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Abstract

We present calculations of the time-evolution of the driven-dissipative XYZ model
using the infinite Projected Entangled Pair Operator (iPEPO) method, intro-
duced by [A. Kshetrimayum, H. Weimer and R. Orús, Nat. Commun. 8, 1291
(2017)]. We explore the conditions under which this approach reaches a steady
state. In particular, we study the conditions where apparently converged calcula-
tions may become unstable with increasing bond dimension of the tensor-network
ansatz. We discuss how more reliable results could be obtained.

Contents

1 Introduction 2

2 Application to the dissipative XYZ model 3
2.1 Effects of simulation protocol 4
2.2 Effects of bond dimension 6

3 Conclusion 8

A Implementation of iPEPO algorithm 9
A.1 Summary of the iPEPS algorithm 9

A.1.1 Time evolution: simple update 10
A.1.2 Contraction: corner transfer matrix 11

A.2 Extension to iPEPO 15

1

ar
X

iv
:2

01
2.

03
09

5v
2 

 [
co

nd
-m

at
.o

th
er

] 
 8

 F
eb

 2
02

1

https://doi.org/10.1038/s41467-017-01511-6
https://doi.org/10.1038/s41467-017-01511-6


SciPost Physics Submission

A.3 Benchmarking with ground state calculations 15

References 17

1 Introduction

Tensor network approaches have provided a route to efficient numerical simulations across
a wide range of physical problems [1–4]. In one dimension, matrix product states (MPS)
were originally introduced in the context of one-dimensional quantum ground states [5, 6].
They have subsequently been extended to finite temperatures [7, 8], and to open quantum
systems and density-matrix evolution [9,10]. Such methods have been very fruitful in explor-
ing the nonequilibrium steady states (NESS) of driven-dissipative one-dimensional systems,
using matrix product operators (MPO) [11–21]. These methods can also be extended beyond
one dimension, either by mapping a finite two-dimensional lattice onto a one-dimensional
chain [22]—see Ref. [21] for a driven-dissipative implementation—or via the projected entan-
gled pair state (PEPS) algorithm [23–26]. The PEPS approach represents the two-dimensional
lattice directly as a tensor network [3, 4], and allows a direct simulation of an infinite (trans-
lationally invariant) lattice (iPEPS).

In a significant development, Kshetrimayum et al. [27] presented results adapting the
iPEPS algorithm to simulate open quantum systems on infinite 2D lattices. By using an
infinite projected entangled pair operator (iPEPO) algorithm, they calculated the NESS of
the dissipative XYZ and transverse field Ising models — i.e. finding the steady state of a
many-body Lindblad master equation. The ability to routinely apply such methods to two-
dimensional open quantum systems is potentially very powerful. While one-dimensional sys-
tems have shown a rich variety of collective behaviour, symmetry-breaking phase transitions
generally do not occur in open one-dimensional systems, while they can in two dimensions.
Several alternative approaches to approximately simulate two-dimensional open systems have
been proposed, including cluster mean field theory [18], corner space renormalization [28,29],
and neural network states [30–34]. However, so far, these methods have generally been re-
stricted to small systems (or small clusters), making it challenging to extract critical behavior.
As such, the ability to routinely use iPEPO could be extremely powerful to numerically ex-
plore phase transitions and critical behavior in driven dissipative systems.

Here, we explore in detail the stability of the iPEPO algorithm, introduced by Kshetri-
mayum et al [27]. We find that while at short times the algorithm shows reasonable time
evolution, the behaviour at long times varies. In particular, we find that the algorithm only
reaches a steady state in some parameter regimes, and close to dissipative critical points [35]
it can fail to reach a steady state. The regimes where we fail to find a steady state corre-
spond closely to the regimes where Ref. [27] found a larger value of their parameter ∆, which
measures how close the state they find is to a steady state. Moreover, we find that for some
parameters, increasing bond dimension of the iPEPO representation does not systematically
improve the accuracy of the results. On the contrary, it can in some cases destabilize a fixed
point obtained at a lower bond dimension. We also suggest some possible alternatives to the
simple-update iPEPO algorithm, which could help to alleviate the problem.
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Our paper is organised as follows. In Sec. 2 we apply the iPEPO algorithm to calculate
NESS of the dissipative XYZ model in 2D, and analyse whether a steady state can be found.
Section. 3 concludes with some comments on alternative tensor network approaches for com-
puting NESS in 2D. We also provide an extended appendix, Sec. A, which summarises our
implementation of the iPEPO algorithm; this implementation can be found at [36]. Since the
core of the iPEPO and iPEPS algorithms is similar, we also present results benchmarking
our implementation against the prototypical applications of iPEPS: the ground states of the
transverse field Ising model and the hardcore Bose-Hubbard model.

