσa

†
iνσ′aiµσ′

+
∑
iµ 6=ν

J0a
†
iµ↑aiν↑a

†
iµ↓aiν↓

+
1

2

∑
〈ij〉2µν,σσ′

Jµν2 a†iµσajνσa
†
jνσ′aiµσ′

+
∑
〈ij〉2µν

Jµν2 a†iµ↑ajν↑a
†
iµ↓ajν↓ (2)

where a†iµσ creates a WFs at i site with spin index σ.
µ = g1, g3 or g2, g4 depending on the location of the
Wannier center. The numerical integration values of the
parameters in the interaction Hamiltonian for mTBG,
mTDBG and mTTG are summarized in Table.II. The
extended Hubbard interactions are represented by the
Wα (α=1∼5) For the first three terms, the quantitively
difference is mainly determined by the distance between
the localized WFs. The two WFs, which are in the same
shape but located in different layers or sublattice, have
little effect on the direct interactions. For Hund’s ex-
change and pair-hopping terms, the nonzero terms are
shown in Fig.4(b). It is nonzero only for the WFs located
at the same hexagonal site up to the lattice translations.
The reason is that, for instance the nonzero components
of g1 and g2 are located at different layers or sublattices
resulting in a zero exchange interaction.

Conclusion and discussion.— We present an ap-
proach to construct C3z-symmetry-adapted localized
WFs and the corresponding ab initio minimal four-
band effective tight-binding models for generic twisted
graphene systems with small twist angle, such as ex-
perimentally realized TBG, TDBG, and TTG, as well
as other TMGN

M systems experimentally to be realized.
Each symmetry-adapted Wannier orbital shows a pecu-
liar three-peak form with two nonzero components out of
the total four components. An extended Hubbard model
is also obtained and the related parameters are calculated
explicitly.

Our starting point is the ab initio band structures of
untwisted multilayer graphene subsystems, which natu-
rally includes the trigonal warping effect, which was often
ignored in previous study and should be taken into ac-
count since the energy scales for the trigonal warping and
the flat band after twist are comparable. Then we use the
continuum model to address the twisted cases with the
lattice relaxation effect taken into account. For a single-
valley model, constructing two-band Wannier model will
have an obstruction due to the fragile topology in TBG
systems, but for a two-valley four-band model, it is wan-
nierable. Moreover, the valley Uv (1) symmetry can still
be retrieved in our two-valley four-band model. We can
use the eigenvalue of the valley operator ±1 (K,K′) to
mark the energy band by constructing the valley opera-
tor explicitly, and then diagonalizing it with the Hamil-
tonian simultaneously. The effect of external electric dis-
placement field and sublattice symmetry breaking can be
readily incorporated in our model. Our ab initio mini-
mal four-band effective Wannier tight-binding models to-
gether with the extended interactions is of importance for
a wide range of applications in the efficient study of the
many-body effects in the TMG systems.
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search Program of Chinese Academy of Sciences (Grant
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Appendix.C). The ab initio calculations for FLG were performed in the VASP package[80] and the electron-ion
interaction was described using the projector augmented wave (PAW) method[81]. The exchange-correlation part was
described with the generalized gradient approximation (GGA)[82] in the scheme of Perdew-Burke-Ernzerhof (PBE)
functional[83]. The plane-wave cutoff energy was set to be 400 eV. The Brillouin zone (BZ) was sampled by a Γ
centered Monkhorst-Pack grid (12 × 12 × 1)[84]. The lattice constant for all FLG is set at 2.46 Å. The Wannier
tight-binding model for FLG was constructed by the WANNIER90 code[85].

