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Human experts cannot efficiently access the physical information of quantum many-body states by simply
“reading” the coefficients, but have to reply on the previous knowledge such as order parameters and quantum
measurements. In this work, we demonstrate that convolutional neural network (CNN) can learn from the coef-
ficients of local reduced density matrices to estimate the physical parameters of the many-body Hamiltonians,
such as coupling strengths and magnetic fields, provided the states as the ground states. We propose Qubism-
Net that consists of two main parts: the Qubism map that visualizes the ground states (or the purified reduced
density matrices) as images, and a CNN that maps the images to the target physical parameters. By assuming
certain constraints on the training set for the sake of balance, QubismNet exhibits impressive powers of learning
and generalization on several quantum spin models. While the training samples are restricted to the states from
certain ranges of the parameters, QubismNet can accurately estimate the parameters of the states beyond such
training regions. For instance, our results show that QubismNet can estimate the magnetic fields near the critical
point by learning from the states away from the critical vicinity. Our work illuminates a data-driven way to
infer the Hamiltonians that give the designed ground states, and therefore would benefit the existing and future
generalizations of quantum technologies such as Hamiltonian-based quantum simulations and state tomography.

INTRODUCTION

Machine learning (ML) has recently been applied to various
issues that are difficult using purely the “conventional” tech-
niques in physics (for instance, tensor network [1–3], quantum
Monte Carlo [4, 5], and etc.). The successful applications in-
clude identifying the classical/quantum phases and topologies
without computing order parameters [6–12], predicting phys-
ical properties of materials [13–15], efficiently representing
non-trivial quantum states [16–19], to name but a few.

Among others, obtaining the eigenstates, particularly the
ground states, of a given quantum many-body Hamiltonian
belongs to the central topics in the contemporary physics
[20, 21]. The inverse problems, which are of equal signifi-
cance and practicality, are much less studied due to the lack
of valid methods. ML serves as a novel approach that has
recently gained certain inspiring successes in such problems
[22–25]. In particular, one important issue under hot debate is
to access the information of the potentials or interactions by
learning from physical data. For instance, Xin et al utilized
fully-connected neural network to recover the ground states of
k-local Hamiltonians from local measurements [26]. Hegde
et al employed the kernel ridge regression to achieve accu-
rate and transferable predictions of Hamiltonians for a variety
of material environments [27]. Li et al identified the effective
Hamiltonians in magnetic systems and extracted the dominant
spin interactions in MnO and TbMnO3 through multiple lin-
ear regression [28]. Sehanobish et al proposed the quantum
potential neural networks to reconstruct the effective potential
given the wave functions [29].

However, most existing works in this direction utilize the
regression methods or shallow neural networks, which usually
possess relative low learning or generalizing powers. In ML,
one usually uses deep networks, such as convolutional neural
network (CNN) [30, 31], to solve sophisticated problems such

as the classifications of real-life images. The excellent learn-
ing and generalization abilities of CNN have been widely rec-
ognized in numerous applications in computer sciences (c.f.
Refs. [32–34] for instance). Recently, Berthusen et al utilized
CNN to extract the crystal field Stevens parameters from the
thermodynamic data, which illustrates the validity of CNN-
based method in deducing physical information [35]. Goh et
al put forward a deep CNN model named Chemception to pre-
dict chemical properties with the 2D drawings of molecules
[36]. Laanait et al used an encoder-decode architecture with
convolutional layers to generate the local electron density of
material by learning from the diffraction patterns [37]. It is in-
teresting and unexplored whether CNN is capable of solving
more challenging issues, including those with the presence of
strong correlations and many-body effects.