2 Application to the dissipative XYZ model

In this section, using the iPEPO implementation described and benchmarked in Appendix A,
we discuss finding the NESS of the dissipative spin-1/2 XYZ model on an infinite square
lattice. The specific density-matrix equation of motion that we consider is:

∂tρ = −i [HXY Z , ρ] +
κ

2

∑
j

(
2σ−j ρσ

+
j − σ

+
j σ
−
j ρ− ρ σ

+
j σ
−
j

)
, (1)

HXY Z =
∑
〈i,j〉

(
Jxσ

x
i σ

x
j + Jyσ

y
i σ

y
j + Jzσ

z
i σ

z
j

)
, (2)

where σx,y,zj are Pauli matrices at lattice site j, σ± = 1
2 (σx ± iσy), and Jx,y,z are spin-spin

coupling constants.
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Figure 1: The magnetization order parameter Mx of the dissipative XYZ model as a function
of coupling strength Jy, for Jx = 0.5, Jz = 1 and D = 4. Energies given in units of κ = 1. The
red highlighted areas indicate parameter regimes where the iPEPO algorithm fails to reach a
steady state. (a) Results computed using timesteps δt = 10−1, 10−2 run until a steady state
is found. (In the red regions, the run is stopped after N = 1000 steps with δt = 10−1 followed
by N = 2000 steps with δt = 10−2.) (b) Results calculated using a large timestep δt = 10−1

and stopping after N = 1000 steps.

We begin by computing the time evolution of the dissipative XYZ model for the same
parameters considered by Ref. [27]. Figure 1(a) shows magnetization averaged over the two
sites i = A,B of iPEPO unit cell, Mx = 1

2(| 〈σxi=A〉 | + | 〈σxi=B〉 |), as a function of coupling
strength Jy using iPEPO bond dimension D = 4. We find that iPEPO algorithm only
reaches a steady state for some values of Jy, while in the red highlighted areas no steady
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state is found—the results continue to change with time. Where a steady state is found,
our results closely match Ref. [27]. The red regions in our figure—where no steady state is
reached—correspond to points where the Kshetrimayum et al [27] report a large error in their
steady state result. As observed in [27], these regions occur near the critical points, where one
can expect correlation lengths to diverge. Figure 1(b) shows that if we use a large timestep,
δt = 10−1, and deliberately stop the simulation early — i.e. after N = 1000 steps — one can
reproduce results similar to those presented by Kshetrimayum et al [27] in the red region.
However, because the simulation was stopped artificially early, the results in Fig 1(b) do not
correspond to an actual steady state, and also inevitably contain significant Trotter errors
due to the large timestep size. As we discuss further below, the failure to reach a steady
state that we observe occurs specifically in the SU time evolution. That is, it is completely
unaffected by the corner transfer matrix (CTM) contractions needed to compute observables.
As a result, none of the results in the rest of this paper depend on the CTM contraction or
environment bond dimension.

We have encountered similar issues of failing to reach a steady state in other parameter
regimes of the dissipative XYZ model, as well as for other systems such as the dissipative
transverse field Ising model in 2D. This raises important question about the practicality of
the iPEPO algorithm as a tool to find the NESS of open quantum systems. In the following,
to keep our discussion concise, we will restrict our attention to the dissipative XYZ model.
Our goal below will be to understand when the iPEPO algorithm does and does not reach a
steady state, focusing entirely on the SU time evolution, by studying the relative change of
singular values. To measure this, we define

εΛ =
|Λn − Λn−1|max

δt |Λn|max
, (3)

in terms of the set of singular values Λn at timestep n. As such, εΛ is a measure of the largest
change of singular value, rescaled for ease of comparison between different timesteps.

2.1 Effects of simulation protocol
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Figure 2: The evolution of εΛ (from Λ[U ] as defined in Eq. (3)) at Jy = 1.2 (where no steady
state is found) and Jy = 1.5 (where a steady state is found), using timesteps (a) δt = 10−1,
(b) δt = 10−2, (c) δt = 10−3. Energies given in units of κ = 1.

