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We investigate the critical properties of the spin-1 honeycomb antiferromagnet BaNi2V2O8, both
below and above the ordering temperature TN using neutron diffraction and muon spin rotation
measurements. Our results characterize BaNi2V2O8 as a two-dimensional (2D) antiferromagnet
across the entire temperature range, displaying a series of crossovers from 2D Ising-like to 2D XY and
then to 2D Heisenberg behavior with increasing temperature. In particular, the extracted critical
exponent of the order parameter reveals a narrow temperature regime close to TN , in which the
system behaves as a 2D XY antiferromagnet. Above TN , evidence for Berezinsky-Kosterlitz-Thouless
behavior driven by vortex excitations is obtained from the scaling of the correlation length. Our
experimental results are in accord with classical and quantum Monte Carlo simulations performed
for microscopic magnetic model Hamiltonians for BaNi2V2O8.

I. INTRODUCTION

The Berezinsky-Kosterlitz-Thouless (BKT) transition
is a paradigmatic example of a phase transition driven
by topological defects. Due to its paramount importance
in condensed matter physics, the underlying fundamen-
tal concepts of topology were recently distinguished by
the Nobel prize in physics [1, 2]. In low dimensional
magnets, continuous spin rotation symmetry cannot be
spontaneously broken at finite temperatures which, for
example, rules out a finite-temperature transition to a
conventional long-range ordered (LRO) state in a 2D
Heisenberg magnet. While this famous result, known as
the Mermin-Wagner theorem [3], crucially determines the
role of low-energy fluctuations, it does not, however, ap-
ply to all types of phase transitions in low dimensions.
As predicted by Kosterlitz and Thouless and indepen-
dently by Berezinsky, in a 2D magnet with planar spins
(such as in the classical XY model) a quasi-long-range
ordered state with power-law correlations exists below a
finite transition temperature TBKT [1, 4, 5]. This thermal
transition is driven by the proliferation and unbinding of
topological defects in the form of vortices. Below TBKT,
these vortices are bound in vortex/antivortex pairs with
opposite winding numbers. Above TBKT, these pairs de-
confine into a plasma of mobile vortices, which manifest
themselves through an exponential thermal decay of the
correlation length ξ(T ) [2].

BKT phenomena were experimentally observed in
physical realizations of the 2D XY model such as su-
perfluids [6], superconducting thin films [7], 2D organic
magnetic complexes [8, 9] and more recently in a trian-
gular lattice quantum Ising system [10]. However, no

unambiguous solid-state prototype of the 2D XY model
which develops BKT behavior has been established so
far. This is typically due to the presence of additional
terms in the Hamiltonian such as finite interplane cou-
pling, which induces conventional three-dimensional (3D)
magnetic LRO. Complications of this type are indeed en-
countered in various quasi-2D magnets such as K2CuF4,
Rb2CrCl4, BaNi2X2O8 (X = As, P) and MnPS3 [11–16]
in which BKT phenomena were intensively sought. Al-
though these compounds are interesting candidate sys-
tems, their heat capacities have sharp λ-anomalies as-
sociated with a transition to 3D magnetic LRO [17–
19]. Furthermore, they all exhibit 3D critical scaling
and reveal a crossover to 3D XY or 2D XY regimes
only below the transition temperature to conventional 3D
LRO [12, 13, 20–22].

Even though interplane interactions are detrimental to
BKT phenomena, Hakami et al. [23] provided theoreti-
cal evidence that effective 2D XY behavior prevails over
finite regions if these couplings are sufficiently small, the
size of these regions being related to the ratio of the in-
traplane to interplane couplings. Bramwell et al. [24],
studied a finite 2D XY magnet and showed that a tran-
sition to spontaneous finite magnetization occurs in the
absence of interplane coupling, characterized by an ef-
fective 2D XY exponent of β = 0.23. This transition
occurs above the bulk TBKT. Other aspects of the in-
finite 2D XY system, such as the presence of vortices
and the characteristic scaling of the correlation length
are not effected by finite-size effects. Thus, a real mag-
netic compound may be used to explore BKT physics if
the interplane coupling is sufficiently weak to allow 2D
behavior over large length scales, e.g., comparable to the
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magnetic domain size.

Apart from interplane couplings, the realization of in-
tralayer interactions of purely XY-type could pose an-
other obstacle for the observation of BKT behavior in
real solid state materials. However, recent quantum
Monte Carlo simulations reveal that BKT behavior is still
present in 2D Heisenberg magnets perturbed by an easy-
plane anisotropy, even if this anisotropy is very weak [25].
Hence, approximate 2D XY magnets, affected by a com-
bination of small interplane couplings, finite size mag-
netic domains and weak easy-plane anisotropies can still
display BKT phenomena even if they eventually develop
magnetic LRO at low temperatures.

Here, we report a comprehensive investigation of the
spin-1 honeycomb compound BaNi2V2O8, which was re-
cently discovered to be a rare physical realization of
the 2D Heisenberg antiferromagnet (AFM) with XY ex-
change anisotropy and negligible interlayer coupling [26,
27]. Using a combination of experimental and theoreti-
cal techniques we (i) establish a consistent phase diagram
of BaNi2V2O8, (ii) identify the temperature range over
which it behaves as a 2D XY magnet and (iii) provide
signatures of BKT scaling behavior driven by vortices in
BaNi2V2O8 within a 2D XY regime above TN .

BaNi2V2O8 has trigonal crystal structure (space group
R3̄), where the S = 1 Ni2+ magnetic ions form honey-
comb layers that are stacked perpendicular to the c-axis.
The Hamiltonian was shown to have strong AFM 1st-
neighbor (Jn = 12.3 meV), weaker AFM 2nd-neighbor
(Jnn = 1.25 meV) and very weak 3rd-neighbor (Jnnn =
0.2 meV) intralayer Heisenberg couplings. The inter-
layer coupling if present is extremely weak with an up-
per limit on its magnitude of |Jout| < 10−4Jn [27]. In
addition, a weak single-ion XY-anisotropy (DEP(XY) =
0.0695 meV) favours spin directions within the honey-
comb plane, while an even weaker easy-axis anisotropy
(DEA = −0.0009 meV) selects three equivalent in-plane
directions [27]. The system develops conventional Néel
long-range magnetic order first reported below TN =
50 K based on powder neutron diffraction [26]. Here,
we identify TN = 47.75± 0.25 K from single crystal neu-
tron diffraction (Appendix B) and muon spin rotation
measurements (Appendix C).

Further indications for the 2D Heisenberg behavior are
provided by the heat capacity of BaNi2V2O8, which does
not display sharp features at TN [26, 28]. Moreover,
recent single crystal static magnetic susceptibility mea-
surements reveal planar anisotropic magnetic behaviour
above TN , suggesting that BaNi2V2O8 is a promising
candidate to realize the 2D Heisenberg model with XY
anisotropy at finite temperatures and, therefore, could
host BKT physics [27]. Thus far, the relevance of the
BKT scenario was experimentally explored using elec-
tron spin resonance and nuclear magnetic resonance mea-
surements, reporting values of TBKT = 43.3 K [29] and
40.2 ± 0.5 K [30], respectively. On the other hand, the
magnetic properties of BaNi2V2O8 at finite tempera-
tures, such as the order parameter and correlation length

scaling, have not been studied so far. Here we report on
a comprehensive experimental investigation using neu-
tron scattering and susceptibility measurements, which
demonstrate that BaNi2V2O8 is a rare example of a 2D
AFM at all temperatures. We also performed classical
(CMC) and quantum Monte Carlo (QMC) simulations,
which are in accord with the experimental observations
and provide further support for the BKT scenario.