In this work, the problem we consider is inverse to those
of solving the eigenstates of a given Hamiltonian. Suppose
the state or its local reduced density matrices (RDMs) is
given. Our aim is to estimate the parameters in the many-body
Hamiltonian by training a CNN model, so that the given state
is the ground state. Solving such a problem would be mean-
ingful and important for, e.g., designing the Hamiltonian of a
quantum annealer to prepare a target state [38]. To this end,
we propose QubismNet that consists of two main parts (FIG.
1 (a)). The first part is a map to transform the RDMs into
images, and the second is a CNN to transform the images to
the estimations of the target parameters in the Hamiltonian.
The purpose of mapping the RDMs to images is to utilize the
power of CNN processing images. Similar idea has been used
in Ref. [35], where the thermodynamic data (specific heat and
others) are transformed to images by wavelet transformation
before being fed to the CNN. The RDM-image map we use
is known as Qubism [39], where the obtained images are of
fractals (see some examples in FIG. 1 (b)) that can reveal the
physical properties of the state.
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FIG. 1. (Color online) (a) Illustration of QubismNet. Its first part
is the Qubism map that transforms a quantum wave-function to an
image of fractals. The second part is a convolutional neural network
that maps the images to the estimations of the target parameters. (b)
Examples of the images obtained by Qubism. The ground states are
from the XY model with the magnetic fields h = 0.2 ∼ 0.8.

We benchmark QubismNet on several quantum spin mod-
els defined on 1D and 2D lattices. The learning and general-
ization powers of QubismNet are tested by dividing the sam-
ples (i.e., the ground states taking different values of certain
parameter in the Hamiltonian) into testing and generalizing
sets. The parameters corresponding to the states in the testing
set are independently and identically distributed (i.i.d.) as the
states in the training set. QubismNet can estimate the parame-
ters of such states with high performance. The parameters cor-
responding to the states in the generalizing set are restricted
in a certain range in which no training states are taken. To
keep the training data balanced, the training samples are taken
from the boundaries of the whole parameter space, and the
generalizing samples are taken from a sub-region in the mid-
dle of the parameter space. Our results show that QubismNet
can generalize what it has learned from the training set to esti-
mate the parameters of the generalizing states with fair perfor-
mance. For instance, QubismNet only learns from the states
away from the critical point and well estimates the magnetic
fields given the RDMs of the states in the critical vicinity. Our
work suggests that CNN is capable of extracting information
directly from the coefficients of the RDMs, while human ex-
perts have to reply on the previous knowledge such as order
parameters and measurements.

QUBISMNET: ESTIMATING PHYSICAL PARAMETERS
FROM LOCAL REDUCED DENSITY MATRICES

QubismNet consists of two main parts. The first part is a
Qubism map [39] that was originally proposed to transforms
states to images of fractals in a one-to-one way.

Taking the quantum Ising model (QIM) in a transverse
magnetic field as an example, the Hamiltonian reads

Ĥ(h) = J
∑
〈i,j〉

Ŝzi Ŝ
z
j − h

L∑
k=1

Ŝxk , (1)

with Ŝα the α-component spin operator (α = x, z) and L the
system size. Here, we take the coupling constant J = 1 as
the energy scale. There are several well-established methods
to calculate the ground states given the Hamiltonians, such
as density matrix renormalization group (DMRG) [40, 41],
tensor network algorithms [1–3], quantum Monte Carlo [4, 5],
and etc. This work considers an inverse problem: estimating
the magnetic fields h (or other parameters) given the RDMs
of the ground states.

In specific, we denote the training set as {|ψm〉} (m =
1, . . . , Ntrain), where |ψm〉 is the ground state of Ĥ(hm). To
train the CNN whose output is the value of the target parame-
ter, we choose the mean-square error (MSE) as the loss func-
tion

ε =
1

Ntrain

Ntrain∑
m=1

(hpm − hm)2, (2)

with hpm the estimation of the magnetic field of |ψm〉 by the
QubismNet. The variational parameters in the CNN are op-
timized by minimizing the loss function using the gradient
method. We choose RMSProp [42] as the optimizer to con-
trol the gradient steps. More details of the Qubism map and
CNN are provided in the Supplementary Material.

