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A fundamental result in modern quantum chaos theory is the Maldacena-Shenker-Stanford upper bound on
the growth of out-of-time-order correlators, whose infinite-temperature limit is related to the operator-space
entanglement entropy of the evolution operator. Here we show that, for one-dimensional quantum cellular
automata (QCA), there exists a lower bound on quantum chaos quantified by such entanglement entropy. This
lower bound is equal to twice the index of the QCA, which is a topological invariant that measures the chirality
of information flow, and holds for all the Rényi entropies, with its strongest Rényi-∞ version being tight. The
rigorous bound rules out the possibility of any sublinear entanglement growth behavior, showing in particular
that many-body localization is forbidden for unitary evolutions displaying nonzero index. Since the Rényi
entropy is measurable, our findings have direct experimental relevance. Our result is robust against exponential
tails which naturally appear in quantum dynamics generated by local Hamiltonians.

Introduction.— The principles of causality and conserva-
tion of quantum information impose strong constraints on the
evolution of quantum many-body systems. In the simplest
setting, where space and time are discrete and causality is
“strict”, the latter can be described by quantum cellular au-
tomata (QCA) [1–3], cf. Fig. 1(a) for an illustration. Despite
seemingly crude approximations for realistic many-body dy-
namics, they provide useful models to study different aspects
of non-equilibrium physics. For instance, local quantum cir-
cuits, a subclass of QCA, recently received significant atten-
tion in connection to questions related to quantum chaos and
information scrambling [4–16].

In the past decade, much progress has been made in the
characterization of QCA [17–21], with comprehensive and el-
egant results obtained in one dimension (1D) [22–26]. In par-
ticular, it was first found in Ref. [22] that QCA are charac-
terized by a topological index, sometimes called GNVW after
the authors, which measures the amount of quantum informa-
tion flowing through the system. Besides its fundamental in-
terest, this result turned out to have practical implications, al-
lowing, for instance, for a classification of 2D Floquet phases
exhibiting bulk many-body localization (MBL) [27–34].

In light of the intuitive picture in terms of flow of quan-
tum information, it is natural to ask whether there exist strict
relations between the index and other aspects of the unitary
dynamics, related, for instance, to information scrambling as
probed by out-of-time-ordered correlators (OTOCs) [35–37].
The main difficulty to answer this question lies perhaps in the
original definition of the index [22], which was given in terms
of the rank of certain operator algebras, lacking an immediate
physical interpretation.

In this work, we prove that there is an equivalent way to
express the index in terms of the entanglement of the “vector-
ized” evolution operator [cf. Fig. 1(b)], which is often called
operator-space entanglement entropy [38] . This quantity can
be formulated in terms of any Rényi entropy, is computed lo-
cally, and closely reflects the intuitive interpretation of the in-
dex in terms of quantum-information flow. Inspired by this
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FIG. 1. (a) In 1D, a range-r QCA is defined as a unitary U which
transforms an on-site operator supported on the jth site into an oper-
ator supported on the interval [j − r, j + r]. (b) Bipartition A t B
and vectorization of U into the CJS |U〉 on a doubled Hilbert space
[cf. Eq. (4)]. The operator entanglement of U with respect to A tB
is defined as the entanglement entropy of |U〉 with respect to the
bipartition AA′ t BB′, where we denote by A′, B′ the ancillary
qudits associated with A, B respectively. (c) AKLT-like range-
1 QCA with local Hilbert space Cpq (dashed rectangles) (p and q
are coprime) and ind = ln(p/q) generated by disjoint unitaries
u : Cp ⊗ Cq → Cq ⊗ Cp. Here the thin and thick legs corre-
spond to Cp and Cq , respectively. (d) Operator entanglement Rényi
entropy Sα of a single u in (c) with p = 2 and q = 3 approaches
| ind | = log(3/2) when α→∞, implying the saturation of Eq. (1)
for S∞.

definition, we derive our main result

Sα ≥ 2| ind | , (1)

where Sα is the Rényi entropy of order α of the evolution
operator. This bound holds for any α ∈ [0,∞]. In particular,
based on the known relation between S2 and the average of
OTOCs [39], we will interpret this result as a lower bound on
quantum chaos. As an important application, Eq. (1) allows
us to establish rigorously that any sublinear entropy growth
behavior in 1D, including MBL, is not compatible with a non-
vanishing index. Thanks to the experimental accessibility to
the Rényi entropy, our results should be observable in current
quantum simulation experiments.
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Index of a 1D QCA.— We consider a general range-r QCA
U defined on a periodic qudit chain with local Hilbert space
Cd and length N . As shown in Refs. [1, 23], by grouping
(or “blocking”) at least r adjacent sites into one (such that the
coarse-grained QCA has length 2l ≤ N/r and range-1), we
can represent U as [cf. Fig. 2(a)]

U =

(
l⊗

x=1

v2x−1,2x

)(
l⊗

x=1

u2x,2x+1

)
, (2)

where u2x,2x+1 : Cd2x ⊗ Cd2x+1 → Cd′2x ⊗ Cd
′
2x+1 and

v2x−1,2x : Cd
′
2x−1 ⊗ Cd′2x → Cd2x−1 ⊗ Cd2x are unitaries,

with input and outp on two adjacent blocked sites, respec-
tively. Note that the local Hilbert space dimension d′x in
the “hidden” layer is not equal to dx in general, but they
must satisfy d′xd

′
x+1 = dxdx+1 ∀x = 1, 2, ..., 2l, imply-

ing d′2x/d2x = d2x−1/d
′
2x−1 is a constant independent of

x = 1, 2, ..., l. The index of U is defined as the logarithm
of this constant [22, 23]:

ind ≡ log
d2x

d′2x
∈ logQ+, (3)

which was proven to be stable against different ways of block-
ing and under continuous deformations. In other words, this
index is a topological invariant of U .