II. METHODS

Single crystals of BaNi2V2O8 were grown in the Core
Lab for Quantum Materials (QMCL) at the Helmholtz-
Zentrum Berlin für Materialien und Energie. Zero-field
(ZF) muon spin rotation (µ+SR) measurements were
performed on a single-crystal sample using the EMU
µ+SR spectrometer at the ISIS Neutron and Muon
Source, UK. The sample was oriented so that the muon
beam was perpendicular to the honeycomb plane and
the muon spectra were measured over the temperature
range 8 - 48.5 K (Appendix D). Weak transverse field
(TF) µ+SR measurements were also performed over 45
- 100 K (Appendix C). Elastic neutron scattering mea-
surements were performed over the temperature range
1.47 - 56 K on the cold neutron triple-axis spectrometer
TASP at the Paul Scherrer Institute (PSI), Switzerland
[31] (Appendix A). The correlation length was also ex-
plored in the range of 48 - 140 K using the TASP in
two-axis mode (Appendix A). The static magnetic sus-
ceptibility was measured at the QMCL, over the range 2
- 640 K as discussed in Ref. [27]. For comparison, CMC
(Appendix J) and QMC (Appendix K) simulations were
performed, based on model Hamiltonians of BaNi2V2O8.

III. RESULTS

We first report the results of the neutron scattering
and muon spin rotation measurements, separately below
and above the magnetic transition temperature TN . This
is followed by a detailed comparison to the theoretical
results from CMC and QMC simulations.

A. Magnetic scaling below TN

We first examine the magnetic properties of
BaNi2V2O8 below TN (Appendix A). Figure 1(a)
shows the integrated intensity I(1,0, 12 ) of the (1,0, 1

2 )

magnetic Bragg peak, as a function of temperature T .
The intensity smoothly decreases with increasing tem-
perature, and starts to drop steeply near 47 K. Above
TN , some residual intensity remains that decreases
gradually to zero, reminiscent of the behaviour predicted
for finite-size 2D XY magnets (see Fig. 1 in Ref. [24]).
Note that this signal is not critical scattering because
these measurements were performed with an analyser.
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FIG. 1. Integrated intensity I(1,0,1/2) of the (1,0,1/2) magnetic Bragg peak measured by neutron scattering plotted (a) as a
function of temperature and (b) as a function of the reduced temperature in a logarithmic scale. (c) The logarithm of the
frequencies f1 and f2 extracted from the ZF-µ+SR spectra and plotted as functions of the reduced temperature in a logarithmic
scale.

Figure 1(b) shows I(1,0, 12 ) on a logarithmic scale as a

function of the reduced temperature, t = (T − TN )/TN .
For single power law behavior I(1,0, 12 ) ∝ |t|2β with the

critical exponent β, the logarithm would follow a linear
dependence, ln I(1,0, 12 ) ∝ 2β ln |t|, whose slope is set by

the value of β. However, we observe that ln I(1,0, 12 ) does

not follow a single straight line but reveals a crossover
around 46 - 46.3 K, which separates two temperature
regions, (I) 30 - 46 K, and (II) 46.3 - 47.5 K. Within
both regimes, ln I(1,0, 12 ) can be fitted independently to a

linear ln |t|-dependence, with effective critical exponents,
βI=0.172±0.001 and βII=0.21±0.013, respectively.
Remarkably, just below TN , the critical exponent βII is
thus close to the value βXY=0.23 predicted for a large
but finite 2D XY system [24]. In a real material like
BaNi2V2O8 such finite-sized effects could arise from the
formation of domains. In contrast, the critical exponent
βI which characterizes the temperature region below
TEA = 46 K, resides between the value for the 2D
XY (β=0.23) and the 2D Ising model (β=0.125). We
attribute this tendency towards the 2D Ising exponent
to the presence of a weak in-plane easy-axis anisotropy
in BaNi2V2O8 [27]. Also note that a recent theoretical
study indeed predicts a continuous range of critical
exponents 0.125 < β < 0.23 for XY magnets with
in-plane easy-axis anisotropy [32].

The critical properties of BaNi2V2O8 were further in-
vestigated by analysing ZF-µ+SR spectra of BaNi2V2O8

over the temperature range 38 - 46 K (the spectra above
46 K were found to be unreliable). Two distinct frequen-
cies were identified in the muon spectrum, which can be
attributed to the presence of two muon stopping sites,
i.e., the muons experience two distinct internal magnetic
fields, which both directly scale with the long-range mag-
netic order (Appendix D).

Figure 1(c) shows the temperature dependence of both
frequencies f1 and f2 on a logarithmic scale as functions
of ln |t|. The best power-law fits were achieved for the
slopes β(f1) = 0.208 ± 0.002 and β(f2) = 0.214 ± 0.002,

respectively. These muon results suggest that the 2D XY
regime in BaNi2V2O8 persists down to 38 K, in contrast
to the neutron data, which suggest a tendency toward
Ising-like behavior below TEA = 46 K. This difference can
be attributed to the different time-scales probed by muon
and neutron spectroscopy: The neutrons are faster than
the muons and therefore slow fluctuations appear effec-
tively static for the neutrons, while the muons which are
more sensitive, correctly identify them as dynamic. In-
deed, a comparison of the neutron and muon data reveals
that the muons observe a lower magnetization than the
neutrons (Appendix E), further supporting this point.
We can imagine a scenario in which just below TN the
spins order antiferromagnetically along a general direc-
tion in the XY plane with fluctuations about this direc-
tion, while below TEA = 46 K the fluctuations occur pre-
dominantly toward the easy-axis directions, giving rise to
the reduction of the critical exponent observed in the neu-
tron data. This quenching however, does not affect the
critical exponents extracted from the ZF-µ+SR spectra,
as the muons assign these fluctuations to spin dynamics.

The value of the scaling exponent of approximately
0.21 near TN , extracted from both the neutron and muon
data, falls slightly below the value of 0.23 quoted for a
2D XY finite-sized system. It should be mentioned how-
ever, that this effective exponent actually varies within
the range 0.21 - 0.23, depending on the size of the fi-
nite system, and a value of 0.23 would be expected only
for larger domains [24]. As will be demonstrated below,
a 2D XY scaling regime also emerges for temperatures
just above TN , further suggesting the relevance of BKT
physics for BaNi2V2O8.

B. Magnetic scaling above TN

To quantify the magnetic properties of BaNi2V2O8

above TN , the thermal decay of the spin-spin corre-
lations was investigated. The correlation length ξ(T )
was extracted as the inverse full-width-at-half-maximum
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(FWHM) of the energy-integrated magnetic signal at
wavevector (1, 0, 1

2 ), measured over the temperature
range 48 - 140 K. In the following, we compare ξ(T ) to
various theoretical scaling forms. However, such theo-
retical expressions for ξ(T ) are typically based on con-
tinuum descriptions and as such, apply when ξ(T ) ex-
tends well beyond the microscopic lattice scale, which
for BaNi2V2O8 is set by the shortest distance dNi =
2.90 Å between neighboring Ni2+ ions within the ab-
plane. Therefore, in the following, we consider ξ(T ) only
over the temperature range 48 - 68 K, where the condi-
tion ξ > dNi is satisfied (the gray filled circles in Fig. 2).
The correlation length over the entire temperature range
from 48 to 140 K is provided in Appendix F.