To benchmark the generalization power of QubismNet, we
introduce the testing and generalizing sets [43]. The test-
ing sets contains the states whose magnetic fields are dif-
ferent from but i.i.d. with the training states. The states
in the generalizing set are different from both the training
and testing states, and are distributed in a different region.
For instance, we uniformly choose Ntrain values of h within
0 < h < 0.5 − δ/2 and 0.5 + δ/2 < h < 1 for the training
set, and choose other Ntest values of h in the same regions of
h for the testing set. For the generalizing set, we uniformly
choose Ng values of h within 0.5− δ/2 < h < 0.5+ δ/2. We
dub δ as generalization width. Note h = 0.5 is the quantum
critical point of QIM. The states in either the testing or the
generalizing sets are not used to train the CNN.

For the large-size systems, it is inefficient to directly ap-
ply the Qubism map, as it requires the full coefficients of the
quantum states. To avoid such a problem, we bring in the
RDMs combined with purification. In specific, we choose a
subsystem of a moderate size (denoted by Lb) and calculate
the reduced density matrix ρ̂(|ψm〉) = Trs|ψm〉〈ψm| with Trs
tracing the degrees of freedom in the subsystem. In general,
if Lb is comparable or larger than the correlation length, the
RDM would contain the dominant physical information of the
whole system [44, 45]. Interestingly, according to our simu-
lations, it is even not necessary to set Lb larger than the cor-
relation length to accurately estimate the physical parameters
from the RDMs.
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To map a RDM to image by Qubism, we write it as a pure
state as ρ̂(|ψm〉) =

∑
ii′ ρii′ |i〉〈i′| → |ρm〉 =

∑
ii′ ρii′ |ii′〉.

One can see that |ρm〉 is the purification of ρ̂(|ψm〉)2 since
we have Tri′ |ρm〉〈ρm| = ρ̂(|ψm〉)2. Therefore, we feed the
QubismNet by {|ρm〉}, which contain identical amount of in-
formation as {ρ̂(|ψm〉)}. The parameter complexity of |ρm〉
is independent on the size of the whole system. It is same as
the complexity of a state with 2Lb spins.

RESULTS AND DISCUSSIONS

We first benchmark the training and testing accuracies of
QubismNet on one-dimensional (1D) QIM by taking L = 64
as the system size and Lb = 8 as the subsystem size in the
RDM trick. We take the periodic boundary condition, mean-
ing the first and last spins are interacted as nearest neigh-
bors. FIG. 2 (a) shows the estimated fields hp against the
true fields h. The Ntrain = 1000 training states are taken as
the ground states by uniformly choosing different magnetic
fields in 0 < h < 1. The h’s of the Ntest = 100 testing states
are also uniformly taken in 0 < h < 1, which are different
from the fields of the training states. No generalizing states
are taken (i.e., δ = 0). The QubismNet accurately estimates
the magnetic fields of both the training and testing states. We
have the testing error εt ' 1.21× 10−4 evaluated by the loss
function, i.e., MSE, of all testing states. The estimations are
accurate near the critical point, where the states possess rela-
tively long-range correlations.

We also test the QubismNet on 1D XXZ model with pe-
riodic boundary condition. We consider two cases, whose
Hamiltonians are written, respectively, as

Ĥ(Jz) =
∑
〈i,j〉

(Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j + JzŜ

z
i Ŝ

z
j ), (3)

Ĥ(h) =
∑
〈i,j〉

(Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j ) + h

L∑
k=1

Ŝzk . (4)

The physical parameters to be estimated by the QubismNet
are the coupling strength Jz in Eq. (3) and the longitudinal
field h in Eq. (4). We dub the latter as XY model, where we
take zero Jz and non-zero longitudinal field. We use the RDM
trick with L = 64 and Lb = 8. The testing accuracies of the
XXZ and XY models are about εt ∼ O(10−5).

