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The aim of this paper is two-fold. First, we propose a new computational method to investigate
the particularities of evolution. Second, we apply this method to a model of gene regulatory networks
(GRNs) and explore the evolution of mutational robustness and bistability. Living systems have
developed their functions through evolutionary processes. To understand the particularities of this
process theoretically, evolutionary simulation (ES) alone is insufficient because the outcomes of ES
depend on evolutionary pathways. We need a reference system for comparison. An appropriate
reference system for this purpose is an ensemble of the randomly sampled genotypes. However,
generating high-fitness genotypes by simple random sampling is difficult because such genotypes
are rare. In this study, we used the multicanonical Monte Carlo method developed in statistical
physics to construct a reference ensemble of GRNs and compared it with the outcomes of ES. We
obtained the following results. First, mutational robustness was significantly higher in ES than in the
reference ensemble at the same fitness level. Second, the emergence of a new phenotype, bistability,
was delayed in evolution. Third, the bistable group of GRNs contains many mutationally fragile
GRNs compared with those in the non-bistable group. This suggests that the delayed emergence of

bistability is a consequence of the mutation-selection mechanism.

I. INTRODUCTION

As living systems have developed through the long his-
tory of evolution, their present forms reflect their evolu-
tionary histories. Thus, some properties of living sys-
tems should be consequences of the particularity inher-
ent in evolution. In contrast, some properties may be
more commonly observed, so that they do not depend on
the evolutionary pathway. In this respect, the common
properties and particularities of evolution are of specific
interest. However, experimental studies on this topic are
limited because the existing living organisms are prod-
ucts of evolution; thus, evolutionary experiments can
only provide outcomes that reflect evolutionary histories.
Therefore, computational methods are indispensable for
obtaining information on evolutionary processes.

Although evolutionary simulation (ES) is a powerful
method for studying the evolutionary process, its out-
comes depend strongly on evolutionary pathways; there-
fore, ES alone is insufficient for our purposes and we need
a reference system for comparison. In this study, we
investigated the evolution of gene regulatory networks
(GRNs). The reference system that we consider appro-
priate for this case is an ensemble of randomly sampled
GRNs. If some properties are commonly observed in the
ensemble, they should be realized irrespective of the evo-
lutionary pathway. If there are some differences between
the results of the ES and reference ensemble, they are
manifestations of the particularity of evolution.

The aim of this paper is two-fold. First, we propose
a research method for determining the properties of the
evolutionary process by comparing a randomly sampled
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ensemble of genotypes obtained using a method based
on statistical mechanics with genotypes obtained using
the ES. Second, we apply it to a model of GRNs and
investigate the evolution of mutational robustness and
emergence of bistability.

Let us discuss our methodology concretely in the con-
text of mutational robustness and bistability of GRNs.
Living systems possess many types of robustness includ-
ing that against environmental and internal noises as well
as that against genomic mutations|1-3]. Among the vari-
ous types of robustness, the most important is mutational
robustness, which enables a living system to retain its
function and continue to exist despite genome mutation.

Mutational robustness has been demonstrated experi-
mentally. For example, comprehensive single-gene knock-
out experiments for bacteria and yeasts have revealed
that most gene knockouts do not affect viability|4-6].
An artificial rewiring experiment for the GRN of E. coli
showed that the bacterium remains viable after most arti-
ficial additions of regulatory links[7]. Such mutational ro-
bustness must have been acquired through an evolution-
ary process. Mutationally robust genotypes have been
selected because of the mutation-selection mechanism,
which is not directly related to any function. In this
respect, enhancement of mutational robustness through
evolution is called “second-order selection” [2].

Random sampling is suitable for identifying properties
that do not depend on evolutionary history. Ciliberti et
al. conducted random sampling of GRNs to investigate
mutational robustness|], 9]. The fitness of their model
had only two values — viable and non-viable. They in-
vestigated the interrelations of viable GRNs and argued
that most GRNs belong to a large cluster connected by
neutral mutations, similar to the neutral networks found
in the RNA sequence space|l10]. However, such a simple
random sampling method is not useful for systems with a
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more complex fitness landscape, because highly fit GRNs
are rare. Burda et al. and Zagorski et al. employed the
Markov chain Monte Carlo method to sample highly fit
GRNs|11, [12]. They found that GRNs exhibiting multi-
stability contained a common network motif.

The abovementioned methods are insufficient for sam-
pling GRNs with a wide range of fitness levels. Saito and
Kikuchi proposed the use of the multicanonical Monte
Carlo (McMC) method to investigate the mutational ro-
bustness of GRNs[13]. McMC was originally developed
in statistical physics for sampling configurations within
a wide range of energies[14, [15]. However, this method
has also been found to be useful for sampling nonphysi-
cal systems [16]. It is particularly effective for generating
very rare states and estimating the probabilities of their
appearance[16-20)].

