
Submitted to Special Issue Localisation 2020 of Annals of Physics

Inhomogeneous Kondo destruction by RKKY correlations

Kyung-Yong Park,1 Iksu Jang,1 Ki-Seok Kim,1, 2 and S. Kettemann3, 4

1Department of Physics, POSTECH, Pohang, Gyeongbuk 37673, Korea
2Asia Pacific Center for Theoretical Physics (APCTP), Pohang, Gyeongbuk 37673, Korea
3Division of Advanced Materials Science, POSTECH, Pohang, Gyeongbuk 37673, Korea

4Department of Physics and Geoscience, Jacobs University Bremen, Bremen 28759, Germany
(Dated: December 13, 2021)

The competition between the indirect exchange interaction (IEC) of magnetic impurities in metals
and the Kondo effect gives rise to a rich quantum phase diagram, the Doniach Diagram [1]. A
Kondo screened phase is separated from a spin ordered phase when the local exchange coupling J
and the concentration of magnetic moments nM are varied. In disordered metals, both the Kondo
temperature and the IEC are widely distributed due to the scattering of the conduction electrons
from the impurity potential. Therefore, it is a question of fundamental importance, how this Doniach
diagram is modified by the disorder, and if one can still identify separate phases. Recently, Ref.
[2] investigated the effect of Ruderman-Kittel-Kasuya-Yosida (RKKY) correlations on the Kondo
effect of two magnetic impurities, renormalizing the Kondo interaction based on the Bethe-Salpeter
equation and performing the poor men’s renormalization group (RG) analysis with the RKKY-
renormalized Kondo coupling. In the present study, we extend this theoretical framework, allowing
for different Kondo temperatures of two RKKY-coupled magnetic impurities due to different local
exchange couplings and density of states. As a result, we find that the smaller one of the two Kondo
temperatures is suppressed more strongly by the RKKY interaction, thereby enhancing their initial
inequality. In order to find out if this relevance of inequalities between Kondo temperatures modifies
the distribution of the Kondo temperature in a system of a finite density of randomly distributed
magnetic impurities, we present an extension of the RKKY coupled Kondo RG equations. We discuss
the implication of these results for the interplay between Kondo coupling and RKKY interaction in
disordered electron systems and the Doniach diagram in disordered electron systems.

INTRODUCTION

The interplay of strong correlations and disorder leads
to new phenomena and remains a challenge for condensed
matter theory. Magnetic impurities in metals stir up the
electronic Fermi liquid and cause a strong enhancement
of the resistivity below the Kondo temperature TK . Im-
purities result in Anderson localisation and lead to an
exponential increase of the resistivity at low electron den-
sities. The interplay of the Kondo effect with Anderson
localisation has only recently received increased atten-
tion although the interplay between spin correlations and
disorder effects is relevant for many materials, includ-
ing doped semiconductors like Si:P close to the metal-
insulator transition [3], and typical heavy Fermion sys-
tems like materials with 4f or 5f atoms, notably Ce, Yb,
or U [4]. Many of these materials show a remarkable mag-
netic quantum phase transition which can be understood
by the competition between indirect exchange interac-
tion, the Ruderman-Kittel-Kasuya-Yoshida (RKKY) in-
teraction between localised magnetic moments [5], as
mediated by the conduction electrons, and their Kondo
screening. Thereby, one finds a suppression of long range
magnetic order when the exchange coupling J is in-
creased and the Kondo screening wins over the RKKY
coupling. This results in a typical quantum phase dia-
gram with a quantum critical point where the Tc of the
magnetic phase is vanishing, the Doniach diagram [1]. In
any material there is some degree of disorder. In doped

semiconductors it arises from the random positioning of
the dopants themselves, in the heavy Fermion metals it
may arise from structural defects or atomic defects. As
noted already early [6], the physics of random systems is
fully described only by probability distributions, not just
averages. Thus, for electron systems with random local
magnetic moments the derivation of physical properties
requires the knowledge of distribution functions of the
Kondo temperature and the RKKY coupling [7, 8].

