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Inspired by recent experimental observations of anomalously large decay lengths in concentrated electrolytes, we re-

visit the Restricted Primitive Model (RPM) for an aqueous electrolyte. We investigate the asymptotic decay lengths

of the one-body ionic density profiles for the RPM in contact with a planar electrode using classical Density Func-

tional Theory (DFT), and compare these with the decay lengths of the corresponding two-body correlation functions

in bulk systems, obtained in previous Integral Equation Theory (IET) studies. Extensive Molecular Dynamics (MD)

simulations are employed to complement the DFT and IET predictions. Our DFT calculations incorporate electro-

static interactions between the ions using three different (existing) approaches: one based on the simplest mean field

treatment of Coulomb interactions (MFC), whilst the other two employ the Mean Spherical Approximation (MSA).

The MSAc invokes only the MSA bulk direct correlation function whereas the MSAu also incorporates the MSA bulk

internal energy. Although MSAu yields profiles that agree best with MD simulations in the near field, in the far field

we observe that the decay lengths are consistent between IET, MSAc, and MD simulations, whereas those from MFC

and MSAu deviate significantly. Using DFT we calculated the solvation force, which relates directly to surface force

experiments. We find that its decay length is neither qualitatively nor quantitatively close to the large decay lengths

measured in experiments and conclude that the latter cannot be accounted for by the primitive model. The anomalously

large decay lengths found in surface force measurements require an explanation that lies beyond primitive models.

I. INTRODUCTION

Electrolytes are important in many physical and biologi-

cal phenomena and are crucial in many technological applica-

tions. A basic topic that continues to attract enormous interest

is the structure of the Electric Double Layer (EDL), i.e. how

ions are distributed in a liquid electrolyte in contact with a

charged surface. Models describing the EDL have progressed

from a simplistic double layer capacitor model, proposed by

Helmholtz1 from which the name EDL originates, to the first

Primitive Model (PM) description by Gouy2, Chapman3, and

Debye and Hückel4 (DH), where the electrolyte is modelled

explicitly in terms of discrete ions, the charge carriers, embed-

ded in a uniform dielectric medium, to current all-atom mod-

els, where both the solvent molecules and the ions are treated

explicitly. In recent years, classical Density Functional The-

ory (DFT) and Integral Equation Theories (IET) have been

employed, alongside Molecular Dynamics (MD) and Monte

Carlo simulations, to treat the EDL. Given the rich collection

of theories and simulation methods used to investigate various

models, one might have expected a comprehensive description

of the EDL to have emerged. Recent experiments suggest oth-

erwise. Over the last few years, several experimental groups

have measured anomalously large decay lengths of the force

between two charged cylindrical surfaces immersed in con-

centrated electrolytes (e.g. concentrations larger than about 1

M of NaCl dissolved in water) or in ionic liquids5–8; see also

a)Electronic mail: p.cats@uu.nl

the summary article Ref. 9. We refer to these experiments as

Surface Force Apparatus (SFA) studies. Although these mea-

surements relate to confined liquids, it is well-known that the

solvation force, as measured by SFA, is determined by the

asymptotic decay of the one-body density profiles at an indi-

vidual surface, i.e. by the structure of the EDL in the far-field

region, well away from the surface/electrode. The tails of the

density profiles at each surface ’talk’ to each other thereby

determining the asymptotics of the solvation force. The key

observation is that the decay lengths measured in SFA exper-

iments are very much longer than the Debye length obtained

from DH theory, the length scale that must pertain in the dilute

limit where the ionic concentration vanishes.

Understanding fully the structure of EDLs at high ionic

concentrations is clearly important for fundamental reasons.

Moreover, this is also directly relevant for practical devices

that hinge on mobile ions in a liquid. For instance, room tem-

perature ionic liquids confined in the pores of supercapacitors

find applications in energy storage10–12 and heat-to-current

conversion13, and porous carbon electrodes immersed in aque-

ous electrolytes can be used for harvesting blue energy14,15 or

desalinating water16. These engineering applications are in

addition to the important role of water-dissolved ions in, for

instance, biology (the action potential, homeostasis, etc.) and

geology (mineral stability, dissolution rates, etc.).

In this paper we investigate the structure of EDLs, focus-

ing on the decay lengths of the one-body density profiles and

how these are determined by the decay of two-body correla-

tion functions in the bulk liquid. The former aspect is investi-

gated using DFT and MD simulation while the latter is exam-

ined using IET and MD simulation. We specialize to the Re-

http://arxiv.org/abs/2012.02713v2
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stricted Primitive Model (RPM) where the ionic species have

equal size and equal but opposite charge. This choice sim-

plifies theoretical treatments: number and charge density pro-

files, and the corresponding two-body correlation functions,

(essentially) decouple, allowing us to treat both pieces inde-

pendently. Implementing DFT, we consider three different

treatments of the electrostatic interactions, while employing

the same Fundamental Measure Theory (FMT) to describe the

hard-sphere (HS) interactions that mimic the steric forces.

The paper is arranged as follows: Section II sets out the

basic theory for homogeneous as well as for inhomogeneous

electrolytes. In Section II B, the three functionals for the elec-

trostatic interactions are introduced: a mean-field Coulomb

functional, and two functionals based on the Mean Spheri-

cal Approximation (MSA). Sec.III lays out the details of the

model, its parameters and how we translate between DFT and

simulation. Sec.IV describes the results of our DFT calcu-

lations and MD simulations and how these connect with re-

sults from previous IET studies17–19 that examined the de-

cay of bulk pair correlation functions. Our MD simulations

were designed to check predictions of DFT for the one-body

density profiles in the near field, Sec. IV A, and to exam-

ine the asymptotic decay of both the one- and two-body pro-

files in Sec. IV B. Our DFT results for the decay length of

the solvation force, obtained from the grand potential of the

RPM confined between two planar electrodes, are presented

in Sec. IV B 3 where they are compared with the decay lengths

measured in IET and DFT studies of the structure of the RPM

and with decay lengths measured in SFA experiments. Sec. V

describes a summary and discussion of our results whilst

Sec. VI provides concluding remarks.

II. DFT FOR THE PRIMITIVE MODEL

We investigate the Primitive Model (PM) of an aqueous

electrolyte, either in a homogeneous bulk state or in contact

with a planar electrode at surface potential Φ0, as depicted in

Fig. 1. The PM is the model in which the solvent is treated as

a dielectric medium with constant dielectric permittivity εrε0

and temperature T . The ions are modeled as hard spheres

with diameter d j and charge ez j, where j refers to the species

and e is the elementary charge. We consider mainly the Re-

stricted Primitive Model (RPM), in which the electrolyte con-

sists of two species (cat- and anions) that are characterized

by z± = ±1 and d± ≡ d. The pair potentials of the RPM are

defined by

β ui j(r) =







∞, r < d;

ziz j
λB

r
, r ≥ d;

(1)

with λB = β e2/4πεrε0 the Bjerrum length; the distance be-

tween two point charges at which the electrostatic energy

equals the thermal energy β−1 = kBT . One way of tackling

the inhomogeneous PM is by applying DFT. The starting point

of classical DFT is the grand potential functional Ω of the den-

sity profiles ρ j(r), which reads20–22

Ω[{ρ}] = F [{ρ}]−∑
j

∫

drρ j(r)
[

µ j −V
j

ext(r)
]

, (2)

with F the intrinsic Helmholtz free energy functional, µ j the

chemical potential and V
j

ext the external potential, for each

species j, and where {ρ}= {ρi|i = 1,2 . . .ν} denotes the set

of density profiles with ν being the number of species in the

system. Here, F is an intrinsic property of the system which

depends on the temperature and the interparticle interactions,

but not on µ j −V
j

ext . The grand potential functional has the

property that it is minimized for a given set µ j −V
j

ext(r) by

the equilibrium density profiles ρ0, j(r), i.e. δΩ/δρ j|ρ0, j = 0,

resulting in the Euler-Lagrange equation

δF [{ρ}]
δρ j(r)

∣

∣

∣

∣

ρ0, j

= µ j −V
j

ext(r). (3)

Therefore, once an explicit form of F is constructed, one

can find the equilibrium density profiles {ρ0} by solving the

Euler-Lagrange equation. Then Ω[{ρ0}] is the thermody-

namic equilibrium grand potential.

However, F is in general not known exactly, so DFT hinges

on approximations for F . It is convenient to separate F into

an ideal gas free-energy functional Fid obtained by turning

off all the interparticle interactions:

βFid [{ρ}] =∑
j

∫

drρ j(r)
[

log
(

Λ3
jρ j(r)

)

− 1
]

, (4)

with Λ j the thermal wavelength of species j, and the excess

(over ideal) functional Fex that accounts for the interactions,

i.e.

F [{ρ}] = Fid [{ρ}]+Fex[{ρ}]. (5)

Importantly, Fex is also the generator for the direct correlation

functions, in particular

c
(2)
i j (r,r′) =−β

δ 2Fex[{ρ}]
δρi(r)δρ j(r′)

(6)

is the pair (two-body) direct correlation function which is re-

lated to the total (pair) correlation function via the Ornstein-

Zernike (OZ) equation. For a uniform liquid with constant

(bulk) densities {ρb}, the OZ equation23 reads:

hi j(r) = c
(2)
i j (r)+∑

k

ρb,k

∫

dr
′c(2)ik (|r− r

′|)hk j(r
′), (7)

where the sum is over species k. Eqs. (6) and (7) reveal an

elegant relation between the total correlation functions hi j and

the direct correlation functions ci j obtained from free-energy

functionals.

Constructing approximate DFTs that generate accurate one-

body (density) profiles for fluids at substrates and for two-

body correlation functions in bulk is a challenge across liquid-

state physics24. For the PM this is especially demanding due
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ε

FIG. 1. An illustration of the system considered throughout this

study. The cations and anions (in red and blue, respectively) have

equal size and valency and reside in a dielectric continuum at tem-

perature T and relative dielectric permittivity εr. The electrolyte is

in contact with an electrode at surface potential Φ0, which causes a

nonzero charge density profile near the electrode as depicted by the

background shading.

to the long range character of the Coulomb potential. Tack-

ling Coulombic interactions within DFT is non-trivial, as ex-

plained in detail in a recent review25.

In subsequent sections we present theories for both homo-

geneous and inhomogeneous systems, i.e. without and with

electrodes, respectively. We consider to what extent state of

the art density functional theories incorporate correlation ef-

fects.

A. Homogeneous Electrolytes

Here, we review briefly the properties of bulk (homoge-

neous) fluid systems, considering results of both the mean-

field Debye-Hückel (DH) theory and the Mean Spherical Ap-

proximation (MSA) which is used as a closure to solve the

(bulk) OZ equation. Subsequent subsections build upon these

results.

1. Debye Hückel Theory

Electrolyte solutions were investigated in detail by Debye

and Hückel4 (DH) using the (linearized) Poisson-Boltzmann

equations. For the RPM, DH determined the total electro-

static potential around a fixed ion and showed that each ion

is screened by a cloud of ions of opposite charge over a typi-

cal distance κ−1
D , where κD =

√

8πλBρb. This means that the

average potential surrounding that ion decays exponentially

with the decay length κ−1
D for r > d. DH also calculated the

electrostatic Helmholtz free energy FES given by4

β FES

V
=− 1

8πd3

[

(dκD)
2 − 2dκD+ 2log(dκD + 1)

]

, (8)

where V is the total volume. In the dilute limit dκD → 0 this

reduces to the famous limiting law, exact in the dilute limit,

β FES

V
=− κ3

D

12π
, (9)

which predicts that the electrostatic free energy density is neg-

ative (so has a cohesive character) and vanishes with bulk con-

centration as ρ
3/2

b ; note that in the RPM both species have the

same bulk concentration ρb.

