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We investigate the role of generic scale invariance in a Mott transition from a U(1) spin-liquid
insulator to a Landau Fermi-liquid metal, where there exist massless degrees of freedom in addition
to quantum critical fluctuations. Here, the Mott quantum criticality is described by critical charge
fluctuations, and additional gapless excitations are U(1) gauge-field fluctuations coupled to a spinon
Fermi surface in the spin-liquid state, which turn out to play a central role in the Mott transition. An
interesting feature of this problem is that the scaling dimension of effective leading local interactions
between critical charge fluctuations differs from that of the coupling constant between U(1) gauge
fields and matter-field fluctuations in the presence of a Fermi surface. As a result, there appear
dangerously irrelevant operators, which can cause conceptual difficulty in the implementation of
renormalization group (RG) transformations. Indeed, we find that the curvature term along the
angular direction of the spinon Fermi surface is dangerously irrelevant at this spin-liquid Mott
quantum criticality, responsible for divergence of the self-energy correction term in U(1) gauge-
field fluctuations. Performing the RG analysis in the one-loop level based on the dimensional
regularization method, we reveal that such extremely overdamped dynamics of U(1) gauge-field
fluctuations, which originates from the emergent one-dimensional dynamics of spinons, does not
cause any renormalization effects to the effective dynamics of both critical charge fluctuations and
spinon excitations. However, it turns out that the coupling between U(1) gauge-field fluctuations
and both matter-field excitations still persists at this Mott transition, which results in novel mean-
field dynamics to explain the nature of the spin-liquid Mott quantum criticality. We discuss physical
implications of effective one-dimensional spin dynamics and extremely overdamped gauge dynamics
at the Mott quantum criticality.

I. INTRODUCTION

Although quasi-two-dimensional organic charge trans-
fer salts such as (BEDT − TTF )2X have their com-
plex structures given by molecular clusters, an effective
Hubbard-type model on the triangular lattice system has
been suggested to describe low-energy dynamics of these
strongly correlated electrons at half filling1. In partic-
ular, κ − (BEDT − TTF )2Cu2(CN)3 exhibited their
paramagnetic Mott insulating behaviors at low tempera-
tures, where NMR measurements did not show any char-
acteristic features such as line broadening or spectrum
shift2. Moreover, heat capacity measurements confirmed
the temperature-linear coefficient, implying the existence
of a Fermi surface in the Mott insulating phase3. On
the other hand, thermal conductivity measurements sug-
gested a gap-like behavior at lower temperatures, imply-
ing potential instability of the Fermi surface4. These
experimental results seem to indicate that the param-
agnetic Mott insulating phase may be identified with a
spin liquid state. Furthermore, the Lieb-Schultz-Mattis
(LSM) theorem5 and its higher-dimensional generaliza-
tions by Oshikawa6 and Hastings7, which states that a
translation-invariant lattice model of the spin-1/2 sys-
tem can not have a short-range entangled ground state
preserving both spin and translation symmetries, implies
that a symmetric gapped ground state has to be topolog-
ically ordered, in other words, a quantum spin liquid8.

An interesting point in these quasi-two-dimensional
organic charge transfer salts is that the Mott quan-
tum criticality is universal regardless of the nature of
the ground state9. For example, both κ − (BEDT −
TTF )2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 are para-
magnetic Mott insulators, suggesting spin liquid ground
states, while κ− (BEDT −TTF )2Cu[N(CN)2]Cl shows
an antiferromagnetic Mott insulating ground state1.
However, it turns out that the scaling behavior of the
electrical resistivity in the vicinity of the Mott transition
at finite temperatures shows the universal bifurcation be-
havior as a function of the scaled temperature, where the
critical scaling exponent νz for the energy scale is similar
to each other within the range from 0.49 to 0.689. Here,
ν is the correlation length critical exponent and z is the
dynamical critical exponent. νz is the correlation energy-
scale critical exponent. Considering that all these Mott
transitions occur at finite temperatures even above the
Neel temperature, we suspect that the universality of the
Mott quantum criticality in these quasi-two-dimensional
organic charge transfer salts may be involved with essen-
tially the same quantum phase transition from a spin-
liquid Mott insulator to a Landau Fermi-liquid metal.
Recently, this universality has been investigated based on
the dynamical mean-field theory (DMFT) framework10.
Here, the Mott quantum criticality originates from the
emergence of localized magnetic moments in the vicin-
ity of the Mott transition, where their critical dynamics
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occurs only in the time direction, thus characterized by
the infinite dynamical critical exponent. Interestingly,
this DMFT framework could explain the universal bifur-
cation behavior of the electrical resistivity as a function
of the scaled temperature, where the theoretical value of
the energy-scale critical exponent νz shows reasonable
match with experiments.

In the present study, we investigate spin-liquid Mott
quantum criticality for a Mott transition from a U(1)
spin-liquid state to a Landau’s Fermi-liquid phase based
on the renormalization group (RG) analysis. An inter-
esting feature of this problem is that there are two types
of massless excitations near the quantum critical point.
One massless excitations are critical charge fluctuations
involved with this Mott transition, and the other gapless
ones are U(1) gauge-field fluctuations coupled to a spinon
Fermi surface in the spin-liquid state. This physical sit-
uation is in contrast to the conventional case, referred to
as generic scale invariance11, where there exist massless
degrees of freedom in addition to quantum critical fluctu-
ations. This generic scale invariance gives rise to the fact
that the scaling dimension of effective leading local inter-
actions between critical charge fluctuations differs from
that of the coupling constant between U(1) gauge fields
and matter-field fluctuations in the presence of a Fermi
surface12. As a result, there appear dangerously irrele-
vant operators13, which can cause conceptual difficulty
in the implementation of RG transformations. Indeed,
we find that the curvature term along the angular direc-
tion of the spinon Fermi surface is dangerously irrelevant
at this spin-liquid Mott quantum criticality, responsible
for divergence of the self-energy correction term in U(1)
gauge-field fluctuations.

Performing the RG analysis in the one-loop level based
on the technique of dimensional regularization, we re-
veal that such extremely overdamped dynamics of U(1)
gauge-field fluctuations, which originates from the emer-
gent one-dimensional dynamics of spinons, does not cause
any renormalization effects to the effective dynamics of
both critical charge fluctuations and spinon excitations.
However, it turns out that the coupling between U(1)
gauge-field fluctuations and both matter-field excitations
still persists at this Mott transition, which results in novel
mean-field dynamics to explain the nature of the spin-
liquid Mott quantum criticality.

This paper is organized as follows. First, we intro-
duce an effective field theory for spin liquid Mott quan-
tum criticality in section II. Reviewing on the U(1) slave-
rotor representation of the Hubbard Hamiltonian14, we
construct an effective field theory which consists of two
sectors: Spin dynamics given by the ansatz of a U(1)
spin-liquid ground state is described by spinons with a
Fermi surface, and critical charge dynamics for the Mott
transition is represented by “relativistic” holons with its
typical local interaction term, both of which are cou-
pled to U(1) gauge-field fluctuations12. Second, we per-
form the RG analysis of the one-loop level in section III.
Our scaling analysis for this effective field theory con-

firms the existence of a dangerously irrelevant operator,
here, the curvature term of the angular direction of the
spinon Fermi surface, which causes the divergence of a
Landau damping term for U(1) gauge-field fluctuations.
Then, we introduce an effective renormalized action and
its counter terms for the preparation of RG transfor-
mations, regarded to be a completely typical procedure.
We calculate such counter terms in the one-loop level
with the introduction of the divergent Landau damping
term and obtain RG β−functions for coupling constants
and Callan-Symanzik equations for correlation functions.
Third, we summarize our main results and their physical
implications in the concluding section IV.