To benchmark the generalization power, we set δ = 0.4
[FIG. 2 (b)]. Within 0.3 < h < 0.7 (the light yellow shadow),
no training states are taken. In this range, we averagely take
Ng = 40 h’s with an interval dh = 0.01 as the generalizing
set. For the QIM, a quantum phase transition occurs at h =
0.5. In our setting, the QubismNet only learns from the states
away from the critical vicinity. Our results show that it can
generalize from what it has learned and estimate the magnetic
fields near the critical point. We have the generalizing error
(the MSE evaluated by the generalizing set) εg ∼ O(10−3)
using the RDM trick with L = 64 and Lb = 8.

For the XY and XXZ models, the system is in the gapless
phase for 0 < h < 1 [46]. We set the same ranges for the
training, testing and generalizing sets as above. Without the
RDM trick, we take L = 16, and find that “stages” appear
in the h-hp curves. This is due to the energy gaps caused by
the finite-size effects. For instance, by changing h of the XY
model from 0.15 to 0.28, no energy level crossing occurs. It
means the ground states within this range is the same state.
Such “stages” obviously hinder the estimation of the physical
parameters from the ground states since QubismNet distin-
guishes no differences from the states by varying h within a
stage. We propose to resolve this issue by increasing L (e.g.,
to L = 64). The RDM trick has to be used since we can-
not handle the full 264 coefficients in the Qubism map. From
our results, the “stages” of the h-hp curves are largely sup-
pressed using the RDM trick. The testing and generalizing
errors are decreased by more than 100 and 20 times, respec-
tively. QubismNet is also tested on the frustrated breathing
kagome antiferromagnet [47, 48], where both the testing and
generalizing errors are around O(10−4). See more details in
the Supplementary Material.

We also test on the XXZ and XY models on (4 × 16) 2D
square lattice with periodic boundary condition. The subsys-
tem for the RDM is chosen in the middle of lattice with the
size 4 × 2. The 2D XY model, whose local Hamiltonian is
given by Eq. (4), is in an oscillatory phase for 0 ≤ h ≤ 1.
The XXZ model (Eq. (3)) is in the paramagnetic phase for
0 ≤ Jz ≤ 1. In general, 2D quantum models are much more
challenging to simulate. QubismNet works well on such 2D
quantum systems as shown in FIG. 2 (c). With the generaliz-
ing width δ = 0.4, we get similar performance compared with
the chains, with εt ∼ O(10−5)−O(10−4) and εg ∼ O(10−3).

To demonstrate the finite-size effects, we show in FIG. 3 (a)
the εg against L on the XXZ and XY models (δ = 0.6). The
RDM trick is used with Lb = 8. The error bars here (and all
others in this work) are evaluated by independently and ran-
domly taking the initial values of the variational parameters in
the CNN for ten times. The εg of both models are still slightly
decreasing with L for L > 60, meaning it is possible to fur-
ther reduce the errors by taking larger sizes. In the inset of
FIG. 3 (a), we fix L = 64 and find that εg well converges as
the subsystem size increases to Lb > 6 for the models un-
der consideration. Note it would be inefficient to improve the
performance by increasing Lb as the complexity will increase
exponentially with it. We have tried larger Lb and the results
indicate little improvement to the performance.

In FIG. 3 (b), we show εg versus δ for the QIM, XXZ, and
XY models. We fix L = 64 and use the RDM trick with
Lb = 8. Since the QubismNet only learns from the states
sampled in 0 < h < 0.5 − δ/2 and 0.5 + δ/2 < h < 1,
it requires more generalization power to estimate the h of
the ground states in 0.5 − δ/2 < h < 0.5 + δ/2 as δ in-
creases. Therefore, the generalizing error εg of the Qubism-
Net monotonously increases with δ. But even for δ = 0.8,
the generalizing error is still insignificant with approximately
εg < 0.05. Meanwhile, the estimations become more fluc-
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FIG. 2. (Color online) The estimated parameters of the Hamiltonian (h or Jz) versus their ground truth. The blue shadows indicate the ranges
of parameters where we take as the training and testing sets. The yellow shadows indicate the range of the generalizing set. The errors of
testing and generalizing sets (εt and εg) can be found in the inset tables. (a) Estimations hp or Jp