In Figs. 2(a-c) we plot εΛ against simulation step, for timestep sizes δt = 10−1, 10−2, 10−3

respectively. We show both Jy = 1.2, in the parameter regime where iPEPO fails to reach a
steady state (blue line), and Jy = 1.5, where a steady state is found (green line). At Jy = 1.5,
we observe clearly that εΛ quickly decreases, indicating that we approach a steady state.
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However, at Jy = 1.2 we see εΛ undergoes noisy oscillations throughout the time evolution,
for all timestep sizes, never approaching zero.
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Figure 3: The evolution of εΛ at Jy = 1.2 using different initial conditions (IC): a random
number state (“IC-1”, brown line), an empty state with all spins pointing ‘down’ (“IC-2”, red
line), a full state with all spins pointing ‘up’ (“IC-3”, orange line), and a state where each
spin has components 〈σx〉 = 1, 〈σy〉 = 1, 〈σz〉 = −1 (“IC-4”, green line), for timesteps (a)
δt = 10−1, (b) δt = 10−2, (c) δt = 10−3. All other parameters are the same as in Fig. 1.
Energies given in units of κ = 1.

We next explore if using different initial conditions affects whether a steady state is found.
Figures 3(a-c) show that the evolution of εΛ at Jy = 1.2 remains noisy for various initial
conditions: a random number state (brown line), a state with all spins pointing ‘down’ (red
line), a state with all spins pointing ‘up’ (orange line), and a state where each spin has
components 〈σx〉 = 1, 〈σy〉 = 1, 〈σz〉 = −1 (green line). Other initial conditions that we have
tested (not shown here) produced a similar behaviour as in Fig. 3.

0 400 800 1200 1600 2000
step

10 6

10 4

10 2

100

Jy = 1.39
Jy = 1.35
Jy = 1.34
Jy = 1.33

Jy = 1.32
Jy = 1.31
Jy = 1.25
Jy = 1.2

0 500 1000 1500 2000
step

10 6

10 4

10 2

100

(a)
0 1200 2400 3600 4800

step
10 4

10 2

100

102

(b)

Figure 4: The evolution of εΛ at selected values of Jy during the adiabatic parameter sweep
from Jy = 1.4 (where a steady state exists) to Jy = 1.2 in steps of ∆Jy = 0.01 and using
timesteps (a) δt = 10−2, (b) δt = 10−3. All other parameters are the same as in Fig. 1.
Energies given in units of κ = 1.

Another possible way to choose initial conditions for the problematic parameter regime is
an adiabatic parameter sweep. We first calculate the NESS for a value of Jy where iPEPO does
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reach a steady state, then change Jy in small steps, using the steady state at each value of Jy
as the initial state for the next value. This strategy can bypass highly entangled intermediate
states where a very high D may be needed. In our case, we start at Jy = 1.4, and gradually
reduce Jy in steps of ∆Jy = 0.01 to Jy = 1.2. Figures 4(a,b) show the evolution of εΛ at
selected values of Jy during the parameter sweep, with timesteps δt = 10−2, 10−3 respectively.
We observe that for Jy ≥ 1.33, εΛ shows a decreasing trend, indicating that iPEPO finds a
steady state, while for Jy ≤ 1.32 we again find noisy oscillations. Smaller timesteps δt and
smaller sweeping steps ∆Jy (not shown) lead to the same conclusion.
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Figure 5: The evolution of εΛ at Jy = 1.2 for selected values of κ during the adiabatic
parameter sweep from a strong dissipation regime with κ = 8 to a weak dissipation regime
with κ = 1 in steps of ∆κ = 0.1 and using timesteps (a) δt = 10−2, (b) δt = 10−3. All other
parameters are the same as in Fig. 1. Energies given in units of κ = 1.

A similar strategy is to start from a strong dissipation regime (i.e. large κ) where we
know the steady state is approximately factorizable, and then perform an adiabatic sweep to
lower κ. Figures 5(a,b) show the time evolution of εΛ at Jy = 1.2 for selected values of κ, in
a sweep starting from κ = 8 reducing κ in steps of ∆κ = 0.1, with timesteps δt = 10−2, 10−3

respectively. Similarly to the Jy sweep, we find a steady state exists for κ ≥ 5.2, but beyond
this we again find noisy oscillations. To summarise this section, for those points where a
steady state is not found, this result appears to be robust to a variety of initial states and
simulation protocols.