Appendix B: Orbital character of few-layer graphene

In this section, we present the orbitals character for FLG with either chirally and multi-chirally stacking order
from ab initio calculations. The band projections around K valley for chirally stacked FLG are presented in Fig.S.1.
The low energy states are well described by the pseudospin doublet with approximately quadratic, cubic and quartic
dispersion for AB, ABC and ABCA stacking order respectively. The Fermi surface wrapping effects are automatically
taken into account. By projecting onto the pz orbitals at zero mode sites [highlight in red in Fig.S.1(a), (c) and (e)],
we found the low energy states, which dominate the physics in the absence of twist angle, are mainly distributed in
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FIG. S.1. Projected band structures near K valley for chirally stacked few-layer graphene with stacking order AB, ABC and
ABCA respectively. The selected pz orbitals are colored in red as shown inside each subfigure. (a),(c) and (e) show the
projection on the top and bottom layer, which mainly dominated the low energy states. (b), (d) and (f) show the projection
on the rest part, which is almost distributed at high energy states.

hopping parameters are included in our ab initio results. Again, by projecting onto the pz orbitals at zero mode sites
[highlight in red in Fig.S.2(a) and (c)], we found they mainly contribute to the two doublets respectively. The rest
pz orbitals contribute to the high energy bands. Similar results are obtained for ABCAC stacked FLG as shown in
Fig.S.2.

In summary, the chiral decomposition rules are well preserved in the ab initio results. Moreover, the low energy
pseudospin doublets in FLG, which play an important role in the presence of twist angle, are mainly contributed
from the pz orbitals localized in the zero mode sites. The Fermi surface wrapping effect are automatically taken into
account.

Appendix C: The effective continuum model for generic twisted graphene systems

In this section, we illustrate the combination of ab initio Wannier TB model for FLG and the effective continuum
method[62] used in this work to obtain the single particle electronic structures for generic twisted multilayer graphene
system (TMG). The geometric structure is illustrated in Fig.1 in the main text. There are N layers graphene on the
top and M layers graphene on the bottom with small twist angles ±θ/2 respectively. The emerged moiré pattern is
labeled as LM = l1L

M
1 + l2L

M
2 . The Bloch states are constructed from the microscopic pz orbitals in each layer of

graphene
∣∣τ, d,LM + R + d

〉
. Here τ = τα, τβ represents graphene sublattice degree of freedom and d is the layer index

measured from the bottom to the top (for TDBG, d = −2,−1, 1, 2 from the bottom to the top layer). R represents
the graphene unit cell (in each moiré pattern). d = dd0ẑ represent the layer stacking distance where d0 is the distance
between two graphene layers. The Bloch sum functions read as∣∣∣ψ̃(ξ;τα,d)

kdξ+G

〉
=
∑
LM,R

ei(k
d
ξ+G)·D[sign(d) θ2 ](LM+R+τα) ∣∣τα, d,LM + R + d

〉
. (C1)

The summations run over all graphene unit cell in Born-von Karman supercell. Here ξ ≡ ξ± = ±1 represents
different graphene valleys. kdξ = k + KFLG

ξ −Kd
ξ is measured from the Γ point in the graphene Brillouin zone, and
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FIG. S.2. Projected band structures near K valley for multi-chirally stacked few-layer graphene with stacking order ABA and
ABCAC respectively. The selected pz orbitals are colored in red as illustrated inside each subfigure.

k is measured from the Γ point in the TMG Brillouin zone. KFLG
ξ = ξ

3

(
2GFLG

1 + GFLG
2

)
is the graphene valley,

Kd>0
ξ = ξ

3

(
GM

1 −GM
2

)
and Kd<0

ξ = − ξ3
(
GM

1 + 2GM
2

)
. G = n1G

M
1 + n2G

M
2 is the reciprocal lattice vector for TMG,

D
[
sign (d) θ2

]
indicates a twisted angle θ/2 for the top part and −θ/2 for the bottom part. The low energy states can

be expended as the Bloch sum functions near the two valleys

|ψnk〉 =
∑
ξ;τ,d

∑
G

C
(ξ;τ,d)
nk (G)

∣∣∣ψ̃(ξ;τ,d)

kdξ+G

〉
=
∑
XG

CXnk (G)
∣∣∣ψ̃Xkdξ+G

〉
, (C2)

where we have rewritten X = (ξ; τ, d) for simplicity. CXnk (G) can be obtained by diagonalizing the effective continuum
model