An equivalent formulation of the index.— As a starting
point of our work, we show that the index can be expressed
exactly as an entanglement entropy difference between two re-
duced states of the vectorized operator |U〉, technically known
as the Choi-Jamiołkowski state (CJS) [40]:

|U〉 ≡ (U ⊗ I)|I〉, (4)

where |I〉 ≡ d−N/2(
∑d
j=1 |jj〉)⊗N is the maximally entan-

gled state between two copies of the entire Hilbert space and
I ≡ 11⊗N is the global identity acting on the auxiliary copy.
As shown in Fig. 2(b), if we pick up two adjacent segments a
and b with min{|a|, |b|} ≥ r (|a|: number of sites in a) [41],
irrespective of where they are located [42], the index (3) turns
out to be

ind =
1

2
(Sα(ρab′)− Sα(ρa′b)), (5)

where ρA ≡ TrĀ[|U〉〈U |] (A = ab′, a′b and Ā is the com-
plement of A) and Sα(ρ) ≡ (1 − α)−1 log Tr[ρα] can be an
arbitrary Rényi entropy. Here and in the following, we denote
by a′ the ancillary qudits associated with a, and analogously
for other regions. To show Eq. (5), we can take a specific
bilayer representation such that a and b are blocked into an
even and odd site, respectively. Then we consider the CJS
shown in Fig. 2(c) corresponding to (vL,a⊗ vb,R)ua,b, so that
its reduced state on Laa′bb′R coincides with that of |U〉. Im-
portantly, here L and R are finite regions next to a, b with
|L|, |R| ≥ r, cf. Fig. 2(c). Since this is a pure state, we have

Sα(ρL′a′bR) = Sα(ρLab′R′) (6)
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FIG. 2. (a) Representation of a QCA as a bilayer product of nearest
neighbor unitaries, with possibly different Hilbert-space bipartition
for their inputs and outputs. Here the thick and dotted legs refer to
virtual local Hilbert spaces at even and odd sites in the hidden layer,
respectively. (b) CJS |U〉 defined in Eq. (4) and the entanglement bi-
partition related to the index. (c) Relevant CJS used in the derivation
of the entropy expression (5) and the main result (1). (d) Demostra-
tion of Eq. (5) for a general representative QCA with index log(p/q)
consisting of the right and left translations of local Hilbert spaces Cp
(red circles) and Cq (blue circles), respectively.

under the bipartition L′a′bR t Lab′R′. By directly con-
tracting the tensor, we obtain ρL′a′bR = 11L′

d′L
⊗ ρa′bR and

ρLab′R′ = ρLab′ ⊗ 11R′
d′R

. Tracing out the auxiliary part of
|U〉 except for a′, we can consider ρa′bR as the reduced state
of (U ⊗ 11a′)(|Iaa′〉〈Iaa′ | ⊗ daIā

dN
)(U† ⊗ 11a′) (|Iaa′〉: maxi-

mally entangled state between a and a′), which is supported
on Laa′b. This implies ρa′bR = ρa′b ⊗ 11R

dR
. Similarly, we

can show ρLab′ = 11L
dL
⊗ ρab′ . Therefore, ρL′a′bR and ρLab′R′

turns out to be supported on a′b and ab′, respectively:

ρL′a′bR =
11L′
d′L
⊗ ρa′b ⊗

11R
dR

,

ρLab′R′ =
11L
dL
⊗ ρab′ ⊗

11R′
d′R

.

(7)

Substituting Eq. (7) into Eq. (6) and recalling the definition of
index in Eq. (3), we end up with Eq. (5).

It is instructive to test Eq. (5) for the QCA shown in
Fig. 2(d), which are the simplest representatives with ind =
log(p/q). This example provides a nice illustration of the in-
dex as a measure of the chirality of quantum information flow.

Before proceeding, we compare our result against different
reformulations of the index which previously appeared in the
literature. First, one can show [42] that Eq. (5) is equivalent to
the “chiral mutual information” introduced in Ref. [31], which
is defined in terms of some local ancillary degrees of free-
dom. We stress, however, that the derivation presented there
is completely different from the one reported here. In par-
ticular, we will see that our formalism naturally allows us to
make a connection with different properties of the evolution
operator. Second, the Rényi-2 version of Eq. (5) is easily seen
to coincide with the original definition of the index, given in
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Ref. [22], in terms algebra overlaps[42].
Proof for the entanglement lower bound.— Before proving

Eq. (1) for general Rényi-α entropies, we observe that one
could show directly its validity for α = 1, i.e. the case of
von Neumann entropy, and hence for α ≤ 1. Considering a
segment with length larger than 2r as the subsystem A, we
can bipartite it into two adjacent segments A = a t b with
min{|a|, |b|} ≥ r, so that the entropy formula (5) is valid.
Since the von-Neumann entropy satisfies the triangle inequal-
ity [43], which follows from subadditivity, we have

S(ρaba′b′) ≥ |S(ρab′)− S(ρa′b)| = 2| ind |. (8)

Using monotonicity in α of Sα, we immediately get that the
bound is satisfied for α ≤ 1. Unfortunately, this proof cannot
be extended to α > 1, since the Rényi entropies do not satisfy
subadditivity in general [44].

To prove the general case, we should make further use of
some nice properties of ρAA′ as a reduced state of a pure CJS.
To this end, let us return to the state shown in Fig. 2(c) and
take a different bipartition aba′b′ t LRL′R′, obtaining

Sα(ρaba′b′) = Sα(ρLRL′R′) = Sα(ρLL′) + Sα(ρRR′), (9)

where we have used ρLRL′R′ = ρLL′ ⊗ ρRR′ . This rela-
tion follows from the fact that U is a QCA [21], and can be
understood from the vanishing correlation for two arbitrary
observables supported on these two regions [42]. While the
Rényi entropies do not satisfy subadditivity, they still satisfy
the weak subadditivity [45]:

Sα(ρLL′) ≥ max{Sα(ρL)− S0(ρL′), Sα(ρL′)− S0(ρL)},
(10)

where S0(ρ) ≡ log(rankρ) is also called the Max entropy in
the sense that it is the largest in the Rényi family. This in-
equality can be shown from the non-decreasing property of
Rényi entropies upon arbitrary unital channels [45]. Note
that ρL and ρL′ are both maximally mixed and thus their
Rényi entropies coincide with the maximum possible val-
ues log dL and log d′L, respectively. Therefore, we obtain
Sα(ρLL′) ≥ | ind |. Similarly, we have Sα(ρRR′) ≥ | ind |
and thus Sα(ρaba′b′) ≥ 2| ind |, which completes the proof of
the main result.