Before going to the main body of this paper, we would
like to point out the main difference between the present
study and our recent investigation12, performed by two
of the authors. First of all, the divergent self-energy in
gauge field which results from the dangerously irrelevant
curvature term has been introduced into the RG anal-
ysis of essentially the same effective field theory. This
extremely overdamped dynamics of U(1) gauge-field fluc-
tuations does not cause any renormalization effects to the
effective dynamics of both critical charge fluctuations and
spinon excitations beyond the previous investigation. Al-
though these two papers share the emergence of effective
one-dimensional spin dynamics in a qualitative aspect,
RG β−functions of coupling constants and critical expo-
nents in correlation functions differ from each other as a
result of the generic scale invariance.

II. EFFECTIVE FIELD THEORY FOR
SPIN-LIQUID MOTT QUANTUM CRITICALITY

A. Review on the U(1) slave-rotor representation
of the Hubbard Hamiltonian

We start our discussions, reviewing the U(1) slave-
rotor representation of the Hubbard Hamiltonian, which
describes a Mott transition from a U(1) spin-liquid
insulator to a Landau’s Fermi-liquid metal14. Since
this construction has been discussed in various previous
studies15,16, one who is familiar to this parton construc-
tion may skip this review section.

We consider the partition function

Z =

∫
Dciσ exp

[
−
∫ β

0

dτ
{∑

i

c†iσ(∂τ − µ)ciσ +H
}]
,

where the Hubbard Hamiltonian is given by

H = −t
∑
ij

(c†iσcjσ +H.c.) + U
∑
i

ni↑ni↓. (1)

Here, ciσ is an electron field with spin σ =↑, ↓ at site

i in the path integral representation, and niσ = c†iσciσ
is an electron-density field with spin σ. µ is the chem-
ical potential to control the filling of electrons, here fit
to be at half filling. t is the hopping integral between
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nearest neighbor sites i and j, and U is the strength of
on-site Hubbard interactions. The Einstein convention
has been used for the spin summation in the kinetic en-
ergy term. β is the inverse temperature in the partition
function. We note that quasi-two-dimensional organic
charge transfer salts form anisotropic triangular lattice
structures, resulting in anisotropic hopping integrals17.

Decomposing the interaction term into the charge and
spin part as ni↑ni↓ = 1

2 (ni↑ + ni↓)
2 − 1

2 (ni↑ − ni↓)2, one
may decompose spin part into the spin singlet and triplet
sectors, where Uc(1) × Us(1) global symmetry has been
considered. Here, the subscripts c and s represent charge
and spin, respectively. One can generalize this decompo-
sition into the way to manifest SUc(2) × SUs(2) global
symmetry16. Since we are considering the U(1) spin-
liquid ground state as an ansatz for the Mott insulating
phase of κ−(BEDT−TTF )2Cu2(CN)3, spin-triplet ex-
citations are gapped, thus safely neglected in the present
study. Performing the Hubbard-Stratonovich transfor-

mation for this spin singlet sector, we obtain

Z =

∫
DciσDφi exp

[
−
∫ β

0

dτ
{∑

i

c†iσ(∂τ − µ+ iφi)ciσ

−t
∑
ij

(c†iσcjσ +H.c.) +
1

U

∑
i

φ2
i

}]
, (2)

where φi is an effective potential field.
To realize a spin-liquid state, we consider a parton con-

struction referred to as U(1) slave-rotor representation14:
Separating the electron field into the bosonic charge part
(holon) and the fermionic spin part (spinon) in the fol-
lowing way

ciσ = e−iθifiσ, (3)

we can reformulate the effective partition function Eq.
(2) as

Z =

∫
DfiσDθiDφi exp

[
−
∫ β

0

dτ
{∑

i

f†iσ(∂τ − µ+ iφi)fiσ − t
∑
ij

(f†iσe
iθie−iθjfjσ +H.c.) +

1

U

∑
i

(∂τθi + φi)
2
}
.

(4)

We note that the effective potential field has been shifted
from φi to φi + ∂τθi in the last term15,16.

The final step for the mean-field theory analysis in the
parton construction is to decompose the kinetic-energy
term in the following way

Z =

∫
DfiσDθiDχ

f
ijDχ

b
ijDφi exp

[
−
∫ β

0

dτ
{∑

i

f†iσ(∂τ − µ+ iφi)fiσ − t
∑
ij

(f†iσχ
f
ijfjσ +H.c.)

+
1

U

∑
i

(∂τθi + φi)
2 − t

∑
ij

(e−iθjχbjie
iθi +H.c.) + t

∑
ij

(χfijχ
b
ji +H.c.)

}
. (5)

Here, tχfij and tχbji are effective hopping integrals of
spinons and holons, respectively, where both spin and
charge dynamics are renormalized by strong correlations
in the spin-liquid state. For the mean-field theory anal-
ysis, it is conventional to replace eiθj with bj , where the

uni-modular constraint b†i bi = 1 is introduced into the
effective action by a Lagrange multiplier field in the path
integral formulation. This Lagrange multiplier field plays
the role of an effective mass term for holons, which con-
trols their condensation when U/t is tuned. The previ-
ous saddle-point analysis confirmed the existence of uni-

form mean-field solutions given by 〈f†iσfjσ〉 = χb and

〈bib†j〉 = χf in the vicinity of the holon condensation
transition, which shows that a spin-liquid Mott insulating
phase can be realized in an anisotropic Hubbard model
on the triangular lattice system18.

The next inevitable task is to investigate the stabil-
ity of this mean-field theory analysis for the Mott tran-
sition. Introducing low energy fluctuations of all kinds
of order parameter fields, which result from all types
of Hubbard-Stratonovich transformations, into the above
effective lattice field theory, we obtain
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Z = Zc

∫
DfiσDbiDaijDaiτDλi exp

[
−
∫ β

0

dτ
{∑

i

f†iσ(∂τ − µeff + iaiτ )fiσ − tχf
∑
ij

(f†iσe
iaijfjσ +H.c.)

+
1

U

∑
i

(−ib†i∂τ bi + aiτ )2 +m2
∑
i

(b†i bi − 1)− tχb
∑
ij

(b†je
iajibi +H.c.) + i

∑
i

λi(b
†
i bi − 1)

}]
. (6)

Here, Zc = e−βL
2(2ztχfχb) is the contribution from the

condensation energy of effective hopping order-parameter
fields, where z is the coordination number and L2 is the
total number of lattice sites. µeff is an effective chem-
ical potential to keep the half-filling condition of elec-
trons. m2 ∝ U/t− (U/t)c is an effective mass parameter
of holons, given by the mean-field theory analysis with
respect to the Lagrange multiplier field for the holon
constraint. aiτ is the low-energy fluctuation field of φi
around its saddle-point value, which can be interpreted
as the time component of the U(1) gauge field. aij is

that of χfij and χbji near their uniform mean-field values,
which can be identified with the spatial component of
the U(1) gauge field. λi is that of the Lagrange multi-

plier field to impose the uni-modular constraint around
its saddle-point value, which gives rise to mass fluctua-
tions. This hardcore rotor constraint is sometimes soft-
ened to be i

∑
i λi(b

†
i bi − 1)→ λ

∑
i(b
†
i bi)

2, expected not
to change the nature of this Mott quantum criticality.

It is essential to notice that this effective field theory
has U(1) gauge symmetry, given by

fiσ → eiαifiσ, bi → eiαibi, aij → aij − αi + αj ,(7)

where the electron field ciσ = b†ifiσ is also gauge invariant
as it should be.