Ĥ (k) = Ĥ0 (k) + ĤT + ĤBN + ĤD, (C3)

where Ĥ0 describes the few-layer graphene in the top and bottom part, and ĤT is the effective twisted interlayer
coupling. The C2z symmetry can be removed by considering the effect of h-BN substrate ĤBN. And ĤD describes the
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displacement field to separate the flat bands. In the Bloch sum basis Eq.(C1), the Hamiltonian matrix elements read
as

〈
ψ̃

(ξ;τα,d)

kdξ+G
|Ĥ0|ψ̃

(ξ′;τβ ,d′)
kd
′
ξ′+G′

〉
= δξξ′δsign(d),sign(d′)δGG′

×
∑
R

ei(k
d
ξ+G)·R

〈
τα, d,0 + d|Ĥ0|τβ , d′,R + d′

〉
, (C4)

which are obtained by Fourier transforming the Wannier tight-binding model of FLG. The matrix elements for ĤBN
are

〈
ψ̃

(ξ;τα,d)

kdξ+G
|ĤBN|ψ̃

(ξ′;τβ ,d′)
kd
′
ξ′+G′

〉
= δξξ′δdd′δGG′σ

z
αβ∆d

BN. (C5)

The matrix elements for ĤD are

〈
ψ̃

(ξ;τα,d)

kdξ+G
|ĤD|ψ̃

(ξ′;τβ ,d′)
kd
′
ξ′+G′

〉
= δξξ′δdd′δGG′ × σ0

αβU
d
D, (C6)

where we define UD ≡ Umax(d)
D − Umin(d)

D . The twisted interlayer coupling read as

〈
ψ̃

(ξ;τα,d)

kdξ+G
|ĤT|ψ̃

(ξ′;τβ ,d′)
kd
′
ξ′+G′

〉
= δξξ′δd=±1,d′=∓1

×
[
T1δG,G′ + T2δG,G′+ξGM

1
+ T3δG,G′+ξ(GM

1 +GM
2 )

]
, (C7)

T1 =

(
u u′

u′ u

)
, T2 =

(
u u′ω−ξ

u′ωξ u

)
, T3 =

(
u u′ωξ

u′ω−ξ u

)
, (C8)

ω = e2πi/3. The twisted interlayer coupling parameters u = 0.0797 eV and u′ = 0.0975 eV, which take the relaxation
effect into account[20].

Appendix D: Building Wannier tight-binding model

In this section, we present the details of building the Wannier tight-binding model for TMG following the method-
ology built-in WANNIER90[78, 79]. As illustrated in the main text, it is possible to choose a group of WFs {|gn〉} in
moiré pattern scales to represent the low energy flat bands

|gn〉 =
1

2

∑
ξ

∑
τ,d,LM,R

eiK
FLG
ξ ·rf (ξ;τ,d)

n (r)
∣∣τ, d,LM + R + d

〉
, (D1)

where the high frequency part is explicitly presented and f
(ξ;τ,d)
n is the smooth envelope function in moiré length

scale. With the constraint of real-valued WFs, i.e., f (ξ+;τ,d)
n = f

(ξ−;τ,d)
n ≡ f (τ,d)

n , it follows

|gn〉 =
∑

τ,d,LM,R

cos
(
KFLG
ξ · r

)
f (τ,d)
n (r)

∣∣τ, d,LM + R + d
〉
, (D2)

which indicates an equal mixture of two valleys. The initial guess for the Bloch sum functions are obtained by
projecting the initial WFs gn onto the Bloch states of TMG

∣∣∣φ̃(0)
nk

〉
=
∑
m

|ψmk〉 〈ψmk|gn〉 . (D3)
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FIG. S.3. Valley eigenvalues interpolated from real space valley operator of TBG with twist angle θ = 1.08◦.