Near criticality, the correlation length typically follows
a power law scaling ξ ∝ tν as a function of the reduced
temperature t = (T − TN )/TN . Here, the correlation
length exponent ν characterizes the universality class of
the thermal phase transition. In particular, ν takes on
the value ν = 1, 0.64, 0.66, 0.7 for the 2D Ising, 3D Ising,
3D XY and 3D Heisenberg universality class, respectively
[33]. We first observed that such a single power law scal-
ing is inappropriate to describe the thermal decay of the
correlation length in BaNi2V2O8 within the considered
temperature range of 48 - 68 K. As shown in Fig. 2, the
fits to 3D Ising, 3D XY and as well as 3D Heisenberg scal-
ing deviate significantly from the data below 54 K. In
contrast, the 2D Ising scaling clearly overestimates the
data at the lower temperatures, although it does yield
better agreement than the other power laws. A similar
analysis of the correlation length on a logarithmic scale
as a function of ln t confirms that ξ(T ) is not fitted well
by any single power law within the relevant temperature
regime 48 - 68 K (Appendix G).

As a next step, ξ(T ) was fitted to the expression for the
2D Heisenberg magnet inside the classical regime [34]:

ξ(T ) ∼ exp

(
2πρs
kBT

)
·

(
1− kBT

4πρs
+O(T )2

)
. (1)

Here, ρs is a non-universal number, quantifying an effec-
tive spin-stiffness. The dashed blue line through the data
in Fig. 2 shows the best fit of ξ(T ) to the above expres-
sion, achieved for ρs = 7.01±0.23 meV over the range 48 -
68 K . These results imply that the 2D Heisenberg model
gives a good description of ξ(T ) for temperature above
51 - 52 K, even though it does not take into account the
anisotropies and the interlayer coupling. However, this
isotropic model does not reproduce the experimental data
in the lower temperature regime closer to TN , an obser-
vation that can be attributed to the planar anisotropy.

Since neither a conventional power law nor the 2D
Heisenberg model scaling describe the spin-spin corre-
lations of BaNi2V2O8 accurately over the temperature
range just above the TN , we also analyzed ξ(T ) in terms
of the BKT exponential scaling law for the 2D XY model,

which reads

ξ(T ) ∼ exp

(
b

√
TBKT

T − TBKT

)
. (2)

Here, b is a non-universal number and TBKT the BKT
transition temperature. The dashed-dotted red line in
Fig. 2 presents the best fit of Eq. (2) to the exper-
imental data for BaNi2V2O8, achieved with TBKT =
44.95 ± 0.11 K, and b set to 1.5 [2], respectively. We
indeed find that the BKT scaling of ξ(T ) accurately fol-
lows the thermal decay of ξ over the entire explored tem-
perature range, 48 - 68 K. A comparison of the BKT
model expression to the other scenarios thus reveals that
it describes the magnetic fluctuations of BaNi2V2O8 sig-
nificantly better than the 2D Heisenberg model or a con-
ventional power law. The superiority of BKT model over
the power laws is further confirmed by the analysis of
ξ(T ) on a logarithmic scale given in Appendix H.

Finally, ξ(T ) was fitted to the BKT expression over
several temperature ranges extending from 48 K up to
Tmax, using different values of Tmax=55, 60, 66 K, in
order to assess the robustness of the extracted value
of TBKT. These fits are provided in Appendix I
and reveal that TBKT lies within the range 44.44 K<
TBKT <44.95 K, where TBKT = 44.44 K and TBKT =
44.95 K are extracted for the temperature ranges 48 -
55 K and 48 - 68 K, respectively. We take the mean value
of TBKT = 44.70 ± 0.25 K as our best estimate for the
BKT transition temperature. Since TBKT is lower than
TN , the quasi-ordered state is in fact hidden by the on-
set of LRO at TN . Nevertheless, deconfined vortex/anti-
vortex excitations are expected to occur in the regime
just above TN , which we indeed quantify below using
a microscopic model description for the magnetism in
BaNi2V2O8.

C. Comparison with microscopic models

To further benchmark the BKT physics in BaNi2V2O8

with respect to microscopic details, classical (CMC) and
quantum (QMC) simulations were performed, based on
model Hamiltonians for BaNi2V2O8 in order to (i) com-
pare with the magnetic susceptibility recently measured
on a single crystal [27] and (ii) verify the values of TBKT

extracted from the analysis of ξ(T ).
Figures 3(a) and (b) show comparisons of the CMC

and QMC results to the experimental data, respectively.
The solid black and green lines present the magnetic sus-
ceptibility for a constant magnetic field of B = 1 T,
applied parallel (χ||c) or perpendicular (χ⊥c) to the c-
axis, respectively, where the c-axis is perpendicular to
the easy plane [27]. At high temperature, the suscepti-
bility of BaNi2V2O8 behaves isotropically and the broad
maximum at 150 K is attributed to low-dimensional spin-
spin correlations. Upon decreasing T below Tani ≈ 80 K,
the susceptibilities χ||c and χ⊥c split, revealing that
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FIG. 2. Correlation length ξ(T ) as a function of temperature
T . (a) compares the fit of the BKT expression (goodness of
fit, χ2 = 7.5) to fits of conventional power law scaling with
an exponent fixed to ν = 1 (2D Ising, χ2 = 13.2), ν = 0.64
(3D Ising, χ2 = 62.7), ν = 0.66 (3D XY, χ2 = 58.7), and
ν = 0.7 (3D Heisenberg, χ2 = 50.2). The inset shows the
low temperature region in detail. (b) compares the fits to
the 2D Heisenberg model (χ2 = 9.7) and the BKT expression
(χ2 = 7.5).

the planar anisotropy is already evident well above TN .
The out-of-plane susceptibility χ||c has a minimum at
TXY = 52 K, which is attributed to the crossover to a
regime dominated by the XY-anisotropy, below which
the spins lie mostly within the honeycomb easy-plane,
according to recent QMC simulations performed for the
S = 1

2 square lattice [25]. Indeed, this is consistent
with the previous section where we also found that below
about 51 K, the isotropic 2D Heisenberg model scaling
fails to follow the correlation length ξ(T ) in BaNi2V2O8.

The dashed-dotted blue and cyan lines in Fig. 3(a)
present the CMC results for χ||c and χ⊥c, respectively,
using the Hamiltonian for BaNi2V2O8, but without the
interlayer coupling (Appendix J). Both χCMC

⊥c and χCMC
||c

are in good agreement with the experimental data at high
temperatures. In particular, the position of the broad
maximum matches the experimental value very well. Be-
low this maximum, χCMC

||c and χCMC
⊥c decrease smoothly,

revealing an anisotropic splitting around Tani ≈ 80 K,
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FIG. 3. The magnetic susceptibility of BaNi2V2O8 measured
in a magnetic field of 1 T applied parallel (solid black line) and
perpendicular (solid green line) to the c-axis [27]. The dashed-
dotted blue and cyan lines (dashed red and magenta lines) on
panel (a) [(b)] show the results of CMC (QMC) computations,
respectively. The inset shows the average angle αab between
the magnetic moments and the honeycomb plane as computed
using CMC.

as found also in the experimental data. This character-
istic temperature can be quantified from the computed
average angle between the spins and the easy-plane. At
high temperature this angle αab resides at 32.7◦, corre-
sponding to the average out-of-plane component for a
randomly oriented three-component spin [cf. the inset of
Fig. 3(a)]. Below TCMC

ani ≈ 80 K, αab starts to decrease,
clearly indicating the onset of the easy-plane behavior.
At lower temperatures, only qualitative agreement is ob-
served between the experimental data and the CMC cal-
culations. Indeed, χCMC

||c displays the characteristic min-

imum at TCMC
XY ≈ 70 K which is somewhat higher than

the experimental value of TXY = 52 K. This difference is
attributed to the neglect of quantum fluctuations in the
CMC simulations.