Although DH wrote down a generalized free energy expres-

sion, appropriate to models that encompass more species with

different radii and valencies, the DH theory provides an accu-

rate description for dilute systems only. In order to progress

one requires more sophisticated extensions to DH theory that

can tackle concentrated electrolytes. An important extension

is the mean spherical approximation (MSA), a closure to the

OZ equation in which the hard core repulsion between ions is

enforced from the outset by requiring the radial distribution

functions gi j(r) = hi j(r)+ 1 to vanish inside the hard core.

2. Mean-Spherical Approximation

The MSA is frequently employed to solve the OZ Eq. (7).

For the PM the MSA imposes the conditions:

gi j(r) = 0, r < di j, (10)

c
(2)
i j (r) =−ziz j

λB

r
, r ≥ di j, (11)

where di j =(di+d j)/2 denotes the average hard sphere diam-

eter of species i and j. The first is an exact condition whereas

the second constitutes the approximation. The full solution

for the direct and total correlation functions, as well as the en-

ergy within the MSA, was found by Blum and others in the

70’s26–29 building upon the pioneering work of Waisman and

Lebowitz30–32. The solution for the direct correlation func-

tions can be written as

cMSA
i j (r) = cHS

i j (r)+∆cMSA
i j (r), (12)

where the first term is the well-known Percus-Yevick direct

correlation function for hard spheres (HS), see for instance

Ref. 22, and the second arises from the electrostatic interac-

tions. For the RPM, ∆cMSA
i j (r) takes the simple form:

∆cMSA
i j (r) =











−ziz j
λB

r

2Dr− r2

D2
, r < d;

−ziz j
λB

r
, r ≥ d,

(13)

where D = d+1/Γ, with 2Γ a parameter depending on ρb and

discussed below. The results for the electrostatic internal and

free energy of the RPM are given by:

β
UES

V
=−λB

2ρbΓ(ρb)+ dqη(ρb)

1+ dΓ(ρb)
, (14)

β
FES

V
=−λB

2ρbΓ(ρb)+ dqη(ρb)

1+ dΓ(ρb)
+

Γ3(ρb)

3π
, (15)
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where q = ρ+z++ρ−z− is the charge density. Of course, this

vanishes in the bulk; for convenience, we retain q for future

reference. However, for future reference, we retain this def-

inition. For every state point {ρbd3,d/λB}, the parameters

Γ(ρb) and η(ρb) must be determined self-consistently using

the relations:

Γ2 = πλB
2ρb − 2d2qη + 2ρbd4η2

(1+ dΓ)2
, (16)

η =
1

H(Γ)

dq

1+ dΓ
, (17)

where it is understood H and Γ are functions of ρb, and H(ρb)
is given by

H =
d32ρb

1+ dΓ
+

2

π

(

1− π

6
d32ρb

)

. (18)

The parameter 2Γ reduces to the inverse Debye length κD in

the limit dκD → 0. However, whereas κ−1
D plays the role of

a screening length in the dilute limit as we will see, 1/2Γ is

merely an intermediate parameter of the theory and should

not be regarded as a physical screening length. The param-

eter η characterizes the symmetry of the electrolyte; it van-

ishes for the RPM and also for symmetric z : z electrolytes

with ion valencies z provided the ionic radii are equal. In gen-

eral, however, η is non-zero for asymmetric electrolytes, see

for instance Ref. 33. The Helmholtz free energy in the MSA

shares some similarity with DH theory and in the limd→0 this

reduces to the limiting law in Eq. (9).

We now turn our attention to inhomogeneous systems, for

which DFT provides a powerful theoretical framework.

B. Inhomogeneous Electrolytes

DFT is designed to treat both the thermodynamic and struc-

tural equilibrium properties of inhomogeneous many-body

systems. The key ingredient is the excess Helmholtz free

energy functional Fex defined by Eq. (5), which for our

case should contain both the hard-core interactions and the

Coulomb interactions of the ions as described by the pair po-

tential Eq. (1). Those two types of interactions (hard-core and

Coulombic) will be treated separately, and we split Fex ac-

cordingly as

Fex[{ρ}] = F
HS
ex [{ρ}]+F

ES
ex [{ρ}]. (19)

The first term on the right-hand side is the Helmholtz excess

functional that accounts for the hard-core repulsion; this is

well-described by White-Bear II (WBII) version of Funda-

mental Measure Theory (FMT) for hard spheres (HS), see e.g.

Ref. 34. The second term accounts for the electrostatic inter-

actions, which are inherently difficult to treat25. In the next

paragraphs we describe three functionals that treat the electro-

static (Coulombic) interactions: a functional based on a mean-

field approximation, one that uses the MSA direct correlation

function Eq. (13) and one that uses both the MSA direct cor-

relation function and the MSA expression for the Helmholtz

free energy Eq. (15). For simplicity, we focus on the RPM,

but our treatment can be extended to more general cases.

1. Mean-Field Coulomb Functional

The easiest way to include electrostatics is within a mean-

field approximation (that we call MFC), i.e. we set

βF
ES
ex [{ρ}] = βF

MFC

ex [{ρ}]≡ 1

2

∫

drQ(r)φ(r), (20)

where φ(r) denotes the dimensionless electrostatic potential,

and eQ(r) the total charge density Q(r) = Qion(r)+Qext(r),
with Qion(r) = ∑ j z jρ j(r) denoting the charge density of the

ions and Qext(r) the charge density of fixed charges, such as

those on the electrode. The potential and charge density are

related by the Poisson equation

∇2φ(r) =−4πλBQ(r). (21)

Eq. (20) corresponds to treating Coulombic contributions on a

mean-field level; correlation effects are omitted. Note that the

free energy vanishes for a homogeneous bulk system, where

Q(r) = 0 and φ(r) = 0. We have chosen to include the fixed

charges in FMFC
ex , whereas formally these should be included

in the external potential. However, writing FMFC
ex this way

is convenient since it allows us to treat the full electrostatic

potential that includes contributions from the external charges

and the response of the ionic charges. With this choice, it

is understood implicitly that V
j

ext(r) contains only the non-

electrostatic part of the external potential.

It is well-known that mean-field approaches remain reliable

if the density fluctuations are small at all positions. This im-

plies that the accuracy of this MFC functional is restricted to

low values of the bulk ionic densities and of the fixed-charge

densities. In order to describe systems with stronger elec-

trostatic coupling, we must extend the theory. This can be

achieved using results from MSA. In the following subsec-

tions we borrow from the presentation of Ref. 25.

2. Mean Spherical Approximation: Correlation Function

Given the relation in Eq. (6) between the pair direct correla-

tion function and the excess Helmholtz free energy functional,

a natural way to implement the explicit MSA result Eq. (13)

is

βF
ES
ex [{ρ}] = βF

MSAc
ex [{ρ}]≡

− 1

2
∑
i j

∫

dr

∫

dr
′ρi(r)∆cMSA

i j (|r− r
′|;ρb)ρ j(r

′). (22)

This approximation, which has origins in Ref. 35, inputs the

MSA direct correlation functions evaluated at the bulk densi-

ties ρb,± = ρb. Thus the functional is built around a certain

bulk reference system. It is convenient to split this functional

into a mean-field contribution MFC, as in Eq. (20), plus cor-

rections, i.e.

∆cMSA
i j (r) =−ziz j

λB

r
+∆cMSAc

i j (r) (23)
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where the first term is the MFC contribution and from Eq. (13)

one finds for the RPM that

∆cMSAc
i j (r) =







ziz j
λB

r

(r−D)2

D2
r < d;

0 r ≥ d.
(24)

The quantity D was introduced previously just below Eq. (13).

It follows that, FES
ex = FMFC

ex +FMSAc
ex , where the first term

is given by Eq. (20), and

βF
MSAc
ex [{ρ}] = (25)

− 1

2
∑
i j

∫

dr

∫

|r−r′|<d

dr
′ρi(r)∆cMSAc

i j (|r− r
′|;ρb)ρ j(r

′).

Within the RPM, Eq. (25) reduces to

βF
MSAc
ex [{ρ}] = (26)

− 1

2

∫

dr

∫

dr
′Qion(r)∆cMSAc(|r− r

′|;ρb)Qion(r
′),

where the ziz j term in cMSAc
i j is used in defining the charge

densities Qion. Hence, we have shown explicitly that this func-

tional depends only on the charge density profiles Qion(r) and

not on the total number density profile ρ+(r)+ ρ−(r). The

total bulk density is manifest via the spatially-constant param-

eter D = d + 1/Γ(ρb) that enters direct correlation functions

of the bulk reference system. We emphasize that the part of

the MSA direct correlation function incorporating the short-

range steric repulsions, i.e. cHS
i j in Eq. (12), is treated by an

accurate HS (FMT) functional; see Refs. 25 and 36. The re-

view by Roth34 provides an excellent account of the FMT for

HS.

3. Mean Spherical Approximation: Free Energy

In the previous sub-section structural information from the

MSA, i.e. the bulk direct correlation function, was used

in constructing the approximate electrostatic DFT functional.

However, we saw earlier that the MSA also provides the inter-

nal and free energy of the homogeneous bulk system. A natu-

ral way to incorporate the bulk free energy density from MSA

into a functional is by replacing the bulk densities with local

or weighted densities. Specifically, we replace the charge den-

sity q and the total density 2ρb, respectively, with the weighted

densities33,37

ñZ(r) =
∫

dr
′ (ρ+(r

′)−ρ−(r′)
)

ω(|r− r
′|), (27)

ñN(r) =

∫

dr
′ (ρ+(r

′)+ρ−(r
′)
)

ω(|r− r
′|), (28)

where the weight function ω(r) = δ (r−D/2)/πD2 is cho-

sen. That is, ions are smeared out over a shell with diame-

ter D, which is supposed to represent the range over which

the charge is screened in bulk. However, as pointed out in

Sec. II A 2, the parameter Γ should not be regarded as an

inverse screening length. Notwithstanding, we follow the

methodology of Refs. 33 and 37. Replacing directly the den-

sities results in the reduced free energy density, see Eq. (15),

used in Ref. 33

ΦMSA({ñ(r)}) =−λB
ñN(r)Γ({ñ(r)})+ dñZ(r)η({ñ(r)})

1+ dΓ({ñ(r)}) +
Γ({ñ(r)})3

3π
. (29)

where {ñ(r)}= {ñN(r), ñZ(r)}. Here, Γ and η are point-wise

versions of Eqs. (16)-(18), i.e. they are determined in exactly

the same way as for the bulk values but using ñN(r) and ñZ(r)
at points r instead of 2ρb and q. Note that, although η van-

ishes in the RPM in the bulk, the quantity η(r) can be non-

zero in the RPM when there is a non-zero fixed charge den-

sity, i.e. near charged surfaces. The additional functional that

arises from this treatment reads

βF
MSAu
ex [{ρ}] =

∫

drΦMSA({ñ(r)}), (30)

and the approximation becomes βFES
ex = βFMFC

ex +
βFMSAc

ex +βFMSAu
ex ; see Eq. (30) of Ref. 33. We use the su-

perscript u to indicate the energy route.

This final addition to the electrostatic functional brings

both advantages and disadvantages. By including this ad-

ditional contribution one obtains rather accurate results for

density profiles for a wide range of parameters, compared to

simulations33,36. The contribution is also significant for the

energetics, especially at lower concentrations where the elec-

trostatic free energy scales with ρ
3/2

b . Moreover, when enter-

ing the realm of asymmetric electrolytes the η term in Eq. (15)

becomes important and can give a substantial contribution to

the bulk free energy. On the downside, it turns out that this

functional breaches various requirements of consistency (see

Appendix A). We shall show these considerations are impor-

tant in determining the asymptotic decay of bulk pair correla-

tion functions and one-body density profiles.