The orbital projection matrix 〈ψmk|gn〉 can be calculated as

Amn (k) = 〈ψmk|gn〉 =
∑
XG

CXmk (G)
∗
〈
ψ̃Xkdξ+G|gn

〉
, (D4)

〈
ψ̃Xkdξ+G|gn

〉
=

1

2π

∫
dr e−i(k

d
ξ+G)·D[sign(d) θ2 ]r cos

(
KFLG
ξ · r

)
f (τ,d)
n (r) . (D5)

The last equation is the inner product of the initial Wannier orbital and the Bloch sum function. We then preform
the singular value decomposition (SVD) to orthogonalize the initial Bloch sum

∣∣∣φ̃(1)
nk

〉
=
∑
m

|ψmk〉
(
AkS

−1/2
k

)
mn

, (D6)

where

Ak = UkΣkV
†
k (D7)

S
−1/2
k = Vk

1√
Σ†kΣk

V †k . (D8)

To well describe the subspace of flat bands, we project φ̃(1)
nk onto the subspace spanned by flat bands

∣∣∣φ̃(2)
nk

〉
= P(f.b.)

k

∣∣∣φ̃(1)
nk

〉
, (D9)

P(f.b.)
k =

∑
n

∣∣∣ψ(f.b.)
nk

〉〈
ψ

(f.b.)
nk

∣∣∣ . (D10)

This procedure was first introduced by D. Vanderbilt et al. to well describe certain range of the Bloch bands[79].
Once we get the proper Bloch wave function, the Wannier tight-binding model can be interpolated by

Hmn (R) =
1

Nk

∑
k

e−ik·R
〈
φ̃

(2)
mk|EkI|φ̃(2)

nk

〉
, (D11)

where Ek is eigenvalue obtained from the effective continuum model.
To clarify the valley degree of freedom in the present framework, we first define the valley operator in continuum

model
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FIG. S.4. Real space hopping parameters between WFs for (a) the magic angle TBG, and (b) the magic angle TBG with the
effect of h-BN substrate. The positive values are shown in red whereas the negative ones are shown in blue.

Vk =
∑
ξ;τ,d

∑
G

ξ
∣∣∣ψ̃(ξ;τ,d)

kdξ+G

〉〈
ψ̃

(ξ;τ,d)

kdξ+G

∣∣∣ . (D12)

Then, the valley operator for the Wannier TB model can be interpolated following the exactly same procedure for
the Hamiltonian

Vmn (R) =
1

Nk

∑
k

e−ik·R
〈
φ̃

(2)
mk|Vk|φ̃

(2)
nk

〉
. (D13)

From the real space Hamiltonian H (R) and the valley operator V (R) one can get the Hamiltonian and the valley
operator at certain k point. The Hamiltonian can be explicitly classified into two decoupled blocks labeled with valley
eigenvalues ±1 respectively. The valley labeled Bloch states can be obtained by simultaneously diagonalizing the two
operators.

A uniform 18× 18 mesh for the Brillouin zone were used for interpolate all of the Wannier tight-binding model in
this work. The hopping parameters are real numbers since the WFs are real-valued functions. The C3z symmetry is
enforced to build WFs and so do the hopping parameters. The Hamiltonian matrix elements are shown in Fig.S.4,
Fig.S.5 and Fig.S.6. The resulting Wannier tight-binding models are well documented and available in GitHub[86].
It serves as a start point for further study of many-body effects in TMG systems. The eigenvalues for the valley
operator of TBG with twist angle θ = 1.08◦ are shown in Fig.S.3. It is stabilized in ±1. Similar results are obtained
for other presented systems.

Appendix E: Chern number for continuum model and Wannier TB model

In this section, we compare the Berry curvature distributions calculated from the continuum model and Wannier
TB model. The Berry curvature for the nth band can be calculated from[87, 88]

Ωzn (k) = −2Im
∑
m 6=n

vxmn (k) vynm (k)

(ωmk − ωnk)
2 , (E1)
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FIG. S.5. Real space hopping parameters between WFs for (a) the TDBG, and (b) the magic angle TDBG with the displacement
field turned on (UD = 10meV). The positive values are shown in red whereas the negative ones are shown in blue.