Nagata and Kikuchi investigated a GRN model us-
ing McMC|[21]; they regarded fitness as the “energy” of
GRNs and sampled GRNs with very low fitness to very
high fitness uniformly and randomly. They considered a
neural network-like model of GRNs, with one input gene
and one output gene, and set the fitness in a manner
that fitness was high if the GRN responded sensitively to
changes in input. As each gene in their model did not re-
spond ultrasensitively[22,[23], and the network structures
were restricted, simple network motifs did not give rise
to bistability[24]. Despite this, they found that highly
fit GRNs always exhibited bistability. Therefore, bista-
bility has emerged as a consequence of the cooperation
of many genes. According to their results, a new pheno-
type of bistability appears regardless of the evolutionary
path. They also found that mutationally robust GRNs
were not rare among highly fit GRNs.

Bistable or multistable responses of GRNs are widely
observed in living systems. The best-known example is
the toggle switch for lysogenic-lytic transition in phage
A, which has been extensively studied both experimen-
tally and theoretically [25-28]. Another example is the
cdkl activation system in Xenopus eggs [29-31]. The
bistable switches of GRNs are also utilized in cell-fate
decisions; a well-known example is the bistability of the
MAPK cascade which regulates maturation of the Xeno-
pus oocyte|32]. While the roles of small motifs have been
the focus of research of such systems, the importance
of cooperativity among many genes has been stressed
theoretically|33].

In this study, we constructed a reference ensemble us-
ing McMC and compared it with the results of ES. We
extended the research of Ref. [21] to more general net-
work structures and explored both the enhancement of
mutational robustness by evolution and how evolution
affects the emergence of bistability.

II. MODEL

Genes encoded by DNA in cells are read by RNA poly-
merase and transcribed to mRNA, which is then used to

assemble proteins. A category of proteins called tran-
scription factors acts as activators or repressors of other
genes. Many genes regulate each other in this manner
and form a complex network called a GRN. GRNs are
used to alter the cell state to adapt to environmental
changes or to control the cell cycle or cell differentiation.
One of the best-known GRN mathematical models is the
Boolean network model proposed by Kauffman, in which
each fixed point of the dynamical system is considered to
represent a cell state[34-36].

In this study, we considered regulatory relations and ig-
nored the details of gene expression. Such connectionist-
type modeling has been widely used in theoretical
studies|21, 133, 137-44]. We represented GRNs as directed
graphs, with nodes as genes and edges as regulatory in-
teractions. For simplicity, we considered GRNs with one
input node and one output node. In contrast to Ref. [21],
wherein several restrictions were imposed on the network
structure, we allowed any network as long as the number
of edges from one node to another was at most one. In
the following sections, we have restricted our discussion
to networks with N = 32 nodes and K = 80 edges.

A variable z; € [0,1] that represents the expression
level of a gene is assigned to each node, where 7 indicates
the node number. x; obeys the following discrete-time
dynamics[38, 39]:

zi(t+1) =R | Id;0 + Z Jija;(t) ] (1)

J

where t denotes the time step. J;; represents regulation
from the j-th node to the i-th node. For simplicity, we
assume that J;; takes one of the three values — 0,4+1;
+1 indicates activation, —1 indicates repression, and 0
indicates the absence of regulation. The Oth node is the
input gene, and I € [0,1] is the strength of the input

signal[44]. The response of the genes is given by the
following sigmoidal function:

R(z) = ! 2

) = T @)

where ( represents the steepness of the function, and u
is the threshold. This function is widely used in theo-
retical studies33, 40, [44-46]. In the present study, we
set S = 2 and p = 0. These parameters are the same
as those in the neural network model used by Hopfield
and Tank|47], and provide a gradual increase to the re-
sponse function, which reflects the stochastic nature of
gene expression[33]. The response function R(x) with
p = 0 is not ultrasensitive because a single gene with
this response function has a single fixed point even when
the auto-activation loop is attached. Therefore, for the
emergence of multistability, many genes must act coop-
eratively. An example of the parameters of R(x) that a
single gene with an auto-activation loop exhibits bista-
bility is § = 6 and p = 0.5. Although spontaneous ex-
pression R(0) = 0.5 is rather high, we do not believe that
it caused any problems in the present investigation.



Following the definition of fitness presented by
Ref. [21], we set the fitness such that it was larger when
the difference in the expression levels of the output gene
between I = 0 and 1 (“off” and “on”) was large. Zoy:(1)
was the fixed-point value of the output node for fixed I;
as the initial condition, we set the expression of all genes
as 0.5, the spontaneous expression. If 2,,¢(t) behaved os-
cillatorily over time instead of reaching the fixed point,
we used the temporal average for T,y ([); however, the
system reached a fixed point in most cases. Fitness f was
defined as follows:

f = |j0ut(0) - jout(1)|' (3)

Fitness takes a value in [0, 1] by definition.