Electron systems with onsite interaction U and a dis-
order potential V are modeled by the Anderson-Hubbard
Hamiltonian,

H =
∑
〈i,j〉,σ

tijc
+
iσcjσ +

∑
i,σ

(Vi,σ − µ)n̂iσ + U
∑
i

n̂i+n̂i−,(1)

where n̂iσ = c+iσciσ and c+iσ, ciσ are Fermion creation and
annihilation operators at dopant sites i with spin σ = ±.
Onsite energies Vi,σ are distributed randomly with van-
ishing average value 〈Vi,σ〉 = 0. µ is the chemical po-
tential, which is for uncompensated doping at µ = U/2.
This model has been studied mostly in 2 dimensions, with
numerical methods, including quantum Monte Carlo [9–
11], dynamical mean field theory based approaches [12–
18], and Hatree-Fock based approaches [19–21], and most
recently a typical medium dynamics cluster approxima-
tion [22, 23]. In that work, the quasiparticle self energy
has been derived as function of the excitation energy ω,
ImΣ(ω) ∼ ωαΣ and found to have non-Fermi liquid be-
havior with power αΣ(W ) < 2, which becomes smaller
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with stronger disorder amplitude W .

DONIACH PHASE DIAGRAM IN DISORDERED
SYSTEMS

When there is a density of magnetic impurities nimp =
R−d with R the average distance between two magnetic
moments, there is a critical density nc below which the
Kondo effect is dominant in the competition with RKKY
interaction. When a density is higher than nc magnetic
clusters start to form at some sites. In an electron sys-
tem without disorder the critical density above which the
magnetic impurities are coupled with each other is found
from the condition that |J0

RKKY(Rc)| = TK . For exam-
ple in a 2D sample with |J0

RKKY|kFR�1 = J2 m
8π2k2

FR
2 and

TK = cεF exp(−D0/J), where kF is the Fermi momen-
tum and c ≈ 1.14, the critical electron density is found

to be nc = 16π2c
ε2F
J2 exp(−D0

J ), where 2D0 is the electron
band width. In a disordered system the Doniach diagram
is a result of the competition between the Kondo tem-
perature TKi at a certain site ri and the RKKY coupling
JRKKY(rij) at that site with other magnetic impurities
located at sites rj at a distance rij . Thus, the ratio of
these energy scales JRKKY(rij)/TKi, is in general widely
distributed for a given disordered sample so that the full
distribution function of these energy scales is needed to
determine the Doniach diagram. In Ref. [24] this prob-
lem has been studied, calculating JRKKY(rij) and TKi
each separately in a disordered system as function of the
local density of states at sites ri and rj .

Recently, however, Nejati et al. found from renormal-
ization group equations for a Kondo lattice incorporating
selfconsistently the RKKY coupling between magnetic
moments [2], that the Kondo temperature is decreased
as the RKKY coupling is increased, and that the Kondo
screening is quenched beyond a critical RKKY coupling.

The effective Kondo coupling gi of the Kondo impurity
at site ri was shown in Ref. [2], to follow renormaliza-
tion group equations which are modified by the RKKY
coupling as

dgi
d lnD

= −2g2
i

(
1− yig2

0

D0

TK

1√
1 + (D/TK)2

)
. (2)

Here, gi = ρ(µ)Ji is the dimensionless Kondo coupling
constant with the density of states at the chemical poten-
tial ρ(µ). D is the effective band cutoff for the renormal-
ization group flow. The first term in the right hand side
is the one-loop β function without RKKY interactions.
The second term results from the RKKY correction for
the Kondo coupling constant, where g0 = ρ(µ)J0 is the
bare Kondo interaction and D0 is the bare bandwidth. yi
is the effective dimensionless RKKY interaction strength

at site ri, given by [2]

yi = − 8W

π2ρ(µ)2
Im
∑
j 6=i

eikF rijGRc (rij , µ)Π(rij , µ), (3)

where W is the Wilson ratio as determined by the Bethe
Ansatz solution of the Kondo problem [25]. GRc (rij) is
the single particle propagator in the conduction band
from site ri to rj . The summation is over all other mag-
netic moments at positions rj . Π(rij , µ) is the RKKY
correlation function of conduction electrons between sites
ri and rj . yi is found to be always positive [2], while the
RKKY correlation function can be positive or negative.

It is interesting to observe that the effective Kondo
interaction renormalized by the RKKY interaction is a
function of D/TK , where D is the renormalization group
energy scale and TK is the renormalized Kondo tempera-
ture to be determined self-consistently. It turns out that
this functional form originates from the spin susceptibil-
ity of the magnetic impurity, given by the Bethe Ansatz
solution.