z versus the true values h or Jz without
generalizing set (δ = 0) for the 1D spin models. We take L = 64 with the subsystem size Lb = 8. The RDM trick is used. (b) Estimations
hp versus the true h taking δ = 0.4 for the 1D spin models. Note the critical point of QIM, h = 0.5, is put in the middle of the generalizing
range. And no RDM trick is used when L = 16 in the XY model. (c) Estimations hp versus the true h for the spin models on a 4× 16 square
lattice.
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FIG. 3. (Color online) (a) The generalizing error εg versus the system
size L by fixing the generalizing width δ = 0.6 and bulk size Lb = 8
for 1D XXZ and XY models. The inset demonstrates the relation
between εg and Lb with L = 64. (b) The relation between εg and δ
for 1D and 2D spin models where we fix L = 64 and Lb = 8.

tuated for larger δ when randomly initializing the variational
parameters of the QubismNet.

In above, we stated that after transforming the states into
images, we can take advantage of the power of CNN on pro-
cessing images. Below, we try to directly reshape the coef-
ficients of a RDM into a 22Lb -dimensional vector. Then we
use a 1D version of CNN, which consists of 1D convolutional
and pooling layers, to map the vector to the estimations of the
target parameters. FIG. 4 (a) shows the estimations hp versus
h on the 1D XY model with L = 64 and Lb = 6 and 8. The εt
and εg without the Qubism map becomes more than ten times
larger than that with the Qubism map. These results imply
that the Qubism map is a reasonable choice, since the image
”visualizes” the physics of the state in the patterns of fractals

h

(b)(a)

FIG. 4. (Color online) (a) The estimations hp versus the true h on
the 1D XY model (L = 64) with and without the Qubism map. We
use the RDM trick with Lb = 8 and Lb = 6. (b) The estimations of
h and Jz on the 1D XXZ model. The position of each dot shows the
ground truth of the two parameters, and its color indicates the error.

[39]. We do not exclude the possibilities of other maps that
may outperform the Qubism map.

The estimation of two parameters is also tried on 1D
Heisenberg XXZ model, where both the magnetic field h and
Jz which represents the anisotropy are estimated simultane-
ously. We chooseL = 64 and use the RDM trick withLb = 8.
As shown in FIG. 4 (b), the training and testing set are ob-
tained within the blue region, and the generalizing set are from
the yellow region. The ground state is in a gapless phase. The
color of each dots illustrates the error between estimation and
label. The generalizing error is 7.54× 10−3.
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SUMMARY AND PERSPECTIVE

Our work is a start-up of using the classical ML models
to directly learn the quantum data (e.g., wave-functions or
density matrices). CNN models possess high non-linearity,
thus it would be interesting to compare with the parameterized
quantum circuit models [49–51] that normally represent uni-
tary transformations on quantum states. Our results suggest
the impressive learning and generalization powers of CNN
in such issues. It could provide a key tool in designing the
Hamiltonian in order to, for instance, prepare target states in
Hamiltonian-based quantum simulators [38, 52]. An impor-
tant topic for the future investigations is to test the general-
ization power while breaking the data balance to different ex-
tents. Our proposal can be generalized to learn from the ex-
perimental data of quantum measurements in, e.g., a quantum
state tomography process [26, 53–55]. The idea of using NN
to inversely solve challenging numeric problems can be poten-
tially generalized, e.g., to the constraint satisfaction problems
[56, 57].
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SUPPLEMENTARY MATERIAL

In the supplementary material, more details about the
Qubism map and CNN are provided, and the images obtained
by the Qubism map from various models in 1D and 2D are
shown. The detailed descriptions and some supplementary
data on applying QubismNet to 2D quantum systems on the
square and breathing kagome lattices are given.