We sampled the GRNs using McMC to construct the
reference ensemble. For this purpose, we divided the en-
tire range of fitness into 100 bins. McMC enabled us to
sample GRNs such that the numbers of GRNs in all bins
were almost the same. The GRNs within each bin were
randomly sampled in principle. Hereafter, we call this
method “random sampling”. We performed two types
of ES: in one, half of the GRNs in the population were
preserved at each generation, and in the other type, 90%
of the GRNs were preserved. We referred to these as
Evo50 and Evo90, respectively. In the following sections,
we mainly describe the results of Evo50, unless otherwise
stated. For each ES, we prepared a random initial popu-
lation comprising of a thousand GRNs. The details of the
computational methods are summarized in the Methods
section.

III. RESULTS
A. Genotypic entropy and speed of evolution

The blue line in Fig[h shows the base 10 logarithm of
the appearance probability €2(f) for each bin of fitness
f obtained by random sampling. As the logarithm of
probability is entropy, we refer it to as the “genotypic en-
tropy.” The sum of (f) was normalized to 1. The prob-
ability for f > 0.99 was ~ 1076, As we could count the

total possible number of GRNs as (]}7;)21( ~ 1045 highly
fit GRNs were numerous but rare. The fitness depen-
dence of genotypic entropy is divided roughly into three
regions. The majority of GRNs concentrate near f ~ 0.
The number of GRNs then decreases exponentially with
f, and, for a very high f, they decrease faster than the
exponential rate. For comparison, we have shown the
genotypic entropy for a steeper response function, § = 4
and g = 0, in Fig [Ib. It also comprises three regions,
namely, the majority around f ~ 0, an exponential de-
crease, and a faster-than-exponential decrease, as in the
case of 8 = 2 (the jaggy outline is not because of statis-
tical error).

The orange lines represent the average fitness of each
generation obtained with Evo50. The vertical axis rep-
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Fig 1: Genotypic entropy and evolution of fitness. The
fitness f is divided into 100 bins. The blue dashed lines (left
axis) show the base 10 logarithms of the appearance proba-
bility Q(f) of each bin, obtained by random sampling. The
orange solid lines (right axis) represent the average fitness
of each generation calculated for the lineages obtained using
Evob0. Averages were taken over 100,000 lineages. The verti-
cal lines indicate the fitness at which Q(f) starts to decrease
faster than the exponential rate. (a) 8 = 2 and u = 0. (b)
B =4and p=0.

resents the generation in the downward direction. Evo-
lution progresses almost linearly in the early stage and
slows down drastically for a large f. The values of f
for which the increase in fitness starts to slow down
roughly coincides with the values for which the faster-
than-exponential decrease in Q(f) begins for both § = 2
and 4. This may be because the number of possible des-
tinations that a GRN can transit to by the mutation is
restricted by Q(f). In other words, when the number
of GRNs with higher fitness levels decreases drastically,
the possibility that the fitness increases by chance also
decreases. A comparison of Evo50 and Evo90 for 8 = 2
is given in S1 Fig. Although the evolution was slower
for Evo90, the overall tendency was similar. This result
suggests that evolutionary speed depends in a large part
on genotypic entropy.



B. Evolutionary enhancement of mutational
robustness

To discuss mutational robustness, we introduce a mea-
sure of robustness. In Ref. [21], a single-edge deletion was
considered as a mutation. It was found that the edges
split into two classes, neutral and essential, for highly fit
GRNs, and that the essential edges were minor among
them; the essential edge means that the deletion of such
an edge leads to fitness close to zero. We considered a
single-edge deletion as a mutation in the present model
as well, and obtained similar results. We then define the
following quantity, r, as the robustness measure:

1 K
r=4 > f, (4)
=1

where f/ is the fitness after the ith edge is deleted, and
the sum is taken for all edges. Because r should increase
with f, comparing the r of GRNs with different f is not
meaningful. However, by comparing this quantity for
GRNs obtained by random sampling and ES at the same
f, we can investigate how evolution affects mutational
robustness.

Fig [2 shows the average of r against f for random
sampling, Evob0, and Evo90. For the ES, we classified
GRNSs in the obtained lineages by fitness into 100 bins,
as with random sampling. The average was taken over
all the GRNs in the corresponding bin. For the highest
fitness of the ES, only data in the range [0.990,0.991)
were used. (r) obtained by ES increased monotonically
and coincided with those obtained by random sampling
up to f ~ 0.5. For a larger f, the value of evolution
departed upward from that of random sampling, and the
difference became increasingly significant as f increased.
Evo50 and Evo90 behaved almost similarly, except for the
highest fitness, where Evo90 exhibited a slight decrease.
The reason for this decrease is not clear, but the standard
errors are very small, and this decrease is not caused by
a statistical error.