Three electrostatic functionals are employed in this pa-

per. The simplest functional FMFC
ex , which uses only the

Coulomb potential, is referred to as the mean-field Coulomb

functional. The second functional, FMFC
ex +FMSAc

ex , which
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uses the bulk direct correlation function from the MSA, is re-

ferred to as the MSAc functional. And the third functional,

FMFC
ex +FMSAc

ex +FMSAu
ex , which uses both the bulk direct

correlation function and the free energy result from the MSA,

is referred to as the MSAu functional. In Ref. 33 the authors

use the acronym FMT/fMSA for the third functional.

III. DFT CALCULATIONS AND MD SIMULATIONS FOR

THE RPM AT A PLANAR ELECTRODE

We apply the density functionals of Sec. II B to 1:1 ionic

solutions in an aqueous medium (the solvent is not treated ex-

plicitly) with a constant dielectric relative permittivity εr = 78

and temperature T = 293.41 K, corresponding to a Bjerrum

length of λB = 0.73 nm. The electrolyte consists of equal-

sized cat- and anions, with hard-core diameters d+ = d− =
d = 0.5 nm, in contact with a planar electrode located at z = 0

and at a fixed surface potential Φ0. Given the planar symme-

try, and in the absence of any symmetry breaking transition,

the ionic density profiles ρ+(z) and ρ−(z) are a function of the

distance z from the wall. For the RPM we define the dimen-

sionless charge and excess number densities as

ρZ(z) =
ρ+(z)−ρ−(z)

ρb

, (31)

ρN(z) =
ρ+(z)+ρ−(z)

ρb

− 2, (32)

where the bulk densities ρb,+ = ρb,− ≡ ρb. As a measure

for the concentrations we use the dimensionless quantity dκD,

which scales as
√

ρb. In the electrolyte literature it is custom-

ary to introduce a reduced temperature T ∗ = d/λB. For the

model we consider T ∗ ≈ 0.685, which is far above the critical

temperature T ∗
c ≈ 0.05 of the 1 : 1 RPM38. Thus, we avoid

complications associated with liquid-gas phase separation. In

practice we consider a planar slit geometry with two identical

charged walls at z = 0 and z = H separated by a distance H,

sufficiently large that the density profiles for z = H/2 are very

close to their bulk values at the specified chemical potential

and temperature. In order to test the predictions of the various

DFT approximations, we carried out extensive Molecular Dy-

namics (MD) simulations of the density profiles for the same

range of parameters using the ESPResSo package39.

In the simulation we measure energy in kBT , length in 1 nm,

and time in [length
√

mass/energy] which is set by a mass of

3 · 10−23 g, resulting in a time unit of 2.699 ps. Whereas our

DFT calculations are performed in a grand canonical ensem-

ble with fixed chemical potentials µ± and fixed surface po-

tential Φ0, the MD simulations are naturally performed in the

canonical ensemble with fixed numbers of ions N± and fixed

surface charge densities ±eQW. We employ two oppositely

charged electrodes and fix N = N+ = N−. Direct comparison

between DFT and MD results is possible because we focus on

matching bulk behaviour in the center of the slit at z = H/2.

The oppositely charged walls allow us to account for the sur-

face charge density eQext = eQW(δ (z)−δ (z−H)) at the walls

by applying an additional constant force to all particles in the

simulations. As for a parallel plate capacitor, this force on the

ionic charges stems from the electric field 4πkBT λBQW/e.

The electrostatic interactions between the ions are treated in

ESPResSo using the P3M method39,40, a sophisticated Ewald

method. The hard core interactions between ions are modeled

by the Weeks-Chandler-Anderson potential41,42

uWCA(r) =

{

4ε
(

(σLJ
r

)12 −
(σLJ

r

)6
+ 1

4

)

r < d

0 r ≥ d,
(33)

with ε = 0.5 · 104kBT and σLJ = d/21/6 such that the po-

tential is purely (and strongly) repulsive and its derivative is

continuous at the diameter d. In order to model the effect

of the hard walls we set the wall-ion interaction potential to

uWCA(− d
2
+ z) for the wall at z = 0 and uWCA(H + d

2
− z) for

the wall at z = H.

Ion trajectories are calculated in a simulation box of volume

Lx × Ly × Lz with periodic boundary conditions and Lz = H.

In order to restrict electrostatic interactions to the volume

between the two walls (without contributions from periodic

copies in the z-direction), we use an electric layer correction

which is built into ESPResSo. This method allows one to use

the aforementioned fast P3M method that assumes periodicity

in all three dimensions and then efficiently corrects for the un-

wanted contribution from the periodicity in the z-direction43.

The method requires an additional region of empty space

in the form of an extension of the simulation box in the z-

direction and we set its length to 0.15Lz. Further, we choose

Lx = Ly such that the number of ions N is sufficiently large

to fix the average densities of ions when we compare results

between MD and DFT. For making comparisons, the starting

MD values are obtained by preliminary DFT simulations in

order to achieve approximately the same dκD and the potential

Φ0 of interest. Then, dκD and the surface potential Φ0 were

deduced from the MD simulations, which are subsequently

used as input for the DFT calculations. The input values for

the MD simulations (QW , N and Lx) and DFT calculations

(dκD and Φ0) for the following three sets were

Set 1 QW = 0.00427 nm−2, N = 1977, Lx = 50 nm

dκD = 0.619, Φ0 = 1 mV,

Set 2 QW = 0.913 nm−2, N = 1983, Lx = 22.5 nm

dκD = 1.286, Φ0 = 105 mV,

Set 3 QW = 1.334 nm−2, N = 1968, Lx = 13.5 nm

dκD = 2.243, Φ0 = 72.19 mV.

In determining the density profiles, we averaged particle

positions over several snapshots at different times and in dif-

ferent simulations. For this purpose, we sampled the density

profiles ρi on the interval [0,Lz] using an equidistant binning

of 200 bins. In each simulation set, we used snapshots after

100 time steps of step length 0.0001 time units. The sam-

pling time for Sets 1/2/3 was 290/515/610 time units after

7.6/7.6/12.6 time units of equilibration, corresponding to aver-

aging over around 0.87/1.57/1.84 million snapshots. Profiles

are shown in Fig. 2 where comparison is made with DFT re-

sults.

For the calculation of the pertinent decay lengths, we can

choose to focus on the one-body density profiles, as discussed
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above, and shown in Fig. 2. Alternatively, as described in

Sec. IV, we can choose to focus on pair-distribution functions

for a bulk system. (Our choice of strategy will become clear

in Sec. IV B 1, where we explain how the asymptotic decay of

the bulk pair correlations hi j(r) connects directly to that of the

one-body density profiles.) In bulk, the pair correlation func-

tions are translationally invariant and for a prescribed compu-

tational effort their calculation leads to much better statistics

than for an inhomogeneous system. For this reason, we per-

formed bulk MD simulations to calculate the decay lengths

shown in Figs. 4 and 6. We used a cubic simulation volume

Lx = Ly = Lz = 30 nm with periodic boundary conditions and

sampled pair-distribution functions on the interval [0,5] nm

using 400 equidistant bins. The number of snapshots for tak-

ing the averages range from around 16500 at 0.1 M, reduced to

around 2500 at 6 M. In order to calculate the decay lengths ξN

and ξZ of, respectively, the total number and charge bulk pair

correlations hN(r) and hZ(r) we first choose to fit with func-

tions of the form of Eq. (36) (see below), that assumes sim-

ple poles determine the asymptotic decay, over a range where

our simulation data is sufficiently accurate. Typically we fit

over a short range, approximately between r = 0.9 . . .1.1 nm,

limited by numerical noise and short decay lengths. Never-

theless, depending on the system parameters, this range could

span down to d and up to several nanometers. Furthermore,

at these relatively short distances, often more than one pair

(An,αn) of amplitudes and poles (exponentials with different

decay lengths) is required to fit the pair correlation functions

obtained from simulations. Performing individual fits for each

state point, we find two pairs are sufficient to fit the data.

However, for number correlations at small concentrations we

were guided by earlier literature18,44 on asymptotic decay in

bulk electrolytes where it was established that a branch point

singularity dominates the decay except at extremely large r.

The predicted decay for hN(r) is given in Eq. (39) (see below).

For the narrow range of r we have data available, a function of

this form with B = 0 provides an adequate fit. Although more

advanced methods are available to extract the asymptotic de-

cay lengths44,45, the relatively simple scheme we implement

proved to be sufficient in the range of concentrations that we

were most interested in.

IV. RESULTS FOR DENSITY PROFILES AND DECAY
LENGTHS

DFT proves to be a valuable microscope in the near field,

close to the electrode, where comparison with simulation is

straightforward. It is also crucially important as a telescope

in the far field, where the simulation results are limited by

system size.

A. Near Field

In Fig. 2 we plot the charge density profiles ρZ(z) (left col-

umn) and excess number density profiles ρN(z) (right column)

obtained from the functionals MFC (red), MSAc (black) and

MSAu (blue) and from MD simulations (green) for the sets of

parameters given in the previous section.

In the near field, there is excellent agreement between the

density profiles obtained from the MSAc and MSAu function-

als and those from simulations, with the exception of ρN(z)
in Fig. 2(b). For this small concentration and low surface

potential one observes depletion in the excess number den-

sity ρN(z) near an electrode. This is caused by the negative

electrostatic free energy (accounted for only by the MSAu

functional) which dominates over the hard-sphere free en-

ergy; whereas the latter scales as ρ2
b , the former scales as

ρ
3/2

b . Apart from these special cases, the difference between

the MSAc and MSAu profiles in the near field is negligible.

Hence, we deduce that adding the energy term to the func-

tional is only important for the RPM at small concentrations

and surface potentials.

Note that the density profiles from the MFC functional are

quite different from those of the MSA functionals. Clearly

the details of near-field structure depend on the terms in the

functional carrying the pair direct correlation function (see

Eq. (25)), that are absent in the MFC.

Although in the near field the distinction in the density pro-

files between the MSAc and MSAu functionals is fairly small,

one can easily distinguish those in the far field (see insets in

Fig. 2). We focus on this important observation in the next

subsection and in Appendix A.

B. Far Field

We turn now to the interpretation of the far-field density

profiles, i.e. results pertinent to large z in Fig. 2. The insets

show that oscillations develop in the asymptotic decay of both

the charge and number density profiles as the concentration

dκD is increased. This is especially clear in the sequence for

the MSAc number density profiles.

1. Asymptotic Decay of Bulk Pair Correlations

In the far field, we focus on the asymptotic decay of the one-

body charge ρZ(z) and excess number ρN(z) densities far from

the electrode(wall). The leading asymptotics for these densi-

ties are determined by the asymptotic decay of pair correla-

tion functions in the corresponding uniform (bulk) fluid46–50.