Obviously, the bound is tight for all the Rényi entropies
for | ind | ∈ logZ+ since they are saturated by left or right
translations. What is less clear is whether the bound is tight
for general ind ∈ logQ+. At least for the Rényi-∞ en-
tropy, which gives the strongest version of Eq. (1) for a given
QCA, we can readily construct an example which saturates
the bound. To this end, we take u : Cp⊗Cq → Cq⊗Cp (with
q > p) in Fig. 1(c), to be

u =

p∑
m,n=1

|mn〉〈mn|+
p∑

m=1

q∑
n=p+1

|nm〉〈mn|. (11)

This construction is reminiscent of the AKLT state [46], in the
sense that it is essentially an assembly of disjoint unitaries but

becomes correlated upon recombinations of subsystems. See
Fig. 1(d) for a demonstration for (p, q) = (2, 3). On the other
hand, since Sα > S∞ for any finite α and S∞ ∈ log(Q\Z+),
the bound is not tight for any noninteger index and α < ∞.
Identifying a tight bound for the most general case thus re-
mains an open problem.

One immediate and important implication of our main re-
sult is that it rigorously rules out, for QCAs with nonzero in-
dex, the possibility of many-body localization, which implies
a logarithmic growth of the entanglement of the evolution op-
erator [47]. More generally, for nonzero index, any diffusive
behavior characterized by a sublinear growth of the Rényi en-
tropies, as recently demonstrated for quantum-state entangle-
ment in random circuits with a diffusive charge [48, 49], is
forbidden. This is because the index is additive upon compo-
sitions [22] so the operator entanglement entropy after t time
steps is lower bounded by [50]

Sα(t) ≥ 2| ind |t, (12)

implying a linear growth. When specified to the case α = 2,
this result also allows to make a precise connection to quan-
tum chaos, due to the known relation between S2(t) and the
average of infinite-temperature OTOCs [39]:

〈U tOA(U†)tOĀU tOA(U†)tOĀ〉β=0 = e−S2(t). (13)

Here the l.h.s. denotes the normalized sum over the elements
OA,OĀ of a complete basis of observables supported inA, Ā,
respectively [39]. When combined with Eq. (12), we immedi-
ately obtain that a nonzero index implies exponential decay of
the averaged OTOC. Once again, this is not consistent with an
MBL evolution, for which OTOCs exhibit a power-law decay
[51, 52]. Finally, we remark that there is no universal lower
bound for the growth of the entanglement of an initial product
state evolved by a QCA, as it can be seen in the simple case
of translations.

Experimental relevance.— One important motivation to
consider Rényi entropies is their accessibility in state-of-the-
art quantum simulation experiments [53–56]. Thanks to the
reformulation (5) of the index in terms of entropies, all the
quantities in our main result (1) can be in principle measured.

Let us explain the protocol to measure Rényi-n entropies
with n ∈ N. We can straightforwardly generalize the strate-
gies in Refs. [57–59] for quantum states to operators by vec-
torizing the latter into their CJSs. To measure Sn of a bipartite
state ρAB = |ΨAB〉〈ΨAB |, the essential idea is make use of
Tr[ρnA] = Tr[TAρ⊗nAB ], where TA denotes the translation op-
erator of subsystems A, which can be implemented by a se-
quence of SWAP unitaries [cf. Fig. 3(a)]. The value of Sn can
then be extracted by performing an interferometric measure-
ment on an ancilla qubit after a sequence of controlled-SWAP
gates as shown in Fig. 3(b) [57]. For our specific purpose of
measuring the operator entanglement and the index, we should
choose A to be aa′bb′, ab′ and a′b, where a and b are adjacent
segments whose lengths can be as small as the range of the
QCA. In a proof-of-principle experiment, it would be good
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FIG. 3. (a) Graphic representation of Tr[ρnA] = Tr[TAρ⊗nAB ] with
TA = S[n−1,n]

A ...S[2,3]
A S[1,2]

A , where S[j,k]
A is a SWAP over the jth

and kth copies of subsystem A. (b) Experimental setup for mea-
suring the operator entanglement Rényi-n entropy as well as the
index of a QCA. Here SA’s are controlled by the ancilla qubit,
H = (X + Z)/

√
2 is the Hadamard gate, |I〉’s are global maxi-

mally entangled states which become |U〉 upon the action of U , and
A is a subsystem of interest, whose choice depends on which quan-
tity (index or operator entanglement) we would like to measure.

enough to construct a translation of qubits with N = 4 and
r = 1, which may be implemented by 3 SWAP gates, so that
we can set |a| = 1 and |b| = 1, and measure the Rényi-2 en-
tropy so that we only need a single controlled-SWAP gate act-
ing on 2 (index) or 4 (operator entanglement) pairs of qubits.
This minimal setup should be accessible by many current ex-
perimental platforms such as trapped ions [60], superconduct-
ing qubits [61] and Rydberg-atom arrays [62]. Note that there
is also a more sophisticated method of measuring Rényi-n en-
tropies based on random quenches [63, 64] which has also
been experimentally realized [65] and should also be applica-
ble to measuring operator entanglement and the index. As a
final remark, we mention that one can further reduce the ex-
perimental cost in state preparation by taking advantage of the
idea in Ref. [31]. That is, we may only introduce a few ancil-
las covering the subsystem, while obtaining the same mea-
surement results.

Stability against exponential tails.— Trivial (nontrivial)
QCAs have been used to approximate the (edge) dynamics
of 1D Floquet unitaries [66] (2D chiral Floquet MBL phases
[28]) governed by time-periodic local Hamiltonians satisfying
the Lieb-Robinson bound [67–69]. The QCA approximation
should thus be precise up to some exponential tails outside the
light cone. This motivates us to analyze how our main result
(1) is modified by such small deviation from QCAs.