To scrutinize the difference, we show the probabil-
ity distributions of r for f € [0.5,0.51),[0.8,0.81), and
[0.99,1.0] in Figs Bh-Bk. The data for the ES are taken
from Evo50. Considering that the distribution of f
within each bin differs for random sampling and ES, we
divided each bin into ten sub-bins and reweighed the dis-
tribution obtained by ES, so that the distribution of f
coincided with that of random sampling. While both dis-
tributions roughly agreed for f € [0.5,0.51), we observed
a deviation for f € [0.8,0.81). The two distributions ex-
hibited distinct differences for f > 0.99, and the distri-
bution obtained by ES was biased to a large r compared
with that of random sampling. Therefore, evolution was
found to enhance mutational robustness.

What caused this difference in distribution? As stated
previously, the edges of randomly sampled GRNs for
f > 0.99 are split into two classes: neutral and essential.
Thus, when we delete one edge, f’ is either close to f or
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Fig 2: Average of the robustness measure r against fit-
ness. The average was taken over all the samples in each bin.
The blue line represents random sampling. The orange and
green lines represent Evo50 and Evo90, respectively. GRNs
obtained by ES were classified according to f into 100 bins,
similar to random sampling. The slight decrease at the high-
est fitness for Evo90 was not caused by a statistical error.

almost zero, and other types of edges are scarce. There-
fore, we investigated the number distribution of essential
edges for f > 0.99 by stating that an edge is essential if
f’ < 0.8. Although this definition is arbitrary, it hardly
affects the results. Fig M shows the probability distribu-
tion of the number of essential edges n.. GRNs obtained
by ES are significantly biased toward a small number of
sides compared to random sampling. The highest prob-
ability for ES was at n. = 3, and the distribution was
narrow; further, more than 2% of GRNs had no essen-
tial edge. In contrast, the highest probability for random
sampling was at n, = 15, and the distribution was much
broader. The number of GRNs lacking an essential edge
was only 0.4%. Therefore, the small number of essential
edges is the cause of enhanced mutational robustness by
evolution.

One possible explanation for this is that fewer nodes
affect the output in the evolutionarily obtained GRNs.
To check this, we counted the number of nodes ny that
had at least one path to the output node. Fig[Blshows the
distributions, and the distribution of random networks is
also plotted for comparison. The peak of the distribu-
tion was at ny = 28, which is slightly less than that for
the peak of random networks; however, the distributions
were indistinguishable between ES and random sampling.
Therefore, the number of effective nodes does not cause
a difference in the number of essential edges.

C. Delayed emergence of bistability

The model in Ref. [21] exhibits bistability as f ap-
proaches its maximum value. In other words, when I is
changed continuously, two saddle-node bifurcations oc-
cur, in contrast to the case of a small f, wherein a single
fixed point moves to follow the change in I. We call
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Fig 3: Probability distributions of the robustness mea-
sure 7. (a)f € [0.5,0.51) (b)f € [0.8,0.81) (c)f € [0.99, 1.0].
The orange solid lines represent Evo50 and the blue dashed
lines represent random sampling. r was divided into 80 bins
because otherwise, unnecessary oscillation appeared in the
distribution, owing to the discreteness of the number of es-
sential edges. The distributions for the ES were corrected
using the reweighting method described in the text.

the latter type of GRNs monostable. We found that the
present model behaves similarly despite the fact that the
network structures are significantly different owing to the
different restrictions imposed on network construction.
Bistable GRNs are classified into three categories. The
first is the toggle switch, in which two saddle-node bi-
furcations occur within I € [0,1]. The toggle switch is
found, for instance, in phage A\ and utilized for adaptation
to environmental change[25-27]. The second is the one-
way switch[48]. In this case, only one saddle-node bifur-
cation point is found in the range I € [0, 1], and another
bifurcation point is present outside this range. One-way
switches give rise to cell maturation or cell differentia-
tion; a typical example of such switches is the MAPK
cascade in the maturation of Xenopus oocytes|32]. In
the last category, both bifurcation points are outside the
range of /. As this type may not work as a switch as
long as the effect of noise is not considered, we called
it “unswitchable.” In this study, we did not distinguish
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Fig 4: Probability distribution of the number of es-
sential edges n.. The data for f € [0.99,1.0] are shown.
An edge is regarded as essential if the fitness f’ becomes less
than 0.8 after the edge is deleted. The orange solid line rep-
resents Evo50, and the blue dashed line represents random
sampling. The distribution of the ES was corrected using the
reweighting method described in the text.
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Fig 5: Distribution of the number of effective nodes
nn. The data for f € [0.99,1.0] are shown. If a node has
at least one path to the output node, the node is regarded
as “effective.” The orange solid line represents Evo50, the
blue dashed line represents random sampling, and the grey
dotted line represents random networks as a reference. The
distribution for the ES was corrected using the reweighting
method described in the text.

among these three and treated them equally as bistable
GRNs. It is straightforward to change the definition of
bistability to deal only with, for example, toggle switches.

