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Abstract

The possible ways to describe the states of a system of many hard spheres are consid-

ered, in particular by means of functions describing correlations of states. It is stated

an approach to the description of the evolution based on the dynamics of correlations

in a system of hard spheres. In addition, we consider another approach to describ-

ing the evolution of correlations in a system of many hard spheres, namely, in the

framework of a one-particle distribution function (correlation function) governed by

the non-Markovian Enskog kinetic equation.
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1. Introduction

Recently, mainly in connection with the problem of the rigorous derivation of the kinetic

equations [1]-[5], a number of articles have discussed approaches to describing the evolu-

tion of states of a system of many hard spheres [4]-[17].

As known, many-particle systems are described in terms of such notions as observables

and states. The functional for the mean value of observables determines a duality of observ-

ables and states. As a consequence, there are two approaches to describing the evolution

of a system from a finite number of particles, namely, in terms of observables, which are

governed by the Liouville equation for the function of observables, or in terms of states gov-

erned by the dual Liouville equation for the probability distribution function, respectively

[17],[19].

An alternative approach to the description of states of a system of finitely many particles

is to describe states using functions determined by the cluster expansions of the probability

distribution function. They are cumulants (semi-invariants) of the probability distribution

function and are interpreted as correlations of the state (correlation functions). The evo-

lution of correlation functions is governed by the Liouville hierarchy (the von Neumann

hierarchy for quantum many-particle systems [20]-[24]).

One more approach to describing a state of many-particle systems is to describe a state

by means of a sequence of so-called reduced distribution functions (marginal distribution

functions) governed by the BBGKY (Bogolyubov–Born–Green–Kirkwood–Yvon) hierar-

chy [1]-[4]. An alternative approach to such a description of a state is based on sequences

of functions determined by the cluster expansions of reduced distribution functions. These

functions are interpreted as the reduced correlation functions that are governed by the hier-

archy of nonlinear evolution equations (in papers [25],[26] in the case of quantum many-

particle systems). The mention approaches are allowed to describe the evolution of states

of systems both with a finite and infinite number of particles.

In the paper, it is also developed an approach to the description of the evolution by

means of both reduced distribution functions and reduced correlation functions which is

based on the dynamics of correlations in a system of hard spheres. It should be emphasized

that the structure of solution expansions of the corresponding hierarchies is induced by the

structure of a solution expansion of the Liouville hierarchy for a sequence of correlation

functions. We note the importance of the description of the processes of the creation and

propagation of correlations [27], in particular, it is related to the problem of the description

of the entanglement of states in many-particle systems.

In addition in the paper, an approach to the description of the evolution of states of a hard

sphere system by means of the state of a typical particle governed by the generalized Enskog

equation [13] is discussed, or in other words, the foundations of describing the evolution of

states by kinetic equations are considered. We note that the conventional approach to the

mentioned problem is based on the consideration of asymptotic behavior (the Boltzmann–

Grad asymptotic behavior [28]-[31]) of a solution of the BBGKY hierarchy for reduced

distribution functions represented in the form of series expansions of the perturbation theory

in case of initial states specified by a one-particle distribution function without correlation

functions [1]-[5],[32].

Thus, the paper deals with the mathematical problems of the description of the evolu-

tion of many hard spheres based on various ways of describing of the state, in particular

by means of functions describing correlations of states. Moreover, the origin of different

approaches to the description of states is discussed.
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2. Dynamics of finitely many hard spheres

The system of many hard spheres is describing in terms of observables and states. The

functional for the mean value of observables determines the duality of observables and

states, and, as a consequence, there are two equivalent ways to describe the evolution of

a system of finitely many hard spheres as the evolution of observables governed by the

Liouville equation, and as the evolution of states governed by the dual Liouville equation

(usually called the Liouville equation). An equivalent approach adapted to describing the

evolution of observables and states of systems of both finite and infinite number of hard

spheres is to describe a state by means of a sequence of so-called reduced distribution

functions (marginals) governed by the BBGKY hierarchy of equations and of observables

by means of sequences of so-called reduced functions of observables (marginal observables)

that are governed by the dual BBGKY hierarchy of equations.

2.1. Observables and states

We consider a system of identical particles of a unit mass interacting as hard spheres with a

diameter of σ > 0. Every particle is characterized by its phase coordinates (qi, pi) ≡ xi ∈
R
3×R

3, i ≥ 1. For configurations of such a system the following inequalities are satisfied:

|qi − qj| ≥ σ, i 6= j ≥ 1, i.e. the set Wn ≡
{
(q1, . . . , qn) ∈ R

3n
∣∣|qi − qj| < σ for at least

one pair (i, j) : i 6= j ∈ (1, . . . , n)
}

, n > 1, is the set of forbidden configurations.

Let Cγ be the space of sequences b = (b0, b1, . . . , bn, . . .) of bounded continuous

functions bn ∈ Cn equipped with the norm: ‖bn‖Cγ = maxn≥0
γn

n! ‖bn‖Cn , and let

L1
n ≡ L1(R3n × R

3n) be the space of integrable functions that are symmetric with respect

to permutations of the arguments x1, . . . , xn, equipped with the norm: ‖fn‖L1(R3n×R3n) =∫
dx1 . . . dxn|fn(x1, . . . , xn)|. Hereafter the subspace of continuously differentiable func-

tions with compact supports we will denote by L1
n,0 ⊂ L1

n and the subspace of finite se-

quences of continuously differentiable functions with compact supports let be L1
0 ⊂ L1

α =
⊕∞

n=0α
nL1

n, where α > 1 is a real number.

For a hard-sphere system of a non-fixed, i.e. arbitrary but finite average number of

identical particles (nonequilibrium grand canonical ensemble) in the space R
3, an observ-

able describes by the sequence A = (A0, A1(x1), . . . , An(x1, . . . , xn), . . .) of functions

An ∈ Cn defined on the phase spaces of the corresponding number n of hard spheres.

Then the meaning of positive continuous linear functional on the space Cγ is determined

the average value of an observable (the expected value or mean value of an observable). For

a system of non-fixed number of hard spheres it is defined as follows [1]:

〈A〉 = (A,D)
.
= (I,D)−1

∞∑

n=0

1

n!

∫

(R3×R3)n
dx1 . . . dxnAn Dn, (1)

where D = (1,D1, . . . ,Dn, . . .) is a sequence of symmetric nonnegative functions Dn =
Dn(x1, . . . , xn), n ≥ 1, equal to zero on the set of forbidden configurations Wn and

the normalizing factor (I,D) =
∑∞

n=0
1
n!

∫
(R3×R3)n dx1 . . . dxnDn(x1, . . . , xn) is a grand

canonical partition function. The sequence of functions D describes a state of a system of

a non-fixed number of hard spheres.

For the sequences A ∈ Cγ and D ∈ L1
α mean value functional (1) exists and it deter-

mines a duality between observables and states.

We note that in the particular case of a system of N < ∞ hard spheres the observables

and states are described by the one-component sequences: A(N) = (0, . . . , 0, AN , 0, . . .)
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and D(N) = (0, . . . , 0,DN , 0, . . .), respectively, and therefore, functional (1) has the fol-

lowing representation

〈A〉 = (A,D)
.
=

1

N !
(I,D)−1

∫

(R3×R3)N
dx1 . . . dxN AN DN ,

where (I,D) = 1
N !

∫
(R3×R3)N dx1 . . . dxNDN is the normalizing factor (canoni-

cal partition function), and it is usually assumed that the normalization condition∫
(R3×R3)N dx1 . . . dxNDN = 1 holds.

The function DN (x1, . . . , xN ), which describes all possible states of a system

of N hard spheres, is called a probability distribution function, since the expression

(I,D)−1DN (x1, . . . , xN )dx1 . . . dxN is the probability of finding the phase states of the

1st, . . . , Nth hard sphere in the phase volumes dx1, . . . , dxN centered at the phase points

x1, . . . , xN , respectively.