To avoid the problem of defining the index for quasi-local
unitaries with exponential tails, which remains an open prob-
lem [70], we restrict ourselves to consider specific quasi-local
unitaries that are range-r QCAs followed by finite-time evo-
lutions of local Hamiltoniains, i.e.,

U = T̂e−i
∫ T
0
dtH(t)UQCA, (14)

where T̂ denotes the time ordering, H(t) =
∑N
j=1 hj(t) with

hj(t) supported locally near j and h ≡ maxj,t ‖hj(t)‖ is
finite. This setup has been used in several previous studies
[28, 31]. Setting the rhs of Eq. (1) as the index of UQCA,

we would like to know whether the inequality can be violated
and, if yes, to what extent.

We can give an explicit example where the inequality is
violated by choosing UQCA to be the right translation T and
H(t) = hS[jt,jt+1], where jt = bt|A|/T c andA = [0, |A|−1]
is the subsystem of interest, while S[j,k] is the SWAP opera-
tor between sites j and k. This exactly solvable construction is
inspired by the fact thatAA′ and ĀĀ′ can be exactly disentan-
gled for T = π|A|/(2h), so one may expect the Hamiltonian
evolution is still a disentangler for a finite T � |A|. Indeed,
we find that Eq. (1) is violated for all α > 0, with the largest
violation being 2 ind−S∞ = log[1 + (d2 − 1)ε] > 0, where
ε = sin2|A|(hT/|A|) scales as e−O(|A| log |A|) for large |A|,
which also determines the scaling behavior of the violation.

In fact, the above example serves as a qualitatively worst
case. That is, we can prove that for any local-Hamiltonian
evolution, the order of the violation of Eq. (1) can never be
larger than e−O(|A| log |A|) [42], and thus vanishes superex-
ponentially in the thermodynamic limit. The proof involves
a technique in Ref. [66] for approximating Hamiltonian dy-
namics by quantum circuits and a careful optimization of the
Lieb-Robinson bound [71, 72]. This rigorous derivation im-
plies the stability of our main result and significantly widens
its range of applicability. For example, we can rule out any
sublinear entanglement-growth behavior for the evolution op-
erator e−iHTT (thus forbidding MBL features), even if the
local Hamiltonian H is in the deep MBL phase [28].

Summary and outlook.— We have derived a convenient lo-
cal expression for the index of a 1D QCA, and proved that any
Rényi-α entropy of the evolution operator is lower-bounded
by twice the index. This rigorous bound rules out any sub-
linear entanglement-growth behavoir in nontrivial QCAs and
might be interpreted as a lower bound on quantum chaos,
as opposed to the Maldacena-Shenker-Stanford upper bound
[73]. Since the Rényi entropy is accessible in cutting edge
AMO experiments, our results should be experimentally ob-
servable. We have also discussed the validity of our bound
against deviations from QCAs by exponential tails.

One immediate question for future work is how to tighten
the bound for a general rational index and Rényi-α entropy
with α < ∞. Another natural direction to explore is the gen-
eralization to the symmetry-protected case [25]. Here we ex-
pect that a nonzero symmetry-protected index will give rise to
a linear growth of the entropy, even for ind = 0. Finally, it
may also be interesting to consider generalizations to quantum
channels with suitable locality properties [21].

Note added.— While finalizing this manuscript, a related
work by Ranard et al. appeared in Ref. [74], which also re-
ported the entropy reformulation of the index. However, their
main focus was to derive an index theory for quasi-local uni-
taries rather than exploring its connections with other dynam-
ical properties. On the technical level, Ref. [74] only uses the
von Neumann entropy for infinite (or finite open) chains.
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Harvard Research Center for Quantum Optics (MPHQ). L.
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Supplemental Materials

We provide some technical details supporting the claims in
the main text. In particular, we discuss the validity of the
bilayer representation of QCAs, and present a direct proof
that the expression in Eq. (5) does not depend on the position
where it is computed. Furthermore, we show the equivalence
between Eq. (5) and other reformulations of the index in lit-
erature, and also report a proof of the stability of the lower
bound against “exponential tails”.

STRUCTURE THEOREM FOR 1D QUANTUM CELLULAR
AUTOMATA

Let us sketch some important results in Ref. [22] which are
necessary for deriving the representation in Fig. 2(a). Follow-
ing the notation of Ref. [22], we denote the action of a unitary
QCA U as α(·) = U · U†. Assuming that α has range r, then
blocking at least r sites into one makes it a range-1 QCA:

α(Ax) ⊂ Ax−1 ⊗Ax ⊗Ax+1, (S1)

whereAx denotes the algebra generated by the operators sup-
ported on x. We set

R2x ≡ S(α(A2x ⊗A2x+1),A2x−1 ⊗A2x),

R2x+1 ≡ S(α(A2x ⊗A2x+1),A2x+1 ⊗A2x+2),
(S2)

where S(A,B) denotes the support algebra of A on B, which
is defined as the minimal algebra C such that A ⊆ C ⊗ B.
Then, we have

α(A2x ⊗A2x+1) ⊆ R2x ⊗R2x+1,

R2x+1 ⊗R2x+2 ⊆ A2x+1 ⊗A2x+2.
(S3)

Here we have used the fact that Rx commutes with Ry ∀x 6=
y [22]. Since α is an automorphism on

⊗2l
x=1Ax, this implies

α(A2x ⊗A2x+1) = R2x ⊗R2x+1,

R2x+1 ⊗R2x+2 = A2x+1 ⊗A2x+2.
(S4)

Moreover, one can show thatRx should be simple (i.e., with a
trivial center) and can thus be associated with a Hilbert space,
analogously to Ax. In turn, this implies that the QCA admits
the following representation [cf. also Fig. 2(a) in the main
text]:

v

u
, (S5)

where the upper and lower legs correspond to the (blocked)
local physical Hilbert spaces whereAx act on, while the thick
and dotted legs in the middle correspond to the virtual Hilbert
spaces where R2x and R2x+1 act on, respectively. This rep-
resentation is consistent with the “standard form” of matrix

U
⊗
I

... ......

a1a1

a′1

b1

b′1

E1

E′1

a2

a′2

b2

b′2

E2E2

E′2E′2

FIG. S1. Subsystems of the CJS |U〉 ≡ (U ⊗ I)|I〉 relevant to the
proof of position independence.

product unitaries derived in Ref. [23], although here the QCA,
as well as the blocking, need not to be homogeneous. For this
reason, we have and explicit dependence on x for u2x,2x+1

and v2x−1,2x. Note also that even the physical dimensions
can be different due to an inhomogeneous blocking.