First, we investigated bistability using a strict crite-
rion. Bistability was checked as follows: Starting from
the steady state at I = 0, I was increased by 0.001, and
the dynamics were run until the steady state was reached.
This procedure was repeated for up to I = 1. Then, the
inverse process, from I = 1 to 0, was performed. If a
difference in Ty larger than 1076 was observed between
these two processes in a range of I, the GRN was consid-
ered to be bistable. We employed such a strict criterion
because the monostable GRNs and bistable GRNs were
mathematically different as dynamical systems, in that,



the number of fixed points was different. Thus, classi-
fying them as strictly as possible is meaningful. In this
respect, we may regard monostability and bistability as
different phenotypes.

Fig [Bh shows the fraction of bistable GRNs Pa(f)
against fitness. The blue line is the result of random sam-
pling. The bistable GRNs began to appear at f ~ 0.5
and increased rapidly until all GRNs became bistable
for f — 1. Therefore, a new phenotype of bistability
emerged as fitness increased, and all GRNs converged
to such a phenotype as fitness approached its maximum
value. The orange and green lines are the results of Evo50
and Evo90, respectively. For all data, the standard errors
were smaller than the mark. Fig[Bh shows that Pa(f) of
the ES was substantially lower compared to that of ran-
dom sampling at the same f. In other words, evolution
delays the rapid increase in P> (f). Nonetheless, the even-
tual emergence of a bistable phenotype is inevitable as fit-
ness increases, because all GRNs are bistable for f — 1.
Evo50 and Evo90 behave similarly except for the early
stage of increase; Evo90 initially coincides with random
sampling and soon becomes confluent with Evo50. This
indicates that the emergence of bistability in evolution
depends, partly, on the evolutionary speed.

Although the strict criterion of bistability employed
above is mathematically meaningful, very weak bistabil-
ity may be biologically irrelevant, because it may not
be distinguishable from monostability in living systems.
Thus, we also investigated bistability using a looser cri-
terion; the checking interval of I was set at 0.01, and
the criterion of bistability was set as a difference in T+
larger than 0.5. The results are shown in Fig Bb. While
the rapid increase in the bistable GRNs moves to a higher
f compared to that in Fig[6h, the tendency that the emer-
gence of bistability is delayed in evolution compared to
that of random sampling remains unchanged. Therefore,
we consider that the delayed emergence of bistability is
a biologically relevant phenomenon.

D. Relation between bistability and mutational
robustness

So far, we observed the enhancement of mutational
robustness and the delayed emergence of bistability by
evolution. Thus, we expected that there would be a
relationship between them. Figs [fa and [[b show the
number distributions of fitness f and robustness r for
the GRNs obtained by random sampling for the monos-
table and bistable GRNs, respectively. Two distributions
show pronounced difference. For monostable GRNs, r in-
creases with f and is distributed within a narrow range.
In contrast, bistable GRNs include those with very low
robustness, irrespective of their fitness values. As a re-
sult, the robustness of bistable GRNs is widespread. This
difference suggests that if relatively robust GRNs for mu-
tation are favored by evolution, bistable GRNs tend to
be avoided.
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Fig 6: Fitness dependence of the fraction of bistable
GRNSs. The blue line represents random sampling. The or-
ange and green lines represent Evo50 and Evo90, respectively.
The standard errors are smaller than the mark. Bistability
was checked as follows. First, starting from the steady state
at I =0, I increased by A, and the dynamics were run until
a steady state was reached. This procedure was repeated for
up to I = 1. Then, the inverse process, from I = 1 to 0, was
performed. If the difference in T+ larger than the threshold
x¢n, was observed between these two processes in a range of
I, the GRN was regarded as bistable. GRNs obtained by ES
were classified according to f into 100 bins, similar to random
sampling. (a) Strict criterion, AT = 0.001 and ), = 107°.
(b) Loose criterion, AI =0.01 and z;, = 0.5.

E. Motif analysis

Next, we investigated the network motifs. In the
model presented in Ref. |21], coherent feedforward loops
(FFL+), and positive feedback loops (FBL+) were sig-
nificantly abundant in highly fit GRNs. As the present
model allows both auto- and mutual-regulations, we also
explored patterns other than triangular patterns. We
counted the number of auto-regulations, mutual regula-
tions between node pairs, triangles, and mutual activa-
tion or mutual repression of two nodes accompanied by
auto-activation of both nodes. Because the motifs are
defined as network patterns that are abundant compared
to random networks[24, 49], we also counted them for
random networks.

As a result, the following patterns were greater in num-
ber than those in the random networks: auto-activation,
mutual activation, mutual repression, FFL+, FBL+,



Fig 7 Number distribution of fitness f and robust-
ness measure r obtained via random sampling. (a) the
monostable GRNs (b) the bistable GRNs. Both f and r are
divided into bins of width 0.01. Color of each bin indicates
the base 10 logarithm of the number of GRNs. No GRN was
found in white bins. The strict criterion was used to deter-
mine bistability. Note that the total number of GRNs in each
bin of f is about 50000 irrespective of the value of f.

mutual activation accompanied by auto-activations of
both nodes, and mutual repression accompanied by auto-
activation of both nodes. Although their abundances
were not remarkable, we called them motifs. The num-
ber distribution of auto-activation is shown in S2a Fig,
and those of the other motifs are shown in S3 Fig. Other
patterns, such as auto-repression, incoherent feedforward
loop, and negative feedback loop, were fewer in number

compared to those in random networks. In S2 Fig, we
compare the number distributions of auto-activation and
auto-repression; the former is a motif, whereas the lat-
ter is not. Although the number of auto-regulations is
low, there are very few GRNs that do not undergo auto-
activation. In contrast, almost half of the GRNs do not
exhibit auto-repression. Thus, auto-activation is favored
over auto-repression, but is not indispensable.