If at initial instant an observable specified by the sequence A(0) = (A0, A
0
1(x1), . . . ,

A0
n(x1, . . . , xn), . . .), then the evolution of observables An(t), n ≥ 1, i.e. the sequence

A(t) = (A0, A1(t, x1), . . . , An(t, x1, . . . , xn), . . .) is determined by the following the one-

parameter mapping S(t) = ⊕∞
n=0Sn(t):

A(t) = S(t)A(0), (2)

which is defined on every the space Cn ≡ C(R3n × (R3n \ Wn)) by means of the phase

trajectories of a hard-sphere system, which are defined almost everywhere on the phase

space R
3n × (R3n \Wn), namely, beyond of the set M0

n of the zero Lebesgue measure, as

follows

(Sn(t)bn)(x1, . . . , xn) ≡ Sn(t, 1, . . . , n)bn(x1, . . . , xn)
.
= (3)





bn(X1(t, x1, . . . , xn), . . . ,Xn(t, x1, . . . , xn)),

if (x1, . . . , xn) ∈ (R3n × (R3n \Wn)),

0, if (q1, . . . , qn) ∈ Wn,

where for t ∈ R the function Xi(t) is a phase trajectory of ith particle constructed in [1]

and the set M0
n consists of the phase space points which are specified such initial data that

during the evolution generate multiple collisions, i.e. collisions of more than two particles,

more than one two-particle collision at the same instant and infinite number of collisions

within a finite time interval [1],[31].

On the space Cn one-parameter mapping (3) is an isometric ∗-weak continuous group

of operators, i.e. it is a C∗
0 -group. For the group of evolution operators (3) the Duhamel

equation holds

Sn(t, 1, . . . , n)bn =

n∏

i=1

S1(t, i)bn +

t∫

0

dτ

n∏

i=1

S1(t− τ, i)

n∑

j1<j2=1

Lint(j1, j2)Sn(τ, 1, . . . , n)bn =

n∏

i=1

S1(t, i)bn +

t∫

0

dτSn(t− τ, 1, . . . , n)
n∑

j1<j2=1

Lint(j1, j2)
n∏

i=1

S1(τ, i)bn,
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where for t > 0 the operator Lint(j1, j2) is defined by the formula

Lint(j1, j2)bn
.
= σ2

∫

S2+

dη〈η, (pj1 − pj2)〉
(
bn(x1, . . . , p

∗
j1
, qj1 , . . . , (4)

p∗j2 , qj2 , . . . , xn)− bn(x1, . . . , xn)
)
δ(qj1 − qj2 + ση).

In definition (4) the symbol 〈·, ·〉 means a scalar product, the symbol δ denotes the Dirac

measure, S2+
.
= {η ∈ R

3
∣∣ |η| = 1〈η, (p1−p2)〉 > 0} and the momenta p∗i , p

∗
j are determined

by the equalities:

p∗i
.
= pi − η 〈η, (pi − pj)〉 ,

p∗j
.
= pj + η 〈η, (pi − pj)〉 .

If t < 0, the operator Lint(j1, j2) is defined by the corresponding expression [1].

Thus, the infinitesimal generator Ln of the group of operators (3) has the structure

Lnbn
.
=

n∑

j=1

L(j)bn +
n∑

j1<j2=1

Lint(j1, j2)bn, (5)

where the Liouville operator of free motion L(j)
.
= 〈pj ,

∂
∂qj

〉 defined on the set Cn,0, we

had denoted by the symbol L(j).
If A(0) ∈ Cγ , the sequence (2) is a unique solution of the Cauchy problem for the

sequence of the weak formulation of the Liouville equations

∂

∂t
A(t) = LA(t), (6)

A(t)|t=0 = A(0), (7)

where the operator L = ⊕∞
n=0Ln is defined by formula (5).

Taking into account the equality (I,D(0)) = (I, S∗(t)D(0)), and of the validity for

functional (1) the following representations:

(A(t),D(0)) = (I,D(0))−1
∞∑

n=0

1

n!

∫

(R3×R3)n
dx1 . . . dxn Sn(t)A

0
n D

0
n = (8)

(I, S∗(t)D(0))−1
∞∑

n=0

1

n!

∫

(R3×R3)n
dx1 . . . dxnA

0
n S

∗
n(t)D

0
n ≡

(I,D(t))−1(A(0),D(t)),

where the adjoint group of operators S∗
n(t) to group of operators (3) is defined on the space

of integrable functions L1
n

S∗
n(t) = Sn(−t), (9)

then, as a result, we can describe the evolution of many hard spheres within the evolution

of states.

On the space L1
n the one-parameter mapping defined by formula (9) is an isometric

strong continuous group of operators. Indeed,
∥∥S∗

n(t)
∥∥ = 1.
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We note that the group of operators (9) satisfies the Duhamel equation

S∗
n(t, 1, . . . , n) =

n∏

i=1

S∗
1(t, i) +

t∫

0

dτ

n∏

i=1

S∗
1(t− τ, i)

n∑

j1<j2=1

L∗
int(j1, j2)S

∗
n(τ, 1, . . . , n)) =

n∏

i=1

S∗
1(t, i) +

t∫

0

dτS∗
n(t− τ, 1, . . . , n)

n∑

j1<j2=1

L∗
int(j1, j2)

n∏

i=1

S∗
1(τ, i),

where for t > 0 the operator L∗
int(j1, j2) is defined by the formula

L∗
int(j1, j2)fn

.
= σ2

∫

S2+

dη〈η, (pj1 − pj2)〉fn(x1, . . . , p
∗
j1
, qj1 , . . . , (10)

p∗j2 , qj2 , . . . , xn)δ(qj1 − qj2 + ση)− fn(x1, . . . , xn)δ(qj1 − qj2 − ση)
)
.

In formula (10) the notations similar to (4) are used.

Hence the infinitesimal generator L∗
n of the group of operators S∗

n(t) has the structure

L∗
nfn

.
=

n∑

j=1

L∗(j)fn +

n∑

j1<j2=1

L∗
int(j1, j2)fn, (11)

where the Liouville operator of free motion L∗(j)
.
= −〈pj,

∂
∂qj

〉 defined on the subspace

L1
n,0 ⊂ L1

n, we had denoted by the symbol L∗(j).

In view of the validity of equality (8) the evolution of all possible states, i.e. the se-

quence D(t) = (1,D1(t), . . . , Dn(t), . . .) ∈ L1
α of the probability distribution functions

Dn(t), n ≥ 1, is determined by the formula

D(t) = S∗(t)D(0), (12)

where the one-parameter family of operators S∗(t) = ⊕∞
n=0S

∗
n(t), is defined as above.

If D(0) ∈ L1
α, the sequence of distribution functions defined by formula (12) is a

unique solution of the Cauchy problem for the sequence of the weak formulation of the

dual Liouville equation for states (known as the Liouville equation)

∂

∂t
D(t) = L∗D(t), (13)

D(t)|t=0 = D(0), (14)

where the generator L∗ = ⊕∞
n=0L

∗
n of the dual Liouville equations (13) is the adjoint

operator to generator (5) of the Liouville equation (6) in the sense of functional (1), i.e. it

is defined by formula (11).

2.2. Reduced functions of observables and states

For the description of a system of hard spheres of both finite and infinite number of particles

another approach to describing observables and states is used, which is equivalent to the

approach formulated above in the case of systems of finitely many hard spheres [1],[32].
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Indeed, for a system of finitely many particles mean value functional (1) can be repre-

sented in one more form

〈A〉 = (I,D)−1
∞∑

n=0

1

n!

∫

(R3×R3)n
dx1 . . . dxnAnDn = (15)

∞∑

s=0

1

s!

∫

(R3×R3)s
dx1 . . . dxsBs(x1, . . . , xs)Fs(x1, . . . , xs),

where, for the description of observables and states, the sequence of so-called reduced

functions of observables B = (B0, B1(x1), . . . , Bs(x1, . . . , xs), . . .) (other used terms:

marginal or s-particle observable [17]) was introduced and the sequence of so-called re-

duced distribution functions F = (1, F1(x1), . . . , Fs(x1, . . . , xs), . . .) (other used terms:

marginals [4], [5], truncated or s-particle distribution function [32]), respectively. Thus,

the reduced functions of observables are defined by means functions of observables by the

following expansions [19]:

Bs(x1, . . . , xs)
.
=

s∑

n=0

(−1)n

n!

s∑

j1 6=...6=jn=1

As−n((1, . . . , s) \ (j1, . . . , jn)), s ≥ 1, (16)

and the reduced distribution functions are defined by means of probability distribution func-

tions as follows [1]

Fs(x1, . . . , xs)
.
= (17)

(I,D)−1
∞∑

n=0

1

n!

∫

(R3×R3)n
dxs+1 . . . dxs+nDs+n(x1, . . . , xs+n), s ≥ 1.