Before quantifying further the effects of quantum fluc-
tuation in terms of QMC simulations, we demonstrate
that the CMC computations support the presence of
spin-vortex states in BaNi2V2O8 at finite temperatures.
Figures 4(a), (b), and (c) show example CMC real-space
configurations for T = 23, 46 and 92 K, respectively. The
CMC simulations reveal a conventionally ordered AFM
ground state at T = 0 K. According to the BKT the-
ory, the density of spin-vortex excitations is low at small
temperatures and, indeed, we observe no vortices within
the computed domain at T = 23 K. Upon increasing
temperature, a finite density of bound vortex-antivortex
pairs is observed at T = 46 K. For T = 92 K, the den-
sity of vortex excitations is significantly larger and they
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(a) T=23 K

(c) T=92 K(b) T=46 K

FIG. 4. (a)-(c) Example configurations from CMC simula-
tions of the honeycomb lattice where every second spin is ar-
tificially flipped for simplicity at (a) T = 23 K, (b) T = 46 K
and (c) T = 92 K. The spin directions are indicated by col-
ors, and the intensity of the color quanifies the size of the
out-of-plane component. Closed (open) black circles indi-
cate vortices (antivortices) and the red ring highlight vortex-
antivortex pairs.

now form a deconfined plasma, i.e., their binding into
vortex-antivortex pairs is no longer discernible. These
observations clearly reveal that BKT physics is relevant
for the magnetism of BaNi2V2O8.

We estimate the BKT transition temperature within
the CMC simulations based on the real space spin-spin
correlation function C(r). BKT theory predicts that
C(r) decays below TBKT as a function of spin separa-
tion r according to a power law C(r) ∝ r−η(T ), where
η = 1/4 at TBKT. Based on this criterion, we get
TCMC

BKT = 55 K. This temperature is again higher than
TBKT = 44.695 ± 0.255 K estimated from fitting the ex-
perimental ξ(T ) above TN . This difference can again be
attributed to the fact that CMC does not account for
quantum fluctuations, which we would expect to reduce
TBKT.

To account for the presence of quantum fluctua-
tions in our theoretical modeling of the magnetism in
BaNi2V2O8, QMC simulations were performed for this
S = 1 system (Appendix K). However, in order to avoid
the sign problem in QMC, a simplified Hamiltonian for
BaNi2V2O8 has to be used, which includes only the 1st-
neighbor interaction Jn and the easy-plane anisotropy
DEP(XY). The dashed red and magenta lines in Fig. 3(b)
present the QMC simulations of the magnetic suscepti-

bility parallel (χQMC
||c ) and perpendicular (χQMC

⊥c ) to the

c-axis, respectively. The best agreement with the exper-

imental data was achieved for JQMC
n = 8.07 meV and

DQMC
EP(XY) = 0.04556 meV (Appendix L). Note that JQMC

n

is significantly smaller than the coupling Jn = 12.3 meV
of the original Hamiltonian for BaNi2V2O8. This dif-
ference can be attributed to the exclusion of the frus-
trated interactions Jnn as well as Jnnn. Indeed, when
the spin-wave dispersions of BaNi2V2O8 are fitted us-
ing the simplified Hamiltonian, the best fit is achieved
for Jn = 8.8 meV and DEP(XY) = 0.099 meV, in good
agreement with the QMC estimates (Appendix N).

A comparison of the experimental data with the scaled

susceptibilities χQMC
⊥c and χQMC

||c reveals remarkably good

quantitative agreement over the full temperature range.

χQMC
⊥c and χQMC

||c display an anisotropic splitting that

matches the one observed in the experimental data below

Tani ≈ 80 K. Furthermore, χQMC
||c shows the characteris-

tic minimum at TQMC
XY = 51.55 K, which is in accord with

the experimental value TXY = 52 K. The nature of this
minimum was verified by performing QMC computations
for the Hamiltonian without the DEP(XY) term. The re-
sults shown in Appendix M reveal no minimum in the

out-of-plane susceptibility χQMC
||c for DEP(XY) = 0, hence

confirming the connection between the minimum at TXY

and the crossover to the planar regime. Based on the
spin-spin correlation function C(r) from the QMC sim-

ulations, we furthermore extract TQMC
BKT = 40.2 K, which

is in reasonable agreement with TBKT = 44.70 ± 0.25 K
extracted from the experimental data.

IV. DISCUSSION

Our experimental investigation reveals that
BaNi2V2O8 behaves as an ideal 2D magnet over
the explored temperature range up to 140 K. A corre-
sponding phase diagram as a function of temperature
is presented in Fig. 5, displaying several distinct tem-
perature regimes, in which various anisotropies become
relevant. The correlation length in combination with
magnetic susceptibility, and supported by the results of
classical and quantum Monte Carlo simulations, reveal
that BaNi2V2O8 behaves as an isotropic 2D Heisenberg
magnet at high temperatures above Tani ≈ 80 K. A
weak XY-anisotropy is observable below Tani which
becomes significant below TXY = 52 K defining thus a
2D XXZ regime with only a weak planar anisotropy for
TXY < T < Tani, and a 2D XY regime with dominant
planar fluctuations for T < TXY. The critical exponent
of the order parameter, as extracted from the elastic
neutron measurements, reveals that the 2D XY behavior
extends below TN = 47.75 K down to TEA = 46 K,
defining thus a 2D XY regime for TEA < T < TXY.
Below TEA, the effective exponent β from neutron
measurements tends towards the theoretical value of
the 2D Ising model, which can be associated with
the presence of Ising-like fluctuations due to the weak
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FIG. 5. Phase diagram of BaNi2V2O8 as obtained from our
experiments where the different phases are identified by the
different shaded colors. Filled black and blue circles show the
temperature dependence of the integrated intensity I(1,0,1/2)
of the (1,0,1/2) magnetic Bragg peak and the correlation
length, respectively. The solid dark red and green lines show
the magnetic susceptibility measured in applied fields perpen-
dicular and parallel to the c-axis, respectively.

in-plane easy-axis anisotropy DEA. This signature of
2D Ising-like behaviour is however not observed in the
muon measurements which instead suggest that the 2D
XY regime extends down to much lower temperatures.
This disagreement is attributed to the different time
scale of the muon and neutron probes and indicates that
below TEA = 46 K the magnetic moments are actually
slowly fluctuating towards the easy-axis directions,
rather than statically pointing along them. It is worth
emphasizing that due to its six-fold symmetry the
in-plane easy-axis anisotropy is not expected to suppress
the BKT behavior [35].