For two magnetic moments in a clean system, where
the bare couplings g0 are the same at both sites, and yi =
y, one can solve this differential equation and obtains [2]

1

g
− 1

g0
= 2 ln

( D
D0

)
− yg2

0

D0

TK
ln
(√1 + (D/TK)2 − 1√

1 + (D/TK)2 + 1

)
.

When the energy scale coincides with the Kondo temper-
ature, i.e., D → TK , the effective Kondo interaction di-
verges g →∞. As a result, one can find a self-consistent
equation for the effective Kondo temperature as a func-
tion of the RKKY interaction,

TK(y)

TK(0)
= exp

(
− yαg2

0

D0

TK(y)

)
, (4)

where TK(0) = D0 exp(−1/(2g0)) is the bare Kondo tem-
perature in the absence of the RKKY interaction and the
numerical constant is α = ln(

√
2 + 1). It turns out that

the RKKY interaction gives rise to abrupt destruction
for the Kondo effect at the critical coupling [2]

yc = T 0
K/(α eg

2
0D0). (5)

Here, we extend this theoretical framework, to allow
for inhomogenous local density of states at different sites
in a disordered system and thereby different bare Kondo
temperatures, T 0

Ki = D0 exp(−1/(2g0
i )).

Let us start by considering two magnetic moments at
sites r1 and r2 with exchange coupling J0

1 and J0
2 and

with local density of states ρ(r1), ρ(r2), yielding the bare
dimensionless local coupling parameters

g0
i = ρ(ri)J

0
i , (6)
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for i = 1, 2. Then, the renormalization group β functions
are found to be given by

dg1

d lnD
= −2g2

1

(
1− yg0

1g
0
2

D0

TK2

1√
1 + (D/TK2)2

)
,

dg2

d lnD
= −2g2

2

(
1− yg0

1g
0
2

D0

TK1

1√
1 + (D/TK1)2

)
, (7)

where y1 = y2 = y is given by

y =
8W

π2ρ(µ)2
ImeikF r12GRc (r12, µ)Π(r12, µ), (8)

Integrating each RG equation, we set the upper limit
to the bare band width D0 and the lower one to the
respective energy scale D = Tki, where gi, i = 1, 2 is
diverging. Thereby, we find the two coupled equations
for the Kondo temperatures TK1 and TK2

1

g0
1

= −2 ln
TK1

D0
+ yg0

1g
0
2

D0

TK2
ln(

√
1 + (TK1/TK2)2 − 1√
1 + (TK1/TK2)2 + 1

)

(9)

1

g0
2

= −2 ln
TK2

D0
+ yg0

1g
0
2

D0

TK1

ln(

√
1 + (TK2

/TK1
)2 − 1√

1 + (TK2
/TK1

)2 + 1
)

(10)
Rescaling the Kondo temperature TKi with the bare
Kondo temperatures as

xi =
TKi
T 0
Ki

, (11)

where 0 < xi < 1, for i = 1, 2, we can rewrite Eqs. (9,
10) as

2 lnx1 −
ỹ1

x0

1

αe

1

x2
ln(

√
1 + (x1

x2
)2 1
x2

0
− 1√

1 + (x1

x2
)2 1
x2

0
+ 1

) = 0 (12)

2 lnx2 − ỹ1
1

αe

1

x1
ln(

√
1 + (x1

x2
)2x2

0 − 1√
1 + (x1

x2
)2x2

0 + 1
) = 0 (13)

Here we introduced x0 as the ratio of the bare Kondo
temperatures

x0 =
T 0
K2

T 0
K1

. (14)

The critical ratio of the bare Kondo temperature and the
bare RKKY exchange is given by yci = T 0

Ki/(α eg
0
1g

0
2D0),

i = 1, 2 where α = ln(1 +
√

2). In the following we use
the rescaled RKKY parameter ỹi = y/yci.

Now, we solve the coupled Eqs. (12) and (13) by the
method of simplified Monte Carlo Research Algorithm,
where we used the GSL mt19937 algorithm for generation
of random numbers. For identical local density of states

0.0 0.2 0.4 0.6 0.8 1.0
y

0.4

0.6

0.8

1.0
x0=0.9

Tk1/T0
k1

Tk2/T0
k2

0.0 0.2 0.4 0.6 0.8
y

0.4

0.6

0.8

1.0
x0=0.7

Tk1/T0
k1

Tk2/T0
k2

0.0 0.2 0.4 0.6 0.8
y

0.4

0.6

0.8

1.0
x0=0.4

Tk1/T0
k1

Tk2/T0
k2

0.0 0.2 0.4 0.6 0.8
y

0.2

0.4

0.6

0.8

1.0
x0=0.1

Tk1/T0
k1

Tk2/T0
k2

FIG. 1. (Color online) The Kondo temperatures TK1 and
TK2 of two magnetic impurities relative to their bare val-
ues, as function of the dimensionless RKKY coupling param-
eter between them, ỹ, relative to its critical value for the ho-
mogenous system, for different bare Kondo temperature ratios
x0 = T 0