We emphasize that the possibility of describing states within the framework of reduced

distribution functions naturally arises as a result of dividing the series in expression (1)

by the series of the normalization factor, i.e. in consequence of redefining of mean value

functional (15).

If initial state specified by the sequence of reduced distribution functions F (0) =
(1, F 0

1 (x1), . . . , F
0
n(x1, . . . , xn), . . .) ∈ L1

α, then the evolution of all possible states, i.e.

the sequence F (t) = (1, F1(t, x1), . . . , Fs(t, x1, . . . , xs), . . .) of the reduced distribution

functions Fs(t), s ≥ 1, is determined by the following series expansions [33]:

Fs(t, x1, . . . , xs) =

∞∑

n=0

1

n!

∫

(R3×R3)n
dxs+1 . . . dxs+nA1+n(t, {1, . . . , s}, (18)

s+ 1, . . . , s + n)F 0
s+n(x1, . . . , xs+n), s ≥ 1,

where the generating operator

A1+n(t, {1, . . . , s}, s + 1, . . . , s+ n) = (19)∑

P :({1,...,s},s+1,...,s+n)=
⋃

iXi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

S∗
|θ(Xi)|

(t, θ(Xi))

is the (1 + n)th-order cumulant of the groups of operators (12) [33]. In expansion (19) the

symbol {1, . . . , s} is a set consisting of one element (1, . . . , s), i.e. |{1, . . . , s}| = 1,
∑

P

means the sum over all possible partitions P of the set ({1, . . . , s}, s + 1, . . . , s+ n) into
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|P| nonempty mutually disjoint subsets Xi ⊂ ({1, . . . , s}, s + 1, . . . , s+ n) and θ is the

declusterization mapping: θ({1, . . . , s}, s + 1, . . . , s + n)
.
= (1, . . . , s + n). The simplest

examples of cumulants (19) of groups of operators (12) have the form

A1(t, {1, . . . , s}) = S∗
s (t, 1, . . . , s),

A1+1(t, {1, . . . , s}, s + 1) = S∗
s+1(t, 1, . . . , s+ 1)− S∗

s (t, 1, . . . , s)S
∗
1(t, s+ 1).

If F (0) ∈ L1
α = ⊕∞

n=0α
nL1

n, series (18) converges on the norm of the space L1
α provided

that α > e. The parameter α can be interpreted as the magnitude inverse to the average

number of hard spheres.

We note that the method of constructing the reduced distribution functions (18) is based

on the application of cluster expansions to the generating operators (12) of series (17),

as a result of which the generating operators of series (18) are the corresponding-order

cumulants of the groups of operators S∗(t) [1],[33].

If F (0) ∈ ⊕∞
n=0α

nL1
n and α > e, then for t ∈ R the sequence of reduced distribution

functions (18) is a unique solution of the Cauchy problem of the BBGKY hierarchy [1],[32]:

∂

∂t
Fs(t, x1, . . . , xs) = L∗

sFs(t, x1, . . . , xs) + (20)

s∑

j=1

∫

(R3×R3)
dxs+1L

∗
int(j, s + 1)Fs+1(t, x1, . . . , xs+1),

Fs(t, x1, . . . , xs) |t=0= F 0
s (x1, . . . , xs), s ≥ 1, (21)

where we used notations accepted in formula (11), i.e. for t ≥ 0 the Liouville operator L∗
s

is defined in [1] and the equality holds

s∑

j=1

∫

R3×R3

dxs+1L
∗
int(j, s + 1)Fs+1(t)

.
=

σ2
s∑

i=1

∫

R3×S2+

dps+1dη 〈η, (pi − ps+1)〉
(
Fs+1(t, x1, . . . , qi, p

∗
i , . . . ,

xs, qi − ση, p∗s+1)− Fs+1(t, x1, . . . , xs, qi + ση, ps+1)
)
,

and for t ≤ 0, the generator of the BBGKY hierarchy (20) is defined by the corresponding

expression [1]. Sequences of functions from the space L1
α describe the state of a finitely

many-particle system, because in this case the average number of hard spheres 〈N〉 =∫
(R3×R3) dx1 F1(t, x1) is finite.

We note that traditionally [1],[5],[32] the reduced distribution functions are represented

by means of the perturbation theory series of the BBGKY hierarchy (20)

Fs(t, x1, . . . , xs) =

∞∑

n=0

t∫

0

dt1 . . .

tn−1∫

0

dtn

∫

(R3×R3)n
dxs+1 . . . dxs+n S

∗
s (t− t1)

s∑

j1=1

L∗
int(j1, s+ 1))×

S∗
s+1(t1 − t2) . . . S

∗
s+n−1(tn−1 − tn)

s+n−1∑

jn=1

L∗
int(jn, s+ n))S∗

s+n(tn)F
0
s+n(x1, . . . ,

xs+n), s ≥ 1,
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where we used notations accepted in formula (10). The nonperturbative series expansion

for reduced distribution functions (18) is represented in the form of the perturbation theory

series for suitable interaction potentials and initial data as a result of the employment of

analogs of the Duhamel equation to cumulants (19) of the groups of operators (12).

We remark that, if initial observable (16) specified by the sequence of reduced observ-

ables B(0) = (B0, B
0
1(x1), . . . , B

0
s (x1, . . . , xs), . . .) ∈ Cγ , then the evolution of observ-

ables, i.e. the sequence B(t) = (B0, B1(t, x1), . . . , Bs(t, x1, . . . , xs), . . .) of the reduced

observables Bs(t), s ≥ 1, is determined by the following series expansions [19]:

Bs(t, x1, . . . , xs) =
s∑

n=0

1

n!

s∑

j1 6=...6=jn=1

A1+n

(
t, {(1, . . . , s) \ (j1, . . . , jn)}, (22)

(j1, . . . , jn)
)
B0

s−n(x1, . . . , xj1−1, xj1+1, . . . , xjn−1, xjn+1, . . . , xs), s ≥ 1.

The generating operators of expansions (22) is the (1 + n)th-order cumulant of groups of

operators (3) defined by the following expansion:

A1+n(t, {(1, . . . , s) \ (j1, . . . , jn)}, (j1, . . . , jn))
.
=∑

P: ({(1,...,s)\(j1,...,jn)},(j1,...,jn))=
⋃

iXi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

S|θ(Xi)|(t, θ(Xi)), n ≥ 0,

where the symbol
∑

P means the sum over all possible partitions P of the set (1, . . . , n)
into |P| nonempty mutually disjoint subsets Xi ⊂ (1, . . . , n). This sequence is a unique

solution of the Cauchy problem of the weak formulation of the dual BBGKY hierarchy for

hard spheres [18],[19]:

∂

∂t
Bs(t, x1, . . . , xs) =

( s∑

j=1

L(j) +
s∑

j1<j2=1

Lint(j1, j2)
)
Bs(t, x1, . . . , xs) + (23)

+

s∑

j1 6=j2=1

Lint(j1, j2)Bs−1(t, x1, . . . , xj1−1, xj1+1, . . . , xs),

Bs(t, x1, . . . , xs)|t=0 = B0
s (x1, . . . , xs), s ≥ 1, (24)

where it is used notations accepted in formula (5).

Thus, there exist two approaches to the description of the evolution of many hard

spheres, namely, within the framework of observables that are governed by the dual

BBGKY hierarchy (23) for reduced functions of observables, or in terms of states gov-

erned by the BBGKY hierarchy (20) for the reduced distribution functions, respectively.

For a system of finitely many hard spheres, these hierarchies are equivalent to the Liou-

ville equation for observables and to the Liouville equation for states (the dual Liouville

equation), respectively.