We now discuss the nature of the phase transition to
static magnetic order at TN in BaNi2V2O8, which is char-
acterized by the 2D XY critical exponent and, therefore,
is not induced by the 2D Ising easy-axis anisotropy or
3D couplings. Such a transition is prohibited by the
Mermin-Wagner theorem in the thermodynamic limit of
an ideal 2D XY magnet, however, as shown by Bramwell
et. al. [24], spontaneous static magnetization always oc-
curs in a finite system, even in the absence of interplane
coupling. These finite regions can be large and in a real
material like BaNi2V2O8 could be due to domains. The
domains might either be static, such as structural do-
mains, or reflect the existence of more dynamic and tem-
perature dependent magnetic domains. In the presence
of a weak interplane coupling Jout, the domain length-
scale Ldomain, must be smaller than Leff = dNi

√
Jn/|Jout|

where Jn is the intraplane coupling, in order for the tran-

sition to retain its 2D XY character. The relevance of
this scenario for BaNi2V2O8 is suggested by the agree-
ment of the measured critical exponent β = 0.21± 0.013
with the theoretical value β = 0.23 for a finite size 2D
XY magnet. We speculate that just below TN, the do-
mains can exhibit any in-plane magnetic ordering direc-
tion, whereas below TEA the moments fluctuate towards
the in-plane easy-axes set by the Ising anisotropy. Inelas-
tic neutron scattering does not provide evidence for in-
terplane interactions Jout, but only sets the upper bound
of |Jout| < 10−4Jn which, however, allows a lower bound
on Leff to be estimated as Leff > 74.5 nm. However,
since Ldomain < Leff , this lower bound on Leff does not
provide information on the size of the domains Ldomain.
This may be the topic of a future investigation.

Finally, we observe that BaNi2V2O8 exhibits BKT
physics. In particular, the BKT scaling accounts well for
the thermal behavior of the correlation length and better
than any of the other conventional models. The extracted
BKT transition temperature TBKT = 44.70±0.25 K falls
below TN , as expected for finite 2D XY systems [23, 24],
and its value is in overall agreement with the previously
reported values of 43.3 K [29] and 40.2 K [30]. The resid-
ual differences may be attributed to differences in the val-
ues of TN and the analyzed temperature regions. CMC
simulations based on the Hamiltonian of BaNi2V2O8

confirm the presence of vortex excitations, and yield
TCMC

BKT = 55 K, while quantum Monte Carlo using a sim-

plified, sign-problem free model yields TQMC
BKT = 40.2 K

respectively.
In conclusion, this comprehensive experimental and

theoretical investigation identifies BaNi2V2O8 as a rare
example of an ideal 2D magnet at all temperatures, un-
like most quasi-2D magnetic compounds which instead
show clear indications for 3D critical behavior. Our
main achievements are (i) the development of a consistent
understanding of the critical behaviour of BaNi2V2O8

both below and above TN , (ii) the identification of dis-
tinct temperature regimes where the system behaves as a
finite-size 2D XY, 2D XXZ, and 2D Heisenberg antiferro-
magnet, (iii) the confirmation of BKT-scaling behaviour
and (iv) agreement of our experimental results with clas-
sical and quantum Monte Carlo simulations using mag-
netic model Hamiltonians for BaNi2V2O8.
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Appendix A: Experimental details for the neutron
scattering measurements

The single crystal neutron scattering measurements of
BaNi2V2O8 were performed on the cold neutron triple-
axis spectrometer, TASP, at the Paul Scherrer Institute
(PSI), Switzerland. The instrument was equipped with
an vertically focused Pyrolytic Graphite (002) PG(002)
monochromator and a horizontally focused PG(002)
analyser. A single crystal sample with a mass of 550 mg
was placed inside an Orange Cryostat which cooled it
down to the base temperature of T = 1.47K K. The
measurments were performed within the (h-k

2 ,k,h
2 ) scat-

tering plane which allowed the (1,0, 1
2 ) magnetic Bragg

peak to be reached.
For the measurements of the critical exponent and or-

dering temperature TN, the analyser was set flat and the
final wavevector was fixed at kf = 1.23 Å−1 providing a
energy resolution of 0.074 meV which was determined by
measuring the full-width-at-half-maximum (FWHM) of
the elastic incoherent scattering at base temperature. To
improve the statistics, elastic scans of both sample angle
(A3) and wavevector transfer Qh were performed through
the (1,0, 1

2 ) magnetic Bragg peak at many temperatures
within the range 1.47-56 K. The directions of these mea-
surments are shown in Fig. A.1 by the purple and green
lines, respectively, where the longitudinal Qh scans were
perfomed along the (h,0,h

2 ) direction. The Qh and A3
resolution widths were found to be ∆Qh = 0.010 (r.l.u.)
and ∆A3 = 0.468◦, respectively, by fitting the FWHM
of these scans at base temperature using the Pearson VII
function. This function was found to provide the best
description of the instrumental resolution function.

To measure the temperature dependence of the corre-

T""" 

I 

2.4 

2.2 

2.0 

1.8 

� 1.6 
� 

i 1.4

;:: 1 .2 

1.0 

0.8 

0.6 

0 

T N
=4 7 .5-4 7. 75 K

--- inverse FWHM of the 

(1,0, 1/2) magnetic Bragg peak 

10 20 30 40 50 60 

T (K) 

FIG. B.1. The inverse FWHM width of the elastic neutron
A3-scans through the (1,0, 1

2
) magnetic Bragg peak plotted as

a function of temperature.

lation length, the TASP spectrometer was used in two-
axis diffraction mode with the analyser removed so that
both elastic and inelastic signals were measured simul-
taneously. A PG filter and 40’ collimator were placed
between the monochromator and sample and the inci-
dent wave vector was fixed at ki = 2.662Å−1. A3-scans
through the (1,0,1

2 ) position were measured at 1.47 K
and over the temperature range from 48 to 68 K in steps
of 0.25 and 1 K (purple line in Fig. A.1). The A3 an-
gle resolution was ∆A3 = 0.387◦ as determined from the
FWHM of the scan through the (1,0, 1

2 ) magnetic Bragg
peak at base temperature.

The correlation length was also investigated by mea-
suring transverse Qk-scans through the (1,0, 1

2 ) position
(orange line in Fig. A.1) to improve the statistics and
check the reproducibility of the results. These measure-
ments were performed over the temperature range 48 to
140 K with steps of 0.25, 0.5, 1, 2, 5, 10 and 40 K depend-
ing on the temperature region. The TASP instrument
settings were kept the same as for the A3-scans. The
measurements were performed in the (h-k

2 ,k,h
2 ) scattering

plane along the (1-k
2 ,k, 1

2 ) direction. The Qk resolution
was found to be ∆Qk = 0.0102 (r.l.u.) as determined
from the FWHM of the scan at base temperature.

To extrect the correlation length from the Q and A3-
scans collected in two-axis mode, these scans were fitted
by a Lorentzian function convolved with the respective
resolution function. The correlation lengths ξA3 and ξQ
were taken to be the inverse of the FWHM of this fitted
Lorentzian converted to the units of inverse Ångstrom.
ξA3 and ξQ were found to be in good agreement with each
other and were fitted simultaneously during the analysis.
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FIG. C.1. Temperature dependence of the nonmagnetic vol-
ume fraction of the muon signal measured in weak transverse
field. The solid red line gives the best fit using Eq. (C3)

Appendix B: TN from the neutron measurements

When a magnetic system has long range magnetic or-
der, its magnetic Bragg peaks are delta functions whose
experimental FWHM is determined only by the resolu-
tion function. On heating, the loss of the long-range
magnetic order at TN leads to a finite broadening of this
peak. Thus, the FWHM of the magnetic Bragg peak is a
sensitive parameter to investigate the ordering tempera-
ture.

Figure B.1 shows the inverse FWHM of the (1,0, 1
2 )

magnetic Bragg peak of BaNi2V2O8 plotted as a function
of temperature over the range 1.5 to 56 K. The FWHM
was determined by fitting the PearsonVII function to this
peak at each temperature. The results reveal that the
inverse FWHM is constant at finite temperatures below
T < 47.5 K within the fitting error, while above T =
47.75 K it sharply decreases. This suggests that TN =
47.75 K.