POSITION INDEPENDENCE OF THE ENTROPY
DIFFERENCE

We prove that the entropy difference in Eq. (5) is globally
well-defined, in the sense that it does not depend on how large
(if not too small) and where a, b are. To this end, we only have
to prove

Sα(ρa1b′1a
′
2b2

) = Sα(ρa′1b1a2b′2
), (S6)

where a1 (b1) is not necessarily the same as a2 (b2) and a1tb1
is well separated from a2 t b2. Indeed, using

ρa1b′1a
′
2b2

= ρa1b′1
⊗ ρa′2b2 ,

ρa′1b1a2b′2
= ρa′1b1 ⊗ ρa2b′2

,
(S7)

which follows from the locality properties of QCA [21],
we see that Eq. (S6) implies Sα(ρa1b′1

) + Sα(ρa′2b2) =
Sα(ρa′1b1) + Sα(ρa2b′2

), namely

Sα(ρa1b′1
)− Sα(ρa′1b1) = Sα(ρa2b′2

)− Sα(ρa′2b2). (S8)

Note that showing the equality for two well separated seg-
ments already implies the equality everywhere. This is be-
cause for two nearby segments a1b1 and a2b2 we can al-
ways find a third segment a3b3 far away from both, so
that Sα(ρa1b′1

) − Sα(ρa′1b1) = Sα(ρa3b′3
) − Sα(ρa′3b3) =

Sα(ρa2b′2
)− Sα(ρa′2b2).

Let us return to the proof of Eq. (S6). Defining the regions
sandwiched by b1,2 and a2,1 as E1,2 [cf. Fig. S1], we have a
bipartition a1E2b2a

′
2E
′
1b
′
1 ta′1E′2b′2a2E1b1 (as usual, primed

letters correspond to ancillary regions), and thus

Sα(ρa1E2b2a′2E
′
1b
′
1
) = Sα(ρa′1E′2b′2a2E1b1). (S9)

Now, using one again the locality properties of QCAs [21], we
have

ρa1E2b2a′2E
′
1b
′
1

= ρa1b2a′2b
′
1
⊗

IE2E′1

dE1dE2

, (S10)
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and

ρa′1E′2b′2a2E1b1 = ρa′1b′2a2b1 ⊗
IE′2E1

dE1
dE2

. (S11)

Combining Eqs. (S9), (S10) and (S11), we finally end up with
Eq (S6).

Having in mind the position independence of Eq. (5), we
can directly understand why this is a topological invariant
without knowing its equivalence to the index. We exploit a
similar argument in Ref. [31] and recall that a continuous de-
formation of QCA is nothing but a composition with a quan-
tum circuit consisting of local unitary gates. For a given de-
formation, we can always apply these local gates sequentially
such that each time there is always a region on which no gates
act. Then the entropy difference stays unchanged on that re-
gion, so should all the entropy differences.

EQUIVALENCE TO SOME QUANTITIES IN THE
LITERATURE

Equivalence to the chiral mutual information

In this section we discuss the equivalence between Eq. (5)
and the chiral mutual information (CMI) χ introduced in
Ref. [31]. This quantity is defined in terms of a “local CJS”
with respect to a range-r QCA U :

|U ; a〉 ≡ (U ⊗ 11a)|ψprod〉 ⊗ |Ia〉, (S12)

where |Ia〉 is the maximally entangled state between a lo-
cal ancilla region a and the corresponding region in the sys-
tem, and |ψprod〉 can be an arbitrary product state on the re-
maining system. Given a system bipartition sL t sR, we
choose a such that it is located across one of the entangle-
ment cuts and is thus divided into aL and aR, cf. Fig. S2(a).
Denoting the quantum mutual information by I(A : B) ≡
S(ρA) + S(ρB) − S(ρAB), where ρA is the reduced state of
|U ; a〉 on A, we define χ as [31]

χ ≡ 1

2
(I(aL : sR)− I(aR : sL)). (S13)

At first sight, this quantity is non-local. However, due to the
short-range nature of the QCA, it turns out that Eq. (S13) can
be computed locally. We show this in the following, together
with the equivalence to Eq. (5).

We choose the size of aL,R to be no smaller than 2r so that
we can make a further bipartition aL,R = al,r t a′l,r with
|al,r|, |a′l,r| ≥ r. Analogously, we consider the bipartition
sL,R = sl,r ts′l,r with |sl,r| ≥ r. From the locality properties
of QCAs [21] we have

ρaLsR = ρalsr ⊗ ρa′ls′r , ρaRsL = ρarsl ⊗ ρa′rs′l . (S14)

Equivalently, the above equations can be derived by using the
representation of QCA in terms of matrix product unitaries,

3

aL aR

sL sR

(14)

2

�I�
�I�
�I�
�I�
�0� H �X�

A

B

SA

U ⊗ I (8)

U⊗
I

a b

a′ b′ (9)

a b

a′ b′ (10)

u u u u u

(11)

sL aR

� �
(12)
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U

FIG. S2. (a) “Local CJS” (S12) and its multi-partitions used to define
the CMI (S13). See also Fig. 1 in Ref. [31]. (b) Reduced state on
sLaR with the QCA represented as a matrix-product unitary. (c)
The simple property [21, 23] allows us to factorize the reduced state
following Eq. (S14). Note that ρslar does not depend on the input
product states (triangles).

and exploiting the corresponding “simple” condition [21, 23],
cf. Figs. S2(b) and (c). In addition, the short-range nature
of U implies there should be no correlations between s′l (s′r)
and a′r (a′r), a fact we already used in the previous section.
Therefore, Eq. (S14) can be further factorized as

ρaLsR = ρa′l ⊗ ρalsr ⊗ ρs′r ,
ρaRsL = ρa′r ⊗ ρarsl ⊗ ρs′l .