3. Dynamics of correlations of a hard-sphere system

An alternative approach to the description of states of a hard-sphere system of finitely many

particles is given by means of functions determined by the cluster expansions of the prob-

ability distribution functions. They are interpreted as correlation functions (cumulants of

probability distribution functions).
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3.1. Correlation functions

We introduce the sequence of correlation functions g(t) = (1, g1(t, x1), . . . , gs(t, x1,
. . . , xs), . . .) by means of the cluster expansions of the probability distribution functions

D(t) = (1,D1(t, x1), . . . ,Dn(t, x1, . . . , xn), . . .), defined on the set of allowed configura-

tions R3n \Wn as follows:

Dn(t, x1, . . . , xn) = gn(t, x1, . . . , xn) +
∑

P : (x1, . . . , xn) =
⋃

i Xi,

|P| > 1

∏

Xi⊂P

g|Xi|(t,Xi), (25)

n ≥ 1,

where
∑

P:(x1,...,xn)=
⋃

i Xi, |P|>1 is the sum over all possible partitions P of the set of the ar-

guments (x1, . . . , xn) into |P| > 1 nonempty mutually disjoint subsets Xi ⊂ (x1, . . . , xn).
On the set R3n \ Wn solutions of recursion relations (25) are given by the following

expansions:

gs(t, x1, . . . , xs) = Ds(t, x1, . . . , xs) +∑

P : (x1, . . . , xs) =
⋃

i Xi,

|P| > 1

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

D|Xi|(t,Xi), s ≥ 1. (26)

The structure of expansions (26) is such that the correlation functions can be treated as

cumulants (semi-invariants) of the probability distribution functions (12).

Thus, correlation functions (26) are to enable to describe of the evolution of states of

finitely many hard spheres by the equivalent method in comparison with the probability

distribution function, namely within the framework of dynamics of correlations [20],[21].

If initial state described by the sequence g(0) = (1, g01(1), . . . , g
0
n(x1, . . . , xn), . . .),

of correlation functions g0n ∈ L1
n, n ≥ 1, then the evolution of all possible states, i.e.

the sequence g(t) = (1, g1(t, x1), . . . , gs(t, x1, . . . , xs), . . .) of the correlation functions

gs(t), s ≥ 1, is determined by the following group of nonlinear operators [21]:

gs(t, x1, . . . , xs) = G(t; 1, . . . , s | g(0))
.
= (27)∑

P: (1,...,s)=
⋃

j Xj

A|P|(t, {X1}, . . . , {X|P|})
∏

Xj⊂P

g0|Xj |
(Xj), s ≥ 1,

where
∑

P: (1,...,s)=
⋃

j Xj
is the sum over all possible partitions P of the set (1, . . . , s) into

|P| nonempty mutually disjoint subsets Xj , the set ({X1}, . . . , {X|P|}) consists from el-

ements of which are subsets Xj ⊂ (1, . . . , s), i.e. |({X1}, . . . , {X|P|})| = |P|. The

generating operator A|P|(t) in expansion (27) is the |P|th-order cumulant of the groups of

operators (12) which is defined by the expansion

A|P|(t, {X1}, . . . , {X|P|})
.
= (28)

∑

P
′
: ({X1},...,{X|P|})=

⋃
k Zk

(−1)|P
′
|−1(|P

′
| − 1)!

∏

Zk⊂P
′

S∗
|θ(Zk)|

(t, θ(Zk)),

where θ is the declusterization mapping: θ({X1}, . . . , {X|P|})
.
= (1, . . . , s). The simplest

examples of correlation operators (27) are given by the following expansions:

g1(t, x1) = A1(t, 1)g
0
1(x1),

g2(t, x1, x2) = A1(t, {1, 2})g
0
2 (x1, x2) + A2(t, 1, 2)g

0
1 (x1)g

0
1(x2).
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Thus, the cumulant nature of correlation functions induces the cumulant structure of a

one-parametric mapping (27).

In particular, in the absence of correlations between hard spheres at the initial mo-

ment, known as the initial states satisfying the chaos condition [1]-[3], the sequence of the

initial correlation functions has the form g(c)(0) = (0, g01(x1), 0, . . . , 0, . . .) (in terms of

a sequence of the probability distribution functions it means that D(c)(0) = (1,D0
1(x1),

D0
1(x1)D

0
1(x2)XR6\W2

, . . . ,
∏n

i=1 D
0
1(xi)XR3n\Wn

, . . .), where XR3n\Wn
is the Heaviside

step function of allowed configurations of n hard spheres). In this case for (x1, . . . , xs) ∈
R
3s × (R3s \Ws) expansions (27) are represented as follows:

gs(t, x1, . . . , xs) = As(t, 1, . . . , s)
s∏

i=1

g01(xi), s ≥ 1, (29)

where As(t) is the sth-order cumulant of groups of operators (12) defined by the expansion

As(t, 1, . . . , s) =
∑

P: (1,...,s)=
⋃

i Xi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

S∗
|Xi|

(t,Xi), (30)

and it was used notations accepted in formula (12). From the structure of series (29) it is

clear that in case of absence of correlations at the initial instant the correlations generated

by the dynamics of a system of hard spheres are completely determined by the cumulants

of the groups of operators (30).

3.2. The Liouville hierarchy

If g0s ∈ L1
s, s ≥ 1, then for t ∈ R the sequence of correlation functions (27) is a unique so-

lution of the Cauchy problem of the weak formulation of the Liouville hierarchy [20],[21]:

∂

∂t
gs(t, x1, . . . , xs) = L∗

sgs(t, x1, . . . , xs) + (31)

∑

P: (x1,...,xs)=X1
⋃

X2

∑

i1∈X1

∑

i2∈X2

L∗
int(i1, i2)g|X1|(t,X1)g|X2|(t,X2),

gs(t, x1, . . . , xs)
∣∣
t=0

= g0s(x1, . . . , xs), s ≥ 1, (32)

where
∑

P: (x1,...,xs)=X1
⋃

X2
is the sum over all possible partitions P of the set (x1, . . . , xs)

into two nonempty mutually disjoint subsets X1 and X2, and the operator L∗
s is defined on

the subspace L1
0 ⊂ L1

α by formula (11). It should be noted that the Liouville hierarchy (31)

is the evolution recurrence equations set.

For t ≥ 0 we give a few examples of recurrence equations set (31) for a system of hard

spheres:

∂

∂t
g1(t, x1) = −〈p1,

∂

∂q1
〉g1(t, x1),

∂

∂t
g2(t, x1, x2) = −

2∑

j=1

〈pj,
∂

∂qj
〉g2(t, x1, x2) + σ2

∫

S2+

dη〈η, (p1 − p2)〉
(
g2(t, q1, p

∗
1,

q2, p
∗
2)δ(q1 − q2 + ση)− g2(t, x1, x2)δ(q1 − q2 − ση)

)
+

σ2

∫

S2+

dη〈η, (p1 − p2)〉
(
g1(t, q1, p

∗
1)g1(t, q2, p

∗
2)δ(q1 − q2 + ση)−

g1(t, x1)g1(t, x2)δ(q1 − q2 − ση)
)
,
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where it was used notations accepted above in definition (4).

We note that because the Liouville hierarchy (31) is the recurrence evolution equations

set, we can construct a solution of the Cauchy problem (31),(32), integrating each equation

of the hierarchy as the inhomogeneous Liouville equation. For example, as a result of the

integration of the first two equations of the Liouville hierarchy (31), we obtain the following

equalities:

g1(t, x1) = S∗
1(t, 1)g

0
1(x1),

g2(t, 1, 2) = S∗
2(t, 1, 2)g

0
2(x1, x2) +

t∫

0

dt1S
∗
2(t− t1, 1, 2)L

∗
int(1, 2)S

∗
1 (t1, 1)S

∗
1 (t1, 2)g

0
1(x1)g

0
1(x2).

Then for the corresponding term on the right-hand side of the second equality, an analog of

the Duhamel equation holds

t∫

0

dt1S
∗
2(t− t1, 1, 2)L

∗
int(1, 2)S

∗
1 (t1, 1)S

∗
1 (t1, 2) =

= −

t∫

0

dt1
d

dt1

(
S∗
2(t− t1, 1, 2)S

∗
1 (t1, 1)S

∗
1 (t1, 2)

)
=

= S∗
2(t, 1, 2) − S∗

1(t, 1)S
∗
1(t, 2) = A2(t, 1, 2),

where A2(t) is the second-order cumulant of groups of operators (30). As a result of similar

transformations for s > 2, the solution of the Cauchy problem (31),(32), constructed by an

iterative procedure, is represented in the form of expansions (27).

We remark that a steady solution of the Liouville hierarchy (31) is a sequence of

the Ursell functions on the allowed configurations of a hard-sphere system, i.e. g(eq) =

(0, e−β
p21
2 , 0, . . . , 0, . . .), where β is a parameter inversely proportional to temperature.

We emphasize that the dynamics of correlations, that is, the fundamental equations (31)

describing the evolution of correlations of states, can be used as a foundation for describing

the evolution of states of a system of both a finite and an infinite number of hard spheres

instead of the Liouville equation for states [17]-[27].