Appendix C: TN from µ+SR measurements in weak
transverse field

Muon spin rotation measurements were also used to de-
termine the value of the Néel temperature. Weak trans-
verse field (TF) µ+SR measurements were performed on
a single crystal of BaNi2V2O8 using the EMU spectrom-
eter at the ISIS Neutron and Muon Source, UK [36]. The
sample was oriented so that the muon beam was perpen-
dicular to the honeycomb plane of the crystal. The data
were collected over the temperature range 45-100 K in a
transverse magnetic field of BTF = 20 G. The high tem-
perature spectra measured above T = 47.5 K were fitted
by the function [37]:

A(t) = ATF · e−λt cos(ωTFt+ φ) +Aλbg
e−λbgt, (C1)

where t is time, ATF is the amplitude of the muon spin
oscillations due to the applied transverse field and ωTF

is the Larmor precession frequency of these oscillations
which for BTF = 20 G is ωTF = 0.27 MHz. The expo-
nential prefactor describes the damping of the oscillations
with relaxation rate λ. The second non-oscillating term
describes the background contribution.

At temperatures below TN a second oscillation mode
was clearly observed in the data which is caused by the
static local internal field due to the long-range magnetic
order. To account for this, the fitting function becomes

A(t) = ATF · e−λt cos(ωTFt+ φ)

+Ast · e−λstt cos(ωstt+ φst) +Aλbg
e−λbgt.

(C2)

Here, Ast, λst, ωst and φst are the muon fraction, damp-
ing, frequency and phase of the second oscillation respec-
tively. Figure C.1 shows the temperature dependence of

the non-magnetic volume fraction V (T ) =
ATF(T )

ATF(100)
which

is obtained from the extracted amplitudes ATF(T ), nor-
malized to the amplitude ATF(100) at the highest temper-
ature T = 100 K. The fraction of 18% remaining below
TN is associated with the fly-past mode used in the ex-
periment.
To extract the transition temperature TN, the tempera-
ture dependence was fitted using the sigmoid-like func-
tion [38, 39]:

V (T ) =
1

1 + exp(TN−T
δT )

+ bg; (C3)

where bg is the background and δT describes the width of
transition. The Néel temperature was found to be TN =
47.7± 0.01 K which is in good agreement with the TN =
47.75 K estimated from the temperature dependence of
the neutron diffraction measurements.

Appendix D: Zero-field µ+SR measurements

Zero-field µ+SR measurements were performed on a
single-crystal of BaNi2V2O8 using the EMU spectrome-
ter at the ISIS Neutron and Muon Source, UK [36]. The
sample was oriented so that the muon beam was per-
pendicular to the honeycomb plane of the crystal and
measurements took place for temperatures in the range
8-48.5 K. Figure D.1(a) shows the ZF-µ+SR spectrum
collected at T = 8 K. There are clear oscillations caused
by the internal magnetic field of the sample due to the
long-range magnetic order. The oscillations are modu-
lated suggesting the presence of two frequencies which
can be assigned to two inequivalent muon stopping sites
with different internal fields. To extract these frequencies
the data was fitted using the function:

A(t) =

2∑
i=1

Aie
−λit cos(2πfit) +Abg (D1)
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FIG. D.1. ZF-µ+SR spectra at (a) T = 8 K, (b) T = 48 K
and (c) T = 48.5 K. The single crystal sample was oriented
so that the beam was parallel to the c-axis.
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FIG. D.2. The temperature dependence of the two frequen-
cies, f1 (blue triangles) and f2 (black circles), over the tem-
perature range 8 - 47.5 K, extracted from the ZF-µ+SR spec-
tra by fitting eq.(D1). The red squares show the temperature
dependence of frequency f1 multiplied by the factor of 1.28.

Here, A1 and A2 are the amplitudes and f1 and f2 are
the frequencies of the two muon sites respectively. The
non-oscillating term Abg describes the background sig-
nal due to the interaction of the muons with the silver
sample holder. The best fit at 8 K was achieved for
f1 = 3.946 ± 0.002 MHz and f2 = 5.066 ± 0.002 MHz.
These frequencies are related to the internal fields |Bi|, of
the two muon sites via the relation fi = γµ|Bi|/2π where
γµ is the muon gyromagnetic ratio.

To explore the temperature dependence of the os-
cillations observed at 8 K, the ZF-µ+SR spectra of
BaNi2V2O2 were measured at finite temperatures over

the range 8 - 48.5 K. The extracted frequencies f1 and
f2, are plotted as a function of temperature on Fig. D.2
where they are represented by the blue triangles and
black circles respectively. Although the values of the two
frequencies are different, they display the same temper-
ature dependence up T = 46 K suggesting that these
frequencies arise from two different muon stopping sites
which observe the same magnetic behavior. Indeed, as
shown on Fig. D.2, when f1 is scaled by the factor 1.28,
it matches f2 over the temperature range 8 - 46 K. More-
over, the amplitude ratio is found to be 2:1 which is con-
sistent with the trigonal crystal structure of this com-
pound.

Above T = 46 K the frequencies display noticeably
different thermal behavior and at T = 47.5 K f2 disap-
pears. At T = 48 K, the oscillations become almost un-
observable in the spectrum (Fig. D.1(b)) and the fit does
not converge, therefore the extracted frequency is unre-
liable and is excluded from Fig.D.2. At temperatures
above T = 48 K, the oscillations disappear as shown by
Fig. D.1(c) which gives the spectrum at T = 48.5 K.

The inconsistent thermal behavior of the frequencies
above T = 46 K can be attributed to the limitation of the
muon technique in the vicinity of the transition. Indeed,
the high relaxation rates of the oscillations in a critical
region make the fitting of the data unreliable. Indeed, for
temperatures just below TN , the internal fields are very
weak and the corresponding muon oscillations have low
frequencies that cannot be accurately determined due to
the limited temporal resolution. Thus, for the analysis
of the order parameter described in the main text, only
the data below 46 K was used.

Appendix E: Comparison of magnetization from the
muon and neutron measurements

The black circles on Fig. E.1 show the temperature
dependence of the integrated intensity of the (1,0,1/2)
magnetic Bragg peak extracted from the elastic neutron
scans, which is proportional to the square of the mag-
netization M2

n. The blue squares show the temperature
dependence of the squared magnetization M2

m measured
using µ+SR spectroscopy. Here, M2

m was calculated from
the temperature dependence of the frequencies f1 and
f2 observed in the ZF-µ+SR spectra. These frequen-
cies were averaged, taking into account their respective
weights. The temperature dependence of the averaged
frequency fav is related to the temperature dependence
of the averaged internal magnetic field |Bav| at the muon
sites. |Bav| was calculated at each temperature using
the relation 2πfav=γµ|Bav|, where γµ is the muon gy-
romagnetic ratio and M2

m was taken as M2
m ∝ |Bav|2.

The values of M2
m and M2

n were scaled such that they
match each other at the lowest measured temperatures
of 20 - 30 K. Indeed, if the system is fully static at low
temperatures, then the magnetic order should be equally
observed by both muon and the neutron techniques.
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The comparison of M2
m and M2

n for temperatures be-
tween 38 K and TN reveals that the muons observe lower
static fields for BaNi2V2O8 than the neutrons. This dif-
ference can result from the different time scales of the
muon and neutron spectroscopes. In particular, neu-
trons might not distinguish the slow spin-fluctuations of
BaNi2V2O8 and, therefore, attribute them to static sig-
nal, while muons correctly identify their dynamics. We
note that the value of M2

m is higher than that of M2
n at

8K . This indicates that the system is not fully static
even at 20K -30K where the scaling was done.

