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We construct a van der Waals heterostructure consisting of three graphene

layers stacked with alternating twisting angles ±θ. At the average twist an-

gle θ ∼ 1.56◦, a theoretically predicted magic angle for the formation of flat

electron bands, narrow conduction and valence moiré bands together with a

linearly dispersing Dirac band appear. Upon doping the half-filled moiré va-

lence band with holes, or the half-filled moiré conduction band with electrons,

displacement field tunable superconductivity emerges, reaching a maximum

critical temperature of 2.1 K. By tuning the doping level and displacement

field, we find that superconducting regimes occur in conjunction with flavor

polarization of moiré bands bounded by a van Hove singularity at high dis-

placement fields. These experimental results are inconsistent with a weak cou-

pling description, suggesting that the observed moiré superconductivity has an

unconventional nature.

The experimental realization of twisted bilayer graphene (TBG) opened up new possibilities

for studying interaction effects in moiré engineered electronic bands. It was first predicted the-

oretically that the hybridization of two twisted graphene sheets could produce nearly flat bands

at the so called “magic angles” (MA) (1–4). Initial experiments showed that a significant re-

duction of kinetic energy gives rise to correlated insulating phases and superconductivity upon

doping these insulating states (5, 6). In the followup experiments, additional interaction-driven

phases were discovered in MA-TBG, including isospin symmetry breaking metals (7), orbital

ferromagnetism (8–10), and magnetic field induced Chern insulators (11–13). Despite the rapid

progress of the field, the question of whether the superconductivity is unconventional, driven by

strong electron-electron interactions, or conventional, arising from electron-phonon interaction

at weak coupling, remains under debate. Some experiments suggested that the superconducting

and insulating phases are independent or maybe even competing, with the superconductivity
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persisting or strengthening when Coulomb interaction is screened (14–17). However, others

have provided evidence that the superconductivity has unconventional features, such as coex-

isting nematic order and a lack of correlation between large density of states and higher critical

temperature (18), pointing to unconventional superconductivity of non-phononic origin (19).

The creation of moiré engineered van der Waals (vdW) interfaces has been extended to other

2-dimensional (2D) material systems as well, leading to the observation of many interesting

interaction-driven phases, such as quantum anomalous Hall states in twisted monolayer- bilayer

graphene (20,21) and generalized Wigner crystal in WSe2/WS2 moiré superlattices (22,23). On

the other hand, MA-TBG remains the only system where superconductivity is unambiguously

well-established (6, 9, 16, 24). In contrast, initial reports of superconductivity in other 2D flat

band systems such as ABC trilayer graphene aligned with BN (25), twisted double bilayer

graphene (26, 27), and twisted WSe2 (28) have proven less conclusive (29).

In this work, we study a new type of moiré engineered graphene multi-layer system, MA

twisted trilayer graphene (TTG) with vertical mirror symmetry (30). We present a clear sig-

nature of superconductivity controlled by applied electric field. The continuously tunable band

structure of MA-TTG provides a new experimental knob for probing the superconducting mech-

anism.

Our TTG consists of three layers of graphene, with the twist angle between the top layer (T)

and middle layer (M) being θ, and the twist angle between the middle layer and the bottom layer

(B) being −θ as shown in the schematic in Fig. 1a. The stacking with this alternating sequence

of angles with opposite signs preserves the vertical mirror plane symmetry (see Supplementary

Material (SM), S1), differing from the previously studied trilayer systems (31). A recent theo-

retical work predicted that the Hamiltonian for this system can be effectively decoupled into that

of a monolayer graphene and a TBG with the inter-layer coupling strength enhanced by a factor

of
√

2 (30). As a result, the band structure of TTG consists of a Dirac cone from the monolayer
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graphene coexisting with TBG flat bands. Interestingly, the magic angle is predicted to be the

TBG magic angles multiplied by
√

2: θTTG = 1.56◦ (30). Fig. 1c shows a band structure of

TTG at this angle. To experimentally realize such a system, we utilize the “cut and twist” tech-

nique (15) (see SM S1 for detail). An image of the completed device is shown in Fig. 1b. The

colored lines trace the original positions of the three pieces of graphene. In addition to the TTG

device fabricated in the three-layer overlapped region (TMB), we made two other TBG devices,

one in the region with only the top and middle layers (TM), and the other in the region where

there are only the middle and bottom layers (MB). These two devices allow us to measure the

TM twist angle, θTM, and MB twist angle, θMB, individually to characterize our devices.