Now, it is straightforward to take the continuum limit
of this lattice field theory, given by

Z = Zc

∫
DfσDbDaDaτ exp

[
−
∫ β

0

dτ

∫
d2x
{
f†σ

(
∂τ − µeff + iaτ − tχf∇2

)
fσ + itχfa ·

(
f†σ
(
∇fσ

)
−
(
∇f†σ

)
fσ

)
+tχfa2f†σfσ +

1

U

(
− ib†∂τ b+ aτ

)2
+m2b†b+

λ

4
(b†b)2 + b†(−tχb∇2)b+ itχba ·

(
b†
(
∇b
)
−
(
∇b†

)
b
)

+ tχba2b†b

+
1

4e2
fµνfµν

}]
, (8)

where fµν = ∂µaν − ∂νaµ is the field strength tensor for
U(1) gauge-field fluctuations with µ, ν = 0, 1, 2 for
d = 2. The gauge-field dynamics arises from quantum
fluctuations of both spinons and holons.

In this study, we solve this effective field theory beyond
the saddle-point analysis and investigate the nature of
the spin-liquid Mott quantum criticality based on the
RG transformation in the one-loop level.

B. Effective field theory for spin-liquid Mott
quantum criticality

The Mott transition from the U(1) spin-liquid Mott in-
sulator to the Landau’s Fermi-liquid metal is expressed
by the Higgs transition in the effective field theory Eq.
(8) when the holon mass parameter m2 ∝ U/t− (U/t)c is
tuned. Then, the spinon Fermi surface of the U(1) spin
liquid state evolves into a real Fermi surface of the Lan-
dau’s Fermi-liquid phase, where the quasiparticle weight
is given by the probability amplitude of holon conden-
sates. In spite of this smooth connection, there exists
essential difference in the dynamics of Fermi surface fluc-
tuations. To describe the low-energy dynamics of fermion

excitations near the Fermi surface, it is natural to expand
the dispersion relation near the Fermi surface. Then, one
can see that the dispersion of the angular direction along
the Fermi surface is dimensionless for the quasiparticle
dynamics in the Landau’s Fermi-liquid state. This scal-
ing property is important in the Shankar’s RG analysis
for the Landau’s Fermi-liquid state19. On the other hand,
it has been shown that the dispersion of the angular direc-
tion along the Fermi surface acquires its anomalous scal-
ing dimension when there are gapless excitations coupled
to the Fermi surface20,21. To deal with this anomalous
Fermi-surface dynamics in the presence of critical fluctu-
ations, Sung-Sik Lee proposed a patch construction of the
Fermi surface, where the dispersion of the angular direc-
tion plays the role of a curvature term in the linear disper-
sion near the Fermi surface. Dividing the Fermi surface
into patches, he investigated the coupling nature between
Fermi-surface patches in the presence of U(1) gauge-field
fluctuations. Interestingly, scattering of spinons between
different patches turns out to be irrelevant at low ener-
gies due to the anomalous scaling dimension of the an-
gular directional dispersion, which originates from cou-
pling to massless U(1) gauge-field excitations. As a re-
sult, a double-patch Fermi-surface model has been pro-
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posed for quantum critical dynamics of Fermi-surface
excitations22,23, where critical bosonic excitations occur
at the zero ordering wave vector.

Our situation is more complicated: In addition to U(1)
gauge-field fluctuations coupled to the spinon Fermi sur-
face, there are massless holon excitations involved with
the Mott quantum criticality, also coupled to U(1) gauge-
field fluctuations. In principle, we have to consider all
directions of U(1) gauge fields because holon excitations
interact with such U(1) gauge-field fluctuations with all
momentum directions. We recall that only one direction
of gauge-field excitations is enough to describe the U(1)
spin-liquid state with a spinon Fermi surface, referred
to as the double patch construction as discussed above,
where charge fluctuations are gapped. In this respect it
is not completely clear whether the patch-decoupling na-
ture still survives or not. To check out the validity of the
double patch construction in the present case, we revisit
the patch construction, where the patch index is given
by a subscript θs. See Fig. 1 (a). Here, θ covers from 0
to π while s = ± indicates two partner patches for given
θ in the double-patch minimal model construction, i.e.,
θ− = θ+ + π. See Fig. 1 (c). Below, we do not some-
times show the subscript s as the patch index for concise
notation. For each Fermi-surface patch which is on angle
θ, we linearize the spinon dispersion as follows

−iω − µ+ tχfk2 → −iω + s vfkθ,d−1 + tχfk2
θ,d, (9)

where vf = 2tχfkF is the Fermi velocity and 0 ≤ θ < π
is the patch index. We recall s = ± at given θ and d = 2.
We point out that this local patch coordinate near the
Fermi surface can be translated into the the momentum
of the global coordinate at the origin as follows

(
cos θ − sin θ
sin θ cos θ

)(
kd−1

kd

)
=

(
kθ,d−1

kθ,d

)
, (10)

well shown in Fig. 1 (c), where (kd−1, kd) is the mo-
mentum of the global coordinate at the origin and
(kθ,d−1, kθ,d) is that of the local patch coordinate at
the Fermi surface. We point out that there are two
types of UV cutoffs: Λf and Λa are spinon and gauge-
field UV cutoffs, respectively, where Λa is larger than
Λf . Λa � Λf is the origin of the property of patch
decoupling20,21.

Based on these discussions, we obtain an effective field

kF-kF 0+0-

π/2+

π/2-

π/4+

π/4-

3π/4+

3π/4-
2Λf

k1

k2

2Λa

(a) (b)

Gauge field
 coupled to a patch

θ+

θ-

(c)

k1

k2

aθ

k θ1
k θ2

q θ

q
θ

FIG. 1. The patch construction for a spinon Fermi surface.
(a) Patches with a patch index 0 ≤ θs < π. Here, s = ±
denotes two partner patches in the minimal model of the dou-
ble patch construction. (b) Two types of UV cutoffs near the
spinon Fermi surface. Λf and Λa are spinon and gauge-field
UV cutoffs, respectively, where Λa is larger than Λf . Λa � Λf
is the origin of the property of patch decoupling20,21. (c) Co-
ordinate transformation between the momentum of the global
coordinate at the origin and that of the local patch coordinate
at a Fermi-surface patch. Here, qθ is the momentum of the
U(1) gauge field aθ in the local patch coordinate.

theory in the patch construction as follows

S = Sf + Sb + Sa + Sfa + Sba,

Sf =

∫
kθ

f†σθs(kθ)
(
ik0 + s vfkθ,d−1 + tχfk2

θ,d

)
fσθs(kθ),

Sb =

∫
k

b†(k)

(
1

U
k2

0 + tχbk2 +m2

)
b(k)

+
λ

4

∫
k,p,q

b†(k + q)b(k)b†(p− q)b(p),

Sa =
1

2

∫
q

ai(−q)(q2δij − qiqj)aj(q),

=
1

2

∫
qθ

aθ(−qθ)(q2
0 + qθ

2)aθ(qθ),

Sfa = −vfe
∫
kθ,qθ

s aθ(qθ)f
†
σθs

(kθ + qθ)fσθs(kθ)

+ tχfe2

∫
kθ,pθ,qθ

aθ(−pθ + qθ)aθ(pθ)f
†
σθs

(kθ + qθ)fσθs(kθ),

Sba = −2tχbe

∫
k,q

kiai(q)b
†(k + q)b(k)

+ tχbe2

∫
k,p,q

ai(−p+ q)ai(p)b
†(k + q)b(k). (11)

Here, we introduced
∫
k

=
∫
d3k/(2π)3 for the integral ex-
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pression, q2 = q2
0 +q2 for the gauge-field dynamics in Sa,

and the Einstein convention has been used for the θ index
summation. First of all, we consider the Coulomb gauge
q · a(q) = qiai(q) = 0 with i = 1, 2, which gives rise to
decoupling between potential and spatial gauge fluctua-
tions. Then, the time component of the U(1) gauge field
can be safely neglected in this expression because such
potential fluctuations are gapped due to the presence of
a Fermi surface, referred to as Debye screening24. We em-
phasize that the fermion dynamics near the Fermi surface
is described by the local patch coordinate (kθ,d−1, kθ,d)
with d = 2 as shown in Sf of Eq. (11) while the boson
dynamics is expressed by the global coordinate (kd−1, kd)
near the origin as shown in Sb of Eq. (11). In this respect
we show both coordinate expressions for gauge-field fluc-
tuations as shown in Sa of Eq. (11), coupled to both
matter-field fluctuations, and these gauge-field actions
are interchanged by the coordinate transformation Eq.
(10).