K2
/T 0

K1
= 0.9, 0.7, 0.4, 0.1.

and exchange couplings, the Kondo temperatures are the
same, x0 = 1 and we recover the results of Ref. 2, where
the Kondo temperature decreases with RKKY coupling.
For RKKY coupling exceeding the critical value, y > yc,
Eq. (5), there is no Kondo screening anymore, and the
two magnetic impurity spins are quenched by the RKKY
coupling. At the critical value, yc, Eq. (5), the Kondo
temperature is reduced to TK(yc) = e−1T 0

K ≈ 0.368T 0
K .

Next, let us consider what happens when the bare cou-
pling parameters g0

i , Eq. (6) and thereby the bare Kondo
temperatures at the two sites are different. We take
x0 < 1, and solve the coupled Eqs. (12) and (13) for
increasing values of the RKKY coupling y. The numer-
ical results show that the RKKY coupling reduces both
Kondo temperatures, but the initially smaller Kondo
temperature becomes suppressed more strongly than the
larger one, so that the ratio x = TK2/TK1 decreases fur-
ther. This effect becomes more pronounced the smaller
the ratio x0 is, initially, as seen in Fig. 1, where the
Kondo temperatures TK1 and TK2 of two magnetic im-
purities relative to their bare values, as function of the
dimensionless RKKY coupling parameter between them,
ỹ is plotted for various values of x0, in Fig. 2, where the
ratio of Kondo temperatures x is plotted as function of
ỹ and in Fig. 3, where TK1 and TK2 relative to their
bare values, are plotted as function of x0 for various di-
mensionless RKKY coupling parameter between them,
ỹ. Thus, we conclude that inhomogeneity is a relevant
perturbation and the resulting inequality in the Kondo
temperatures becomes enhanced further by the RKKY
coupling.

Moreover, the quenching of the Kondo screening by the
RKKY coupling occurs already for smaller RKKY cou-
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FIG. 2. (Color online) The ratio of Kondo temperature of two
magnetic impurities, x = TK2/TK1 as function of the dimen-
sionless RKKY coupling parameter ỹ, relative to its critical
value for the homogenous system, for different bare Kondo
temperature ratios x0 = T 0

K2
/T 0

K1
= 0.1, 0.4, 0.7, 0.9. The

curves end at a critical value ỹc(x0), above which both Kondo
impurities are quenched.

pling, as seen in Fig. 2, the stronger the inhomogeneity
and the smaller the ratio of the bare Kondo temperature
x0 is. For small x0 the breakdown occurs at a critical
value which converges to yc(x0 � 1) = 0.88yc of the
critical RKKY coupling yc in the homogeneous system,
Eq. (5), as confirmed in table I. Thus, we find that in-
homogeneity leaves the Kondo screening of the magnetic
impurities more easily quenchable by RKKY coupling.
In table I we notice that, while the larger of the two
Kondo temperatures reaches at the critical coupling a
value which is a little larger than the value it would read
in a homogenous system TK(yc) = e−1T 0

K ≈ 0.368T 0
K ,

the smaller Kondo temperature reaches a much lower
Kondo temperature than it could reach in the homoge-
nous system. As observed already above in Fig. 1 we
also see that the smaller the initial ratio of Kondo tem-
peratures x0 is, the smaller the ratio of Kondo temper-
atures with coupling becomes, reaching for x0 = 0.1 a
ratio xc = 0.038, just about one third of the initial ratio,
confirming that the inequality between the Kondo tem-
peratures becomes enhanced by the RKKY coupling. All
that is seen in the three-dimensional plot Fig. 4 where
the Kondo temperatures TK1 and TK2 relative to their
bare values are plotted as function of bare Kondo tem-
perature ratios x0 and the dimensionless RKKY coupling
parameters ỹ, as well as in Fig. 5 where the ratio of the
Kondo temperatures x is plotted as function of x0 and ỹ.
In table II we list the values of TK1 and TK2 and their
ratio at the critical coupling for small x0. We see that the
ratio of the Kondo temperatures x decays rapidly with
x0.