Fig. 1d and e show the longitudinal resistivity, ρ, as a function of perpendicular magnetic

field (B) and carrier density n, controlled by both top and bottom gates of the two TBG devices,

TM and MB. They exhibit typical magnetotransport features of large angle TBG (32), with no

insulating resistivity peaks other than at ν = 0 and 4. Here, ν is the moiré band filling factor

ν = 4n/ns, where ns is the carrier density at full filling of the four-fold degenerate moiré

bands. From these fan diagrams, we estimate θTM = 1.35◦ and θMB = −1.69◦. The difference

in angles is expected due to imperfect angle control in experiments as well as the ubiquitous

angle disorder in twisted devices. Interestingly, however, we find such small angle difference

between TM and MB regions yields no appreciable effect in the TTG device formed in the

TMB region. Fig. 1f shows the Landau fan diagram of the TTG formed in the TMB region at

a fixed back gate voltage, VBG = 0. ρ(B, n) exhibits emergent Landau fans at integer fillings

ν = 0,±2, 1, 3 which correspond to a twist angle of 1.55◦. In addition, the device is highly

uniform across most pairs of contacts, with angle disorder on the order of 0.02◦ estimated from

similar magneto-transport data (SM, S3). Such high uniformity of twist angle in the TMB

region might indicate that the strain relaxation on atomic length scales forces θTM = −θMB to

be the average twist angle, favoring alignment between the top and bottom layer to reduce the
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structural energy (33). An alternative scenario is that the three layers are coupled so strongly

that they behave as a single system with the measured angle the average of θTM and θMB. In

either case, the resulting uniform device indicates that TTG is relatively robust against small

angle misalignment and disorder.

We find that, unlike in MA-TBG samples, ρ(n) measured in the TMB device at B = 0 (Fig.

1g) does not exhibit strong insulating behavior at any filling, consistent with the additional Dirac

cone in the proposed TTG band structure in Fig. 1c. The Hall conductivity σxy data obtained

from the TTG device also confirms the proposed single particle band structure of TTG. The

Landau fan emanating from the charge neutrality has sequence −2,−6,−10,−14 on the hole

doped side and 2, 4, 6 on the electron doped side. This sequence indicates that Landau levels

are four-fold degenerate but is different from the typical 4, 8, 12, 16 sequence obtained in MA-

TBG (6). This change is similar to the sequence in ABA trilayer graphene (34), and likely

results from the presence of the Dirac cone. Flavor symmetry breaking is evident in the Landau

fan coming from ν = −2 with sequence −2,−4,−6,−8 showing only two-fold degeneracy.

The resistive states at ν = ±2 show slopes consistent with Chern number C = ±2. Fig. 1h

shows σxy(n) taken at B = 10 T. Interestingly, we see large regions of C = −2 near ν = −4

and C = 2 near ν = 4 (also see σxy(B, n) in SM, S4). More direct experimental evidence is

present in the Landau fan diagram taken at zero-displacement field, where we observe quantum

Hall sequences directly originating from the Dirac cone (see SM S4).

At low temperature and magnetic field, we find large regions of robust superconductivity

in the TTG sample. Fig. 2a shows ρ(n) at different temperatures at VBG = −4.5 V. At our

lowest experimental temperature of T = 0.34 K, zero resistance regions appear on the hole-

doped side of ν = −2 and electron-doped side of ν = 2. The two insets show ρ(n, T ) near

ν = −2 and ν = 2 respectively, both displaying clear superconducting domes. The transi-

tion in ρ(T ) across the dome boundary is sharp as shown in Fig. 2b at ν = −2.3, the optimal
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filling for ν < −2. It is noteworthy that ρ = 0 at T ∼ 2.1 K, which is higher than most

MA-TBG devices in published literature (6, 9, 16, 24). At ν = −2.3, we measure a Berezin-

skii–Kosterlitz–Thouless (BKT) transition of 2.16 K from the power law dependence of the

current and voltage I-V characteristics as shown in the inset of Fig. 2b. Phenomenologically,

we characterize, Tc, as the temperature at which ρ falls to 10% of the normal state resistance,

ρN , which we find to be consistent with the BKT transition temperature and a better measure for

2D superconductivity (SM, S5). Additional clear signatures of superconductivity are also visi-

ble in the differential resistance, dV/dI , as a function of DC bias current as shown in Fig. 2c,

which shows a sharply defined critical current Ic. At B = 0 T, the sudden increase of dV/dI

occurs at Ic = ±720 nA. As the magnetic field increases, Ic becomes smaller and the shape of

dV/dI becomes more smooth, a characteristic behavior of 2D superconducivity suppressed by

perpendicular magnetic field. The resulting critical field, Bc, is evident in ρ(T,B) in Fig. 2d.

We extract the Ginzburg-Landau (GL) coherence length ξGL from the theory for a 2D supercon-

ductor: Bc = [Φ0/(2πξ
2
GL)](1 − T/Tc) (35), where Φ0 is the superconducting flux quantum.