We recall that spinons fσθs in a given patch couple to
gauge-field excitations with a direction perpendicular to
the patch, here denoted as aθ in the same direction of
qθ,d−1. See Sfa of Eq. (11). As a result, such gauge-field
fluctuations in all momentum directions will get quan-
tum corrections from fermion excitations of the corre-
sponding patch. On the other hand, holon excitations
cause quantum corrections to gauge-field fluctuations of
any momentum directions and vice versa. See Sba of Eq.
(11). Again, this is the reason why the gauge-field dy-
namics is expressed by both local patch and global origin
coordinates as shown in Sa of Eq. (11). To investigate
renormalization effects from Sba of Eq. (11), we resort
to the global coordinate representation. On the other
hand, when we examine gauge field-spinon quantum cor-
rections, we consider the local patch coordinate. An es-
sential point is that the decoupling nature of the patch
construction still holds in the presence of critical charge
fluctuations. Following Sung-Sik Lee’s argument20,21,
one can show that patch mixing does not occur for the
Sf + Sa + Sfa sector in the low-energy limit, which re-
sults from the anomalous scaling dimension of the Fermi-
surface curvature term in the presence of gapless gauge-
field fluctuations. Furthermore, we observe that it does
not occur for the RG transformation of the Sb+Sa+Sba
sector in the one-loop level, either, when the global co-
ordinate representation is translated into the local patch
representation. It is clear that the patch mixing cannot
happen except for the partner patch of the double patch
construction at least in the one-loop level RG analysis.
Although we suspect that this patch-decoupling nature
will be preserved beyond the one-loop RG analysis, we
cannot give clear proof at present.

To perform the RG transformation in this complex
problem, we resort to the dimensional regularization
technique. In particular, we extend the time dimen-
sion, keeping the spatial dimension being two25,26. This
regularization technique extends the codimension of the
Fermi surface, preserving its dimension as one. Al-

though this codimensional regularization method breaks
the global symmetry of the original dimension, it does not
cause UV-IR mixing, which means that the IR physics
is not purely determined from its low-energy effective
field theory but involved with its UV data, for exam-
ple, the size of the Fermi surface, the UV cutoff, and
etc.. The patch mixing is one source of the UV-IR mix-
ing phenomena27, which does not arise in the one-loop
RG analysis. However, we claim that the Landau damp-
ing term has to be modified from the conventional case in
the presence of a dangerously irrelevant operator, where
the UV cutoff is introduced. This point will be discussed
below in more details. We combine two spinon fields of
the partner patch in the double patch construction as
follows25,26

ψσθ(k) =

(
fσθ+(kθ)

f†σθ−(kθ)

)
. (12)

Then, it is straightforward to take the codimensional reg-
ularization as12

S = Sf + Sb + Sa + Sfa + Sba,

Sf =

∫
kθ

ψ̄σθ(kθ)(iΓ ·K + iγd−1δkθ )ψσθ(kθ),

Sb =

∫
k

b†a(k)

(
1

U
K2 + tχbk2

)
ba(k),

+
λ

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p− q)bb(p)

Sa =
1

2

∫
q

ai(−q)(Q2 + q2)δijaj(q),

Sfa =
ivfe√
N

∫
kθ,qθ

aθ(qθ)ψ̄σθ(kθ + qθ)γ5γd−1ψσθ(kθ)

Sba = −2tχbe√
N

∫
k,q

kiai(q)b
†
a(k + q)ba(k)

+
tχbe2

N

∫
k,p,q

ai(−p+ q)ai(p)b
†
a(k + q)ba(k).

(13)

Here, the frequency dimension given by k0 and q0

is extended to d − 2 dimensions described by K =
(k0, k1, ..., kd−2) and Q = (q0, q1, ..., qd−2), respectively.
Accordingly, the Dirac gamma matrix γ0 for the fre-
quency sector is generalized as Γ = (γ0, γ1, ..., γd−2),
where a generalized form of γ5 = γ0γ1 · · · γd−2γd−1

has been also introduced into Sfa. Although the dia-
magnetic coupling term is not shown explicitly in Sfa,
its role has to be taken into account in order to pre-
serve the U(1) gauge symmetry in the perturbative RG
analysis28. δkθ = vfkθ,d−1 + tχfk2

θ,d is the linearized dis-
persion relation of spinons near the Fermi surface, where
the anomalous scaling dimension will arise from the cur-
vature term, clarified in the next section. To be con-
sistent with the codimensional regularization in the fre-
quency sector, the Dirac gamma matrix γ1 is replaced

with γd−1. ψ̄σθ(kθ) = ψ†σθ(kθ)γ0 is typically introduced
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in the spinor representation, and the integral expression
is given by

∫
k

= dd+1k/(2π)d+1 due to the dimensional
regularization. Formally, we introduced the holon flavor
index a = 1, ..., N in ba(k) although this extension from
a = 1 is not essential12.

III. RENORMALIZATION GROUP ANALYSIS

A. Scaling analysis

In this study we start our RG transformation from an
intermediate fixed point which preserves the dispersion
relation of holons. Considering the fact that we focus on
the Mott quantum criticality, this choice for the interme-
diate UV fixed point looks natural12. One may suggest to
consider a Gaussian fixed point near the U(1) spin-liquid
fixed point, which preserves the spinon dispersion rela-
tion. Since we start from the U(1) spin liquid state and
focus on the evolution of the Fermi-surface dynamics,
this intermediate fixed point also seems to be natural.
However, technical difficulty arises in this case, where
the fractional upper critical dimension dc = 5/2 for the
spinon-gauge field coupling constant does not allow us
to extract out so called ε poles for the RG transforma-
tion of the holon sector in the dimensional regularization
method29. Here, ε = dc − d is the distance from the
upper critical dimension. Then, one has to find another
regularization method for the consistent implementation
of RG transformations. In this respect we consider the
Gaussian fixed point to preserve the holon dynamics as
our starting point.

To find the upper critical dimension of all types of in-
teraction vertices, we consider the scaling transformation
preserving the holon dispersion as

K =
K′

s
, ~k =

~k′

s
. (14)

Then, we count the engineering dimension ∆b of the
holon field as

ba(k) = s∆bb′a(k′), ∆b =
d+ 3

2
. (15)

Based on this information, we obtain the scaling dimen-
sion of the coupling constant λ as

λ = s∆λλ′, ∆λ = d− 3, (16)

which shows that the upper critical dimension if this in-
teraction vertex is dc = 3 as expected.