Qubism Map

Consider a quantum system with L spins, denoted by
s = {X1Y1X2Y2 . . . XL/2YL/2} with Xi, Yi ∈ {0, 1}.
The resolution of the image obtained by the Qubism map is
(2L/2, 2L/2). Each spin configuration corresponds to the pixel
in the x-th row and y-th column of the image satisfying

x =

L/2∑
i=1

Xi2
(L/2−i) + 1,

y =

L/2∑
i=1

Yi2
(L/2−i) + 1.

(5)

The gray-scale value of each pixel is taken as the coefficient
of the quantum state in the corresponding spin configuration.
Besides, each pixel can be attached to colors based on the
phase of quantum state. The images obtained by the Qubism
map of 1D QIM, Heisenberg XY, and XXZ models are shown
in FIG. 5 (a), (b) and (c), respectively. In all these cases, we
take L = 64 and Lb = 8.

Convolutional Neural Network

CNN has shown the advantage in image recognition and
many other challenging tasks. In general, CNN consists of
several alternative convolutional and pooling layers, which
together serve as a feature extractor. One or many fully-
connected layers are then used to map the extracted features to
the target output in classification and regression. The CNN we
use in this work contains eight layers. The first convolutional
layer filters the input images with 32 kernels of size 3× 3 and
a stride of size 1 × 1. The second convolutional layer take
the output of the first convolutional layer as input with same
setting as the first convolutional layer. The first max-pooling
layer of size 2×2 follows which downsamples the size of fea-
tures. Then the third and fourth convolutional layers are used
both with 64 kernels of size 3 × 3 and a stride of size 1 × 1.
All convolutional layers use padding around the images so the
outputs has the same height/width dimension as the inputs.
The second max-pooling layer follows with pool size 2 × 2.
Next, the output of the second max-pooling layer is flattened
and then input to two fully-connected layers with 128 and 32
neurons respectively. The output of the last fully connected
layer is fed to one neuron which produce the final output of

the physical parameter. Note that we choose two successive
convolutional layers to improve the quality of features because
of the more complex nonlinearity and larger receptive fields.
The rectified linear unit (ReLU) [1] is chosen as activation
function for all the convolutional and fully-connected layers.
A linear activation function is used for the output layer. The
optimizer we use is RMSprop with the initial learning rate
0.001. ”He normal initialization” is employed as initialization
method which has been proven to get good effect in CNN with
the rectifier nonlinearities [2].

We split data into four datasets which are training, valida-
tion, testing and generalizing set. The training set is used to
train the CNN model. The validation set is randomly taken
from the training set with the percentage of 10%. The valida-
tion set has two roles in our work. One is choosing the proper
hyper-parameters such as the number of neurons in each layer,
the optimizer, and so on. The other is the early-stopping tech-
nique. The testing set and the generalizing set consist of data
which never show in the training set. The difference is that
data in the testing set have same range of the training set how-
ever the generalizing range is beyond the training range.

Two tricks on avoiding overfitting during the training pro-
cess is employed. One is the dropout [3, 4] with rate of
p = 0.5, meaning randomly masking 50% of neurons dur-
ing training. It is a commonly used method making the NN
robust. The other is validation. We always save the best model
selected by the minimum loss of the validation set which con-
sists of the samples randomly chosen 10% from the training
set. The best model is then used on the testing and general-
izing set. Note that the input images are normalized so that
the features are in [0, 1]. We construct and train our CNN
with Keras [5], a high-level open-source API running on top
of TensorFlow. We train the CNN for 300 epochs for each
case (one epoch means training by all the samples in training
set once). The total training time is roughly 0.3 hours on a
server equipped with NVIDIA P100 graphics processing unit
when we use 1000 training samples.

FIG. 6 (a) shows the loss functions versus epochs for the
1D QIM and XY models with L = 64, Lb = 8 and δ = 0.4.
The loss functions of the training and validation sets decrease
rapidly and become quite small in a few epochs for all the
three models. This indicates that QubismNet is trainable and
feasible. Besides, the validation loss functions do not increase
during the whole training process implying no overfitting.