Using the BKT transition temperature as Tc in the above relation, we estimate ξGL = 61 nm,

several times the interparticle distance estimated from n. Using Tc extracted at ρ = 0.5ρN ,

considering prevailing fluctuation effects, we find ξGL = 13.4 nm, only slightly larger than the

interparticle distance.

Employing both the top and bottom gates, we can control both n and the displacement field

D independently, tuning the superconductivity in TTG by the electric field. Fig. 3a shows

ρ as a function of ν and displacement field D at temperature T = 0.34 K. We observe at

charge neutrality a resistive peak that is not disturbed by D. This is expected for the Dirac

cone crossings in the flat bands. At ν = ±2, 1 and 3, there are resistivity peaks that are

modulated by D. At ν = ±4, the system has low ρ, which is expected due to the existence

of the additional Dirac cone and lack of band insulators at full filling. The superconductivity
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appears as the dark blue regions both on the hole side between ν = −3 and ν = −2, and on

the electron side between ν = 2 and ν = 3. The hole side superconductivity persists for all

D, with a width that first increases with D, and starts to decrease at D/ε0 ∼ 0.4 V/m at our

base temperature. The electron side superconductivity is weaker and affected more strongly by

D. At T = 0.34 K, it only starts to emerge at D/ε0 ∼ −0.4 V/nm. To better illustrate the

evolution of the superconductors with D, we have measured ρ(n, T ) at several discrete Ds, as

shown in Fig. 3b–d for holes and Fig. 3e–g for electrons, showing dome-like superconducting

regimes (several representative ρ(T ) curves are shown in Fig. 3a insets). While the optimal

dopings where the maximum Tc occurs, νop ≈ ±2.4, is insensitive to D, we find the maximum

Tc of the dome and the filling range, ∆ν, i.e., the height and width of the dome, are sensitive

to D. We measure ρ(T ) at different D at optimal filling to extract the transition temperature

Tc at each D, providing a quantitative description of the D dependence of superconductivity.

Fig. 3h and i show transition temperature as a function of D for the hole side and electron

side superconductors respectively. For the hole side superconductor, starting from D/ε0 = 0,

Tc first increases, reaches maximum at around D/ε0 = 0.4 V/nm and then decreases quickly.

The electron side superconductor displays a similar trend, with Tc increasing after appearing at

D/ε0 ∼ −0.5 V/nm then decreasing below D/ε0 = −0.62 V/nm.

The electric field tunable superconductivity in TTG can be ascribed to the tuning of single

particle bands controlled by D. Fig. 4a shows Hall density (nH = σxyB/e, e is the electron

charge) at a low magnetic field B = 0.5 T, near the region where the hole side superconductor

resides. At D/ε0 = 0.2 V/nm, away from zero filling, nH(ν) increases linearly with a unity

slope and then resets to 0 near ν = −2. This reseting behavior has been considered as a

signature of the spin and valley isospin symmetry breaking, where the four-fold degeneracy

turns into two-fold. After this flavor symmetry breaking, the electrons completely fill the two

lower energy bands and nH corresponds to the density in the two higher energy bands. Similar
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flavor symmetry breaking in moiré flat bands has been observed and discussed in MA-TBG

(11,15,36,37). This symmetry breaking can be better illustrated by the quantity nH − ν, which

directly gives the degeneracy of the symmetry breaking phase (7). Fig. 4d shows |nH − ν| as

a function of ν and D, showing several symmetry breaking regions. Above ν = −2, the large

area of |nH − ν| = 0 shown as dark blue indicates that the holes are filling the four bands

equally. Between ν = −2 and ν = −3, the system enters the symmetry breaking phase with

two degenerate bands where |nH −ν| = 2, shown in white. At ν = −3 at small D another reset

occurs, below which |nH − ν| is not integer valued, changing gradually from 3 to 4.

As D tunes the single particle band structure of the MA-TTG, the flavor symmetry breaking

also changes. For example, for the hole side band (ν < 0), above D/ε0 = 0.35 V/nm a large

region |nH − ν| = 4 emerges below ν < −3 (marked as I in Fig. 4 b), indicating that the four

bands are being filled equally with no symmetry breaking. Interestingly, we find this region is

bounded on the right by a van Hove singularity (vHS), whose existence can be detected from

diverging nH followed by a sign change (11). The characteristic sharp divergences of two vHSs

can be seen in Fig. 4a atD/ε0 = 0.4 V/nm near ν = −3 (marked by vertical arrows), combining

into one large divergence at larger D. The left boundary of region I also shows a discontinuity.