In a similar way, one finds the engineering dimension
of the U(1) gauge field ai(q) and the scaling dimension
of the coupling constant e as

ai(q) = s∆aa′i(q
′), ∆a =

d+ 3

2
, (17)

e = s∆ee′, ∆e =
d− 3

2
. (18)

This scaling analysis indicates that the holon-gauge field
interaction vertex becomes marginal at d = dc = 3.

Requiring that the spinon-gauge field interaction ver-
tex also has to be marginal at d = dc = 3, the scaling
dimension of the spinon field is determined as follows

ψσθ(k) = s∆ψψ′σθ(k
′), ∆ψ =

d+ 2

2
. (19)

This scaling transformation preserves the linear-
dispersion part of spinons while it leads the curvature
term to be irrelevant.

Following our recent study12, we consider rescaling

of the generalized frequency K →
√
tχbUK, all dy-

namical fluctuations of holon b → b/
{

(tχbU)
d−1
2 tχb

} 1
2

,

spinon ψ → ψ/
{

(tχbU)
d−1
2 vf

} 1
2

, and U(1) gauge fields

a → a/(tχbU)
d−1
4 , and both gauge-interaction e →

e/(tχbU)
d−1
4 and holon self-interaction vertices λ →

(tχbU)
d−1
2 (tχb)4λ. As a result, the effective field theory

of Eq. (13) becomes more simplified to be

S = Sf + Sb + Sa + Sfa + Sba,

Sf =

∫
kθ

ψ̄σθ(kθ)
(
iζψΓ ·K + iγd−1(kθ,d−1 + κk2

θ,d)
)
ψσθ(kθ),

Sb =

∫
k

b†a(k)
(
K2 + k2

)
ba(k),

+
λµε

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p− q)bb(p)

Sa =
1

2

∫
q

ai(−q)(ζ2
aQ

2 + q2)δijaj(q),

Sfa =
ieµ

ε
2

√
N

∫
kθ,qθ

aθ(qθ)ψ̄σθ(kθ + qθ)γ5γd−1ψσθ(kθ)

Sba = −2eµ
ε
2

√
N

∫
k,q

kiai(q)b
†
a(k + q)ba(k)

+
e2µε

N

∫
k,p,q

ai(−p+ q)ai(p)b
†
a(k + q)ba(k), (20)

where the scale parameter µ has been introduced to clar-
ify the upper critical dimension of all interaction vertices
with ε = dc − d. Two anisotropy coefficients for both
spinon and gauge-field dynamics are given by ζψ = 1/vf
and ζa = (tχbU)1/2, and the Fermi-surface curvature is
κ = tχf/vf = 1/2kF . As pointed out above, the curva-
ture term κk2

d in the linearized spinon dispersion is irrele-
vant during the RG process, given by κ < 1/2kF � 1/Λa,
where Λa is the gauge-field momentum cutoff, which will
be discussed further later. This originates from the scal-
ing transformation to preserve the holon dispersion in Eq.
(14). Interestingly, this irrelevant curvature term gives
rise to divergence of the Landau damping term much
larger than the fermion momentum cutoff Λf . The pres-
ence of this relevant self-energy in the gauge-field dy-
namics does not allow us to neglect the Fermi-surface
curvature κ in the RG transformation, referred to as a
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dangerously irrelevant operator13. The key point of the
present study beyond the previous investigation is to keep
the Fermi-surface curvature κ during loop-integrations
and to send it to the low-energy limit (κ → 0 with
κ < 1/2kF � 1/Λa) in the final stage of the RG trans-
formation. This extremely overdamped dynamics of U(1)
gauge-field fluctuations turns out to cause the fact that
all Feynman diagrams including the gauge-field propa-
gator do not show any 1/ε poles. This aspect changes
the nature of the spin-liquid Mott quantum criticality
reported in our previous study12 although the emergence

of effective one-dimensional spin dynamics remains un-
changed.

B. Renormalization group transformation in the
one-loop level

1. Renormalized effective action and counter terms

We perform the perturbative RG analysis based on the
effective bare action

SB =

∫
kθ

ψ̄Bσθ(kθ) (iζBψΓ ·KB + iγd−1δBkθ )ψBσθ(kθ) +
ieB√
N

∫
kBθ,qBθ

aBθ(qBθ)ψ̄Bσθ(kBθ + qBθ)γ5γd−1ψBσθ(kBθ)

+

∫
qB

aBi(−qB)
(
ζ2
aBQ2

B + q2
B

)
δijaBj(qB)

+

∫
kB

b†Ba(kB)
(
K2
B + k2

B

)
bBa(kB) +

λB
4N

∫
kB ,pB ,qB

b†Ba(kB + qB)bBa(kB)b†Bb(pB − qB)bBb(pB)

− 2eB√
N

∫
kB ,qB

kBiaBi(qB)b†Ba(kB + qB)bBa(k) +
e2
B

N

∫
kB ,pB ,qB

aBi(−pB + qB)aBi(pB)b†Ba(kB + qB)bBa(kB). (21)

Then, various divergent terms appear. These divergent
terms can be made to be formally finite, resorting to

the dimensional regularization technique. Finally, such
divergent terms have to be cancelled by so called counter
terms, given by

SCT =

∫
kθ

ψ̄σθ(kθ) (Aψ1iζψΓ ·K +Aψ2iγd−1δkθ )ψσθ(kθ) +Aψa
ie√
N

∫
kθ,qθ

aθ(qθ)ψ̄σθ(kθ + qθ)γ5γd−1ψσθ(kθ)

+

∫
q

ai(−q)
(
Aa1ζ

2
aQ

2 +Aa2q
2
)
δijaj(q)

+

∫
k

b†a(k)
(
Ab1K

2 +Ab2k
2
)
ba(k) +Aλ

λ

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p− q)bb(p)

−Aba1
2e√
N

∫
k,q

kiai(q)b
†
a(k + q)ba(k) +Aba2

e2

N

∫
k,p,q

ai(−p+ q)ai(p)b
†
a(k + q)ba(k). (22)

As a result, we find an effective renormalized action S = SB − SCT ,

S =

∫
kθ

ψ̄σθ(kθ) (iζψΓ ·K + iγd−1δkθ )ψσθ(kθ) +
ie√
N

∫
kθ,qθ

aθ(qθ)ψ̄σθ(kθ + qθ)γ5γd−1ψσθ(kθ)

+

∫
q

ai(−q)
(
ζ2
aQ

2 + q2
)
δijaj(q)

+

∫
k

b†a(k)
(
K2 + k2

)
ba(k) +

λ

4N

∫
k,p,q

b†a(k + q)ba(k)b†b(p− q)bb(p)

− 2e√
N

∫
k,q

kiai(q)b
†
a(k + q)ba(k) +

e2

N

∫
k,p,q

ai(−p+ q)ai(p)b
†
a(k + q)ba(k), (23)

which is finite, where all dynamical fields and interaction
vertices are renormalized. Here, renormalization coeffi-

cients Zr are given by counter-term constants as follows

Zr = 1 +Ar, (24)
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where r = ψ1, ψ2, ψa, a1, a2, b1, b2, λ, ba1, ba2.
The gauge invariance gives rise to the following Ward
identities12

Zψ2 = Zψa, Zb2 = Zba1 = Zba2. (25)

It is straightforward to see how bare quantities have
to be RG-transformed into renormalized ones. First, the
momentum relation is given by

K =

(
Zb2
Zb1

) 1
2

KB , ~k = ~kB . (26)

Second, the matter-field equation is

ba(k) = Z
− 1

2

b bBa(kB), Zb = Zb2

(
Zb2
Zb1

) d−1
2

,

ψσθ(kθ) = Z
− 1

2

ψ ψBσθ(kBθ), Zψ = Zψ2

(
Zb2
Zb1

) d−1
2

,

ai(q) = Z
− 1

2
a aBi(qB), Za = Za2

(
Zb2
Zb1

) d−1
2

. (27)

Third, interaction vertices and anisotropy constants are
related as

e2
B = e2µεZ−1

a2

(
Zb2
Zb1

) d−1
2

, λB = λµεZλZ
−2
b2

(
Zb2
Zb1

) d−1
2

,

ζ2
Bψ = ζ2

ψ

(
Zψ1

Zψ2

)2
Zb2
Zb1

, ζ2
Ba = ζ2

a

Za1

Za2

Zb2
Zb1

. (28)

Although we did not show an RG equation involved
with the Fermi-surface curvature κ, where it is irrelevant,
we investigate the role of the divergent Landau damping
term of the gauge-field dynamics in the RG transforma-
tion below. We calculate self-energy and vertex correc-
tions in the one-loop level, where their divergent pieces
are identified with counter-term constants Ar.