Appendix F: Correlation length over the full
temperature range

Figure F.1 shows the correlation length, ξ(T ), of
BaNi2V2O8 plotted over the full temperature range up
to 140 K, as extracted from the inverse FWHM of the
energy-integrated magnetic signal at wavevector (1, 0, 1

2 )
after taking into account the resolution broadening. At
68 K, ξ(T ) is comparable to the nearest neighbor in-plane
Ni2+-Ni2+ distance, dNi = 2.90 Å.

Appendix G: Algebraic scaling analysis of ξ on
logarithmic scale

In order to establish whether the correlation length
of BaNi2V2O8 follows conventional power law scaling,
ξ ∝ t−ν , the correlation length was plotted on a logarith-
mic scale as a function of the logarithm of the reduced
temperature t, over the temperature range 48 - 68 K.
Figure G.1 reveals that ln ξ does not follow a straight
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FIG. F.1. The correlation length ξ(T ), as a function of tem-
perature T up to 140 K.
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FIG. G.1. Correlation length as a function of the reduced tem-
perature on a logarithmic scale over the temperature range
48-68 K. The lines show fits to the conventional power laws
ν = 1 (2D Ising, χ2=10.89), ν = 0.64 (3D Ising, χ2=57.7),
ν = 0.66, (3D XY, χ2=53.43), and ν = 0.7, (3D Heisenberg,
χ2=45.47)

line as a function of ln t, therefore no single power law
scaling can describe ξ(T ) well. None of the fits to the
conventional power laws (2D Ising, 3D Ising, 3D XY and
3D Heisenberg) agree with the data over the entire tem-
perature range, although the 2D Ising model gives better
agreement than the others.
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ing (ν = 1, χ2=10.89), the 2D Heisenberg model scaling
(χ2=11.93) and the BKT scaling (χ2=6.98).

Appendix H: BKT scaling compared to other 2D
models.

Figure H.1 shows ln ξ plotted as a function of ln t
over the temperature range 48 - 68 K. The fit to the
2D Ising model scaling, which was found to yield a bet-
ter agreement than the other conventional powers (see
Appendix G is shown. The resulting straight line no-
ticeably deviates from the experimental data, especially
close to TN , for ln t <∼ −4. The fit to the 2D Heisenberg
model (Eq. (1) in the main text) is also shown It deviates
strongly from the experimental data for ln t < −2.68,
and thus 2D Heisenberg model scaling describes ξ well
only for temperatures above 51 K. Finally, we include
the BKT scaling formula (Eq. (2) from the main text).
We find that the BKT model reproduces the data over
the entire explored temperature range, and especially in
the vicinity of TN , where neither the power laws nor the
2D Heisenberg model follow the data.

Appendix I: BKT scaling of ξ(T ) over different
temperature ranges

The correlation length were analyzed using BKT the-
ory over several temperature regions, from 48 K to Tmax,
where Tmax = 66, 60 and 55 K, to assess the sensitiv-
ity of the extracted value of TBKT on the temperature
range used in the fitting. The results are presented on
Fig.I.1 and reveal that TBKT lies within the range of
44.44 K< TBKT < 44.95 K. Therefore, TBKT is fairly in-
sensitive to the explored temperature range and can be
averaged to the value TBKT = 44.70± 0.25 K for further
analysis.
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FIG. I.1. Correlation length of BaNi2V2O8 fitted using the
BKT formula over the temperature range from 48 K to Tmax

where (a) Tmax = 66 K (b) Tmax = 60 K (c) Tmax = 55 K.

Appendix J: Details of Classical Monte Carlo
simulations

For our classical Monte Carlo calculations we use a
standard single-spin update Metropolis algorithm for a
lattice with N = 1560 honeycomb sites and periodic
boundary conditions. After a sufficiently long equilibra-
tion time the real space spin configurations, spin corre-
lations and magnetic susceptibility χµ (µ = x, y, z) are
obtained from the numerical outputs for different tem-
peratures T . The susceptibility χµ is calculated from

χµ(T ) =
1

kBT
〈(Mµ − 〈Mµ〉)2〉 , (J1)

where Mµ is the µ-component of the magnetization

Mµ =
∑N
i=1 S

µ
ri . To eliminate statistical noise, the sus-

ceptibility is averaged over 400000 Monte Carlo steps
(where one step consists of N single-spin updates). Like-
wise, the spin correlations

Cµ(r) =
1

N

N∑
i=1

〈SµriS
µ
ri+r〉 (J2)

are calculated as a function of the distance r = |r| and
the resulting correlation function Cµ(r) is fitted against
an exponential decay ∼ e−r/ξ for large temperatures
(above the BKT temperature) and an algebraic decay
∼ r−η for small temperatures (below the BKT temper-
ature). The temperature T = 55K where the inplane
correlation functions Cx(r), Cy(r) show an exponent
η = 1/4 and the correlations change from an algebraic
to an exponential behavior is identified as the BKT tran-
sition temperature. At selected Monte Carlo times and
for various different temperatures, snapshots of the real-
space spin configurations are analyzed with respect to
the occurrence of vortices, see Fig. 4(a)-(c) of the main
text. For each hexagon of the honeycomb lattice, we
consider the azimuthal angles (i.e., inplane spin orienta-
tions) φa (a = 0, 1, . . . , 5) for the six adjacent honeycomb
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sites. To find the winding number w of a possible vor-
tex located at this hexagon we calculate the differences
∆φa = φa+1 − φa (with φ6 ≡ φ0) which, due to the
2π-periodic property of azimuthal angles, can be defined
such that they obey −π < ∆φa ≤ π. The winding num-
ber w associated with the spin configuration around a
hexagon is then given by w =

∑5
a=0 ∆φa/(2π). In Fig.

4(a)-(c) of the main text, we mark a vortex with w = 1
(w = −1) by a closed (open) sphere.

Appendix K: Details of Quantum Monte Carlo
simulations

For the QMC simulations, we used the stochastic se-
ries expansion quantum Monte Carlo method with the
directed loop update [40–42] for the Hamiltonian

H = JQMC
n

∑
〈i,j〉

Si · Sj +
∑
i

hani
i . (K1)

The parallel susceptibility χ‖c was measured by introduc-
ing the anisotropy

hani
i = DQMC

EP(XY)(S
z
i )2, (K2)

which is diagonal in the standard Sz computational basis.
In order to access χ⊥c, the introduced anisotropy was

hani
i = DQMC

EP(XY)(S
x
i )2 (K3)

=
DQMC

EP(XY)

4

(
(S+
i )2 + S+

i S
−
i + S−i S

+
i + (S−i )2

)
,

which is off-diagonal, but can still be sampled without a
sign problem within the framework of the directed loop
update. This global spin rotation allows us to readily
measure both susceptibilities in the Sz basis. We find
that the reported results are converged to the thermody-
namic limit within the statistical error bars for L = 42.