However, nH value across this boundary is continuous, indicating that this is not a vHS. As

D increases, the flavor-polarizing vHS moves to the right, expanding the |nH − ν| = 4 region.

Importantly we note that this evolution correlates with the reduction of superconductivity. When

the boundaries of the zero magnetic field superconducting region is superimposed onto the

|nH − ν| plot, shown in Fig. 4b (dashed lines), we can see that the superconducting region

is reduced as the vHS and |nH − ν| = 4 region crowd out the |nH − ν| = 2 region. For

the electron side superconductor, where superconductivity only is visible at finite D, similar

analysis (Fig. 4d) shows that the superconducting region also shrinks when the vHS starts to

cross the symmetry breaking phase boundary.
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The region near a vHS has an increased density of states (DOS), which promotes super-

conductivity in conventional Bardeen-Cooper-Schrieffer (BCS) theory in the weak coupling

limit (38, 39). Here, instead it is observed that superconductivity weakens as a vHS approaches

and subsequently flavor polarization occurs. The prominent role of vHS in the system can also

be captured in single particle band calculations. Fig. 4g shows calculated DOS as a function of

filling and interlayer electric potential U , which is directly proportional to the experimental D.

The calculated DOS is symmetric between positive and negative U so only the positive part is

shown (see SM S2 for details). We observe that at low D, there is high density of states concen-

trated near charge neutrality, which is a reflection of the flatness of the bands. An example band

structure at low D with U = 11 meV is shown in Fig. 4e. As D increases, the bands become

more dispersive and vHSs become prominent, shown as the white lines in the DOS calculation

at larger U . An example band structure in this range is shown in Fig. 4f. The prominent vHS

in the theoretical density of states at large U agrees with the vHS that appear at large D in

experiments.

The intrusion of this vHS, and the subsequent flavor ordering which limits the width of

the |nH − ν| = 2 region and consequently the region of superconductivity, accounts for the

reduction of the superconducting dome at large D. However, the initial enhancement of the

superconductivity seems to lie in the region where band flatness dominates the physics. In this

regime, the average DOS and bandwidth of the individual conduction and valence band remains

roughly constant as shown in Fig. 4g and h. The major change in the single particle band struc-

ture in this small D range happens at the K point, where the conduction and valence bands

gradually split away from each other, increasing the combined bandwidth at this point. Recent

theoretical work has suggested the importance of a second order process coupling flat bands,

reminiscent of super-exchange, as the driving force for pairing (40, 41). This process leads to

an energy scale J ∼ t2/Ec, where t is related to the overall effective bandwidth, while Ec is a
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measure of the repulsion. This pairing mechanism also invokes the presence of C2zT symme-

try. Indeed, this symmetry requirement is consistent with the fact that, at present, MA-TBG and

alternating MA-TTG are the only two platforms exhibiting robust superconductivity, and they

are also unique among existing moiré systems in retaining this symmetry. Within this picture,

changing the overall effective bandwidth t can enhance superconductivity, which may be related

to the observed enhancement of both bandwidth and Tc on increasing the displacement field at

small D. Further evidence for the strong coupling nature of superconductivity is provided by

the rapid increase of Tc(ν) with doping observed in the superconducting domes for |ν| < |νop|.

This suggests a picture where tightly bound Cooper pairs condense leading to Tc which is lim-

ited by density and therefore grows with doping. One possible strong coupling mechanism that

is broadly consistent with these observations is skyrmion superconductivity (41), wherein the

J interaction binds charged skyrmions into pairs. We estimate J to be a few meV from the

experimentally obtained slope of Tc(ν) in the regime of |ν| < |νop|, consistent with theoreti-

cal expectations (41) (SM,S6). We anticipate these results to stimulate further theoretical and

experimental investigations into these novel correlation driven phenomena.
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587, 214–218 (2020).

24. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363,

1059–1064 (2019).

25. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré super-
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Figure 1: | Device structure and characterization a, Schematic diagram of the three layers

of TTG with an alternating twist angle θ. The top (T) and bottom (B) layers are aligned while

the middle layer (M) it twisted by θ relative to both layers, preserving the in plane mirror

symmetry. b, Optical microscope image of the TTG device fabricated in the TMB region and

two TBG devices fabricated in the TM and MB regions.c Theoretical band structure for MA-

TTG at D/ε0 = 0 plotted on the mini Brillouin zone (BZ) marked in purple in the bottom face.