(S15)

Accordingly, we have

I(aL : sR) = I(al : sr), I(aR : sL) = I(ar : sl). (S16)

As a consequence, we obtain that the CMI (S13) can be com-
puted locally as

χ =
1

2
(I(al : sr)− I(ar : sl)). (S17)

This result holds true for arbitrary Rényi entropies, although
the corresponding mutual informations may not be positive
semidefinite in general [44].

To see that Eq. (S17) is equivalent to Eq. (5), we first note
that it does not depend on |ψprod〉 (as it can be understood
from Fig. S2(c)), which may even be replaced by a mixed in-
put [76]. Taking this input to be maximally mixed, we can
consider ρalsr and ρarsl as the reduced states of the global
CJS and ρal,r , ρsl,r should all be maximally mixed. There-
fore, their entropies cancel out and the remaining entropy dif-
ference S(ρslar )− S(ρalsr ) exactly reproduces Eq. (5).

Equivalence between Rényi-2 entropy and algebra overlap

Given two subsystems A and B embedded in an entire sys-
tem Λ, the algebra overlap is defined as [22]

η(A,B) =

√
dAdB
dΛ

√√√√ dA∑
i,j=1

dB∑
m,n=1

|TrΛ[eA
†

ij e
B
mn]|2, (S18)
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where dA,B,Λ = dimHA,B,Λ and eA,Bij ≡ |iA,B〉〈jA,B |
(|iA,B〉 ∈ HA,B , i = 1, 2, ..., dA,B). This has been used to
define the index of a QCA U as

ind ≡ log
η(α(AL),AR)

η(AL, α(AR))
, (S19)

where α(·) = U · U†. Explicitly, we have

η(α(AL),AR) =

√
dLdR
dΛ

×

√√√√ dL∑
i,j=1

dR∑
m,n=1

TrΛ[UeL†ij U
†eRmn] TrΛ[UeLijU

†eR†mn],

(S20)

and η(AL, α(AR)) can be written down in a similar way.
HereL andR can be taken as small as two adjacent sites under
coarse graining (such that the range of QCA is 1). The result
will not change for larger L and/or R, which do not need to
be of the same size. The double sum in the square root can be
graphically represented and contracted as follows:

∑
i,j,m,n

L R E

U†

U

i
j

n

m
U†

U

j
i

m

n

=

U†

U

U†

U

,

(S21)

where E = Λ\(L t R). The bipartite case (i.e., E = ∅)
appeared already in the original paper [22] and essentially the
same result has been reported in Appendix D in Ref. [28].

It is now easy to relate the rhs of Eq. (S21) to the Rényi-2
entropy of the evolution operator, see for instance [14]. Ex-
plicitly, we first write down the CJS:

|U〉 = 1√
dΛ

L R E L′R′E′

U .

(S22)

Then it is straightforward to check that the reduced density
operator on L′R is nothing but half (upper or lower) of the rhs

of Eq. (S21):

ρL′R = TrLR′EE′ [|U〉〈U |] = 1
dΛ

RL′

U†

U

.

(S23)
We thus obtain the following relation

η(α(AL),AR)2 = dLdR Tr[ρ2
L′R]

= eS
max
L′R−S2(ρL′R),

(S24)

where Smax
L′R = log(dLdR) is the maximal entropy of a state

in HL′ ⊗ HR. Note that this result is consistent with η ≥ 1
[22]. Similarly, we have

η(AL, α(AR))2 = eS
max
LR′−S2(ρLR′ ). (S25)

Combining Eqs. (S24) and (S25), we obtain

ind ≡ log
η(α(AL),AR)

η(AL, α(AR))

=
1

2
(S2(ρLR′)− S2(ρL′R)).

(S26)

Hence, we have shown that Eq. (5) for α = 2 is equivalent to
the formulation of the index in terms of algebra overlaps.

STABILITY AGAINST HAMILTONIAN EVOLUTIONS

In this section, we provide further details on the explicit ex-
ample given in the main text violating the bound (1). We then
prove that this represents the “worst-case scenario”, namely
the order of violation cannot be larger.

“Worst-case scenario”

We start by rewriting the example given in the main text as

W = u[|A|−1,|A|]..u[1,2]u[0,1]T, (S27)

where u[j,j+1] = eiθS
[j,j+1]

with θ = hT/|A|, and where S[j,k]

is the SWAP operator between sites j and k. We need to cal-
culate the operator entanglement entropy of W with respect
to the bipartition A t Ā, where A = [0, |A| − 1]. It is imme-
diate to see that the reduced density matrix over A admits a
purification in [−1, |A|]. In turn, this allows us to show that
the operator entanglement entropy can be computed for the
reduced state on {−1, |A|}, cf. Fig. S3(a). From this repre-
sentation, it is immediate to see that the reduced CJS has at
most rank d2. This fact already implies Sα ≤ 2 ln d = 2 ind.
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sL sR
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(15)

−1 �A�
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FIG. S3. (a) CJS of W (S27), which is the right translation evolved
by a time-dependent Hamiltonian that sequentially generate two-site
unitaries u[j,j+1] with j = 0, 1, ..., |A| − 1. (b) Reduced state on the
{−1, |A|}, obtained by contracting the degrees of freedom in AA′.
(c) Iterative calculation of (b) exemplified by the SWAP unitary.

The reduced state ρ−1,|A| can be explicitly expressed as
Fig. S3(b) by tracing out the degrees of freedom in [0, |A|−1].
Thanks to the sequential structure of the unitaries, the re-
duced state with the auxiliary sites traced out is actually a
quantum Markov chain [75], which inspires us to calculate
ρ−1,|A| = E |A|(ρ0) iteratively through the quantum channel
(see Fig. S3(c))

E(ρ) =
1

d
Tr2[(11⊗ u)(ρ⊗ 11)(11⊗ u†)]

= sin2 θρ+ cos2 θ(Tr2 ρ)⊗ 11
d

(S28)

starting from ρ0 = |I0〉〈I0| = d−1
∑d
m,n=1 |mm〉〈nn|. One

can easily check that

En(ρ) = sin2n θρ+ (1− sin2n θ)(Tr2 ρ)⊗ 11
d
. (S29)

When inputing ρ0 = |I0〉〈I0|, we obtain

ρ−1,|A| = ε|I0〉〈I0|+ (1− ε)11⊗2

d2
. (S30)

where ε = sin2|A| θ = sin2|A|(hT/|A|) is of the order of
e−O(|A| log |A|) for large |A|. Since ρ−1,|A| (slightly) deviates
from the maximally mixed state 11⊗2/d2, its Rényi entropy
(except for S0) should be smaller than 2 ln d = 2 ind, imply-
ing a violation of Eq. (1). In particular, the largest violation is
achieved by S∞, which turns out to be

S∞ = − log ‖ρ−1,|A|‖ = 2 ind− log[1 + (d2 − 1)ε]. (S31)

In addition, one can show that for α � ε−1 the Rényi can be
well approximated by

Sα ' 2 ind−1

2
α(d2 − 1)ε2. (S32)

Therefore, the violation of the lower bound is of the order of
e−O(|A| log |A|) for any given nonzero α.