4. Processes of the propagation of correlations in a hard-sphere

system

Another approach to the description of states of hard-sphere systems of both finite and

infinite number of particles is can be formulated as in above by means of functions de-

termined by the cluster expansions of the reduced distribution functions. Such functions

are interpreted as reduced correlation functions of states (marginal or s-particle correlation

functions [24]-[26], or cumulants of marginals [7],[8]). On a microscopic scale, the macro-

scopic characteristics of fluctuations of observables are directly determined by means of the

reduced correlation functions.

The following also outlines the approach to the description of the evolution of states

by means of both reduced distribution functions and reduced correlation functions which is
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based on the dynamics of correlations in a system of hard spheres governed by the Liouville

hierarchy of equations for a sequence of correlation functions.

4.1. Reduced correlation functions

Traditionally reduced correlation functions are introduced by means of the cluster expan-

sions of the reduced distribution functions similar to the cluster expansions of the probabil-

ity distribution functions (25) and on the set of allowed configurations R3n \Wn they have

the form:

Fs(t, x1, . . . , xs) =
∑

P : (x1, . . . , xs) =
⋃

i Xi

∏

Xi⊂P

G|Xi|(t,Xi), s ≥ 1, (33)

where
∑

P:(x1,...,xs)=
⋃

i Xi
is the sum over all possible partitions P of the set (x1, . . . , xs)

into |P| nonempty mutually disjoint subsets Xi ⊂ (x1, . . . , xs). As a consequence of this,

the solution of recurrence relations (33) represented through reduced distribution functions

as follows:

Gs(t, x1, . . . , xs) =
∑

P : (x1, . . . , xs) =
⋃

i Xi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

F|Xi|(t,Xi), (34)

s ≥ 1,

are interpreted as the functions that describe the correlations of states in a hard-sphere

system. The structure of expansions (34) is such that the reduced correlation functions can

be treated as cumulants (semi-invariants) of the reduced distribution functions (18).

We note that the reduced correlation functions give an equivalent approach to the de-

scription of the evolution of states of many hard spheres along with the reduced distribution

functions. Indeed, the macroscopic characteristics of fluctuations of observables are directly

determined by the reduced correlation functions on the microscopic scale [25],[26], for ex-

ample, the functional of the dispersion of an additive-type observable, i.e. the sequence

A(1) = (0, a1(x1), . . . ,
∑n

i1=1 a1(xi1), . . .), is represented by the formula

〈(A(1) − 〈A(1)〉)2〉(t) =

∫

R3×R3

dx1 (a
2
1(x1)− 〈A(1)〉2(t))G1(t, x1) +

∫

(R3×R3)2
dx1dx2 a1(x1)a1(x2)G2(t, x1, x2),

where 〈A(1)〉(t) =
∫
R3×R3 dx1 a1(x1)G1(t, x1) is the mean value functional of an additive-

type observable.

If G(0) = (1, G0
1(x1), . . . , G

0
s(x1, . . . , xs), . . .) is a sequence of reduced correlation

functions at initial instant, then the evolution of all possible states, i.e. the sequence G(t) =
(1, G1(t, x1), . . . , Gs(t, x1, . . . , xs), . . .) of the reduced correlation functions Gs(t), s ≥ 1,

is determined by the following series expansions [24]:

Gs(t, x1, . . . , xs) = (35)
∞∑

n=0

1

n!

∫

(R3×R3)n
dxs+1 . . . dxs+n A1+n(t; {1, . . . , s}, s+ 1, . . . , s+ n | G(0)),

s ≥ 1,
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where the generating operator A1+n(t; {1, . . . , s}, s+1, . . . , s+ n | G(0)) of this series is

the (1 + n)th-order cumulant of groups of nonlinear operators (27):

A1+n(t; {1, . . . , s}, s + 1, . . . , s + n | G(0))
.
= (36)∑

P: ({1,...,s},s+1,...,s+n)=
⋃

k Xk

(−1)|P|−1(|P| − 1)!G(t; θ(X1) | . . .

G(t; θ(X|P|) | G(0)) . . .), n ≥ 0,

and where the composition of mappings (27) of the corresponding noninteracting groups of

particles was denoted by G(t; θ(X1) | . . .G(t; θ(X|P|) | G(0)) . . .), for example,

G
(
t; 1 | G(t; 2 | G(0))

)
= A1(t, 1)A1(t, 2)G

0
2(x1, x2),

G
(
t; 1, 2 | G(t; 3 | G(0))

)
= A1(t, {1, 2})A1(t, 3)G

0
3(x1, x2, x3) +

A2(t, 1, 2)A1(t, 3)
(
G0

1(x1)G
0
2(x2, x3) +G0

1(x2)G
0
2(x1, x3)

)
.

We will adduce examples of expansions (36). The first order cumulant of the groups of

nonlinear operators (27) is the group of these nonlinear operators

A1(t; {1, . . . , s} | G(0)) = G(t; 1, . . . , s | G(0)).

In case of s = 2 the second order cumulant of nonlinear operators (27) has the structure

A1+1(t; {1, 2}, 3 | G(0)) = G(t; 1, 2, 3 | G(0)) − G
(
t; 1, 2 | G(t; 3 | G(0))

)
=

A1+1(t, {1, 2}, 3)G
0
3(1, 2, 3) +(

A1+1(t, {1, 2}, 3) − A2(t, 2, 3)A1(t, 1)
)
G0

1(x1)G
0
2(x2, x3) +(

A1+1(t, {1, 2}, 3) − A2(t, 1, 3)A1(t, 2)
)
G0

1(x2)G
0
2(x1, x3) +

A1+1(t, {1, 2}, 3)G
0
1(x3)G

0
2(x1, x2) + A3(t, 1, 2, 3)G

0
1(x1)G

0
1(x2)G

0
1(x3),

where the operator

A3(t, 1, 2, 3) = A1+1(t, {1, 2}, 3) − A2(t, 2, 3)A1(t, 1)− A2(t, 1, 3)A1(t, 2)

is the third-order cumulant (30) of groups of operators (9) of a system of hard spheres.

In the case of the initial state specified by the sequence of reduced correlation functions

G(c) = (0, G0
1, 0, . . . , 0, . . .), that is, in the absence of correlations between hard spheres at

the initial moment of time [5],[30], according to definition (36), on the allowed configura-

tions reduced correlation functions (35) are represented by the following series expansions:

Gs(t, x1, . . . , xs) = (37)

∞∑

n=0

1

n!

∫

(R3×R3)n
dxs+1 . . . dxs+nAs+n(t; 1, . . . , s+ n)

s+n∏

i=1

G0
1(xi)XR3(s+n)\Ws+n

,

s ≥ 1,

where the generating operator As+n(t) is the (s + n)th-order cumulant (30) of groups of

operators (9).

If G(0) ∈ ⊕∞
n=0L

1
n, then provided that maxn≥1

∥∥G0
n

∥∥
L1
n
< (2e3)−1 [24], for t ∈ R the

sequence of reduced correlation functions (35) is a unique solution of the Cauchy problem
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of the hierarchy of evolution nonlinear equations for hard spheres (for quantum systems

known as the nonlinear BBGKY hierarchy [25]):

∂

∂t
Gs(t, x1, . . . , xs) = L∗

sGs(t, x1, . . . , xs) + (38)

∑

P: (x1,...,xs)=X1
⋃

X2

∑

i1∈X1

∑

i2∈X2

L∗
int(i1, i2)G|X1|(t,X1)G|X2|(t,X2)) +

∫

R3×R3

dxs+1

s∑

i=1

L∗
int(i, s + 1)

(
Gs+1(t, x1, . . . , xs+1) +

∑

P : (1, . . . , s+ 1) = X1
⋃

X2,

i ∈ X1; s+ 1 ∈ X2

G|X1|(t,X1)G|X2|(t,X2)
)
,

Gs(t, x1, . . . , xs)
∣∣
t=0

= G0
s(x1, . . . , xs), s ≥ 1, (39)

where the generators of these evolution equations are defined as in (11), and we used nota-

tions accepted in the Liouville hierarchy of equations (31).

4.2. On the description of states governed by the dynamics of correlations

A definition equivalent to the definition (17) of reduced distribution functions can be for-

mulated on the basis of the correlation functions (27) of systems of a finite number of hard

spheres, namely (see Appendix)

Fs(t, x1, . . . , xs)
.
= (40)

∞∑

n=0

1

n!