The blue Dirac cones sit at the mini BZ K points, while the flat bands, orange (conduction) and

green (valence) are the most dispersive at the mini BZ Γ point. A contour plot of the valence

band is projected on the x–y plane. d,e Landau fan diagrams of the two TBG hall bars TM

(d) and MB (e) In each device fans are visible emanating from ν = 0 and ν = ±4 as well as

an increase in resistance at the vHS near ν = ±2. f, Landau fan diagram of the TTG hall bar

(TMB). Resistive states and fans emerge at ν = 0, +1, ±2, +3, and near ±4. g, Zero magnetic

field resistivity as a function of filling in TM, MB and TMB. h, Hall conductivity in TMB at

B =10 T. 16
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Figure 2: | Superconductivity in TTG a, ρ as a function of ν taken at a fixed VBG = −4.5 V

at several different temperature values. The formation of superconducting regions is visible

at ν < −2 and ν > 2. The left (right) inset shows the superconducting domes in the the

T − ν plane at D/ε0 = −0.55 V/nm for ν > 2 at taken along a cut along VBG = 0 V for

ν < −2. b, Superconducting transition in resitivity at ν = −2.3 and D/ε0 = 0.29 V/nm. The

BKT transition temperature is marked where V ∝ I3 as shown in the inset. c, Differential

resistance measurements as a function of bias current at different magnetic fields. d, ρ as a

function of temperature and magnetic field at ν = −2.3 and D/ε0 = 0.4 V/nm. The dashed

line corresponds to a GL theory fit with a coherence length of ξGL = 61 nm (see SM for more

detail).
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resets in nH are visible at flavour symmetry breaking boundaries. Sign reversal vHS with flavor

symmetry breaking is marked by vertical arrows b,Subtracted hall density nH − ν as a function

of ν andD in the same region. Showing the symmetry broken regions. Lines mark the locations

of the line cuts in a.The nH − ν = 4 region marked by I crowds out the superconducting region

at large D. c, and d.The same as a and b but near the ν = 2 superconducting state. e-f,

Theoretical band structures at small (e) and large (f) U . The major change in the band structure

is a splitting at the K point. g, Calculated density of states as a function of ν and U with no

flavor symmetry breaking. Prominent vHS diverge from the large flat band density of states at
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Supplementary Materials

S1: Device fabrication and characterization

Our twisted trilayer graphene (TTG) device TMB (device names used in Fig. 1) and the twisted

bilayer graphene (TBG) device TM have both top and bottom graphite gates. The TBG device

MB is controlled by top graphite gate and silicon back gate. The van der Waals heterostructure

stack for making the devices consists of 8 layers of two-dimensional materials in the order of

hBN, few-layer graphite, hBN, mono-graphene, mono-graphene twisted with angle θ, mono-

graphene twisted with angle −θ, hBN and few-layer graphite. The stack was prepared using

the dry transfer method, similar to the procedures introduced in most published literature

on twisted graphene devices. We make stamps consisting polycarbonate (PC) polymer and

polydimethylsiloxane and pick up each layer sequentially. The temperature is kept under 180 ◦C

through out the transfer process. We find that generally graphene flakes with large area (e.g.,

70 µm by 70 µm) give higher yield in making twisted graphene samples. In order to minimize

the movement of graphene flakes during transfer processes, we use an atomic force microscope

(Asylum Cypher S) to precut the graphene flakes. For this, we follow the general procedure

described in reference [1], using a platinum doped AFM cantilever and contact mode. An 100kHz

AC bias of 30V is applied to the cantilever during cutting. We find that this AC bias is critical

but its exact role in cutting is currently unknown. The stack is deposited on top of a 300-nm

SiO2/Si substrate that has evaporated gold alignment marks on it. Alignment marks are made

beforehand so the twisted sample is not subject to the high temperature of the evaporation

process before being etched. Three Hall bar devices were fabricated in the regions of TMB, TM

and MB following the standard e-beam lithography and dry etch procedures.

The transport data was measured at 17.7 Hz using the standard lock-in technique, with a

0.5–1 mV voltage bias and a current-limiting-resistor of 180 kΩ connected in series with the

sample, which limits the current in the sample to an upper bound of 5–10 nA. The sample is

connected to the cryostat probe through an RC filter to reduce noise.

We calculate twist angles using two independent methods. The first is to use the geometric
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capacitance between the twisted samples and gates. The carrier density is determined by the

top gate voltage Vt and the bottom gate voltage Vb through n = ctVt + cbVb, where ct (cb) is the

capacitance between the top (bottom) gate and the sample , and it can be directly calculated

ct(b) = κε0/dt(b). κ is the dielectric constant for hBN and is usually taken as 3.9. ε0 is the

vacuum permittivity. dt(b) is the top (bottom) hBN thickness. Using the resistivity, ρ, versus

gate voltage Vt(b) at zero magnetic field, we can associate the resistive peaks with integer fillings

of the moiré bands, and therefore obtain the gate voltage, or equivalently using the above