FIG. S.6. Real space hopping parameters between WFs for (a) the magic angle TTG (TMG
{AB}
{A} ) with h-BN substrate and the

displacement field turned on (UD = 80meV, ∆d=−1
BN = 80meV and ∆d=1

BN = ∆d=2
BN = −20meV), and (b) the TMG

{ABCA}
{ABCA}. The

positive values are shown in red whereas the negative ones are shown in blue.
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FIG. S.7. Berry curvature distributions for the valence flat band (i.e., the lower flat band) from graphene valley KFLG
ξ− obtained

from the continuum model (a)-(d) and Wannier TB model (e)-(h). The high symmetric points in the moiré BZ are presented.
The parameters of h-BN substrate ∆d

BN and displacement field UD are given in the main text. The interpolated Wannier TB
model can well describe the Berry curvature distributions, so does the Chern number.

where εnk = ~ωnk and v (k) is the velocity operator matrix. And the Chern number is followed by integration over
the two-dimensional BZ

Cn =
1

2π

∫
d2kΩzn (k) . (E2)

For Wannier TB model, the velocity operator v (k) can be calculated by Wannier interpolation method[89]. It
should be notice that due to the extended shape of WFs for TMG systems, one should include more matrix elements
〈n0|r̂|mR〉[see Eq.(39) in Ref.[89]] to precisely describe the velocity operator for Wannier TB model. It can be
obtained by numerically integrating the WFs in real space. We found however, by including only the Wannier center
〈n0|r̂|n0〉, one can get reasonable results in Berry curvature calculations. For the continuum model

vamn (k) =
∑
XX′

∑
GG′

CXmk (G)
∗
〈
ψ̃Xkdξ+G|i~

−1
[
Ĥ, r̂a

]
|ψ̃X

′

kd
′
ξ′+G′

〉
CX

′

nk (G′)

=
∑
XX′

∑
GG′

CXmk (G)
∗

〈
ũXkdξ+G|

∂Ĥ (k)

~∂ka
|ũX

′

kd
′
ξ′+G′

〉
CX

′

nk (G′) , (E3)

where

〈
ũXkdξ+G|

∂Ĥ (k)

~∂ka
|ũX

′

kd
′
ξ′+G′

〉
= δξξ′δsign(d),sign(d′)δGG′

×i
∑
R

(
Ra + τaβ − τaα

)
ei(k

d
ξ+G)·(R+τβ−τα)

〈
τα, d,0 + d|Ĥ0|τβ , d′,R + d′

〉
. (E4)

The Berry curvature distributions of TBG, TDBG and TMG for both the continuum model and Wannier TB model
are shown in Fig.S.7. It can be well described by the interpolated Wannier TB model. The numerical integration
of the Berry curvature are presented in TABLE.III giving the Chern number for the flat band. For TMG system
with vanishing valley Chern number (the two flat bands together for single valley have zero Chern number), our
model gives the correct topological classification comparing with the original continuum model. For TMG system
with non-vanishing valley Chern number, for instance the mTTG in our presented results, despite the well fitted band
structure, our current model fails to describe the topological feature for mTTG.
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TABLE. III. Chern number for twisted multilayer graphenes. It is obtained by integrating the Berry curvature over the BZ
[see Eq.(E2)]. The same results are obtained from Wilson loop method and efficient lattice method[90]. Here ξ+ and ξ− label
(K,K′) valley, and VB, CB indicate the lower and higher flat bands respectively.

Flat band index mTBG(1.08◦) TDBG(2.0◦) mTDBG(1.248◦) mTTG(1.248◦) TMG
{ABCA}
{ABCA}(2.646◦)

Continuum model (ξ−, VB) 0.975 0.021 -3.061 -0.014 0.188
(ξ−, CB) -0.996 -0.031 3.027 0.954 -0.182
(ξ+, VB) -0.976 -0.021 3.061 0.014 -0.183
(ξ+, CB) 0.996 0.031 -3.027 -0.954 0.176

Wannier TB model (ξ−, VB) 0.907 0.011 -2.873 0.053 0.055
(ξ−, CB) -0.981 0.004 2.929 -0.127 0.008
(ξ+, VB) -0.907 -0.011 2.873 -0.053 -0.055
(ξ+, CB) 0.981 -0.004 -2.929 0.127 -0.008
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