Appendix B provides a simple argument. In the bulk, the

asymptotic, large r, behavior of pair correlation functions can

be obtained from the singularities that appear in the Fourier-

transformed OZ equation (Eq. (7)). For a single-component

(neutral) system this takes the form

ĥ(k) =
ĉ(2)(k)

1−ρbĉ(2)(k)
. (34)

For models with short-ranged pair potentials (exponentially

or faster decaying or of finite range) we expect the dominant

singularities in Eq.(34) to be simple poles, at least for inter-

mediate to high bulk concentrations. In this case the leading
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FIG. 2. In (a), (c), and (e) the dimensionless charge density profile ρZ(z) and in (b), (d), and (f) the dimensionless excess number density

profile ρN(z) for the RPM, modelling an aqueous 1:1 electrolyte, with ionic diameter d = 0.5 nm in contact with a charged planar electrode

located at z = 0. The surface potential Φ0 and the ionic concentration, expressed as dκD, are given in each panel, while the number of ions

and surface charge density for the simulations are given in Sec. III. Results obtained from MD simulation (green dots) and the three different

DFT approximations (solid lines) are shown. The insets show the modulus of the density profiles plotted on a logarithmic scale. These plots,

together with many others not shown here, are used to determine asymptotic decay lengths in the DFT studies.

decay in three dimensions is given by

rh(r)≈ ∑
n

Re
(

Aneiαnr
)

, (35)

where Re denotes taking the real part. An is an amplitude

and {α} denotes the set of poles n with positive imagi-

nary part in the complex k-plane, that satisfy the condition

1−ρbĉ(2)(αn) = 0. When the poles are complex the asymp-

totic behavior is determined by the pole α = 2π/λ + iκ , and

its conjugate, having the smallest imaginary part κ . The lead-

ing oscillatory decay of the total correlation function is then

given in 3 dimensions by

rh(r) ≈
r→∞

Acos(2πr/λ +ϕ)e−κr, (36)

where the amplitude A and phase ϕ can be obtained from

the residues46,49. Generally, there are also pure imaginary

poles αn = iκ giving rise to purely exponential decay of rh(r).
Whether the ultimate decay of rh(r) is damped oscillatory or

monotonic at a particular state point depends on whether the

lowest lying pole, i.e. that with the smallest value of κ , is

complex or pure imaginary. For model fluids exhibiting re-
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pulsive and attractive portions in the pair potential there is a

crossover line in the phase diagram where the asymptotic de-

cay of rh(r) changes from monotonic to damped oscillatory,

termed the Fisher-Widom (FW) line19,46,49,51,52. The proce-

dure we employ for obtaining the asymptotic decay length,

ξ = 1/κ , in the bulk fluid is termed the IET route, since we

usually invoke an integral equation closure or another explicit

approximation, gleaned say from DFT, for the bulk pair direct

correlation function.

For a system with two species, in our case cations (+) and

anions (-), we must consider the total correlation matrix

H(r) =

[

h++(r) h+−(r)
h−+(r) h−−(r)

]

(37)

for which the Fourier-transformed OZ equation reads

Ĥ(k) =
(

1− Ĉ(k)ρ
)−1

Ĉ(k), (38)

where Ĉ has the same structure as in Eq. (37) and ρ is a di-

agonal matrix whose elements are the bulk densities of each

species. Singularities on the r.h.s. of Eq. (38) determine the

asymptotic decay of the total correlation functions. Within the

RPM, h++ = h−− and h+− = h−+ and it is convenient to work

with the combinations hN = h+++h+− and hZ = h++−h+−,

corresponding to the number-number N and charge-charge Z

total correlation function, respectively. The combinations hN

and hZ also follow naturally for the RPM from diagonaliz-

ing the matrix H. The special symmetry of the RPM sug-

gests that these are decoupled and therefore the inverse decay

lengths κN and κZ are independent. Indeed within IET’s that

admit only simple poles this is the case19. Fig. 3 summarises

the pole structure of hN and hZ obtained from an approxi-

mate IET study (See Ref. 19). The inverse decay length κ is

plotted on the vertical axis and the inverse wavelength 2π/λ
on the horizontal axis; crosses indicate a pole. The N pole

structure indicates that for small concentrations the pole with

the smallest imaginary part is pure imaginary, and therefore

the pair correlation function hN must decay monotonically.

At larger concentrations, the conjugate pair of poles with the

smallest imaginary part has a non-zero real part; hN will then

exhibit oscillatory asymptotic decay. Hence, there should be

crossover from monotonic to oscillatory asymptotic N decay,

c.f. the FW crossover described above, as the concentration

dκD is increased. The Z pole structure is different, as shown

in the bottom panel of Fig. 3. Although one finds monotonic

asymptotic decay of rhZ(r) at low concentrations and oscilla-

tory decay at large concentrations, the crossover mechanism

is that due to Kirkwood Ref. 53. The key difference between

the two types of crossover is: at a FW point the real part of the

pole with the smallest imaginary part jumps discontinuously

from zero to some non-zero value, whereas at a Kirkwood

point the pole with the smallest imaginary part moves contin-

uously away from the imaginary axis. Hence, the wavelength

of oscillations diverges for the Z decay at a Kirkwood point,

but not for the N decay at a FW point. (See Ref. 19).

Ionic systems bring additional subtleties. In particular,

singularities other than simple poles are expected, reflecting

‘residual’ coupling between number and charge correlations.

FIG. 3. The pole structure of the number-number (N) (top) and

charge-charge (Z) (bottom) pair correlation function when increas-

ing from low (dimensionless) concentrations dκD (left) to high con-

centrations (right), as determined by IET. The top describes Fisher-

Widom crossover and the bottom Kirkwood crossover. The scenario

presented here makes no reference to other singularities, e.g. branch

points; see text.

This was recognized long ago by Kjellander and coworkers,

e.g. Refs. 18, 44, 50, and 54. Careful asymptotic analysis for

the bulk RPM reveals both a pole and a branch point singular-

ity for number-number correlations implying

hN(r)≈ B
e−κNr

r
+A

e−βNr

r2
(39)

should provide an adequate description of the asymptotic de-

cay. At moderately large values of r and for low-intermediate

ionic concentrations the second (branch point) term is ex-

pected to dominate. The same asymptotic analysis shows

that the branch point term gives the exponential decay length

β−1
N = κ−1

Z /2, i.e. half that of the charge correlation length

κ−1
Z . At low ionic concentrations B → 0 and we choose to

fit hN(r) from simulations according to Eq. (39) with B = 0,

as indicated earlier. This procedure is, of course, empirical.

In reality B 6= 0 and the pole contribution takes over as the

concentration increases; see e.g. Eq. (44) in Ennis et al. and

Fig. 1 in Ulander and Kjellander44. The decay length ξN re-

ported later, will be the larger of either 1/κN (pole) and 1/βN

(branch point). In Appendix C we discuss the origin of the

term in the one-body number density profile at a planar wall

that is analogous to the term corresponding to the branch point

in Eq. (39).

2. Asymptotic Decay of One-Body Density Profiles at a
Planar Electrode

As mentioned above, there is a large body of work demon-

strating that the asymptotic decay of the one-body density

profiles of fluids adsorbed at planar walls is governed by the
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same physics that determines the decay of bulk pair correla-

tion functions. Specifically, if we know the leading singulari-

ties from a calculation of the bulk pair direct correlation func-

tions, in principle we know the decay lengths and the wave-

length of any oscillations pertinent to the asymptotic decay

of the density profiles at a planar electrode, see Appendix B.

This key observation motivates our subsequent analysis. For

example, as z → ∞, the charge and total density profiles in the

RPM should take the form:

ρi(z) ∝ cos(2πz/λi)e
−z/ξi , i ∈ {Z,N}, (40)

when an oscillatory contribution dominates. Then the asymp-

totic decay lengths ξZ and ξN are identical to the correspond-

ing decay length of the bulk fluid. In an oscillatory regime,

the wavelengths λZ and λN are identical to the corresponding

bulk values. Moreover, any crossover that occurs in bulk must

be reflected in the decay of the one-body profiles. Note that

we have not indicated any amplitudes or phases in this equa-

tion. There is no simple way of determining these. Contrast

this with the decay of bulk pair correlation functions where

the amplitudes and phases are determined from the residues

in the OZ analysis.

Guided by these observations, we can attempt to analyze

the far-field results in Fig. 2. Extracting the asymptotic decay

lengths from the one-body profiles calculated within DFT and

simulations is non-trivial, since we must deal with numerical

limitations. Within DFT the asymptotic decay lengths ξZ and

ξN and wavelengths λZ and λN are extracted from fits to the

density profiles in Fig. 2. For MD we performed bulk simu-

lations to achieve better statistics; see Sec. III. We confirmed

that the results for the various decay lengths in DFT were in-

dependent of the surface potential Φ0. In Fig. 4, we present

the decay lengths, multiplied by the inverse Debye length κD

(solid lines), and wavelengths divided by the HS diameter

(dotted lines) obtained by fitting the DFT results together with

results from the IET route (purple). For the latter we use the

ZZ pair direct correlation function from the MSA to determine

the charge, Z, decay. This MSA result is well-known and the

resulting poles are reported, e.g. in Refs. 19 and 55. The HS

pair direct correlation function from FMT (WBII) is used for

the N decay. This treatment of number-number correlations

captures only the contributions from HS (steric) interactions.

The results from the MFC functional are plotted in red and

those of the MSAc(u) functional in black(blue) while the re-

sults from MD simulations are plotted in green.

As predicted, ξZ in Fig. 4(a) extracted from the MFC

functional (red line) is given by the Debye length for all

concentrations. At very low concentrations, dκD ≪ 1, the

true decay length must converge to the Debye length for all

theories, as dictated by the limiting law. Precisely how ξZκD

approaches unity at dκD = 0 is important and we return to this

later. At intermediate concentrations (dκD > 0.5), the limiting

law is no longer valid and ξZ is found to be smaller than the

Debye length. The decay length obtained from the MSA IET

is universal as a function of dκD
19 and is given by the purple

line. From its construction, the MSAc functional should

yield identical results and within our numerical accuracy it

does; see black line. The MSAu functional (blue line), on

FIG. 4. (a) The charge decay length ξZ (solid) and wavelength λZ

(dotted). The DFT results are for the one body density profiles ob-

tained from the MFC (red), MSAc (black) or MSAu (blue) functional

for the electrostatics. The results from IET (purple) correspond to the

bulk IET MSA closure. These and the MD simulation results (green)

are for the decay of bulk pair correlation functions. The dashed-

purple line in (a) represents the pole with the second-smallest imag-

inary part, i.e. the second-leading pole. Arrows point to the cusps

where (Kirkwood) crossover from monotonic to oscillatory decay oc-

curs. (b) The number decay length ξN and wavelength λN uses the

same color coding as in (a). The IET route uses the FMT (HS) direct

correlation function. The MD data for the decay length ξN below the

Fisher-Widom point were fitted using the functional form of Eq. (39)

with B=0. Our numerical results imply ξN is close to the theoretical

prediction ξN = 1/2κZ . Results for ξN calculated from the DFTs are

plotted for the surface potential Φ0 = 100 mV; see text. Arrows point

to a (Fisher-Widom) crossover from monotonic to oscillatory decay.

the other hand, behaves quite differently. We argue this is

due to the inconsistency inherent within this functional (Ap-

pendix A), which results in incorrect asymptotic behaviour.

The kinks that are observed for the DFT results indicate

that the Kirkwood transition occurs at (using the notation

x = dκD) xMSAc
K ≈ 1.24 and xMSAu

K ≈ 0.7004 while the MSA

IET value is xIET
K ≈ 1.229, As expected, the MSAc and IET

Kirkwood points agree closely, i.e. to within 1 percent which

is within the error of the fitting procedure used to calculate

ξ MSAc
Z . Strikingly, the MSAu Kirkwood point is smaller by

almost a factor of two. The genesis of the kinks becomes

clear when, within MSA IET, one plots the second smallest
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imaginary pole (purple-dashed line in Fig. 4(a)). This plot

indicates that the two smallest poles lie on the imaginary axis

and move towards each other with increasing dκD, merging

at the Kirkwood point. For larger concentrations the poles

move away from the imaginary axis, one to positive real

values and the other to equal but negative real values (as

depicted in Fig. 3). The density profiles develop oscillatory

decay for dκD > xK (see dotted lines), beginning with infinite

wavelength at dκD = xK . We find that the wavelengths from

the MSAc and IET results are almost identical while the

wavelength from the MSAu functional is very different. The

MD results (in green) agree rather well with those from

MSAc, and therefore with MSA IET. There is an indication

within MD of a Kirkwood point at around dκD ≈ 1.37 and for

larger values of dκD the MD results for ξZκD increase linearly

with dκD as found in MSA IET. Moreover, the wavelengths

are close.