formulae the carrier density ns for full filling at ν = 4. This carrier density corresponds to 4

electrons per moiré unit cell ns = 4/Am, where Am is the moiré unit cell area and is connected

to the small twist angle by Am =
√
3a2

2θ2
, where a is the lattice constant for graphene. The main

uncertainty in this method comes from the uncertainty in the value of the dielectric constant κ

and the finite width of the integer-filling resistive features. The second method uses the Landau

fan diagrams shown in magnetotransport data. By comparing the longitudinal resistivity data

with the Hall conductance, we can assign each line in the Landau fans with a Chern number C

so that σxy = Ce2/h, where e is the electron charge and h is the Planck’s constant. The slopes

of the lines in Landau fans are connected to the Chern numbers through BAm/φ0 = Cn/ns + s,

where B is magnetic field, φ0 = e/h is the magnetic flux quantum, s is the filling fraction from

which the Landau fan emanates. The main uncertainty in this method comes from how well the

slopes are fit. This gives an uncertainty of ±0.02◦ in calculating the angle.

S2: Band structure calculation and DOS

In this section we discuss the single particle band structure of magic angle twisted trilayer

graphene, shown in Figs. 1c and 4e,f. The density of states was also plotted in Fig. 4g. The

band structure was computed from the trilayer analogue [2] of the Bistritzer-Macdonald model

[3] of twisted bilayer graphene. In this case, however, the in-plane displacement between layers

matters. As shown in Ref. [2], the Hamiltonian can be brought to a form where only the relative

displacement between the top and bottom layers appears. We denote this distance d. For a

2



single spin and graphene valley, the Hamiltonian is

H(d) =




−ivσθ/2 ·∇ T (r − d/2) 0

T †(r − d/2) −ivσ−θ/2 ·∇ T †(r + d/2)

0 T (r + d/2) −ivσθ/2 ·∇


 . (1)

Here, σθ/2 = e−
i
4
θσz(σx, σy)e

i
4
θσz , v is the graphene Fermi velocity, and

T (r) =


 w0U0(r) w1U1(r)

w1U
∗
1 (−r) w0U0(r)


 ,

U0(r) = e−iq1·r + e−iq2·r + e−iq3·r,

U1(r) = e−iq1·r + eiφe−iq2·r + e−iφe−iq3·r,

(2)

with φ = 2π/3. The vectors qi are q1 = kθ(0,−1) and q2,3 = kθ(±
√

3/2, 1/2). The wavevector

kθ = 2kD sin θ
2

is the moiré version of the Dirac wavevector kD = 4π/3a0, where a0 is the graphene

lattice constant. For the other graphene valley, the Hamiltonian is the complex conjugate of (1).

The spectrum of H(d) depends strongly on d. However, Ref. [4] finds that d = 0 has the lowest

energy due to relaxation effects, and that the system is likely to slide into this configuration

naturally. We therefore focus on d = 0 which corresponds to AA stacking between the top and

bottom layers.

For d = 0, the Hamiltonian has a symmetry under exchanging the top and bottom layer.

Mz =




0 0 1

0 1 0

1 0 0


 . (3)

We may then consider separately the Hamiltonian in the Mz = ±1 sectors. For Mz = +1 we

find a TBG Hamiltonian

H+ =


−ivσθ/2 ·∇

√
2T (r)

√
2T †(r) −ivσ−θ/2 ·∇


 , (4)

where the tunneling is
√

2 times stronger. On the other hand for Mz = −1 we obtain ordinary

graphene

H− = −ivσ+θ/2 ·∇. (5)

3



Here, the ordinary graphene electrons come from the top and bottom layers only and the Dirac

cone is centered around the moiré K point. Similarly in the other graphene valley the Dirac

cone is centered at the moiré K ′ point. Thus, for this system we expect that when the angle is
√

2 times the TBG magic angle, we will obtain flat bands from (4) together with a Dirac cone

from (5). This band structure is depicted in Fig. 1c. with parameters θ = 1.55◦, w1 = 110meV,

and κ = w0/w1.

A nonzero displacement field mixes the TBG and graphene sectors by breaking Mz; its effect

is largest at the K point where the bands intersect. There, the two Dirac points near charge

neutrality, one from each of the graphene and TBG subsystems, split and hybridize so that there

is one above zero energy and one below zero energy. These Dirac points are still protected by

inversion combined with time reversal which acts as H(r) → σxH
∗(−r)σx and is a symmetry

when d = 0. Band structures with nonzero displacement fields are shown in Fig. 4e,f. with the

same parameters as Fig. 1c.