∫

(R3×R3)n
dxs+1 . . . dxs+n g1+n(t, {x1, . . . , xs}, xs+1, . . . , xs+n), s ≥ 1,

where the correlation functions of clusters of hard spheres g1+n(t), n ≥ 0, are defined by

the expansions:

g1+n(t, {x1, . . . , xs}, xs+1, . . . , xs+n) = (41)∑

P: ({1,...,s}, s+1,...,s+n)=
⋃

i Xi

A|P|

(
t, {θ(X1)}, . . . , {θ(X|P|)}

) ∏

Xi⊂P

g0|Xi|
(Xi),

n ≥ 0,

and A|P|(t) is the |P|th-order cumulant (28) of the groups of operators (12). The possibility

of redefining of the reduced distribution functions naturally arises as a result of dividing the

series in expression (17) by the series of the normalization factor [21].

Since the correlation functions g1+n(t), n ≥ 0, are governed by the corresponding

Liouville hierarchy for clusters of hard spheres, the reduced distribution functions (40) are

governed by the BBGKY hierarchy (20).

We note that correlation functions of hard-sphere clusters expressed through correlation

functions of hard spheres (27) by the following relations:

g1+n(t, {x1, . . . , xs}, xs+1, . . . , xs+n) =∑

P:({x1,...,xs}, xs+1,...,xs+n)=
⋃

i Xi

(−1)|P|−1(|P| − 1)!×

∏

Xi⊂P

∑

P′: θ(Xi)=
⋃

ji
Zji

∏

Zji
⊂P′

g|Zji
|(t, Zji), n ≥ 0.
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In particular case n = 0, i.e. the correlation function of a cluster of the s hard spheres, these

relations take the form

g1+0(t, {x1, . . . , xs}) =
∑

P: (x1,...,xs)=
⋃

i Xi

∏

Xi⊂P

g|Xi|(t,Xi).

Assuming as a basis an alternative approach to the description of the evolution of states

of a hard-sphere system within the framework of correlation functions (27), then the reduced

correlation functions are defined by means of a solution of the Cauchy problem of the

Liouville hierarchy (31),(32) as follows [26],[24]:

Gs(t, x1, . . . , xs)
.
=

∞∑

n=0

1

n!

∫

(R3×R3)n
dxs+1 . . . dxs+n gs+n(t, x1, . . . , xs+n), (42)

s ≥ 1,

where the generating function gs+n(t, x1, . . . , xs+n) is defined by expansion (26). Such a

representation is derived as a result of the fact that the reduced correlation functions are

cumulants (34) of reduced distribution functions (40).

Since the correlation functions gs+n(t), n ≥ 0, are governed by the Liouville hierarchy

for hard spheres (31), the reduced correlation functions defined as (42) are governed by the

nonlinear BBGKY hierarchy (38).

We emphasize that nth term of expansions (42) of the reduced correlation functions are

determined by the (s + n)th-particle correlation function (27) as contrasted to the expan-

sions of reduced distribution functions (40) which are determined by the (1+n)th-particle

correlation function of clusters of hard spheres (41).

In the absence of correlations of the states of hard spheres at the initial moment of time

on allowed configurations, the reduced correlation functions (35) and the reduced distri-

bution functions are represented by expansions in the series (37) and (18), respectively.

Consequently, the generator of these series expansions differs only in the order of the cu-

mulants of the groups of operators of hard spheres. As a result, the process of creating

correlations in a system of hard spheres is described by means of such reduced distribution

functions or reduced correlation functions.

Thus, as follows from the above, the cumulant structure of correlation function expan-

sions (41) or (27) induces the cumulant structure of series expansions for reduced distribu-

tion functions (18) and reduced correlation functions (35), respectively, or other words, the

evolution of the state of a system of an infinite number of hard spheres is governed by the

dynamics of correlations.

5. On the description of correlations by means of the kinetic

equations

Further, an approach to the description of states by means of the state of a typical particle of

a system of many hard spheres is discussed, or in other words, foundations are overviewed

of describing the evolution of states by kinetic equations.

We shall consider systems which the initial state specified by a one-particle reduced

correlation (distribution) function, namely, the initial state specified by a sequence of re-

duced correlation functions satisfying a chaos property stated above, i.e. by the sequence
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G(c) = (0, G0
1, 0, . . . , 0, . . .). We remark that such an assumption about initial states is

intrinsic in kinetic theory of many-particle systems [1]-[5].

Since the initial data G(c) is completely specified by the one-particle correlation (distri-

bution) function, the Cauchy problem of the nonlinear BBGKY hierarchy (38),(39) is not

completely well-defined the Cauchy problem, because the initial data is not independent

for every unknown function of the hierarchy of evolution equations. Therefore, the oppor-

tunity takes place to reformulate such a Cauchy problem as a new Cauchy problem for the

one-particle correlation function, with the independent initial data and explicitly determined

functionals of the solution of this Cauchy problem. We formulate such a restated Cauchy

problem and state functionals.

The following statement is true. In the case of the initial state specified by a one-particle

correlation function G(c) the evolution that described within the framework of the sequence

G(t) = (1, G1(t), . . . , Gs(t), . . .) of reduced correlation functions (35), is also be described

by the sequence G(t | G1(t)) = (1, G1(t), G2(t | G1(t)), . . . , Gs(t | G1(t)), . . .) of the

reduced (marginal) correlation functionals: Gs(t, x1, . . . , xs | G1(t)), s ≥ 2, with respect

to the one-particle correlation function G1(t) governed by the generalized Enskog kinetic

equation [13].

A similar statement was proved in the article [13] for the states of a system of hard

spheres described in terms of the reduced distribution functions governed by the BBGKY

hierarchy (20).

In the case under consideration the reduced correlation functionals Gs(t | G1(t)), s ≥
2, are represented with respect to the one-particle correlation function

G1(t, x1) = (43)

∞∑

n=0

1

n!

∫

(R3×R3)n
dx2 . . . dx1+nA1+n(t, 1, . . . , n + 1)

n+1∏

i=1

G0
1(xi)XR3(n+1)\Wn+1

,

where the generating operator A1+n(t) of this series is the (1 + n)th-order cumulant (30)

of the groups of operators (12), by the following series:

Gs

(
t, x1, . . . , xs | G1(t)

)
= (44)

∞∑

n=0

1

n!

∫

(R3×R3)n
dxs+1 . . . dxs+nVs+n

(
t, 1, . . . , s + n

) s+n∏

i=1

G1(t, xi),

s ≥ 2.

The generating operator Vs+n(t), n ≥ 0, of the (s+n)th-order of this series is determined

by the following expansion [13]:

Vs+n

(
t, 1, . . . , s, s + 1, . . . , s+ n

)
= (45)

n!

n∑

k=0

(−1)k
n∑

n1=1

. . .

n−n1−...−nk−1∑

nk=1

1

(n− n1 − . . .− nk)!
×

Âs+n−n1−...−nk
(t, 1, . . . , s+ n− n1 − . . .− nk)×

k∏

j=1

∑

Dj : Zj =
⋃

lj
Xlj

,

|Dj | ≤ s+ n− n1 − · · · − nj

1

|Dj |!

s+n−n1−...−nj∑

i1 6=...6=i|Dj |
=1

∏

Xlj
⊂Dj

1

|Xlj |!
Â1+|Xlj

|(t, ilj ,Xlj ),
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where
∑

Dj :Zj=
⋃

lj
Xlj

is the sum over all possible dissections of the linearly ordered set

Zj ≡ (s + n − n1 − . . . − nj + 1, . . . , s + n − n1 − . . . − nj−1) on no more than

s+ n− n1 − . . .− nj linearly ordered subsets, the (s+ n)th-order scattering cumulant is

defined by the formula

Âs+n(t, 1, . . . , s+ n)
.
= As+n(t, 1, . . . , s + n)X

R3(s+n)\Ws+n

s+n∏

i=1

A
−1
1 (t, i),

and notations accepted above were used. A method of the construction of reduced correla-

tion functionals (44) is based on the application of the so-called kinetic cluster expansions

[13] to the generating operators (30) of series (37). If ‖G1(t)‖L1(R3×R3) < e−(3s+2), series

(44) converges in the norm of the space L1
s for arbitrary t ∈ R [13].