In Fig. 4 (b) we present the corresponding results for ξN and

λN ; the color coding is the same as in (a). For the MFC func-

tional ξN is exactly one half the Debye length until pure HS

correlations dominate at high concentrations. For the other

two functionals, ξNκD is close to 1/2 at small concentrations,

dκD < 0.5. This is expected and will be explained below. At

high concentrations, dκD > 2, the N decay lengths collapse

onto a single curve and follow the result from IET, where, for

all concentrations, ξN is obtained from the HS pair direct cor-

relation function given by FMT. This collapse indicates that

for sufficiently high concentrations the asymptotic N decay

is determined by hard-sphere repulsion: electrostatic interac-

tions hardly play a role. This is also reflected in the wave-

lengths (dotted lines). For the IET route λN corresponds to the

wavelength of the bulk (asymptotic) oscillations for the HS

fluid and the MD simulation results (plotted in green) agree

closely. At intermediate concentrations, 0.5 < dκD < 2, the

three DFT functionals show very different results. The de-

cay lengths extracted from the MD simulations agree well

with those from MSAc and IET, for both the N and Z de-

cay lengths. There are small differences in the Z decay length

for concentrations beyond the Kirkwood point. However, as

we will see in Fig. 6, the differences are smaller when com-

pared with the more accurate HNC IET results from Ref. 17.

From the number density profiles calculated in DFT we were

able to determine the wavelength of oscillations for concentra-

tions beyond the crossover from monotonic to oscillatory de-

cay that we choose to term the FW point, i.e. for dκD > xFW ,

where xMSAc
FW ≈ 1.26 and xMSAu

FW ≈ 1.77 for the MSAc and

MSAu functionals, respectively. These values bracket the re-

sult xFW = 1.41 found in the Generalized MSA (GMSA) IET

study 19 of the bulk electrolyte; see below. Close to the FW

point, ascertaining the concentration at which the oscillatory

branch has the slower decay is not straightforward and, at first

glance, appears to depend on the surface potential. This is

illustrated in Fig. 5, where we plot ρN(z) obtained from min-

imising the MSAc functional for surface potentials ranging

from Φ0 = 0.01 mV (blue line) to Φ0 = 100 mV (purple line)

at a fixed value of dκD, somewhat below the FW value. Al-

though the true asymptotic decay must be monotonic, for the

FIG. 5. The decay of the excess number density ρN(z) obtained us-

ing the MSAc functional for several surface potentials Φ0 at fixed

concentration dκD = 1.0589 that is slightly below the Fisher-Widom

point (see Fig. 4). For Φ0 = 0.01 mV we appear to observe only os-

cillatory asymptotic decay whereas for larger Φ0 we observe the true

monotonic decay; see text.

smallest surface potential we observe only oscillatory decay in

the range of z that we can access. For larger surface potentials

we observe the correct monotonic decay at sufficiently large

z. Such behaviour can be explained if we assume the decay of

the number density profile has two competing portions:

ρN(z) = A1e−α1z +A2e−α2z cos(ωz), (41)

For dκD < xFW we know α1 < α2. However, if A1 < A2, then

for a certain z< z∗, the second term dominates and we observe

oscillatory decay. Only for z > z∗ will the first term dominate

and then we observe the true asymptotic monotonic decay.

Understanding how the number and charge decay lengths

obtained from the three functionals vary with concentration

and how their behaviour differs from MSA IET is non-trivial.

It is necessary to consider the Euler-Lagrange equation ob-

tained by minimizing the grand potential functional. In the far

field, the number and charge densities can be expressed (see

Eqs. (C7) and (C8) in Appendix C) as

ρZ(z)≈ 2∆c1(z; [ρZ,ρN ]), (42)

ρN(z)≈ 2∆c2(z, [ρN ,ρZ])+∆c1(z; [ρZ ,ρN ])
2,

= 2∆c2(z, [ρN ,ρZ])+
1

4
ρZ(z)

2, (43)

where ∆c1(z) = c1(z)− c1,b denotes the deviation from bulk

of the part of the one-body direct correlation function that

is proportional to the valency of the species and ∆c2(z) =
c2(z)− c2,b is the part that is the same for the cations and an-

ions; see Eqs. (C3) and (C4). For the simplest case, the MFC

functional, these reduce to:

ρZ(z)≈2∆c(1),MFC(z; [ρZ ]) = Aexp(−z/ξMFC), (44)

ρN(z)≈2∆c(1),HS(z; [ρN ])+
1

4
ρ2

Z(z)

=Bcos(2πz/λN,FMT )exp(−z/ξFMT )+

C exp(−2z/ξMFC). (45)
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where we identified ∆c1(z) = c(1),MFC(z; [ρZ ]), ∆c2 =

∆c(1),HS(z; [ρN ]) and A, B, C are non-universal coefficients.

Whilst the asymptotic decay of ρZ(z) in the MFC is always

given by the Debye length, i.e. ξMFC = κ−1
D , for the num-

ber density ρN(z) one finds a competition between terms de-

caying with the FMT (HS) decay length ξFMT , dominating

at high concentration, and those with half the Debye length,

dominating at low concentration. The competition results in

the monotonic to oscillatory crossover (FW) point observed in

Fig. 4. For the MSAc functional we find a similar result,

ρZ(z)≈2c(1),MFC([ρZ ];z)+ 2c(1),MSAc([ρZ];z)

=Aexp(−z/ξMSAc), (46)

ρN(z)≈2∆c(1),HS(z; [ρN ])+
1

4
ρ2

Z(z)

=Bcos(2πz/λN,FMT )exp(−z/ξFMT )+

C exp(−2z/ξMSAc), (47)

where we identified ∆c1(z) = c(1),MFC(z; [ρZ ]) +

c(1),MSAc(z; [ρZ ]) and ∆c2(z) is the same as for the MFC.

Hence, the decay has the same form as for the MFC functional

except that ξMFC = κ−1
D is replaced with ξMSAc (which is not

1/2Γ), i.e. the value of the leading pole from the IET route.

Note the presence of the Kirkwood point within MSAc leads

to oscillatory decay of ρZ(z) for dκD > xMSAc
K . From the

results in Fig. 4 it is clear that the MSAu functional exhibits

very different behaviour from the other two functionals,

regarding predictions for asymptotic decay of correlations. In

Appendix A we argue that MSAu has severe inconsistencies

that lead to erroneous predictions. The felon leading this

inconsistency is the term η({ñ(r)}) in Eq. (29), which of

course, vanishes in the bulk RPM. Indeed one might argue

that, given the symmetry of the RPM, the term should be

omitted from the outset. If one adopts this strategy MSAu

returns the same asymptotic Z decay as found with the MSAc,

while the number decay remains virtually unchanged. This is

explained further in Appendices B and C.

How do our far field results fare in the light of previous

studies of asymptotic decay in the RPM? Fig. 6, attempts to

address this question. We display the decay lengths calculated

using different bulk IET, namely the GMSA19 and the hyper-

netted chain approximation (HNC)17,18 and we present these

in ranges for which we believe we can extract reliable numer-

ical results from figures in the published papers.The Z decay

length obtained from our simulations follows the theoretical

predictions quite well at small values of dκD. Note that the

HNC results from Ennis et al. focused on this regime where

this closure is expected to yield very accurate (bulk) decay

lengths. Comparing Kirkwood points, it is important to note

that the crossover value is universal within the MSA for the

RPM: xIET
K ≈ 1.229. This is not the case within HNC where

there is a very weak dependence on d. In the HNC results

that we display in Fig. 6, Attard17 used the same diameter

as we used, d = 0.5 nm, while Ennis et al.18 report results for

d = 0.46 nm. The numerical values determined from HNC for

Kirkwood crossover are very close to each other, i.e. Attard17

found xK ≈ 1.3 and Ennis et al.18 found xK ≈ 1.293, which

should be compared to the MSA/GMSA value xMSA
K ≈ 1.229,

and our simulation result dκD ≈ 1.37. Note that the original

Kirkwood theory gives a value xK =1.03 while the Modified

Poisson Boltzmann theory56 yields xK=1.241.

Locating the crossover for N decay is arguably more deli-

cate as this depends on incorporating properly hard-core cor-

relations alongside any residual effects arising from the (net)

electrostatics. GMSA and HNC theories attempt this. It is

straightforward to show that the location of the FW point, as a

function of dκD, is not universal. Using the MSAc functional,

we found crossover at xMSAc
FW ≈ 1.26; see Fig. 6(b). Using the

(bulk) HNC, Ennis et al.18 (their Fig. 6) found crossover to

oscillatory decay at xEnnis
FW ≈ 1.52. From Fig. 5(a) of Attard17

we can deduce a value of xAttard
FW ≈ 1.46. In their pole analysis

of the GMSA Carvalho and Evans found xGMSA
FW ≈ 1.41. Note,

however, the GMSA predicts values of ξNκD ≪ 1/2 for small

values of dκD. This defect of the GMSA is elaborated upon

in Appendix B. Our MD simulation results shown in Figs. 4

and 6 indicate crossover at a value of dκD similar to that ob-

tained from MSAc.

We remark that Attard, using HNC, and Carvalho and

Evans, using GMSA, locate the point at which the N decay

length becomes larger than the Z decay length; this occurs

near dκD ≈ 3.0 in both theories. The significance of this

crossover will become clear in the next subsection.

3. Asymptotic Decay of the Solvation Force

In light of the recent experimental surface force

measurements5–8 that report long decay lengths, it is impor-

tant to enquire what our DFT results predict for the decay

length of the solvation force for a RPM electrolyte confined

between two planar electrodes, separated by a distance H. The

solvation force, see for instance Ref. 57,is defined formally by

fs(H) =− ∂γ(H)

∂H

∣

∣

∣

∣

T,µ,Φ0

, (48)

evaluated at fixed temperature T , chemical potential µ and

surface potential Φ0. Here γ = (Ω+ pV )/A is the surface ten-

sion, defined as the excess over bulk grand potential per unit

area of the confined liquid. A denotes the area of the elec-

trodes, V = AH is the accessible volume and p is the bulk

pressure, fixed by the reservoir chemical potential and tem-

perature. fs(H), the excess pressure due to confinement, is

related directly to the force measured in SFA experiments. It

is not immediately obvious that the asymptotic, large H, de-

cay of this thermodynamic quantity should be given by the

same singularities that determine the asymptotic decay of the

bulk pair correlation functions and of the one body density

profiles. That this is the case, has been discussed by several

authors, e.g. see Refs. 46–50. The basic argument is that

the potential of mean force between two big (spherical) solute

particles immersed at infinite dilution in a reservoir of small

‘solvent’ particles must, for large centre to centre separations

H, decay with the same (exponential) decay length and period

of oscillations (when the ultimate decay is oscillatory) as de-

termined by the decay of the bulk pair correlation function in
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FIG. 6. The decay lengths obtained from different theories are com-

pared with simulation results for the bulk decay lengths (green dots).

In (a) the Z decay length obtained from our DFT calculations of

one -body profiles (solid lines) are shown along with the bulk decay

lengths obtained using the GMSA from Carvalho & Evans Ref. 19

(purple asterisks), the HNC from Attard17 (blue circles) and the HNC

from Ennis et al.18 (orange squares). In (b) the N decay length from

the same sources, but also including the result from the HS IET (solid

purple line).

the small ‘solvent’. For the RPM the ions constitute the small

’solvent’ in this analysis. Allowing the radius of the big solute

particle to become infinite we recover the case of two planar

walls and then the potential of mean force yields the solvation

force, or excess pressure. Since we have calculated the (bulk)

charge and number decay lengths as a function of concentra-

tion, and examined the competition between these, we know

the ultimate decay of the (thermodynamic) solvation force for

each concentration. We denote the corresponding length scale

as ξ , which represents the true correlation length in the liquid.