The density of states is shown in Fig. 4g in the main text. It is obtained from the band

structure of the Hamiltonian (1) by a gaussian-smoothing over energy levels with standard

deviation 0.03 meV. Here we also include the density of states plotted versus energy instead of

filling, see Fig. S1.

S3: Sample homogeneity

Fig. S2 shows a comparison of ρ versus n measured with VBG = 0 for different pair of contacts.

From Fig. S2A to E, the blue circles in the device image illustrate the pair of contacts, labeled

P1 - P5, used for measuring the data on the right. Red dashed lines label the resistive states

at integer fillings ν =-2, 0, 1, 2, 3. It can be seen that for different contacts, the red dashed

lines are slightly misaligned with respect to each other, indicating that the regions between the

contacts have different angles. We calculated the angle for P2 using quantum oscillation. Then

using their relative ratio of full filling densities, we obtained angle for each pair of contacts. The

measured angles are θ1 = 1.552◦,θ2 = 1.567◦, θ3 = 1.567◦, θ4 = 1.572◦, and θ5 = 1.572◦ all with

uncertainty ±0.02◦. Although the third digit in the angles maybe seem meaningless given the

4



Figure S 1: Density of states versus energy and displacement field. Similar to Figure 4g

in the main text, one sees two flat bands that spread out after a sufficiently large displacement

field is applied. Prominent van Hove singularities are visible in white and spread out with

increasing displacement field.
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magnitude of the uncertainty, they indicate the relative angle difference between different pairs

of contacts, which has smaller uncertainty. There are double peak features in P5 indicating a

region of θ = 1.61◦. None of the presented data was taken in this more diordered region. We

note that over the majority of the sample, the angle is extremely uniform changing less that

0.2◦. The angle gradually becomes larger from the left to the right. And there is more angle

disorder on the right side of the sample. The superconductivity is strongest at the left end of

the sample with θ1 = 1.552◦, and the majority of the presented data was taken in this region.

S4: Fan diagram comparison

Fig. S3A shows inverse Hall resistivity 1/ρxy as a function of ν and B at VBG = 0 and T=340 mK.

This is complementary to the ρ(B, n) data shown in Fig. 1f. To better illustrate the quantization

values, in Fig. S3B, we overlay the 1/ρxy(B, n) data with contours that have values (l±0.5)e2/h,

where l is an integer between 0 and 15. We can see large area of 1/ρxy = −2e2/h near ν = −4 and

2e2/h near ν = 4. From the single particle band calculation we know that when a displacement

field is applied, the originally independent Dirac cone and flat bands at zero displacement field

mix resulting in two Dirac cones splitting to higher and lower energy respectively. The large

regions of quantized reverse Hall resistivity are likely from the quantum Hall states of these Dirac

cones. Fig. S2C is a schematic of the quantum Hall structure observed in Fig. 1f. Emanating

from the charge neutrality, the main sequences are C = −2,−6,−10, . . . on the hole doped

side and C = 2, 6, 10 on the electron doped side. At higher magnetic field, between C = −2

and C = −6, symmetry breaking states with C = −3,−4 and −5 emerge and the sequence

C = −14,−18,−20 transitions into C = −12,−16,−20.

Fig. S4 shows the fan diagram at zero displacement field. The Landau fan sequences emerging

from neutrality, ν = ±2 are similar to that observed in the VBG = 0 fan. Interestingly, in low

field range, we observe “arc-like” features or a coexisting quantum oscillation structure distinct

from those of the flat bands. We argue these are in fact the quantum Hall states of the additional

Dirac cone. Fig. S5A shows ρ and Hall conductance σxy as a function of inverse magnetic field

at ν = −3.82, where the arcs are prominent. We see clear quantum oscillations, displayed as
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the equally distanced minima in ρ. The σxy values corresponding to the first two minima are

quantized to −2e2/h and −6e2/h, the same as the Dirac Landau level sequence. σxy for the other

minima are not well quantized. Most likely because they appear at lower magnetic fields and

are not well developed. Fig. S5B shows dρ
dB

to make these quantum oscillations more prominent.

The quantum Hall states of the Dirac cone appear as arcs instead of the normal straight

lines emanating from ν = 0 because the flat bands and the Dirac cones are filled simultaneously.