We adduce simplest examples of generating operators (45):

Vs(t, 1, . . . , s) = As(t, 1, . . . , s)XR3s\Ws

s∏

i=1

A
−1
1 (t, i),

Vs+1(t, 1, . . . , s, s + 1) = As+1(t, 1, . . . , s + 1)X
R3(s+1)\Ws+1

s+1∏

i=1

A
−1
1 (t, i)−

As(t, 1, . . . , s)XR3s\Ws

s∏

i=1

A
−1
1 (t, i)×

s∑

j=1

A2(t, j, s + 1)XR6\W2
A
−1
1 (t, j)A−1

1 (t, s+ 1).

We note that reduced correlation functionals (44) describe all possible correlations gen-

erated by the dynamics of many hard spheres in terms of a one-particle correlation function.

If G0
1 ∈ L1

1, then for arbitrary t ∈ R one-particle correlation function (43) is a weak

solution of the Cauchy problem of the generalized Enskog kinetic equation [13]

∂

∂t
G1(t, x1) = L∗(1)G1(t, x1) +

∫

R3×R3

dx2 L
∗
int(1, 2)G1(t, x1)G1(t, x2) + (46)

∫

R3×R3

dx2 L
∗
int(1, 2)G2

(
t, x1, x2 | G1(t)

)
,

G1(t, x1)
∣∣
t=0

= G0
1(x1), (47)

where the first part of the collision integral in equation (46) has the Boltzmann–Enskog

structure, and the second part of the collision integral is determined in terms of the two-

particle correlation functional represented by series expansion (44) and it describes all pos-

sible correlations which are created by hard-sphere dynamics and by the propagation of

initial correlations related to the forbidden configurations.

Indeed, by virtue of definitions (10),(11) of the generator of the generalized Enskog

equation (46), for t > 0 the kinetic equation get the following explicit form

∂

∂t
G1(t, x1) = −〈p1,

∂

∂q1
〉G1(t, x1) +

σ2

∫

R3×S2+

dp2dη 〈η, (p1 − p2)〉
(
G1(t, p

∗
1, q1)G1(t, p

∗
2, q1 − ση, )−
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G1(t, x1)G1(t, p2, q1 + ση)
)
+

σ2

∫

R3×S2+

dp2dη 〈η, (p1 − p2)〉
(
G2

(
t, p∗1, q1, p

∗
2, q1 − ση | G1(t)

)
−

G2

(
t, x1, p2, q1 + ση | G1(t)

))
.

Thus, for the initial state specified by a one-particle correlation function, then all possi-

ble states of a system of hard spheres can be described without any approximations within

the framework of a one-particle correlation function governed by non-Markovian kinetic

equation (46), and of explicitly defined functionals (44) of its solution (43).

6. On the low-density approximation of reduced correlation

functions

The conventional philosophy of the description of the kinetic evolution consists of the fol-

lowing. If the initial state specified by a one-particle distribution function, then the evolu-

tion of states can be effectively described by means of a one-particle distribution function

governed by the nonlinear kinetic equation in a suitable scaling limit [28],[32].

In the last decade, the Boltzmann–Grad limit (low-density scaling limit) [28],[29] of the

reduced distribution functions constructed by means of the theory of perturbations were rig-

orously established in numerous papers, for example, in papers [7],[11],[17] and references

therein.

Further, we consider a scheme for constructing the scaling asymptotic behavior of re-

duced correlation functions (37) in the particular case of the Boltzmann–Grad limit in the

case of the above-mentioned initial state, which is specified by the scaled one-particle cor-

relation function G
0,ǫ
1 , satisfying the condition:

|G0,ǫ
1 (x1)| ≤ ce−

β
2 p

2
1 ,

where ǫ > 0 is a scaling parameter (the ratio of the diameter σ > 0 to the mean free path of

hard spheres), β > 0 is a parameter and c < ∞ is some constant, and for t ≥ 0 the operator

L∗
int in the dimensionless hierarchy of equations (38) is scaled in such a way that

L∗
int(j1, j2)fn = ǫ2

∫

S2+

dη〈η, (pj1 − pj2)〉fn(x1, . . . , p
∗
j1
, qj1 , . . . ,

p∗j2 , qj2 , . . . , xn)δ(qj1 − qj2 + ǫη)− fn(x1, . . . , xn)δ(qj1 − qj2 − ǫη)
)
,

where the notations similar to (4) are used.

We emphasize that the states of a system of infinitely many hard spheres are described

by sequences of functions bounded with respect to the configuration variables [1] as it

assumed above.

We will assume the existence of such Boltzmann–Grad limit of the reduced correlation

function G
0,ǫ
1 in the sense of weak convergence

w− lim
ǫ→0

(
ǫ2G

0,ǫ
1 (x1)− g01(x1)

)
= 0. (48)

Since the nth term of series (37) for the s-particle correlation function is determined

by the (s + n)th-order cumulant of asymptotically perturbed groups of operators (9), then
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on the finite time interval in the Boltzmann–Grad limit the property of the propagation of

initial chaos holds in the following sense:

w− lim
ǫ→0

ǫ2sGs(t, x1, . . . , xs) = 0, s ≥ 2. (49)

The equality (49) is derived by the following assertions.

If |fs| ≤ ce−
β
2

∑s
i=1 p

2
i , then for arbitrary finite time interval for asymptotically per-

turbed first-order cumulant (30) of the groups of operators (9), i.e. for the strongly contin-

uous group (9) the following equality takes place [1],[31]

w− lim
ǫ→0

(
S∗
s (t, 1, . . . , s)fs −

s∏

j=1

S∗
1(t, j)fs

)
= 0.

Therefore, for the (s+n)th-order cumulant of asymptotically perturbed groups of operators

(9) the following equalities true:

w− lim
ǫ→0

1

ǫ2n
As+n(t, 1, . . . , s+ n)fs+n = 0, s ≥ 2.

If equality (48) holds for the initial one-particle correlation operator, then in the case of

s = 1 for the series expansion (37) the following equality is true

w− lim
ǫ→0

(
ǫ2G1(t, x1)− g1(t, x1)

)
= 0,

where for arbitrary finite time interval the limit one-particle correlation function g1(t, x1)
is represented by the series

g1(t, x1) =
∞∑

n=0

t∫

0

dt1 . . .

tn−1∫

0

dtn

∫

(R3×R3)n
dx2 . . . dx1+n S

∗
1(t− t1, 1) × (50)

L0,∗
int(1, 2)

2∏

j1=1

S∗
1(t1 − t2, j1) . . .

n∏

in=1

S∗
1(tn − tn, in)×

n∑

kn=1

L0,∗
int(kn, n + 1)

n+1∏

jn=1

S∗
1(tn, jn)

n+1∏

i=1

g01(xi).

In this series expansion for t ≥ 0 the operator L0,∗
int(j1, j2) is defined by the formula

L0,∗
int(j1, j2)fn

.
=

∫

S2+

dη〈η, (pj1 − pj2)〉
(
fn(x1, . . . , p

∗
j1
, qj1 , . . . , p

∗
j2
, qj2 , . . . , xn)−

fn(x1, . . . , xn)
)
δ(qj1 − qj2),

where notations accepted in formula (10) are used.

Thus, we conclude that the limit one-particle correlation function (50) is a weak solution

of the Cauchy problem of the Boltzmann kinetic equation:

∂

∂t
g1(t, x1) = L∗(1)g1(t, x1) +

∫

R3×R3

dx2L
0,∗
int(1, 2)g1(t, x1)g1(t, x2),

g1(t, x1)|t=0 = g01(x1),
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or, if t ≥ 0, for a system of hard spheres the Boltzmann equation has the following explicit

form

∂

∂t
g1(t, x1) = −〈p1,

∂

∂q1
〉g1(t, x1) +

∫

R3×S2+

dp2dη 〈η, (p1 − p2)〉
(
g1(t, q1, p

∗
1)g1(t, q1, p

∗
2)− g1(t, x1)g1(t, q1, p2)

)
.

We remark that some other approaches to the derivation of kinetic equations, in par-

ticular, for a system of many hard spheres with initial correlations, were developed in the

works [13]-[16]. In [19], a hierarchy of kinetic equations describing the evolution of the

observables of a hard-sphere system in the low-density limit is constructed.