General proof

We prove that the violation can never exceed e−O(|A| log |A|)

in its order. Without loss of generality, we can block several
adjacent sites into one such that each term hj(t) in H(t) =∑N
j=1 hj(t) acts only on two adjacent (blocked) sites j and

j+ 1. Although the total number N and the maximal local in-
teracting strength h ≡ maxj,t ‖hj(t)‖ should change (but still
take the same order) after blocking, we use the same notations
for simplicity. In this context, the range r of UQCA should be
understood as the range after blocking.

To study the operator entanglement with respect to a gen-
eral bipartition ZN = [a+ 1, b]t [b+ 1, a], following the idea
of Ref. [66], we decompose H(t) into

H(t) = H[a+1,b](t) +H[b+1,a](t) + ha(t) + hb(t), (S33)

where H[x,y](t) =
∑y−1
j=x hj(t) acts nontrivially only on

[x, y] ⊂ ZN . In the interaction picture, the Hamiltonian evo-
lution can be represented as

T̂e−i
∫ T
0
dtH(t) = Uab(T )U

(I)
ab (T ), (S34)

where

Uab(t) = T̂e−i
∫ t
0
dt′[H[a+1,b](t

′)+H[b+1,a](t
′)],

U
(I)
ab (t) = T̂e−i

∫ t
0
dt′[h(I)

a (t′)+h
(I)
b (t′)],

(S35)

with h(I)
j (t) ≡ Uab(t)

†hj(t)Uab(t). Since Uab(t) is a local
uniform transformation with respect to [a+1, b]t[b+1, a], we
can safely drop it when calculating the operator entanglement.

We can perform a similar simplification for the QCA part,
but on the opposite side. This does not change the operator
entanglement since (UULO ⊗ I)|I〉 = (U ⊗ UT

LO)|I〉 and the
transpose in the computational basis does not change the local
nature. Taking a bilayer form (S5) such that the u layer does
not entangle [a+1, b] with [b+1, a], we can remove all the lo-
cal unitaries except for va and vb across a and b, respectively.
Here we have assumed min{|b − a|, N − |b − a|} ≥ 2r so
that va and vb have no overlap. In the end, the operator entan-
glement entropy turns out to coincide with the entanglement
entropy of (see Fig. S4(a))

|Ψ〉 = (U
(I)
ab (T )vavb⊗ I)|I〉 = (U

(I)
ab (T )⊗vT

a v
T
b )|I〉. (S36)

Intuitively, we expct U (I)
ab (t) = T̂e−i

∫ t
0
dt′[h(I)

a (t′)+h
(I)
b (t′)]

to act nontrivially only near a and b, so there should exist
a good approximation U

(I)
ab (t) ' U[m+1,n]U[n+1,m], where

U[x,y] acts nontrivally only on [x, y] and m ∈ (a + 1, b), n ∈
(b+ 1, a). Again inspired by Ref. [66], a promising candidate
can be constructed as (see Fig. S4(b))

Ũ
(I)
ab (t) = T̂e−i

∫ t
0
dt′[h̃(I)

a (t′)+h̃
(I)
b (t′)]

= T̂e−i
∫ t
0
dt′h̃(I)

a (t′)T̂e−i
∫ t
0
dt′h̃

(I)
b (t′),

(S37)
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Ũ
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ab
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a′ m′

m+ 1

n′

n+ 1 a+ 1

b′

b+ 1

FIG. S4. (a) Exact decomposition of T̂e−i
∫ T
0 dtH(t)UQCA. Only

U
(I)
ab (T ) and vavb contribute to the operator entanglement, and the

former only acts nontrivial near a and b. (b) Approximate unitary
operator that satisfies the entanglement lower bound. Here Ũ (I)

ab (T )
is factorized on [n+ 1,m] t [m+ 1, n].

where h̃(I)
j (t) ≡ Ũab(t)†hj(t)Ũab(t) with

Ũab(t) = T̂e−i
∫ t
0
dt′[H(t)−ha(t)−hb(t)−hm(t)−hn(t)]. (S38)

Since Ũab(t) is local with respect to [a+1,m]t[m+1, b]t[b+

1, n]t[n+1, a], h̃(I)
a (t′) (h̃(I)

b (t′)) should be strictly supported
on [n+ 1,m] ([m+ 1, n]). Noting that

Uab(t) = Ũab(t)Ũ
(I)
mn(t),

Ũ (I)
mn(t) = T̂e−i

∫ t
0
dt′[h̃(I)

m (t′)+h̃(I)
n (t′)],

(S39)

we can bound norm of the difference between U
(I)
ab (t) and

Ũ
(I)
ab (t) by

‖U (I)
ab (t)− Ũ (I)

ab (t)‖

≤
∫ t

0

dt′‖h̃(I)
a (t′) + h̃

(I)
b (t′)− h(I)

a (t′)− h(I)
b (t′)‖

≤
∫ t

0

dt′‖h̃(I)
a (t′) + h̃

(I)
b (t′)

− Ũ (I)
mn(t′)†[h̃(I)

a (t′) + h̃
(I)
b (t′)]Ũ (I)

mn(t′)‖

≤
∫ t

0

dt′
∫ t′

0

dt′′‖[h̃(I)
a (t′) + h̃

(I)
b (t′), h̃(I)

m (t′′) + h̃(I)
n (t′′)]‖,

(S40)

where we have used the integral versions of ‖e−ih1 −
e−ih2‖ ≤ ‖h1 − h2‖ and ‖eih1h2e