The upshot is that the solvation force should decay as

fs(H) ∝ cos(2πH/λ +ϕ)e−H/ξ , H → ∞, (49)

where ξ is the longest decay length in the system. In an os-

cillatory asymptotic regime, λ is the wavelength of the slow-

est decaying (pole) contribution and ϕ a non-universal phase

shift.

The decay length ξ extracted from changing the planar dis-

tance H from 2.5 to 40 nm at various (dimensionless) concen-

trations dκD is presented in Fig. 7, where we used the MSAc

FIG. 7. The decay length ξ (green circles) of the solvation force ob-

tained by measuring the grand potential of the electrolyte,calculated

from the MSAc functional, see Eqs. (48) and (49), as a function of the

distance H between two identical planar electrodes, for various bulk

concentrations dκD. ξ is the larger of the charge (dashed-dot purple)

and the total number (solid purple) decay lengths from IET. The lat-

ter predict a cross-over, near dκD ≈ 3.1, from longest-ranged decay

governed by ξZ to that governed by ξN . The experimental data (blue

dots connected by a blue line) is for an aqueous NaCl electrolyte ex-

tracted from Ref. 8, and the black line indicates the often-cited power

law ξκD ∝ (dκD)
3.

functional to calculate the grand potential. For low concentra-

tions dκD < 3.2, ξ is determined by the charge density decay

ξZ , while for higher concentrations, dκD > 3.2, ξN is longer.

It is important to compare with results for bulk correlation

lengths. From the HNC17 and from the GMSA19 calculations

one finds this crossover occurs at dκD ≈ 3.0, which is quite

close to our DFT value. The decay length, ξexp, that can be

measured in an SFA experiment, at large plate separations H,

should be the largest decay length in the confined liquid (the

physical system), i.e. ξexp(dκD) =maxa ξa(dκD) where in our

case a ∈ {Z,N}.

In Fig. 7 we also plotted in blue symbols the experimental

results from Ref. 9 for NaCl dissolved in water. Clearly, the

decay lengths extracted from the SFA experiments are very

different from those calculated for the RPM, except at very

low concentrations. Interestingly, the decay length ξexp mea-

sured for dκD > 1 follows the power law κDξ ∝ (dκD)
3 as

reported and emphasized in Refs. 8, 9, 58–62. This behavior

is depicted by the black line in the figure and is argued to be

‘universal’, i.e. it describes a broad range of electrolytes and

ionic liquids. This ‘universal’ power law is not found within

the RPM.

V. SUMMARY AND DISCUSSION

In this paper we investigate the one- and two-body corre-

lation functions of the RPM, a model electrolyte composed

of equal-sized charged spheres of equal but opposite valency

dissolved in a dielectric continuum with a Bjerrum length that

is 1.46 times larger than the ionic diameter –these parameters
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are chosen to mimic an aqueous electrolyte with monovalent

ions, e.g. KCl, at room temperature. Using integral equation

theory (IET), density functional theory (DFT), and molecular

dynamics (MD) simulations, we focus on the asymptotic (far-

field) decay of the correlation functions for a large range of

ionic concentrations that extends from the very dilute regime

where the Debye-Hückel limiting law applies up to the regime

where ionic hard-sphere packings dominate. The one-body

density profiles are calculated for the RPM in contact with

a planar electrode at a fixed potential difference between the

electrode and the bulk electrolyte, whereas the two-body cor-

relations pertain to a homogeneous bulk system. Our DFT cal-

culations make predictions for the asymptotic decay of the sol-

vation force between two charged planar surfaces immersed

in the RPM. The solvation force is the quantity that relates di-

rectly to the experimental SFA measurements, where anoma-

lously large decay lengths were observed at at high salt con-

centrations, and which stimulated this study

We distinguish between number-number and charge-charge

correlations, which are decoupled in the bulk RPM,where

number-charge correlations are identically zero. The IET re-

sults for the decay of bulk pair correlations are based on two

well-known direct correlation functions: the number-number

combination uses the one obtained from fundamental mea-

sure theory (FMT)34 and the charge-charge correlation func-

tion uses the one that stems from the mean-spherical approxi-

mation (MSA)30–32. In our DFT treatment we describe short-

range repulsion in the RPM in terms of the FMT hard-sphere

free-energy functional. We explore three different approxi-

mations to account for the electrostatic contributions to the

free-energy functional, (i) the Poisson-Boltzmann-like mean-

field expression (MFC) for the internal electrostatic energy,

(ii) a correction to MFC that accounts for the finite-ion di-

ameter by incorporating the MSA direct correlation function

(MSAc) into the functional, and (iii) a further correction to

MSAc that accounts for the correlation-induced MSA internal

energy, termed MSAu. In the near-field, at distances of the or-

der of the ion diameter, results from IET and all three versions

of DFT agree reasonably well with those from MD although

only the MSAu can account for the ionic depletion observed

in the number density profile calculated in simulations at low

external electrode potentials; see Fig. 2. In contrast, in the

far-field regime, i.e. for distances and separations much larger

than the ion diameter, our IET and DFT results are mutually

consistent apart from the MSAu implementation of DFT. It

follows that employing a functional that yields optimal near-

field performance does not guarantee the correct asymptotic

behaviour, crucial for interpreting SFA measurements.

Two key results of our study are shown in Figs. 4 and 6.

These concern the concentration dependence of the correla-

tion lengths ξZ and ξN that dictate the asymptotic charge-

charge and number-number decay lengths, respectively, and

where we characterise the concentration in terms of the di-

mensionless quantity dκD. At low concentrations, dκD < 0.5,

all the approaches we consider agree that ξZ is close to κ−1
D

and ξN is close to 1
2
κ−1

D , except for the GMSA results for ξN .

At very high concentrations, dκD > 2, we find good agree-

ment between results from all the approaches apart from ξZ

in MFC which, of course, takes its dilute-limit value κ−1
D for

all dκD. In this high concentration regime the structure of the

RPM is dominated by steric repulsions rather than by Coulom-

bic interactions. It follows that a DFT must incorporate prop-

erly hard-sphere correlations; this is not the case in MFC. In

the intermediate concentration regime, 0.5 < dκD < 2, we

find some substantial differences between several of our ap-

proaches, especially for ξN . This increases (MSAu), or de-

creases and then increases (MSAc), or stays constant (MFC)

as the concentration increases. For ξN the MSAc functional

performs best, when compared to our MD simulations but

also when compared to IET results from earlier studies17–19.

For ξZ , the MSAc results agree quite well with those of the

MD simulations, although at concentrations above the Kirk-

wood point it slightly overestimates the charge decay length.

Overall, the MSAc results agree very well with those of HNC

calculations in the range 0.5 < dκD < 1.5 where we could ex-

tract reliable numbers from Ref. 18. A very recent paper63

introduced some new modifications/extensions of DH theory

which make predictions for decay lengths. As far as we can

tell, these are not significantly different from the results we

present here.

Although our focus was on the RPM throughout, we also

performed PM calculations (not reported here) with vari-

ous ionic valency and diameter asymmetries. The resulting

asymptotic decay properties are very similar to those of the

RPM reported here. We find no long decay lengths, in line

with what was reported in Ref. 60.

The third key result, that connects with the SFA experi-

ments, is presented in Fig. 7. This shows the (true) decay

length ξ that characterises the decay of the solvation force as

obtained from Eqs. (48) and (49) using the excess grand po-

tential determined from the MSAc functional. We find that

for each concentration ξ = max(ξZ ,ξN). There is excellent

agreement between ξ and ξZ from MSA-based IET up to con-

centrations dκD ≈ 3, and between ξ and ξN from IET for

hard spheres (FMT) at higher concentrations. Given the good

agreement between MD simulations and DFT/IET for ξZ at

low concentrations and ξN at high concentrations, we are con-

fident that our MSAc findings for ξ in the RPM are reliable,

at least for our parameter choice T ∗ = d/λB = 0.685. Recall

this choice describes a typical 1:1 aqueous electrolyte at room

temperature. However, turning to the experimental data, the

decay length in aqueous NaCl as presented in Fig. 7 is vastly

different from our theoretical predictions. The huge difference

between the experimental results and those for the RPM is il-

lustrated by comparing at 4.93 M NaCl concentration, where

dexpκexp
D ≈ 2.2 (using dexp = 0.294 nm and εr = 78 instead

of the concentration dependent εr used in Ref. 8). One finds

κexp
D ξexp ≈ 24 in the experiment8 whereas our RPM results

predict κDξ ≈ 2.3. The difference is a about a factor 10, and

is larger at higher concentrations. This cannot be explained

easily by some degree of arbitrariness in the exact definition

of the ionic diameter, the slightly different size of sodium and

chloride ions, or the small change of the dielectric constant

at concentrations beyond say 2M NaCl from that of pure wa-

ter; such considerations might allow at most a factor of 2 or

so. Moreover aqueous NaCl is not special. A great variety of
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ionic systems has been investigated experimentally in recent

years using SFA or closely related techniques8,9,58,59. These

include aqueous LiCl, KCl, CsCl, but also several ionic liq-

uid solutions in a particular solvent, as well as pure (room

temperature) ionic liquids. As mentioned in Sec. IV B.3, the

experimental correlation lengths (scaled as we scale Fig.7) ap-

pear to fall on top of the result for NaCl. The empirical ‘uni-

versal’ scaling relation κDξ ∝ (dκD)
3 for dκD > 1 actually

extends way beyond the scale of Fig.7, up to data points for

ionic liquids at dκD ≈ 7 where κDξ ≈ 120. From the SFA

measurements one might conclude that the measured corre-

lation length in concentrated electrolytes and ionic liquids is

at least an order of magnitude larger than our RPM predic-

tions. It is important to recognize that the large correlation

lengths were measured at separations of several nanometers

in the SFA experiments8. At shorter separations, an addi-

tional structural decay length was measured64, which is much

shorter. Although our DFT calculations find no indication of a

long decay length, and we measure across 8 decades, we can-

not rule out the possibility of a large decay length, buried in

the noise that sets in beyond about three decades in our MD

results.

The full story is more subtle. There is good reason to re-

consider earlier work on molten alkali halides, conventionally

regarded as archetypal ionic liquids. Of course, these salts

have high melting temperatures, making experiments difficult.

Nevertheless, it is well known that the RPM accounts well

for the main features of the partial structure factors of molten

salts such as KCl or NaCl where cations and anions have sim-

ilar size22. Careful neutron (isotopic substitution) diffraction

experiments65 for molten NaCl at 1093 K extracted the three

partial structure factors from which the total pair correlation

functions hi j(r) can be obtained by Fourier Transforming. Fit-

ting the resulting data to formulae equivalent to the mixture

generalization of Eq. (36), decay lengths for the partial (and

thus the total number and charge correlation functions) were

determined, along with accompanying wavelengths. At this

temperature, not far above the melting point, the longest de-

cay length observed is about 0.46 nm, i.e. < 2 ionic diam-

eters. There is no indication of a long decay length. Also

pertinent are MD simulations for NaCl from Keblinski et al.66

These employ a symmetrized version of the standard Born-

Mayer-Huggins potentials for alkali halides, i.e. the anion-

anion and the cation-cation potentials are identical, mimick-

ing the symmetry of the RPM. Data were analyzed using a

mean diameter of d = 0.276 nm. Key observations from this

far-reaching study are: i) for fixed, very high temperature

well above the critical temperature, which is slightly below

3000K in their model, the authors find (Kirkwood) crossover

between monotonic and oscillatory decay of charge correla-

tions at dκD ≈ 1.4, a value that does not depend much on

their choice of (high) temperature. This scenario is predicted

within the MSA for the RPM, where the Kirkwood line is

universal, and is almost vertical in the ρ∗ − T ∗ plane; see

Fig. 1 of Ref. 19. ii) Keblinsky et al. find crossover between

monotonic and oscillatory decay of the total number corre-

lations at fixed T = 3000K. Although they do not locate the

crossover density precisely, the broad range identified brack-

ets the FW crossover density predicted by the GMSA; see

Fig. 1 of Ref. 19. iii) Most importantly, at all state points

away from the critical point, the decay lengths reported in66

are short, i.e. < 2d.