2. Evaluation of the counter terms in the one-loop level

We introduce propagators of spinons, holons, and
gauge-field fluctuations,

Gψθ0 (kθ) = −i
ζψΓ ·K + γd−1(kθ,d−1 + κk2

θ,d)

ζ2
ψK2 + (kθ,d−1 + κk2

θ,d)
2

, (29)

Gb0(k) =
1

K2 + k2
, (30)

Ga0ij(q) =
δij

ζ2
aQ

2 + q2
for the holon-gauge field vertex,

Ga0θ(qθ) =
1

ζ2
aQ

2 + qθ2
for the spinon-gauge field vertex,

(31)

where Feynman rules are shown in Fig. 2. Based on
such Feynman rules, we perform the perturbative analy-
sis for all interaction vertices, where all possible quantum
corrections in the one-loop level are shown as Feynman
diagrams of Fig. 2.

First, we evaluate the gauge-field self-energy correc-
tion, given by the spinon-polarization bubble diagram as
shown in the first diagram of Fig. 2 (d),

−Πψθ (qθ) = 2

(
ieµ

ε
2

√
N

)2 ∫
dd+1kθ
(2π)d+1

tr[Gψθ0 (kθ)γ5γd−1G
ψθ
0 (kθ + qθ)γ5γd−1]

= 2

(
ieµ

ε
2

√
N

)2 ∫
dkθ,d−1dkθ,ddK

(2π)d+1

K · (K + Q)− δkθδkθ+qθ

(K2 + δ2
kθ

)((K + Q)2 + δ2
kθ+qθ

)

= 2

(
ieµ

ε
2

√
N

)2 ∫
dK

(2π)d+1

(
K · (K + Q)

|K| |K + Q|
− 1

)
arctan( 2κqdkd

|K+Q|+|K| )

4κqd

]kd=Λd

kd=−Λd

∼ 2

(
ieµ

ε
2

√
N

)2 ∫
dK

(2π)d+1

(
K · (K + Q)

|K| |K + Q|
− 1

)
Λd

|K + Q|+ |K|
= χ |Q|d−2

. (32)

Here, the minus sign in Πψθ (qθ) results from the fermion
loop and the divergent coefficient χ of the final result is
proportional to the UV cutoff Λd along the Fermi sur-
face. We perform the integration of kθ,d−1 up to infinity
in the second line while the momentum integration of kd
is taken into account up to the UV cutoff Λd, not infin-
ity. This integration domain originates from the Fermi-

surface constraint with an irrelevant curvature coefficient
κ, given by κ < 1/2kF � 1/Λa = 1/Λd. See Fig. 1 (a)
and (b). This Fermi-surface constraint allows us to take

an approximation arctan(kx)
x ∼ k for x � 1 in the third

line. The self-energy correction has been evaluated in the
local patch coordinate (the second form of Eq. (31)), but
this expression can be trivially translated into that of the
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global coordinate (the first form of Eq. (31)), where this
expression depends on only frequency. This correction
term for the gauge-field dynamics has a different form

from Πψθ ∝ 1
κ
|Q|d−1

|q| of the spin-liquid state25,26, which

results from the RG flow of the Fermi-surface curvature
κ. κ is marginal in the spin-liquid phase while it is irrel-
evant at this spin-liquid Mott quantum criticality. As a
result, this Landau damping term diverges at the spin-
liquid Mott transition.

Now, we introduce this nonlocal term into the gauge-
field propagator as

Da(qθ) =
1

(Ga0θ(qθ))
−1 −Πψθ (qθ)

, (33)

given by red wavy lines in all Feynman diagrams of Fig.
2. Then, we calculate the spinon’s self-energy correction,
shown in the first diagram of Fig. 2 (a),

Σψθ (kθ) =

(
ieµ

ε
2

√
N

)2 ∫
qθ

γ5γd−1G
ψθ
0 (kθ + qθ)γ5γd−1D

a(qθ)

=
e2

N(2π)d+1
[AiζψΓ ·K +Biγd−1kθ,d−1]

×(ln (Λ2
d−1 + χ2)− lnχ2) +O(ε0). (34)

Here, A and B are functions of ζψ and ζa, which are finite
and not shown. Although we keep the coefficient χ to be
finite during the loop integration, we point out that it is
proportional to Λd as shown in Eq. (32). As a result,
the log divergence of ln (Λ2

d−1 + χ2) has to be cancelled

by that of lnχ2 in Eq. (34) in the following way

ln (Λ2
d−1 + χ2)− lnχ2 ∼ ln (Λ2

d−1/Λ
2
d + 1)� 1, (35)

where Λd � Λd−1 has been utilized. We recall Fig. 1 (a)
and (b), where Λf and Λa corresponds to Λd−1 and Λd,
respectively. Similarly, all Feynman diagrams including
the dressed gauge-field propagator do not show 1/ε pole
corrections.

Finally, we evaluate other quantum corrections with-
out U(1) gauge-field fluctuations. Those are the second
diagram in Fig. 2 (b) denoted as Σb,2, the first three
diagrams in Fig. 2 (c) contributing to Γλ, the second

and third diagrams in Fig. 2 (d) represented as Πij
b and

Σa, respectively, the third diagram in Fig. 2 (f) given by
Γiab†b,3, and the last two diagrams in Fig. 2 (g) expressed

as Γaab†b,5 and Γaab†b,6, respectively.

First, Σb,2 and Σa are both proportional to
∫
k
Gb0(k).

This does not cause any 1/ε pole contribution at quantum
criticality while it can give rise to the mass renormaliza-
tion in the holon dynamics.

Second, Γiab†b,3 has no 1/ε pole correction, where its

loop integral is UV finite at d = 3− ε as follows

Γiab†b,3 =

∫
k

N
λµε

4N

2eµε√
N
kiGb0(k)Gb0(k + q)

= O(ε0). (36)

Third, Γaab†b,5 and Γaab†b,6 are both UV divergent, but
their sum is finite, given by

Γaab†b,5 + Γaab†b,6

= N
λµε

4N

(
− 2e

ε
2

√
N

)2 ∫
k

kikiG
b
0(k)Gb0(k + q)Gb0(k + p)

+N
λµε

4N

e2µε

N

∫
k

Gb0(k)Gb0(k + q)

= O(ε0). (37)

Now, the remaining diagrams are Γλ and Πij
b . Holon

self-interaction vertex corrections Γλ are given by

Γλ(k, p, q) = −N + 5

2

(
λµε

N

)2 ∫
dd+1k′

(2π)d+1
Gb0(k′)Gb0(k′ + q)

= − (N + 5)λ2

16π2N2ε
+O(ε0), (38)

typical for self-interacting bosons30.
Finally, the holon polarization function Πij

b is given by

Πij
b (q) = N

(
−2eµ

ε
2

√
N

)2 ∫
dd+1k

(2π)d+1
kikjGb0(k + q)Gb0(k)

= − e2

24π2ε

{(
1

ζ2
a

ζ2
aQ

2 + q2

)
δµν
}

+O(ε0), (39)

which renormalizes the gauge-field dynamics at this Mott
quantum criticality30.