Furthermore, we go deep inside the CNN and see extracted
features by the convolutional/pooling part of the CNN. After
the last pooling layer, each sample is mapped to a 64×64×64
tensor as the extracted features where 64 is the number of
channels. FIG. 6 (b) shows the average magnitude of each
channel c. We find the the dominant contribution is from the
first channel in almost all the cases. In FIG. 6 (c), we demon-
strate the 64×64 features in the first channel. Interestingly, we
observe that the prominent features (with larger values marked
by the deeper dots) move in general from right to left with the
increase of h. These results indicate that QubismNet capture
some consecutive rule from the quantum states in its own way.
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(a)

(b)

(c)

FIG. 5. (Color online) Illustrations of the images by the Qubism map from the ground states of the QIM, XY, and XXZ models.

(a)

(c)

(b)

c

FIG. 6. (Color online) The loss functions and extracted features of the CNN. (a) The decreases of the loss function with the training epochs on
training and validation set for QIM, XY and XXZ models. (b) For the XY model, we show the average magnitude of the extracted features for
different channels c. For different h, the dominant contribution is always from the first channel. (c) The extracted 64× 64 features in the first
channel. In general, we observe that the prominent features (illustrated by the dark dots) move from right to left as h increases.

All codes used in the manuscript and this supplementary
material can be found on GitHub [6].

RDM-based method for two-dimensional lattice

We follow the standard recipe of DMRG on solving the
ground states of 2D quantum models [7]. The 2D lattice
model with nearest-neighboring interactions is stretched into
a chain with long-range interactions, as illustrated in FIG. 7
(a). We set the size of lattice as 4×16 for both the 2D XY and
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XXZ models. The subsystem used to calculate RDM is cho-
sen in the middle of lattice with size 4 × 2 as illustrated. For
the purified state of ρ2, we treat all the degrees of freedom in
the bra space as one of the two dimensions of the 2D image,
and treat those in the ket space as the other dimension of the
image. This ordering is illustrated in FIG. 7 (b). Several im-
ages obtained from the ground states of the 2D XY and XXZ
models with different h or Jz are shown in FIG. 7 (c) and (d)
as examples.

QubismNet for breathing kagome antiferromagnet

We also tried QubismNet for the non-trivial breathing
kagome antiferromagnet with the Hamiltonian

Ĥ =J4
∑
〈i,j〉∈4

(Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j )

+ J∇
∑
〈i,j〉∈∇

(Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j )

(6)

where J4 and J∇ represent the coupling strength in the
up and down triangles, respectively. The illustration of the
kagome lattice with periodic boundary condition is shown in
FIG. 8 (a). The number of columns is three and the image size
after the qubism map is 512× 512. The breathing anisotropy
J∇/J4 is chosen to vary between 0.4 and 1.0. The ground

states are magnetically disordered RVB states and solved by
DMRG algorithm. FIG. 8 (b) shows the results of predict-
ing the breathing anisotropy on the testing and generalizing
sets. The mean square errors are of the order of magnitude
O(10−4). This demonstrates the validity of the QubismNet
on the nontrivial kagome model with magnetically disordered
ground states.
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(a)

(d)

(c)

(b)

=

FIG. 7. (Color online) An illustration of DMRG applied to the 2D system, and the images obtained from the 2D ground states. (a) An
illustration of how the 2D lattice is stretched to a 1D chain in order to use DMRG to simulate the ground states. We choose a 2× 4 sub-system
in the middle to define the RDM. (b) An illustration of how the reduced density matrices are constructed. (c) The images obtained by applying
the Qubism map to the ground states in the 2D XX model in different transverse fields h. (d) The images from the 2D XXZ model with
different Jz .
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(a)

FIG. 8. (Color online) (a) An illustration of the breathing kagome antiferromagnet, where the couplings of the upper and lower triangles are
antisymmetric. The number of columns is three. Periodic boundary condition is chosen as shown in the red edges. (b) shows the estimations
of the breathing anisotropy versus its ground truth. We use the RDM trick with Lb = 8.
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