VI. CONCLUSION

Our main conclusion, which, of course, also relies upon sig-

nificant previous literature on bulk decay lengths, is that the

(R)PM in equilibrium cannot explain the experimental (SFA)

measurements reporting an anomalously large decay length

of the solvation force in concentrated electrolytes and certain

ionic liquids. This is in line with findings reported in less ide-

alized models, e.g. Refs. 60, 61, 67, and 68. Perhaps this

is not too surprising when addressing room temperature ionic

liquids with non-spherical ions that contain organic rings and

tails etc. It is more discomforting in the case of aqueous alkali

halide solutions. We distinguish here between the model (the

RPM in thermodynamic equilibrium) and the method used to

analyse it (DFT, IET, MD). Given that the various theories

and simulation methods mutually agree on their predictions

for the longest correlation length ξ , the source of the discrep-

ancy must lie in the model. The RPM seems to lack a crucial

ingredient to explain the experimental findings. Assuming the

experiments pertain to equilibrium, the key question is ‘Which

piece of physics is missing?’ Before addressing this question,

we emphasize once again that careful experimental (neutron

diffraction)65 and simulation studies66 of the bulk pair corre-

lation functions in molten NaCl, an archetypal ionic liquid,

find no evidence for a long decay length. More specifically,

we find that the MD results of Keblinsky et al. for a Born-

Mayer-Huggins model of molten NaCl at T = 10000 K and

T = 50000 K agree qualitatively with our RPM results for

all concentrations and quantitatively ( within 15%) for con-

centrations exceeding the Kirkwood point. For example, for

T = 10000 K these authors report at dκD = 3.1 (using their

d = 0.276 nm) a decay length ξ κD ≈ 1.7, see their Fig. 8,

whereas we report ξ κD ≈ 2.
Noting that we have already pointed out that asymmetries

of the ionic valencies and diameters yield decay lengths very

similar to those of the RPM, the first possible candidate to

explain the discrepancy between predictions from the (R)PM

and the SFA measurements is the description of the solvent as

a (uniform) dielectric continuum. However, recent computer

simulations and theories for several electrolyte models that

include the solvent explicitly also find decay lengths, mea-

sured at high ionic concentrations, of the order of the par-

ticle diameter. A broad range of models is considered: the

solvent is either modeled as a hard-sphere fluid60,61, or as

the SPC/E model for water67,68 in the case of aqueous al-

kali halides. For the ionic liquids, models of organic solvents

such as dimethoxyethane-dioxolane67 or racemic propylene-

carbonate68 are considered. Although these explicit-solvent

models show an increase of the longest correlation length at

high concentrations, the observed increase is very similar to

the one we find here for the RPM. We conclude that current

treatments of solvent effects changes little the primitive model
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predictions of decay/correlation lengths that are about an or-

der of magnitude smaller than measured in SFA experiments.

Another obvious candidate is the omission of polarizabil-

ity; this is absent completely in the RPM and is, at best, in-

cluded approximately in some of the explicit-solvent models.

An interesting approach was put forward by Kjellander63,69,70,

who shows that electrostatic screening and the static dielectric

function ε(k), with wave-number k, are intimately coupled,

such that the long-wavelength limit ε(0) equals the static di-

electric constant only in the absence of ions, e.g in dipolar flu-

ids or non-electrolytes, but not in their presence. The upshot is

that in an electrolyte, the screening and the dielectric response

cannot be disentangled69. To best of our knowledge, there

are no specific predictions for decay lengths that might be

tested quantitatively against experimental results. Polarizabil-

ity also leads to fluid-fluid and fluid-wall dispersion forces,

giving rise to a power-law decay of the solvation force71. Al-

though dispersion forces are long-ranged, we expect these to

be relatively weak such that they become manifest in the sol-

vation force only beyond separations of many particle diame-

ters, for instance beyond 15d for the (reasonable) parameters

of Ref. 71.

Of course, there are other factors that could account for the

disagreement between results of theory and simulation on the

one hand and SFA experiments on the other. Strictly speaking,

there is a possibility that the measured long decay length could

just be buried in the noise of all our calculations and all sim-

ulation studies67,68, although for instance the simulations of

Ref. 68 show statistics that allow observation of decay over as

many as five decades before the signal disappears in the noise,

and over eight decades in our DFT calculations. Significantly,

the variety and number of experimental systems studied, along

with the apparent success of the empirical power law scaling

mentioned earlier, suggest there should be a general, rather

than a materials specific, explanation of the difference. Our

present contribution, which establishes the consistency of re-

sults from DFT, IET and MD for the RPM, makes very clear

why it is important to understand the origin of the difference.

We conclude by re-emphasizing: the large decay length mea-

sured in SFA experiments, for a variety of concentrated elec-

trolytes and several room temperature ionic liquids, cannot be

accounted for by primitive electrolyte models. New physical

ingredients and/or new interpretations of the experiments are

required in order to understand the recent SFA results.
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Appendix A: Adding Electrostatic Energy terms to the
functional and the inconsistency of the MSAu

In this section we focus on the electrostatics part of the

functional, especially on (the lack of) consistency between

several routes one can take from a free-energy functional to

thermodynamic and structural properties of the electrolyte.

The pair direct correlation functions obtained from the crudest

MF/Poisson-Boltzmann treatment and from the MSA closure

for the bulk RPM are such that the ionic valencies can be fac-

tored out so that c
(2),ES

i j (r) = ziz jc
ES(r). Here cES(r) depends

on the closure but vanishes for r → ∞. This structural form

of the direct correlations can be reconstructed by considering

second functional derivatives of an (electrostatic) excess free-

energy functional of the form

βF
ES,c
ex [{ρ}] =−1

2

∫

dr

∫

dr
′ρZ(r)c

ES(|r− r
′|;{ρb})ρZ(r

′),

(A1)

where ρZ = ∑ j z jρ j = ρ+−ρ−. (Note that ρZ introduced in

the main text was normalized w.r.t. the bulk density ρb). In a

bulk system, where the profiles are constant and charge neu-

trality holds such that ρZ = 0, a functional of the form of

Eq. (A1) gives a vanishing electrostatic free energy. How-

ever, if we calculate the bulk pair direct correlation function

cZ(r) = c
(2),ES
++ (r)− c

(2),ES
+− (r) = 2cES(r) from Eq. (A1), and

use the OZ equation to find hZ(r), the electrostatic internal

energy UES follows via the energy route as

β
UES

V
= 4πλBρ2

b

∫ ∞

0
drrhZ(r). (A2)

The internal energy can then be used to obtain the Helmholtz

free energy FES via the standard temperature or charging in-

tegration

β FES(β ) =

∫ β

0
dβ ′UES(β ′). (A3)

In the dilute limit the resulting reduced free energy density

ΦES = β FES/V should reduce to the exactly known limiting

law

lim
{ρb}→0

ΦES({ρb}) =−κ3
D({ρb})

12π
, (A4)

which is manifestly non-zero. Hence, using the same cES(r)
in Eq. (A1) we find, depending on the chosen route, either a

vanishing or the correct (physical) non-zero bulk electrostatic

free energy. Revisiting the original DH paper4, or considering

the exact expression given by Eq. (A2), shows that one can

interpret the internal energy UES as the sum of Coulomb ener-

gies of each ion with its surrounding screening cloud of ions

of opposite sign. This is overall a negative energy contribution

arising from the cohesive energy due to the Coulombic attrac-

tion between (relatively) nearby opposite charges that dom-

inates over positive energy contributions from the repulsions

between like charges at (relatively) large distances. In order to

remedy the inconsistency between these two routes, one might

consider including an additional term in the free-energy func-

tional that takes the cohesive Coulomb energy into account

explicitly, e.g.

βF
ESu[{ρ}] =

∫

drΦES({ρ̃(r)}), (A5)

where ρ̃ denotes a weighted density with an arbitrary weight

function ω that does not depend on the bulk density. How-

ever, in order to retain consistency between the two routes dis-

cussed above, such an additional term as written in Eq. (A5)

must be chosen so that it does not affect the bulk direct cor-

relation function cZ that enters the calculation of the charge

correlation function hZ from which the internal energy of

Eq. (A2) follows. This implies that the contribution to cZ(r)
due to Eq. (A5) must vanish, i.e.

−β
δ 2FESu

ex [{ρ}]
δρZ(r)δρZ(r′)

= 0, (A6)

Hence, ΦES({ρ̃}) may be at most linear in ρZ . If this is the

case, then the sum of Eq. (A1) and the additional Helmholtz

free-energy contribution of Eq. (A5) is consistent, when com-

paring the free energy that results from evaluating the result-

ing functional in bulk, with the one from the energy route lead-

ing to Eqs. (A3) and (A4). Moreover, if cZ does not change by

adding Eq. (A5) to the free-energy functional, then the asymp-

totic decay of the charge-charge correlations also remains un-

changed.

If we consider Eq. (A4), and recognize that κD depends

only on the total density ρN = ρ++ρ− in the RPM, it is clear

that including a contribution to the free-energy functional such

as

βF
ES,F
ex [{ρ}] =−

∫

dr
κ3

D({ρ̃(r)})
12π

(A7)

does not breach electrostatic consistency. We found that min-

imizing the resulting functional actually accounts for the de-

pletion observed in the number density profile in Fig. 2(a). Im-

portantly, however, the MSAu functional that we used in the

main text has a different structure as it depends not only on the

number density but also on the square of the charge density.

This can be ascertained by examining the MSAu contribution

to the functional and write Eq. (29) as

ΦMSA
RPM(ñZ(r), ñN(r)) = ϑ1(ñN(r))+ϑ2(ñN(r))ñ

2
Z(r), (A8)

where ϑ1(ñN) and ϑ2(ñN) are functions of ñN and not of ñZ .

The final term in this equation originates in the term propor-

tional to η in Eq. (29). It follows that ΦES is quadratic in

http://dx.doi.org/10.1103/PhysRevE.98.012606
http://dx.doi.org/10.1063/1.5110044
http://dx.doi.org/10.1021/bk-1996-0629.ch012
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ρZ and will therefore breach consistency. This suggests that

the MSAu functional, as implemented by Roth and Gillespie

Ref. 33, appears to perform well for density profiles close to

charged surfaces36, but suffers from inconsistencies that dic-

tate its (poor) performance in the far-field regime. In order

to investigate further, we examined the MSAu functional for

the case where η({ñ(r)}) = 0 for all positions. Then ϑ2 van-

ishes and we retrieve precisely the same asymptotic Z decay

as from MSAc and IET. We note, however, any infinitesimal

asymmetry in the ion sizes will cause the η term to reappear,

creating the same issues. For these reasons we choose to work

with a non-vanishing η , in line with Ref. 33, and our figures

display results for this choice.

Appendix B: Relating the Decay of the one-body Density
Profile to that of the two-body Bulk Correlation Function

We show that the asymptotic decay of the one-body density

profile is determined by the asymptotic decay of the bulk pair

correlation function. The Euler-Lagrange equation for a single

species system is:

ρ(r) = ρb exp
(

−βVext(r)+ c(1)(r; [ρ ])− c
(1)
b

)

, (B1)

with the one-body direct correlation function c
(1)
b = c(1)(ρb).