As a result, we find all the counter terms as follows

Ab1 = Ab2 = Aψ1 = Aψ2 = Aψa = Aba1 = Aba2 = 0,

Aa1 = − e2

24π2ζ2
aε
, Aa2 = − e2

24π2ε
,

Aλ =
(N + 5)λ

16π2Nε
, (40)

where renormalization effects are given by critical holon
excitations only.

3. Renormalization group β−functions for coupling
constants and Callan-Symanzik equations for correlation

functions

RG equations (28) can be translated into the following
differential equations

µ

e2

de2

dµ
= −ε+

µ

Za2

dZa2

dµ
, (41)

µ

λ

dλ

dµ
= −ε− µ

Zλ

dZλ
dµ

, (42)

µ

ζ2
a

dζ2
a

dµ
=

µ

Za2/Za1

dZa2/Za1

dµ
, (43)

where ζ2
ψ does not renormalize due to the extremely over-

damped dynamics of U(1) gauge fields. Introducing the
counter-term coefficients of Eq. (40) into the above with
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FIG. 2. Quantum corrections in the one-loop level with Feynman rules. (a) Spinon self-energy corrections in Sf of Eq. (20).
(b) Holon self-energy corrections in Sb of Eq. (20). (c) Effective self-interaction λ-vertex corrections in Sb of Eq. (20). (d)
Gauge-field self-energy corrections in Sa of Eq. (20). (e) Spinon-gauge field interaction vertex corrections in Sfa of Eq. (20).
(f) Holon-gauge field interaction vertex corrections for 〈ab†b〉 in Sba of Eq. (20). (g) Holon-gauge field interaction vertex
corrections for 〈aab†b〉 in Sba of Eq. (20). Red wavy lines represent the renormalized gauge-field propagator Eq. (33), where
the extremely overdamped dynamics of U(1) gauge-field fluctuations does not cause any renormalization effects, thus neglected.
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ε = 1, we find the RG β−functions of the coupling con-
stants as follows

βe ≡ µ
de2

dµ
= e2

(
−1 +

e2

24π2

)
, (44)

βλ ≡ µ
dλ

dµ
= λ

(
−1 +

(N + 5)λ

16π2N

)
, (45)

βζa ≡ µ
dζ2
a

dµ
=

e2

24π2

(
ζ2
a − 1

)
, (46)

where βζψ = 0. The spin-liquid Mott quantum critical

point is identified with a fixed point at e2 = e2
∗ = 24π2,

λ2 = λ2
∗ = 16π2/6, and ζa = ζa∗ = 1 as shown in Fig. 3.

We emphasize that this fixed point differs from that of
our previous study12, where renormalization effects also
occur from gauge-field fluctuations. In this study, we
have shown that the role of dangerously irrelevant op-
erator kills such renormalization effects from gauge-field
fluctuations, resulting in unexpectedly simple mean-field
type dynamics at the Mott quantum criticality. Actually,
anomalous scaling dimensions of both matter and gauge
fields are different from those of the previous study. As a
result, the quantum critical charge dynamics belongs to
the XY universality class29,30 although U(1) gauge-field
fluctuations acquire anomalous scaling dynamics from
critical charge fluctuations in the one-loop level.

To calculate correlation functions near the Mott quan-
tum critical point, we introduce the Callan-Symanzik
equation29,30, given by12

[zKi ·∇Ki
+ ~ki ·∇~ki

− βe
∂

∂e2
− βλ

∂

∂λ
− βζa

∂

∂ζa

−2m(−5− ε
2

+ ηψ)− 2n(−6− ε
2

+ ηb)− 2l(−6− ε
2

+ ηa)

−{z(2− ε) + 2}] G(m,n,l)(ki; e, λ, ζa, µ) = 0, (47)

where the renormalized (m+ n+ l)−point Green’s func-
tion is

G(m,n,l)(ki; e, λ, ζa, µ) δ(d+1)({ki})

=
〈
ψ̄(k1) · · · ψ̄(km)ψ(km+1) · · · ψ(k2m)

b†(k2m+1) · · · b†(k2m+n)b(k2m+n+1) · · · b(k2m+2n)

a(k2m+2n+1) · · · a(k2m+2n+2l)
〉
. (48)

Here, the coordinate transformation has been assumed
appropriately. The dynamical critical exponent z and
the anomalous scaling dimension of each dynamical field
are

z = 1− 1

2

µ

Zb2/Zb1

∂Zb2/Zb1
∂µ

,

ηψ =
1

2

µ

Zψ

∂Zψ
∂µ

, ηb =
1

2

µ

Zb

∂Zb
∂µ

, ηa =
1

2

µ

Za

∂Za
∂µ

,

(49)

where the field renormalization constants of Zψ, Zb, and
Za are defined in Eq. (27). One can derive this Callan-
Symanzik equation, constructing an RG equation be-
tween the bare and renormalized Green’s functions based

N = 1 N → ∞

e2∗/4π
2 6 6

λ2
∗/4π

2 2/3 4
ζ2a∗ 1 1
z∗ 1 1
ηψ∗ 0 0
ηb∗ 0 0
ηa∗ 0.5 0.5

TABLE I. Fixed point values, critical exponents, and anoma-
lous scaling dimensions.

on the RG equations for fields and interaction vertices.
We refer this derivation to the previous study12.

Focusing on the spin-liquid Mott critical fixed point,
given by z∗ = 1, βe∗ = βλ∗ = 0, ηψ∗ = ηb∗ = 0, and
ηa∗ = 1/2, we obtain

[Ki ·∇Ki
+ ~ki ·∇~ki

+ 4m+ 5n+ 5l − 3

−2lηa∗] G
(m,n,l)(ki; e∗, λ∗, ζa∗, µ) = 0. (50)

Solving this equation, we find one-particle Green’s func-
tions as follows〈

ψ̄σθ(K, kθ,d−1)ψσθ(K, kθ,d−1)
〉

=
1

|kθ,d−1|2−z∗−2ηψ∗
Fψσθ

( |K|1/z∗
|kθ,d−1|

)
∝ 1

|kθ,d−1|
(51)

for spinons,〈
b†(K,k)b(K,k)

〉
=

1

|k|2−2ηb∗
Fb

( |K|
|k|

)
∝ 1

|k|2
(52)

for holons,〈
a(−K,−k)a(K,k)

〉
=

1

|k|2−2ηa∗
Fa

( |K|
|k|

)
∝ 1

|k|
(53)

for U(1) gauge fields. Here, Fψσθ

(
|K|1/z∗
|kθ,d−1|

)
and Fb,a

(
|K|
|k|

)
are nonsingular scaling functions, which can be found by
direct computations.

It is interesting to observe that both matter fields of
spinons and holons do not acquire any anomalous scal-
ing dimensions at the Wilson-Fisher-type fixed point,
where the gauge-field coupling constant remains to be fi-
nite and different from the Wilson-Fisher fixed point29,30.
ηb∗ = 0 has to be considered as an artifact of the one-loop
level RG analysis, where effective self-interactions be-
tween critical charge fluctuations give rise to an anoma-
lous scaling dimension in the two-loop level29,30 at least.
On the other hand, ηψ∗ = 0 is expected to hold beyond
the one-loop RG analysis since quantum corrections from
U(1) gauge-field fluctuations do not cause any renormal-
ization effects.
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(a)

(b)

(c)

FIG. 3. β−functions of (a) the gauge-field coupling constant
e, (b) the self-interaction coupling constant λ, and (c) the
anisotropy constant ζa in the gauge-field dispersion. Although
the gauge-field coupling constant remains to be finite at the
spin-liquid Mott quantum critical point, the quantum crit-
ical charge dynamics belongs to the XY universality class,
described by the Wilson-Fisher fixed point29,30.