Overall, the distributions of these motifs were almost
the same for both ES and random sampling. Therefore,
whether or not these highly fit GRNs are products of
evolution is not reflected in the distributions of these local
motifs.

F. Path distribution

As a characteristic of the global structure, we counted
the number of paths npq:, connecting the input and out-
put nodes. Fig[RBh shows the distribution of paths starting
from the input node and reaching the output node with-
out passing the same node more than once. The data for
f €10.99,1.0] are shown for random sampling whereas
the data for f € [0.99,0.991) are shown for ES. Two
distributions exhibited a distinct difference; while the
probability of GRNs with only one path reached 4% for
random sampling, it was 0.1% for ES. In addition, evo-
lutionarily obtained GRNs with less than approximately
100 paths were fewer than those obtained through ran-
dom sampling. This suggests that the global structures
of GRNs obtained using these two methods differ signifi-
cantly. However, the difference in path distribution does
not explain everything. Fig Bb shows a scatter plot of
the number of paths and the number of essential edges.
The figure shows that the number of essential edges is
lower for ES, irrespective of the number of paths. Even
for npqtn = 1, the number of essential edges is distributed
broadly. This means that the locations of the essential
edges were not limited to the “on-path” locations be-
tween the input and output nodes.

G. Steady-state evolution of the mutational
robustness

Evolutionary simulations would eventually reach a
steady state, and the robustness distribution in the
steady state was expected to differ from that of ran-
dom sampling, considering the results shown in Fig Bl
To investigate the steady state, we conducted very long
simulations of Evo90, and found that the fitness of all
preserved GRNs exceeded 0.9999999 at the two-millionth
generation. Such extremely high fitness values should be
an artifact of the deterministic nature of GRN dynam-
ics and should not be considered biologically relevant.
We thus expect that noise is important for high-fitness
GRNs.

Instead of introducing noise, we imposed the upper



(a) 0.006

0.005 A

0.004 -

0.003 A

P(npath)

0.002 -

0.001 A

0.000 =

0 200 400 600 800 1000
npath

Fig 8: Number of paths nya¢n starting from the input
node and reaching the output node without passing
the same node twice. Orange indicates ES, and blue indi-
cates random sampling. (a) Probability distribution of npain.
The data for npen, < 400 are shown. The probability of
GRNs with only one path reached 4% for random sampling.
(b) Scatter plot of npetn and the number of essential edges
ne. The data for npe:n < 1000 are shown. The data for
f € 10.99,1.0] are shown for random sampling whereas the
data for f € [0.99,0.991) are shown for ES.

limit f < 0.99 on fitness and conducted simulations of
Evo90. In the simulations, fitness values greater than
0.99, were regarded as 0.99. Fig @h shows the distri-
butions of the number of essential edges n. for GRNs
of f = 0.99 at the generation where the fitness of all
preserved GRNs first reached 0.99. The results of ten
independent runs are shown. The number distributions
differed from run to run, and while some populations
exhibited a small number of essential edges, the overall
tendency was that n. was distributed broadly. As all
preserved GRNs have the same f, the fitness-driven evo-
lution should have ceased at the generations shown in the
figure, after which neutral evolution would continue.
We found that the distribution became steady after ap-
proximately 2000 generations. We then conducted runs
of one million generations and collected all the GRNs at
every 2000 generations. Fig[@b shows the average distri-
butions of n, for GRNs with f = 0.99. The results of six
independent runs are shown. Only two distinct distribu-
tions were observed; six runs were classified into four and

80 A
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(N(n.))

40

20 A

0 10 20 30 40
Ne

Fig 9: Distribution of the number of essential edges
ne for GRNs with f = 0.99. We introduced the upper
limit of 0.99 for fitness, and conducted Evo90. In other words,
a fitness larger than 0.99 was regarded as f = 0.99. The data
for all GRNs with f = 0.99 for each population were used.
(a) Distribution of n. at the generation where the fitness of
all the preserved GRNSs first reached 0.99. The results of ten
independent runs are shown. (b) Average distribution of n. in
the steady state. After 2000 generations, we collected GRNs
at every 2000 generations up to one million generations and
took their average. The results of six independent runs are
shown.

two runs. We considered populations with the same es-
sential edge distribution to be genetically similar. These
distributions are biased to low n. compared to Fig [Oh,
and the peaks of n. are 2 and 4 for the two distributions.
Moreover, the ratio of GRNs without an essential edge
reached approximately 4% of each population. These re-
sults indicate that after the fitness distribution reached
the maximum, the selection driven by mutational robust-
ness progressed until a steady state was reached. As a re-
sult, only a limited number of genotypic groups remained
in the steady state; in these six runs, we observed that
they converged to only two distinct groups.