7. Conclusion

This article dealt with a hard-sphere system of a non-fixed, i.e. arbitrary but finite average

number of identical hard spheres. The possible approaches to describing the evolution of

the states of a system of hard spheres using various modifications of probability distribution

functions were considered. One of these approaches allows one to describe the evolution

of both a finite and an infinite average number of hard spheres using reduced distribution

functions (18) or reduced correlation functions (35), which are governed by the dynamics

of correlations (27).

Above it was established that the notion of cumulants (28) of the groups of opera-

tors (12) underlies non-perturbative expansions of solutions for the fundamental evolution

equations describing the evolution of the state of a hard-sphere system, namely of the Li-

ouville hierarchy (31) for correlation functions, of the BBGKY hierarchy (20) for reduced

distribution functions and of the nonlinear BBGKY hierarchy (38) for reduced correlation

functions, as well as it underlies the kinetic description of infinitely many hard spheres (44).

We emphasize that the structure of expansions for correlation functions (41), in which

the generating operators are the cumulants of the corresponding order (28) of the groups

of operators (12) of hard spheres, induces the cumulant structure of series expansions for

reduced distribution functions (18), reduced correlation functions (35) and marginal cor-

relation functionals (44). Thus, in fact, the dynamics of systems of infinitely many hard

spheres is generated by the dynamics of correlations.

The origin of the microscopic description of the collective behavior of a hard-sphere

system by a one-particle correlation (distribution) function that is governed by the gener-

alized Enskog kinetic equation (46) was also considered. One of the advantages of such

an approach to the derivation of kinetic equations from underlying dynamics consists of

an opportunity to construct the kinetic equations with initial correlations, which makes it

possible to describe the propagation of initial correlations in the scaling limits [17],[34].

Another advantage of this approach is related to the problem of a rigorous derivation of

the non-Markovian-type kinetic equations on the basis of the hard-sphere dynamics, which

make it possible to describe the memory effects in many-particle systems with collisional

dynamics.

In addition, it was established that in the particular case of a low-density approximation

for initial states specified by a one-particle correlation function the asymptotic behavior of

the constructed reduced correlation functions (37) is governed by the Boltzmann kinetic

equation with hard-sphere collisions.
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Appendix

The possibility of the description of the evolution of states based on the dynamics of cor-

relations (40) or (42) occurs naturally in consequence of dividing the series in expression

(1) by the series of the normalizing factor, or other words, as a result of redefining of mean

value functional (1).

To provide evidence of this statement, we will introduce the necessary concepts and

prove the validity of some equalities. On sequences of functions f, f̃ ∈ L1
α we define the

∗-product

(f ∗ f̃)|Y |(Y ) =
∑

Z⊂Y

f|Z|(Z) f̃|Y \Z|(Y \Z), (A.1)

where
∑

Z⊂Y is the sum over all subsets Z of the set Y ≡ (x1, . . . , xs). Using the def-

inition of the ∗-product (A.1), we introduce the mapping Exp∗ and the inverse mapping

Ln∗ on sequences h = (0, h1(x1), . . . , hn(x1, . . . , xn), . . .) of functions hn ∈ L1
n by the

expansions

(Exp∗ h)|Y |(Y ) =
(
I+

∞∑

n=1

h∗n

n!

)
|Y |

(Y ) = (A.2)

δ|Y |,0 +
∑

P:Y=
⋃

i Xi

∏

Xi⊂P

h|Xi|(Xi),

where we used the notations accepted in formula (25), δ|Y |,0 is the Kronecker symbol,

I = (1, 0, . . . , 0, . . .), and respectively,

(Ln∗(I+ h))|Y |(Y ) =
( ∞∑

n=1

(−1)n−1 h
∗n

n

)
|Y |

(Y ) = (A.3)

∑

P:Y=
⋃

i Xi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

h|Xi|(Xi).

Therefore in terms of sequences of operators recursion relations (25) are rewritten in the

form

D(t) = Exp∗ g(t),

where D(t) = I+ (0,D1(t, x1), . . . ,Dn(t, x1, . . . , xn), . . .). As a result, we get

g(t) = Ln∗ D(t).

Thus, according to definition (A.1) of the ∗-product and mapping (A.3), in the

component-wise form solutions of recursion relations (25) are represented by expansions

(26).

For arbitrary f = (f0, f1, . . . , fn, . . .) ∈ L1
α and Y ≡ (x1, . . . , xs) we will define the

linear mapping dY : f → dY f , by the formula

(dY f)n(x1, . . . , xn)
.
= f|Y |+n(Y, x|Y |+1, . . . , x|Y |+n), n ≥ 0. (A.4)

For the set {Y } consisting of the one element Y = (x1, . . . , xs), we have, respectively

(d{Y }f)n(x1, . . . , xn)
.
= f1+n({Y }, xs+1, . . . , xs+n), n ≥ 0. (A.5)
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On sequences dY f and dY ′ f̃ we introduce the ∗-product

(dY f ∗ dY ′ f̃)|X|(X)
.
=

∑

Z⊂X

f|Z|+|Y |(Y,Z) f̃|X\Z|+|Y ′|(Y
′,X\Z),

where X,Y, Y ′ are the sets, which terms characterize clusters of hard spheres, and
∑

Z⊂X

is the sum over all subsets Z of the set X. In particular case Y = ∅, Y ′ = ∅, this definition

reduces to definition (A.1).

For f = (0, f1, . . . , fn, . . .), fn ∈ L1
n, according to definitions of mappings (A.2) and

(A.5), the following equality holds

d{Y }Exp∗f = Exp∗f ∗ d{Y }f, (A.6)

and for mapping (A.4) respectively

dY Exp∗f = Exp∗f ∗
∑

P: Y=
⋃

i Xi

dX1f ∗ . . . ∗ dX|P|
f,

where
∑

P:Y=
⋃

i Xi
is the sum over all possible partitions P of the set Y ≡ (x1, . . . , xs)

into |P| nonempty mutually disjoint subsets Xi ⊂ Y .

According to the definition

(I, f)
.
=

∞∑

n=0

1

n!

∫

(R3×R3)n
dx1 . . . dxn fn(x1, . . . , xn),

where I = (1, . . . , 1, . . .), for sequences f, f̃ ∈ L1
α, the following equality holds

(I, f ∗ f̃) = (I, f)(I, f̃). (A.7)

In terms of mappings (A.4) and (A.5) the generalized cluster expansions of solutions

(12) of a sequence of the Liouville equations

Ds+n(t, Y, X \ Y ) =
∑

P:({Y }, X\Y )=
⋃

i Xi

∏

Xi⊂P

g|Xi|(t,Xi), s ≥ 1, (A.8)

where X \ Y ≡ (xs+1, . . . , xs+n), take the form

dY D(t) = d{Y }Exp∗ g(t).

Now let us prove the equivalence of the definition (17) of the reduced distribution func-

tions and the definition of (40) in the framework of the correlation dynamics.

In terms of mapping (A.4) the definition of reduced distribution functions (17) is written

as follows:

Fs(t, Y ) = (I,D(t))−1(I, dY D(t)).

Using generalized cluster expansions (A.8), and as a consequence of equalities (A.6),(A.7),

we find

(I, dY D(t)) = (I, d{Y }Exp∗ g(t)) =

(I,Exp∗g(t) ∗ d{Y }g(t)) = (I,Exp∗g(t))(I, d{Y }g(t)).
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Taking into account that, according to the particular case Y = ∅, of cluster expansions

(A.8), the equality holds

(I,Exp∗g(t)) = (I,D(t)),

and as a result, we establish the following representation for the reduced distribution func-

tions:

Fs(t, Y ) = (I, d{Y }g(t)).

Therefore, in componentwise-form, we obtain relation (40).

We remind that the correlation functions of particle clusters in series (40), i.e. the func-

tions g1+n(t, {Y },X\Y ), n ≥ 0, are defined as solutions of generalized cluster expansions

(A.8), namely

g1+n(t, {Y },X \ Y ) =
∑

P:({Y }, X\Y )=
⋃

i Xi

(−1)|P|−1(|P| − 1)!
∏

Xi⊂P

D(t,Xi),

s ≥ 1, n ≥ 0,

where the probability distribution function D(t,Xi) is solution (12) of the Liouville equa-

tion (13).

Thus, we have established relation (40) between the reduced distribution functions and

correlation functions. In a similar way, the validity of relation (42) between the reduced cor-

relation functions defined by the cumulant expansions: G(t) = Ln∗ F (t), and correlation

functions, i.e. Gs(t, Y ) = (I, dY g(t)), can be justified.
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