Kinks in the Dirac cone states correspond to changes in the flat band chemical potential due to

strong-interaction induced symmetry breaking as has been observed in TBG[5, 6, 7]. To confirm

that these structures are the Landau fan of the additional Dirac cone, in Fig. S5C and D, we

trace out ρ minima for the visible states which we assume are the C = 6, 10 and 14 states for

Dirac cone, labeled by the triangle symbols with different colors. With these traces, we obtain

the positions in magnetic field B6, B10, and B14 as a function of ν for the C = 6, 10 and 14

states respectively. According to Diophantine equation ν − s = Cφ/φ0 (where s is the filling

where the Landau fan emerges from and φ = BA is the magnetic flux through the sample and

A is the sample area), if these structures are quantum Hall states of C = 6, 10, 14, we expect

that 6B6 = 10B10 = 14B14 even with charge carriers split between the Dirac cone and the flat

bands. Fig S5B and C shows the normalized ratio between 6B6, 10B10 and 14B14 and indeed

they are roughly one, confirming that the states originate from the Dirac cone. We also note

that these arcs are not present when the fan diagram is measured with a finite D as shown in

Fig. 1 of the main text. This is consistent with the theoretical prediction that a gap opens at

the Dirac cone when a displacement field is applied, causing the Dirac cones to not fill until

after the flat bands.

S5: Critical temperature and GL coherence length

We extract Tc from ρ(T ) by extrapolating the normal state resisitivty ρN to low temperature by

fitting a line to the high temperature linear ρ in the normal state and finding the temperature

where ρ(T ) = xρN(T ), where x is a percentage. An example of this linear fit for data at 2 T is

shown in Fig S6 as well as ρ(T ) taken at several different magnetic fields. we note that a dip in
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ρ at low temperature is evident in the data even at high B although ρ does not go to zero. A

similar tail of low ρ extending to high field is evident in the dV/dI data and ρ(ν,B), shown in

Fig. S7. It is possible that this dip is due to a vortex phase with non-zero ρ.

This dip in resistivity results in very different results for Tc depending on the choice of x.

Fig. S8 shows this difference for x = 0.1 and x = 0.5. For x = 0.1 we find a linear relationship

as described by the Ginzburg-Landau (GL) theory for a two-dimensional superconductor: Bc =

[Φ0/(2πξ
2
GL)](1−T/Tc) where ξGL is the GL coherence length [8]. For x = 0.1, ξGL = 61 nm. For

x = 0.5 the resulting Tc is much higher and remains above 1.5 K to fields larger than 2 T. It is

also very non-linear, although fitting the low field portion gives ξGL = 13.4 nm. We have chosen

x = 0.1 as the standard for this paper as it more clearly defines the region where we observe

ρ = 0 at low temperature, and agrees well with the measured BKT transtion temperature.

S6: Strong-coupling superconductivity

The rapid increase in Tc with doping in addition to the suppression of superconductivity due to

the van Hove singularity point towards a strong coupling (BEC) scenario for superconductivity
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Figure S 7: B dependence a Differential resistance as a function of DC bias current showing a

long low resistance tail extending to large B. b Resistivity as a function of nu and B also with

low resistivity at larger B.
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Figure S 8: Coherence Length Tc determined using x = 0.1 a and x = 0.5 b. Dashed lines
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Figure S 10: Extracted pairing scale Extracted values of J from the fits to the strong-coupling

model in the hole (a) and electron (b) regions of superconductivity compared with maximum

Tc at each D from Fig. 3 of the main text. We see J and the Tc are correlated.
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where preformed bosonic charge 2e objects are condensed. One such model is the skyrmion

model of superconductivity proposed in Ref. [9] where such bosonic charge 2e objects were

proposed to be topological skyrmion textures in some pseudospin variable. Regardless of the

actual mechanism, a strong-coupling BEC superconductor obtained by condensing charge 2e

objects whose density is ν2e and mass is M2e is characterized by the critical temperature [10]

kBTc =
ν2eπh̄

2

2AMM2e

=
ν2eJ

2
, (6)

Here, we take the filling fraction of the charge 2e objects ν2e to be equal to half the filling fraction

measured relative to half-filling ν = ±2. AM denotes the area of the moiré unit cell and J is

an effective pairing scale. We can use this formula to extract J from our data by fitting Tc(ν)

near its maximum, where we expect this formula to apply. Fig. S9 Shows examples of these fits

in the electron and hole superconducting domes superimposed onto the dome resistivty. Since

the superconductivity appears only in the flavour symmetry broken regions where nH − ν = 2,

where the relevant carrier filling fraction is related to ν = ±2, we constrain the fits so that

Tc(ν = ±2) = 0. The resulting fits agree reasonably well with our data and correspond to

values of J between 2.5 and 3.5 meV on the hole side and 0.6 and 1.2 meV on the electron side.

This is roughly of the same order as the coupling scale predicted theoretically [9]. Moreover, as

shown in Fig. S10, we find that J is correlated with the maximum Tc at a given D as we would

expect if J is a measure of the pairing strength. We note that based on our extracted values of

J we calculate M2e ∼ me for the hole superconductivity and M2e ∼ 3me − 5me for the electron

superconductivity.
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