IV. SUMMARY AND DISCUSSIONS

In this paper, we proposed a new computational
method for studying the properties of evolutionary pro-
cesses. By generating a reference ensemble via random
sampling using the multicanonical Monte Carlo method



and comparing it with the outcomes of evolutionary sim-
ulations, we can quantitatively explore the commonly ob-
served properties and particularities of evolution. This
method is both powerful and general. Using this method,
we investigated the evolution of a gene regulatory net-
work model focusing on mutational robustness and bista-
bility.

We found that mutational robustness was markedly
enhanced as fitness increased, compared to that in the
randomly sampled ensemble with the same fitness, even
though the selection is imposed only on fitness. The
mechanism for this enhancement can be explained by
“second-order selection” [2]. The mutation we considered
comprises two successive procedures. First, a randomly
selected edge is deleted. Next, a new edge is added be-
tween a randomly selected node pair. For fitness values
higher than some intermediate values, the edges start
to be divided roughly into two types, as observed in
Ref. [21]: almost neutral ones, and those causing sub-
stantially decreased fitness when deleted. Here, we name
the latter type as “essential.” If the deleted edge is es-
sential the possibility of fitness to recover via the random
addition of a new edge is very low. Therefore, the more
essential edges a GRN has, the harder it is for its copy
to survive.

The condition for mutational robustness to evolve has
been discussed theoretically in the case of neutral evolu-
tion, based on population dynamics. According to this
theory, the product of population size P, the number
of edges K, and mutation rate p should be sufficiently
large[2, [50]. As p is comparatively large in our ES, we
consider that this condition is satisfied. We note a dif-
ference: the evolution was not neutral in our ES. The
present results showed that mutational robustness was
enhanced with increasing fitness in evolution. As mu-
tations that increase fitness are considered rare, fitness
increases intermittently. In contrast, mutational robust-
ness can evolve even when mutations are almost neutral
because deleterious mutations are expelled by selection.

Based on a GRN model with two-valued fitness, Cilib-
erti et al. reported that mutational robustness is en-
hanced significantly in GRNs that experienced natural
selection compared to that in GRNs randomly selected
from viable ones|g]. Several different selection pressures
have also been reported to result in to mutationally ro-
bust GRNs[51]. Our results were consistent with these
findings.

Next, we discuss bistability. Random sampling re-
vealed that almost all (probably all) GRNs become
bistable as fitness approaches its maximum value. Thus,
bistability is an inevitable consequence of increased fit-
ness, irrespective of the evolutionary pathway. We con-
firmed this using an ES. As bistability is not explic-
itly considered in fitness, it is an emergent property.
We may thus regard bistability as a “new phenotype”
and the present results indicate that this new phenotype
would always appear even if evolution was rewound and
restarted. Nagata and Kikuchi obtained the same re-

sults for their GRN model|21l]. In contrast to our model,
auto-regulation and mutual regulation were prohibited
in their model. As a result, the distributions of network
motifs were different for the two models. Nevertheless,
both models exhibited similar bistabilities. Thus, bista-
bility is a common property, irrespective of the network
structure. This observation suggests that the possible
phenotype is constrained by the form of fitness function.

By comparing the outcomes of ES with random sam-
pling, we found that the appearance of bistability was
significantly delayed in evolution. Random sampling re-
vealed that the bistable group of GRNs contained many
mutationally fragile GRNs compared to those in the
monostable group of GRNs. In other words, bistable
GRNs and monostable GRNs behave differently in terms
of mutational robustness. This is a nontrivial finding
that our methodology made possible. This result sug-
gests that the delay in the emergence of bistability may
arise from the tendency that mutationally robust GRNs
are selected by evolution. Whether this scenario applies
to other phenotypes when different fitness functions are
considered is of interest for future studies.

A set of GRNs with high fitness composes the neutral
space. Thus, we collected members of the neutral space
using our method of random sampling by McMC. Cilib-
erti et al. analyzed the structure of the neutral space
for the above-mentioned model in which simple random
sampling was valid and found that high-fitness GRNs be-
long to a large neutral space|8]. Unfortunately, a similar
analysis was difficult for GRNs obtained using McMC. In-
stead, we set the maximum value f = 0.99 and regarded
all fitness values greater than this as 0.99 for conduct-
ing long ES. After all the preserved GRNs reached this
maximum value, neutral evolution continued and even-
tually, a steady state was reached. By investigating the
steady state, we found that the neutral space is divided
into only a small number of parts. This is consistent with
the results reported in Ref. |§]. The situation is similar
to that studied in the population dynamics mentioned
above and is consistent with it, given PKy > 1]50]. A
detailed analysis of the neutral space is required in future
research.