−ih1 − h2‖ ≤ ‖h1 − h2‖
∀h1,2 = h†1,2. Recalling that h̃(I)

x (t) in the interaction picture
is evolved by H(t)− [ha(t) + hb(t) + hm(t) + hn(t)], which
is local, we can make use of a time-dependent version of the
Lieb-Robinson bound [71, 72]:

‖[OX(t1), OY (t2)]‖ ≤ 2 min{|X|, |Y |}‖OX‖‖OY ‖

× e−κ(dist(X,Y )−κ−1
∫ t1
t2
dt‖H(t)‖κ),

(S41)

where κ can be chosen arbitrarily as long as

‖H(t)‖κ ≡ max
j∈Λ

∑
X3j
|X|‖hX(t)‖eκlX (S42)

is finite for H(t) =
∑
X⊆Λ hX(t), which may even not be

strictly local in the sense that ‖hX(t)‖ may decay exponen-
tially in lX , the diameter of X . Applying Eq. (S41) to 1D and
nearest-neighbor interactions, we obtain ‖H(t)‖κ ≤ 4heκ

and the error bound in Eq. (S40) can be estimated explicitly:

‖U (I)
ab (T )− Ũ (I)

ab (T )‖

≤4h2

 ∑
x=a,b,
y=m,n

e−κ(|x−y|−1)

∫ T

0

dt′
∫ t′

0

dt′′e4heκ(t′−t′′)

≤(e4hTeκ − 1− 4hTeκ)e−κ(minx=a,b,y=m,n |x−y|+1).

(S43)

Suppose that the size |A| = |a−b| ofA = [a+1, b] is smaller
than N/2, we can choose m to be located at the middle of A
such that minx=a,b,y=m,n |x− y| ≥ (|A| − 1)/2. In this case,
we have

‖U (I)
ab (T )− Ũ (I)

ab (T )‖ ≤ (e4hTeκ − 1− 4hTeκ)e−
κ
2 (|A|+1).

(S44)
Now let us consider another CJS

|Ψ̃〉 = (Ũ
(I)
ab (T )vavb ⊗ I)|I〉. (S45)

Defining the reduced states of |Ψ〉 and |Ψ̃〉 on A as ρA =
TrĀ |Ψ〉〈Ψ| and ρ̃A = TrĀ |Ψ̃〉〈Ψ̃|, we have

‖ρA − ρ̃A‖ ≤
1

2
‖ρA − ρ̃A‖1

≤1

2
‖|Ψ〉〈Ψ| − |Ψ̃〉〈Ψ̃|‖1 ≤ ‖U (I)

ab (T )− Ũ (I)
ab (T )‖

≤(e4hTeκ − 1− 4hTeκ)e−
κ
2 (|A|+1).

(S46)

Based on the proof in the main text, we know that ρ̃A satisfies
the entanglement lower bound:

Sα(ρ̃A) ≥ S∞(ρ̃A) = − log ‖ρ̃A‖ ≥ 2| ind |. (S47)

Suppose that Sα(ρA) violates the lower bound, which implies

S∞(ρA) = − log ‖ρA‖ ≤ Sα(ρA) < 2| ind |, (S48)

we have ‖ρA‖ > e−2| ind | ≥ ‖ρ̃A‖. Provided that κ is chosen
such that (e4hTeκ−1−4hTeκ)e−

κ
2 (|A|+1) < e−2 ind, we can

bound the difference between S∞(ρ̃A) and S∞(ρA) by

|S∞(ρ̃A)− S∞(ρA)| =
∣∣∣∣log
‖ρA‖
‖ρ̃A‖

∣∣∣∣
≤ |‖ρA‖ − ‖ρ̃A‖|

min{‖ρA‖, ‖ρ̃A‖}
≤ ‖ρA − ρ̃A‖
‖ρA‖ − ‖ρA − ρ̃A‖

<

[
e
κ
2 (|A|+1)−2| ind |

e4hTeκ − 1− 4hTeκ
− 1

]−1

,

(S49)
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where we have used log(1 + x) ≤ x, ∀x ∈ (−1,∞) and the
triangle inequality of the operator norm. Accordingly, we can
lower bound Sα(ρA) by

Sα(ρA) ≥ S∞(ρA) = S∞(ρ̃A)− |S∞(ρ̃A)− S∞(ρA)|

> 2| ind | −
[

e
κ
2 (|A|+1)−2| ind |

e4hTeκ − 1− 4hTeκ
− 1

]−1

.

(S50)

If e
κ
2 (|A|+1)−2| ind | > e4hTeκ , we may drop 1 + 4hTeκ in the

denominator and optimize the lower bound to be

Sα(ρA) > 2| ind | −

e−2| ind |
(
|A|+ 1

8ehT

) |A|+1
2

− 1

−1

.

(S51)
Here κ is chosen such that 4hTeκ = (|A| + 1)/2, which fol-
lows from the fact that xβe−x (β > 0) reaches its maximal

(β/e)β at x = β. A sufficient self-consistent condition for the
validity of Eq. (S51) could be |A| > 8 max{e2hT, | ind |}−1.
This result (S51) implies that, given h, T and ind, the pos-
sible violation is superexponentially suppressed by |A| as
e−O(|A| log |A|) for large |A|.

As an application, we consider UQCA = T and time-
independent H =

∑N
j=1 hj , which can be in the deep MBL

phase [28], and the time evolution of U = e−iHTUQCA for n
periods. We can rewrite the total time-evolution operator into

(e−iHTT)n =

←−
n∏
j=1

e−iT
n−jHTj−nTTn. (S52)

which takes the form of Eq. (14) with UQCA = Tn and
hj(t) = hj±(n−s), (s − 1)T < t < sT for s = 1, 2, ..., n.
Therefore, Eq. (S51) holds true for h = maxj ‖hj‖ and
T → nT , | ind | → n| ind |. It follows that, due to the negligi-
ble violation, the operator entanglement grows linearly up to
n ∼ O(|A|), ruling out the possibility of MBL.
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