To confirm this anisotropic Kondo destruction, we con-

x0 ỹc TK1(ỹc)/T
0
K1 TK2(ỹc)/T

0
K2 TK2(ỹc)/TK1(ỹc)

1 1 0.368 0.368 1
0.9 0.97 0.407 0.395 0.872
0.8 0.95 0.396 0.370 0.746
0.7 0.93 0.398 0.355 0.634
0.6 0.91 0.414 0.350 0.517
0.5 0.90 0.398 0.312 0.392
0.4 0.89 0.400 0.286 0.286
0.3 0.88 0.414 0.264 0.191
0.2 0.88 0.399 0.210 0.105
0.1 0.88 0.391 0.147 0.038

TABLE I. The Kondo temperatures at the respective critical
coupling ỹc(x0) and their ratio as function of the ratio of bare
couplings.
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FIG. 3. (Color online) The Kondo temperatures of two
magnetic impurities, TK1 and TK2 relative to their bare
values as function of bare Kondo temperature ratios x0

for different dimensionless RKKY coupling parameters ỹ =
0.95, 0.88, 0.5, 0.3.

FIG. 4. (Color online) Kondo temperatures of two magnetic
impurities, TK1 and TK2 relative to their bare values as func-
tion of bare Kondo temperature ratios x0 and the dimension-
less RKKY coupling parameters ỹ.
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FIG. 5. (Color online) Ratio of the Kondo temperatures of
two magnetic impurities, TK1/TK2 as function of bare Kondo
temperature ratios x0 and the dimensionless RKKY coupling
parameters ỹ.

ỹ1 x0 TK1/T 0
K1 TK2/T 0

K2 TK2/TK1

0.881 10−3 0.372 0.0140 3.76× 10−2x0

0.881 10−4 0.371 0.00442 1.19× 10−2x0

0.881 10−5 0.366 0.00133 3.63× 10−3x0

0.881 10−6 0.367 0.000424 1.16× 10−3x0

0.881 10−7 0.375 0.000149 3.97× 10−4x0

TABLE II. Numerical solutions for Eqs. (12) and (13) in the
x0 → 0 limit.

sider the limit x0 → 0, so that one of the two bare Kondo
temperatures is vanishingly small. Then, Eq. (12) is re-
duced to

2 lnx1 +
2ỹ1

x1αe
+O(x2

0) = 0 (15)

and Eq. (13) to

2 lnx2 −
4ỹ1

x1αe
ln(

x0x1

2x2
) +O(x2

0) = 0. (16)

Solving Eq. (15), one finds TK1 as a function of the

effective RKKY interaction strength ỹ1. Inserting the
maximum value of ỹ1 = α ∼ 0.8813, we obtain that x1

remains to be finite and close to 1/e ∼ 0.36. Solving Eq.
(16), we obtain TK2 as a function of the ratio x0 of bare
Kondo temperatures. As a result, we have

x2 =
(x0x1

2

) 2ỹ1
x1αe

1+
2ỹ1
x1αe , (17)

which decays rapidly as x0 → 0, setting x1 = 1/e in
accordance with the numerical solution tabled in table
II.

THE KONDO EFFECT IN THE SYSTEM OF
RANDOMLY DISTRIBUTED MAGNETIC

IMPURITIES

Next, let us consider the generalisation of this theoret-
ical framework to an electron system with a finite den-
sity of randomly distributed magnetic impurities, nM =
N/V ol.. As N magnetic impurities are placed at random
positions ri, i = 1, ..., N , they are coupled by random
local exchange couplings J0

i to the conduction electrons
with local density of states ρ(E, ri). Thereby, every mag-
netic moment placed at random positions has a differ-
ent Kondo temperature, yielding a distribution of Kondo
temperatures [7, 8, 26–32]. As the RKKY coupling is ran-
domly distributed as well [8, 24, 33] it remains an open
problem to derive the quantum phase diagram of a dis-
ordered electron system with finite density of magnetic
moments nM . Using the definition of the RKKY cou-
plings Eq. (3), we can now generalize the self-consistent
renormalisation group equations Eq. (7) of the RKKY-
coupled randomly distributed magnetic impurities. It is
important to note that the local density of states ρ(ri, E)
does depend on energy E, so that at each RG scale D the
renormalisation of the local exchange coupling J(r) de-
pends on the local density of states at energy E = µ±D,
ρ(ri, µ±D), which may be different from the density of
state at the chemical potential µ, ρ0i = ρ(ri, µ). Defining
gi = J(ri)ρ0i, we thereby find for the renormalisation of
exchange couplings gi

dgi
d lnD

= −g2
i

∑
α=±

ρ(µ+ αD, ri)