Next, we discuss network structures. Characteristic
motifs were found for the highly fit GRNs. Among them,
coherent feedforward loops are frequently observed in ac-
tual GRNs|24, 49, 52]. The following structures are also
identified as motifs, which are known to exhibit bista-
bility if the response of each gene is ultrasensitive [23,
32, [53-58]: auto-activation, mutual-activation, mutual-
repression, and mutual-activation/repression accompa-
nied by auto-activation of both genes. The last motif is
widely observed in multistable GRNs|11, 25, 126, 59-61].
However, these are not relevant to mutational robustness.
This suggests that mutational robustness is related to the
global structure of GRNs. We found that the number
of paths connecting the input and output nodes differed
between randomly sampled GRNs and evolutionarily ob-
tained ones. Although it is understandable that GRNs



with many such paths are robust because of redundancy,
this does not fully explain the origin of mutational ro-
bustness.

Finally, evolutionary speed was roughly determined by
the number of available GRNs or, in other words, “geno-
typic entropy.” This is partly because of our definition
of a single-valued fitness function, which can be com-
puted from the dynamics of a given GRN for a prede-
termined single task and has the maximum value. This
setup is somewhat artificial, and fitness is not a simple
function in reality. However, some experimental stud-
ies have addressed the situation discussed in this study.
For example, Sato et al. reported a similar evolutionary
study for a protein[62]. They found that evolutionary
speed decreased as fitness increased. We consider that
the variation in evolutionary speed in their experiment is
explained almost fully by the entropic effect. In a natural
situation departing from experimental conditions, evolu-
tion is not restricted to proceed in only one direction.
When evolution in one direction becomes difficult, the
direction changes. We consider that the concept of geno-
typic entropy affecting evolutionary speed can also apply
to such a natural situation.

In summary, we have shown using a new computational
method that mutational robustness is enhanced during
evolution. We have pointed out the possibility that it
affects the emergence of a new phenotype of bistability in
GRNs. The research method proposed in this paper can
be applied widely to evolution-related phenomena, not
restricted to the evolution of GRNs. Further, the basic
idea of generating a reference ensemble using McMC can
be extended to other fields, such as the learning process
of machine learning.

V. METHODS
A. Random sampling

Random sampling was realized using the McMC
method (more precisely, entropic sampling[63], which
is one of the variations of McMC). The details of this
method are described in Ref. [21]. We divided fitness
into 100 bins and determined the weight for each bin such
that the GRNs appeared evenly, using the Wang-Landau
method[64, 65]. One McMC update comprised the fol-
lowing two successive processes: deleting a randomly se-
lected edge and adding a new edge to an unlinked node
pair that was also chosen randomly. Whether to accept
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this change was determined using the Metropolis method.
One Monte Carlo step (MCS) comprised K such updates,
and we recorded f at every MCS. We sampled GRNs at
every 20 MCSs to reduce the correlation between sam-
ples. We conducted ten independent runs, each consist-
ing of 107" MCSs. Therefore, we obtained an average of
50,000 samples for each bin. Although inter-sample cor-
relations should have remained to some extent, we named
this method “random sampling” in this study. The en-
semble of these randomly sampled GRNs was considered
as the reference ensemble.

B. Evolutionary simulation

We conducted two types of evolutionary simulations:
Evo50 and Evo90. For both simulations, we prepared
an initial population comprising 1000 randomly gener-
ated GRNs. The population size remained unchanged
during the simulation. In each generation of Evob0, we
selected the top 500 GRNs according to the fitness level
and made one copy for each. In the case of Evo90, 90%
of the population, namely, 900 GRNs, from the highest
fitness were selected for preservation, and the remaining
10% of GRNs were discarded in each generation. We ran-
domly selected 100 GRNs from the 900 preserved GRNs
and made one copy for each. Then, these copies were
subjected to mutation for both simulations. The muta-
tion procedure for each GRN was the same as that in the
McMC procedure; an edge was deleted randomly from
the network, and a new edge was then added between a
randomly selected unlinked node pair. As these proce-
dures were repeated, the average fitness of the population
increased. After 150 generations for Evo50 and 200 gen-
erations for Evo90, we selected the GRN with the highest
fitness in the population and traced its ancestors to ob-
tain a single lineage. We repeated this evolutionary sim-
ulation 100,000 times and 55,000 times independently for
Evo50 and Evo90, respectively, and, as a result, we col-
lected 100,000 lineages and 55,000 lineages, respectively.
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S1 Fig. Evolution of fitness for Evo50 and Evo90.
The orange and green lines represent the average fitness of
each generation calculated for lineages obtained by
evolutionary simulations, Evo50 and Evo90, respectively.
Averages were taken over 100,000 and 55,000 lineages,
respectively. The vertical line indicates the fitness at which
Q(f) starts to decrease faster than the exponential rate.
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