Appendix L: Scaling of the QMC simulations to the
experimental data

The QMC computations provide the magnetic suscep-

tibility χQMC
red (ζ) in terms of the dimensionless parameter

ζ = kBT/J
QMC
n , which is scaled to compare to the ex-

perimental data to

χQMC(T ) =
NA (gQMC)2 µ2

B

JQMC
n

χQMC
red (kBT/J

QMC
n ) + χdia,

(L1)
where NA is the Avogadro number, g is the g-factor, µB
the Bohr magneton and χdia a constant associated with
the diamagnetic contribution. The best agreement with
the experimental data was achieved for JQMC

n = 8.07

meV, gQMC
||c = 2.07, gQMC

⊥c = 2.17 and χdia of or-

der 10−4 cm3/mol Ni. These g-factors are similar to
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FIG. M.1. Magnetic susceptibility of BaNi2V2O8 parallel and
perpendicular to the c-axis obtained by QMC simulations
with and without the DEP(XY) term.

the experimentally measured values of g||c = 2.225 and
g⊥c = 2.243 [29].

Appendix M: Results of QMC computations for the
Hamiltonian without the DEP(XY) term

Fig. M.1 presents the QMC simulations of the magnetic
susceptibility parallel and perpendicular to the c-axis
computed for the Hamiltonian of BaNi2V2O8 with and
without the DEP(XY) term. The results reveal isotropic
behavior for the magnetic susceptibility computed with-
out the anisotropy term over the entire temperature
range.

In contrast, the magnetic susceptibility computed for
the Hamiltonian with planar anisotropy reveals strongly
anisotropic behavior. In particular, the magnetic suscep-
tibility computed parallel to the c-axis has a character-
istic minimum. Thus, these computations confirm that
the term DEP(XY) is responsible for the anisotropy and,
also, for the minimum at TXY = 51 K observed in the

χQMC
||c . Therefore, the minimum at TXY observed in the

experimental susceptibility can be associated with the
crossover to the XY-dominated regime.

Appendix N: Simplified Hamiltonian of BaNi2V2O8

The magnetic excitation spectrum of BaNi2V2O8 was
measured at low temperatures in the magnetically or-
dered phase using inelastic neutron scattering. The data
were used to obtain the Hamiltonian by fitting it to
spin-wave theory, where the first three intraplane near-
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FIG. N.1. Single crystal magnetic excitation spectrum of BaNi2V2O8 along the (0,k,0) direction (a) measured at T = 3.5 K [27]
and (b) computed using the spin-wave theory. (c) Computed energy scan at Q=(1,0,0). The calculations used the Hamiltonian
(Eq. (N1)( with parameters Jn = 8.8 meV, Jout = −0.00045 meV, DEP(XY) = 0.099 meV and DEA = −0.0014 meV.

est neighbour interactions, the interplane interaction, the
easy-plane anisotropy and the weak in-plane easy-axis
single-ion anisotropy of the Ni2+ magnetic ions were con-
sidered. The instrument settings of these experiments as
well as the data analysis are discussed in Ref. [27].

Because a simplified Hamiltonian was used for the
QMC calculations, the spectrum was refitted to verify
the accuracy of this Hamiltonian. Fig. N.1(a) shows
the measured spin-waves along the (0,k,0) direction while
Fig. N.1(b) shows the corresponding spectrum computed
using the SpinW MatLab library [43] for the simplified
Hamiltonian:

H = Jn
∑
〈i,j〉

Si · Sj + Jout

∑
〈i,j〉′

Si · Sj

+
∑
i

DEP(XY)(S
c
i )

2 +
∑
i

DEA(Sxi )2
(N1)

Here, Jn and Jout are the first-neighbor intraplane and
interplane magnetic exchange couplings, while DEP(XY)

and DEA are the easy-plane and in-plane easy-axis single-
ion anisotropies, respectively. The simulations were per-
formed for all three twins and the results were aver-
aged. The values Jn = 8.8 meV, Jout = −0.00045 meV,
DEP(XY) = 0.099 meV and DEA = −0.0014 meV pro-
vided the best agreement with the data (see Fig. N.1(b)).
In particular, Jn is responsible for the energy scale of the
dispersion shown in Fig. N.1(a), while the parameters
DEP(XY) and DEA generate the energy gaps at the anti-
ferromagnetic zone center. The sizes of these gaps were
extracted by fitting the experimental data corrected for
resolution effects and were found to be E1 = 0.41 meV
and E2 = 3.25 meV [27]. Figure N.1(c) presents the
energy scan at Q=(1,0,0) computed for the best fit pa-
rameters which reproduces both the gaps. The extracted
values Jn = 8.8 meV and DEP(XY) = 0.099 meV are very
similar to the ones obtained by fitting the QMC simula-
tions to the susceptibility data.
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and B. Pilawa, “Determining the Berezinskii-Kosterlitz-
Thouless coherence length in BaNi2V2O8 by 51V nmr,”
Phys. Rev. B 91, 214412 (2015).

[31] F. Semadeni, B. Roessli, and P. Böni, “Three-axis spec-
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jakushina, A. Bussmann-Holder, and H. Keller, “Oxy-
gen isotope effects on the superconducting transition
and magnetic states within the phase diagram of
Y1−xPrxBa2Cu3O7−δ,” Phys. Rev. Lett. 101, 077001
(2008).

[40] Anders W. Sandvik, “Stochastic series expansion method
with operator-loop update,” Phys. Rev. B 59, R14157–

R14160 (1999).
[41] Anders W. Sandvik and Juhani Kurkijärvi, “Quantum

monte carlo simulation method for spin systems,” Phys.
Rev. B 43, 5950–5961 (1991).

[42] Patrik Henelius and Anders W. Sandvik, “Sign problem
in monte carlo simulations of frustrated quantum spin
systems,” Phys. Rev. B 62, 1102–1113 (2000).

[43] S Toth and B Lake, “Linear spin wave theory for single-q
incommensurate magnetic structures,” J. Phys. Condens.
Matter 27, 166002 (2015).

http://dx.doi.org/10.1103/PhysRevB.82.212504
http://dx.doi.org/10.1103/PhysRevB.82.212504
http://dx.doi.org/10.1103/PhysRevLett.101.077001
http://dx.doi.org/10.1103/PhysRevLett.101.077001
http://dx.doi.org/10.1103/PhysRevB.59.R14157
http://dx.doi.org/10.1103/PhysRevB.59.R14157
http://dx.doi.org/10.1103/PhysRevB.43.5950
http://dx.doi.org/10.1103/PhysRevB.43.5950
http://dx.doi.org/10.1103/PhysRevB.62.1102
http://stacks.iop.org/0953-8984/27/i=16/a=166002
http://stacks.iop.org/0953-8984/27/i=16/a=166002

	Signatures for Berezinsky-Kosterlitz-Thouless critical behaviour in the planar antiferromagnet BaNi2V2O8 
	Abstract
	I Introduction
	II Methods
	III results
	A Magnetic scaling below TN
	B Magnetic scaling above TN
	C Comparison with microscopic models

	IV Discussion
	 Acknowledgments
	A Experimental details for the neutron scattering measurements
	B TN from the neutron measurements
	C TN from +SR measurements in weak transverse field
	D Zero-field +SR measurements
	E Comparison of magnetization from the muon and neutron measurements
	F Correlation length over the full temperature range
	G Algebraic scaling analysis of  on logarithmic scale
	H BKT scaling compared to other 2D models.
	I BKT scaling of (T) over different temperature ranges
	J Details of Classical Monte Carlo simulations
	K Details of Quantum Monte Carlo simulations
	L Scaling of the QMC simulations to the experimental data
	M Results of QMC computations for the Hamiltonian without the DEP(XY) term
	N Simplified Hamiltonian of BaNi2V2O8
	 References