ρ0i
− 4J0

i

πρ0i

∑
j 6=i

J0
j Im[eikF rijχc(rij , µ+ αD)GRc (rij , µ+ αD)χf (rj , µ+ αD)]

 .(18)

The first term on the right hand side corresponds to the
1-loop RG for the Kondo problem with energy dependent
density of states [34–36]. In the second term, χf (rj , E)
is the full f-spin susceptibility of the magnetic impurity
positioned at rj . G

R
c (rij , E) is the retarded conduction

electron propagator from position ri to rj with rij =

ri − rj . χc(rij , E) is the conduction electron correlation
function between positions ri and rj .

At moderate magnetic impurity densities nM , one may
approximate χf (rj , E) by the expression for a single
Kondo impurity which is known from Bethe-Ansatz so-
lution [25]. This has been done in Ref. [2], noting that
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only its real part contributes which is then given by

Reχf (rj , µ + D) = W/(πTKj
√

1 +D2/T 2
Kj), where W

is the Wilson ratio and TKj is the Kondo temperature of
the magnetic impurity at position rj .

In Ref. [2] it has been furthermore assumed that all
conduction electron properties, the local density of states,
the propagator GRc (rij , E) and the correlation function
χc(rij , E) depend only weakly on energy, and therefore

can be replaced by its value at the chemical potential µ.
Let us therefore at first follow this assumption, although
it is well known that the energy dependence can change
the Kondo renormalisation [36] and modify the distribu-
tion of Kondo temperatures in disordered systems sub-
stantially [29, 31, 32, 37]. Introducing furthermore the
continuum representation, by denoting g(r) = gi and
r = ri, we can rewrite the RG equation as

dg(r)

d lnD
= −2g(r)2

(
1− g0(r)D0

∫
d3r′g0(r′)

y(r − r′)

TK(r′)

1√
1 + (D/TK(r′))2

)
. (19)

where we introduced the function y(r − r′) defined by

y(r − r′) = − 8W

π2ρ0(r)
Im
∑
j 6=i

1

ρ0(rj)
δ(r′ − rj)e

ikF (r−rj)GRc (r− rj , µ)χc(r− rj , µ). (20)

As a result, we obtain the self-consistent equation with RKKY interactions in the dilute limit of randomly dis-
tributed magnetic impurities,

− 1

g0(r)
= 2 ln

(TK(r)

D0

)
− g0(r)D0

∫
d3r′g0(r′)

y(r − r′)

TK(r′)
ln
(√1 + [TK(r)/TK(r′)]2 − 1√

1 + [TK(r)/TK(r′)]2 + 1

)
. (21)

Solving this integral equation, we can derive the position
dependent Kondo temperatures for a given configuration
of RKKY interactions. From the distribution of the local
couplings g0(r) which originates from the random posi-
tions of doped magnetic impurities, the long range func-
tion y(r − r′), together with the random distribution of
electronic properties like the local density of states, we
can thus derive from Eq. (21) the distribution function of
Kondo temperatures TK . We note that it has been found
before that the random distribution of RKKY-coupling
is mainly due to the distribution of local couplings g0(r)
[24], so that the distribution originates mainly from the
local couplings g0(r), while the function y(r − r′) is not
strongly modified by the disorder.

When the RKKY interaction is neglected it has been
derived before that the Kondo temperature has a bi-
modal distribution with a low TK peak and a peak close
to the Kondo temperature of the clean systems [27–
29, 31, 32]. The low TK-peak was found to become more
pronounced for stronger disorder and converges to a uni-
versal power law tail at the Anderson metal-insulator

transition, where the power exponent depends only on
the multifractality parameter α0 [31, 32]. It remains to
find out, whether the relevance of inequalities found for
two magnetic impurities with RKKY-interaction above,
where we found that the lower Kondo temperature is sup-
pressed more strongly, results in a further enhancement
of the low Kondo temperature peak in its distribution
and thereby of the low temperature magnetic suscepti-
bility. This question can be resolved by the solution of
Eq. (21), which we leave for further study.
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