IV. CONCLUSION

A. Summary and discussion

In the present study, we revisited the spin-liquid Mott
quantum criticality for κ−(BEDT−TTF )2Cu2(CN)3

9.
The previous study12 has claimed that the spin dynam-
ics shows effectively one-dimensional Luttinger-liquid
physics31 while the quantum critical charge dynamics be-
longs to the (2+1)−dimensional inverted XY (IXY) uni-

versality class32. However, our present study revealed
that the role of U(1) gauge-field fluctuations in the spin-
liquid Mott quantum criticality of the previous study had
been overestimated because their extremely overdamped
dynamics had not been taken into account in the RG
analysis. It turns out that the generic scale invariance11

gives rise to a dangerously irrelevant operator13, here,
the spinons’ Fermi-surface curvature term, which results
in divergence of the self-energy term for U(1) gauge-field
fluctuations. As a result, such extremely overdamped
gauge-field dynamics does not cause any renormaliza-
tion effects to both spin and critical charge dynamics.
This leads us to conclude that the critical spin dynam-
ics still shows one-dimensional Luttinger-liquid physics
while the quantum critical charge dynamics belongs to
the XY universality class29,30 instead of the IXY. Here,
we have to point out that the Luttinger-liquid-type spin
dynamics may result from residual effective interactions
between spinons, irrelevant in the presence of the spinon
Fermi surface at UV but marginal in the effectively one-
dimensional dynamics at IR.

We would like to emphasize that the generic scale in-
variance is ubiquitous in quantum criticality of metals,
well discussed in Ref.11, where the appearance of dan-
gerously irrelevant operators in the presence of generic
scale invariance has been pointed out. In particular, sym-
metry breaking quantum criticality in disordered metals
has been discussed, which results in an exotic mean-field
type behavior modified by a dangerously irrelevant oper-
ator. In this respect the conclusion of the present study
is in parallel with this general perspective at quantum
criticality.

To verify the one-dimensional spin dynamics, it is nec-
essary to investigate not only the uniform spin suscep-
tibility but also the 2kF spin susceptibility, where kF is
the Fermi momentum of spinon excitations. It is nat-
ural to expect that both spin susceptibilities will show
divergences in the DMFT framework since critical lo-
cal magnetic-moment fluctuations affect both momentum
channels. On the other hand, only the 2kF−channel spin
susceptibility diverges in the Luttinger-liquid spin dy-
namics, where the uniform spin susceptibility vanishes in
a power-law fashion as a function of temperature, which
originates from vanishing density of states31. We recall
that only the uniform spin susceptibility diverges as a
power-law fashion of temperature in the U(1) spin-liquid
state24 while the 2kF spin susceptibility dies out, both of
which originate from U(1) gauge-field fluctuations25.

We speculate that the bifurcation behavior of the elec-
trical resistivity near the Mott transition9 can be ex-
plained within the XY universality class of critical charge
dynamics. Frankly speaking, it is not easy to calculate
the electrical resistivity based on the effective field theory
Eq. (20). In particular, we suspect that the Ioffe-Larkin
composition rule for response functions24 may not work
due to extremely overdamped dynamics of U(1) gauge
fields. Suppose that the electrical resistivity is given
by the holon transport coefficient only, which results
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from the gauge-field dynamics. Then, the metal-insulator
transition is nothing but the superfluid-insulator transi-
tion in the holon sector. We claim that the superfluid
to Mott insulator transition gives rise to the bifurcation
behavior in the electrical resistivity near the quantum
critical point33,34. In this case the critical exponent is
given by that of the XY universality class, expected to
be νz ≈ 0.67, where ν ≈ 0.67 is the correlation-length
exponent and z = 1 is the dynamical critical exponent.

B. Future perspectives

Recently, a fracton spin-liquid phase has been dis-
cussed both extensively and intensively35,36. In this re-
spect it is natural to consider a quantum phase transition
from a fracton-type spin-liquid Mott insulating state to
a Landau’s Fermi-liquid phase. Here, either U(1) ten-
sor gauge theory or more stable Z2 tensor gauge theory
possibly appears to describe the corresponding fracton
spin-liquid state. To discuss this exotic Mott transition,
one may introduce charge-fluctuation dynamics into the
prototype lattice model for the fracton phase, for ex-
ample, X−cube model37 or Haah’s cubic code model38.
Resorting to the parton construction35,36 which takes
into account not only the spin dynamics but also the
charge dynamics, one can reformulate the effective lat-
tice model Hamiltonian in terms of fractionalized excita-
tions, where conventional gauge fluctuations and spinon
excitations in the present study are replaced with tensor-
type gauge-field fluctuations and fracton-like spinon ex-
citations. Then, one may perform the RG analysis for
this fracton Mott quantum criticality, regarded to be an
interesting research direction.

However, it is much more exciting to speculate that the
exotic fracton physics may appear in the present spin-
liquid Mott quantum criticality. This remarkable but
seemingly unrealistic perspective starts from the follow-
ing observation that the so called dimensional reduction
occurs in the spinon dynamics from 2d to 1d in the vicin-
ity of the Mott transition. One may regard this emer-
gent one-dimensional spin dynamics as a certain limit of
nematicity, where the spinon Fermi surface elongates to
break C4 symmetry and results in localization along the
elongation direction. This would be analogous to the fact

that the Rashba-type spin-orbit coupled model describes
the surface state of a topological insulating phase when
the strength of the Rashba spin-orbit coupling constant
becomes infinite. Such quadrupolar fluctuations occur
quite commonly, maybe ubiquitously, in the flat-band
system, for example, fractional quantum Hall liquids,
magic angle twisted bilayer graphene, and etc.39 Here, an
idea is as follows: When these quadrupolar fluctuations
are coupled to critical charge fluctuations, a conservation
law may newly appear at low energies, that is, the emer-
gent conservation law of dipoles in the spin dynamics. In
this respect the present RG analysis gives rise to inter-
esting insight for the possible connection to the emergent
fracton-like behavior in the spin dynamics near the Mott
quantum criticality. It would be an exceptional research
direction to find a fixed-point effective field theory of this
fracton Mott quantum criticality in the perspective of
the emergent fracton dynamics coupled to critical charge
fluctuations. The coupled wire construction40 may shed
light on this direction, i.e., showing the emergence of the
dipolar conservation law at a novel fixed point in the
vicinity of the fracton spin-liquid Mott quantum critical-
ity.

The original motivation of the present study is to show
how the U(1) spin-liquid phase with a spinon Fermi sur-
face becomes destabilized by critical charge fluctuations.
Unfortunately, we cannot find a way to perform the RG
analysis near this spin-liquid fixed point, which also re-
sults from the generic scale invariance. This point has
been well discussed in our previous study12. Here, we
investigated one possible spin-liquid Mott quantum criti-
cality near the Wilson-Fisher fixed point of critical charge
dynamics. In this case it is not easy to see how the dimen-
sional reduction occurs in the spin dynamics, and thus,
it is not possible to figure out how the fracton dynamics
appears possibly at the Mott transition. It is necessary
to develop how to perform the RG analysis near the spin-
liquid fixed point.
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