We choose the external potential Vext(r) to correspond to a

planar wall or to a big (spherical) solute, such that Vext(r)→ 0

as r → ∞, and ρ(r) → ρb, the bulk reservoir value. Asymp-

totically (r → ∞) the term in the exponential is small, which

allows us to write

ρ(r) = ρb

(

1−βVext(r)+ c(1)(r; [ρ ])− c
(1)
b

)

. (B2)

Noting that c(1)(r; [ρ ]) is both a functional of ρ and a function

of r, we can expand this term around the bulk density to lowest

order:

c(1)(r; [ρ ]) =c
(1)
b +

∫

dr
′ δc(1)(r; [ρ ])

δρ(r′)

∣

∣

∣

∣

∣

ρ=ρb

(ρ(r′)−ρb)

(B3)

and write,

c(1)(r; [ρ ])− c
(1)
b

=
∫

dr
′c(2)(|r− r

′|;ρb)∆ρ(r′), (B4)

with density deviation ∆ρ(r) = ρ(r)−ρb. The density devia-

tion can then be expressed, in lowest order, as

∆ρ(r)

ρb

=−βVext(r)+

∫

dr
′c(2)(|r− r

′|;ρb)∆ρ(r′). (B5)

We now suppose that Vext(r) is sufficiently smooth that its

Fourier transform exists. Then

∆ρ̂(k)

ρb

=−βV̂ext(k)+ ĉ(2)(k;ρb)∆ρ̂(k). (B6)

and the Fourier transform of the density deviation takes the

simple form:

∆ρ̂(k) =
−βV̂ext(k)ρb

1−ρbĉ(2)(k;ρb)
. (B7)

Note that the Fourier transform, denoted by ˆ, is three-

dimensional. For the spherical solute, the structure of Eq. (B7)

is equivalent to that of the bulk OZ Eq. (34). In that case poles

of the total pair correlation function ĥ(k) are determined by

the zeroes of 1− ĉ(2)(k;ρb)ρb. Similarly the poles of the den-

sity deviation ∆ρ̂(k) for a (large) solute are determined by the

same zeroes. In practice, this means that we should consider

model fluids where the pair potential u(r) is short-ranged, i.e.

it should decay faster than power law and the potential Vext(r)
should decay faster than power-law and, if this is exponen-

tially decaying, should have a decay length that is shorter than

the bulk correlation length of the liquid. This simple argument

focuses on the poles. We do not address explicitly the case of

branch point singularities.

An important limiting case is when the solute is made iden-

tical to a solvent particle. Then the one-body density pro-

file ρ(r) = ρbg(r) = ρb(1+h(r)), which is the famous Percus

test particle result72. It follows that employing the test particle

route within the framework of DFT must yield the same poles,

where these dictate the decay, and therefore the same asymp-

totic decay length and wavelength, where pertinent, as those

determined from the bulk OZ equation (34), with ĉ(2)(k;ρb)
obtained from Eq. (6) in the homogeneous limit, see Refs. 73

and 74.

Taking the limit of the radius of the spherical solute particle

to infinity is fairly straightforward. Alternatively, one can im-

pose planar geometry from the outset and perform appropriate

Fourier transforms. The upshot is that one finds:

ρ(z)−ρb ∝ Awe−κz cos(2πz/λ +φw), z → ∞, (B8)

where κ and λ refer to the leading pole identified in Eq. (36),

for rh(r). The amplitude Aw and phase φw are not related to

the corresponding quantities in Eq. (36). This argument is,

of course, based on a linear response treatment of the asymp-

totics; it is close to that presented in Ref. 75.

The argument laid out above is deceptively simple. It im-

plies that knowledge of the exact c(2)(r;ρb) is sufficient to

determine the exact asymptotic decay of the one-body density

profiles at a planar wall, and, indeed, of the solvation force

for the liquid confined between two planar walls, provided the

external potential is sufficiently short-ranged. In practice, one

never has the exact c(2)(r;ρb) and it is not always clear what

physics is omitted in employing an approximate c(2)(r;ρb). In

one-component neutral fluids this is not a major issue, apart

from state points very close to the (bulk) critical point where

c(2)(r;ρb) develops power-law decay.

The situation is very different in ionic liquids where ap-

proximate IET’s might omit crucial physics. For example,

the MSA IET for the RPM decouples completely charge and

number density correlations. The resulting c
(2)
N (r;ρb), the pair

direct correlation function for number-number correlations,
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is equal to c
(2)
HS(r;ρb), the HS pair direct correlation func-

tion. This is why in the MSA IET the decay length ξN al-

ways takes the HS value and does not approach the correct

value κDξN = 0.5, appropriate in the dilute limit. The MSA

is termed a linear approximation, because it neglects the cou-

pling. Its generalization, the GMSA, is a different beast. The

corresponding c
(2)
N (r;ρb) is not simply equal to c

(2)
HS(r;ρb), as

there is some feedback from the charge correlations. This is

why the GMSA results for ξN exhibit FW crossover, as il-

lustrated in Ref. 19 and discussed in Sec. IV B. However, the

GMSA does not capture the correct low concentration lim-

iting behaviour. In contrast, the Hypernetted Chain (HNC)

IET is regarded as a fully non-linear theory. Here one finds

c
(2)
N (r;ρb) has a term in h2

Z(r) (see e.g. Ref. 18), not present

in the MSA or GMSA, that leads to the correct behaviour:

κDξN → 0.5, in the dilute limit. Recall the HNC IET is known

to be very accurate for the (bulk) RPM, across a variety of

regimes22.

Our DFT treatment of the asymptotics, see Appendix C,

works at the level of one-body direct correlation functions.

The three treatments we implement are explicitly non-linear

and capture crucial couplings. As one sees in Eq. (43), the

number density profile ρN(z) includes the term ρ2
Z(z), which

is analogous to the HNC closure for the bulk.

Appendix C: Analysing the Euler Lagrange Equations in the
Far Field

We consider again the one-body profiles for the RPM in a

planar geometry, as given by the self-consistency relations

ρ±(z) = ρb exp
[

−βVext(z)+ c
(1)
± (z)− c

(1)
±,b

]

, (C1)

where subscript b denotes bulk. We assume a short-ranged

external potential Vext that is the same for both species. The

one-body direct correlation functions c
(1)
± (z) depend on the

underlying functional. For the RPM, this will be of the form

c
(1)
± (z) =±c1(z)+ c2(z), (C2)

where distinction has been made between terms that are pro-

portional to the valency and those that are not. Typically, c1(z)
has the form

c1(z; [ρZ ,ρN ]) =

∫

dz′ρZ(z
′)cES(|z− z′|; [ρN ]), (C3)

where ρZ = (ρ+−ρ−)/ρb and ρN = (ρ++ρ−)/ρb−2 are the

charge and (excess) number densities as defined in the main

text, and cES(z) has its origin in electrostatics. For the MFC

and MSAc functionals cES(z) is independent of ρN(z). How-

ever, this is not the case for the MSAu functional due to the

final term in Eq. (A8). Nevertheless, the predominant con-

tribution to c1(z) comes from ρZ . The other term c2(z) in

Eq. (C2) has its origin solely in the steric (HS) repulsions for

both the MFC and MSAc. In the case of the MSAu there is

an additional term from the derivative of ΦMSA w.r.t density.

Generally we can write

c2(z; [ρN ,ρZ ]) =−
∫

dz′∑
α

∂Φ({ñα})
∂ ñα

(z′)wα (|z− z′|),

(C4)

where the free energy density Φ contains both the FMT

contribution34 as well as possible others, such as the MSAu

term Eq. (29) or that from ΦES introduced in the previous Ap-

pendix Eq. (A4), and the sum is over all weighted densities α
with corresponding weight function wα .

Using Eqs. (C1) and (C2), the Euler Lagrange equations for

ρZ and ρN read

ρZ(z) = 2exp [−βVext(z)+∆c2(z; [ρN ,ρZ])]×
sinh(∆c1(z; [ρZ ,ρN ])), (C5)

ρN(z) = 2exp [−βVext(z)+∆c2(z; [ρN ,ρZ])]×
cosh(∆c1(z; [ρZ ,ρN ]))− 2, (C6)

where ∆ci(z) = ci(z)− ci,b, i ∈ {1,2}. In the far field, z →
∞, the quantities ∆ci(z) are small and βVext vanishes, which

allows us to expand Eqs. (C5) and (C6) as

ρZ(z)≈ 2∆c1(z; [ρZ,ρN ]), (C7)

ρN(z)≈ 2∆c2(z, [ρN ,ρZ])+∆c1(z; [ρZ ,ρN ])
2,

= 2∆c2(z, [ρN ,ρZ])+
1

4
ρZ(z)

2, (C8)

where in the last line we substituted ρZ for 2∆c1. This asymp-

totic representation of the charge and number density profiles

contains important information. First we consider the case

where c1(z; [ρZ ]) depends on the charge density only, which

holds for the MFC and MSAc functionals. Then, to lowest

order, ρZ does not depend on ρN , consistent with the notion

that charge is (essentially) decoupled from the number density

in the RPM. However, the expression for ρN(z) contains the

ρZ(z)
2 term. We consider first the situation where c2(z; [ρN ])

does not depend on the charge density, as is the case for the

MFC and MSAc functionals. Then from Eqs. (C7) and (C8)

we find the leading asymptotic behaviour to be

ρZ(z) =Ae−z/ξZ (C9)

ρN(z) =Bcos

(

2π

λFMT

z

)

e−z/ξFMT +Ce−2z/ξZ , (C10)

as z → ∞. Here ξFMT and λFMT denote, respectively, the de-

cay length and the wavelength for a pure hard-sphere system

treated by FMT, ξZ is the charge decay length and A,B,C are

constants. These results pertain to concentrations below any

Kirkwood point, where ρZ(z) is monotonically decreasing. In

this case, the ultimate decay length ξN of ρN(Z) depends on

whether ξZ/2 is larger or smaller than ξFMT . Fig. 4 illustrates

the variation of ξFMT and ξZ with concentration dκD. At small

concentrations, ξZ/2 is the larger length scale, and in the di-

lute limit κDξN = 0.5. For concentrations above the Kirkwood

point, where ρZ(z) acquires an oscillatory factor; there is in-

tricate competition between the two length scales. At suffi-

ciently high concentrations ξFMT will dictate the asymptotics.
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In the second situation, where c1 and c2 depend both on

the charge and number density profiles, as is the case for the

MSAu functional, a stronger coupling between the charge and

number density profiles emerges. The resulting MSAu de-

cay lengths differ markedly from those from MSAc, IET and

simulation results for concentrations between 0.5 < dκD < 2

(see Fig. 4), suggesting the coupling is not treated correctly

in the MSAu. In particular, κDξN from the MSAu increases

with dκD in this range, see Fig. 4(b). Note that in the limit of

low concentration and of high concentration, κDξN from the

MSAu does approach the correct behaviour. As mentioned

previously in the text and in Appendix A, one could consider

an MSAu functional that sets η({ñ(r)}) = 0. For this choice

we recover the same asymptotic Z decay as with MSAc. With

this choice c1(z) is the same for both MSAc and MSAu. In

sharp contrast, we found that the N decay length changes very

slightly by setting η({ñ(r)}) = 0. This is because the ϑ2

term in Eq. (A8), which is proportional to η , is subordinate to

ϑ1. Hence, omitting ϑ2 barely influences ∆c2(z) and therefore

barely influences Eq. (C8), thereby leaving almost no mark

on the N decay length. To conclude, setting η({ñ(r)}) = 0

in Eq. (29) influences only the charge density profiles, leav-

ing the number density profiles almost unchanged. However,

we decided not to follow this choice in presenting our results

as the procedure cannot be applied generically: breaking any

symmetry in the ionic system (changing either their size or va-

lency) will generate a non-vanishing η in the bulk. We follow

Ref. 33 and retain η({ñ(r)}.
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