2.2 Effects of bond dimension

Figure 6 presents the effect of changing iPEPO bond dimensions D. Panels (a-c) show the
time evolution of εΛ at Jy = 1.2 for timesteps δt = 10−1, 10−2, 10−3 respectively. Each panel
shows simulations performed using different bond dimensions 3 ≤ D ≤ 6; no steady state is
found for any of these values of D. Panels (d-f) show the same quantities but for Jy = 1.5,
where a steady state is known to occur at D = 4. In this case, notably, while iPEPO reaches a
steady state for D = 3, 4, no steady state is found for D = 5, 6. To explore this further, Panels
(g-i) show the behavior at Jy = 1.2 for larger bond dimensions 10 ≤ D ≤ 15. We observe that
for D = 12 a steady state is found for timesteps δt = 10−2, 10−3. However, increasing the
bond dimension further to D = 14, 15 leads again to noisy oscillations. These results suggest
that while larger bond dimension may eventually yield a meaningful steady state, spurious
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Figure 6: Evolution of εΛ with bond dimension at Jy = 1.2 (a-c,g-i) and Jy = 1.5 (d-f). Left
column (panels a,d,g) are for timestep δt = 10−1, middle (b,e,h) δt = 10−2, and right (c,f,i)
δt = 10−3. Panels (a-f) show D = 3, 4, 5, 6, while panels (g-i) show D = 10, 12, 14, 15. All
other parameters are the same as in Fig. 1. Energies given in units of κ = 1.
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steady states can arise at small bond dimension which then change as the bond dimension
increases further. In addition, we note that while we can run the SU time evolution for
D = 15, the CTM calculations for this bond dimensions would require over 128 GB of RAM,
making it challenging to find observables without a support of high performance distributed-
memory calculations and quantum symmetries. As noted above, the results shown in Fig. 6
do not depend on any CTM contraction, so this issue does not arise within the calculations
we present.

3 Conclusion

From the results of the last section, we may conclude that the SU iPEPO algorithm at low
bond dimensions is not always stable, reaching a steady state only in some parameter regimes,
typically away from dissipative critical points. In other regimes, the algorithm failed to reach
a steady state for all bond dimensions D that we could access. Moreover, in some cases, even
when a steady state is found for a given value of D, this may change as the bond dimension
is increased, switching instead to noisy time-dependent dynamics. While we believe that
there exists a value of D allowing for a faithful representation of the steady-state density
matrix (when spatial correlations decay exponentially), this study is unable to conclude what
typical value of the bond dimension is needed for a prototypical driven-dissipative lattice
model. Overall, the results shown here suggest that a significant caution is required when
extending the SU iPEPS algorithm in 2D to Liouvillian evolution. Below we discuss a number
of alternative approaches which may be employed instead.

One alternative approach is to adapt the Full Update (FU) iPEPS algorithm [3,24,26,37]
to the Lindblad time evolution of mixed states. For closed systems, the FU scheme [3,
24, 38] achieves an optimal truncation by using a variational update scheme that computes
the full environment at every step. Since the Liouvillian evolution involves non-Hermitian
operators, an issue here is to find a reliable non-Hermitian algorithm that could substitute the
alternating least-squares scheme used in the two-site variational minimization in the standard
FU algorithm. There are, however, recent works on time evolution in closed systems [39–42] for
which FU presents problems with stability, meaning SU can be more accurate. However, very
recent work by McKeever and Szymanska [43] has shown that a variation on full update—full
environment truncation—can indeed improve the stability of iPEPO.

A closely related idea is to consider a global variational search algorithm that targets the
null eigenstate |ρ〉 of either Liouvillian L or a Hermitian positive semidefinite object L†L;
such approaches were successfully used in one dimension [15,16], and extension of these meth-
ods to iPEPO has been discussed in Ref. [44]. Solving the variational problem with L†L is
particularly appealing since it allows reusing the standard and robust Hermitian optimiza-
tion algorithms. However, even when L =

∑
l Ll,l+1 contains only nearest-neighbour terms,

the product L†L =
∑

l,r L
†
l,l+1Ll+r,l+r+1 will introduce highly nonlocal terms. While this is

manageable in 1D [15], for 2D the nonlocal couplings may easily lead to unfeasibly large bond
dimensions. This may perhaps be adressed by truncating the range of these nonlocal terms as
has been discussed in 1D [45]. In addition, variational optimization iPEPO approaches would
require computationally expensive tensor contractions involving both the iPEPS representing
|ρ〉 and the iPEPO representing either L or L†L.

A more promising approach, also discussed in Ref. [44] may be to extend novel variational
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iPEPS techniques for ground state calculations in 2D introduced in Refs. [46,47], optimizing
iPEPS tensors using tangent space methods or by solving a local generalized eigenvalue prob-
lem. Notably, both approaches avoid the need to construct a full PEPO for the Hamiltonian.
Adapting these algorithms to either L or L†L could dramatically reduce the computational
costs that limit the practical use of variational iPEPS methods. The global variational opti-
mization could also offer a potentially much more robust way of finding the NESS of L than
one could hope to achieve with the standard iPEPS algorithm relying on two-body updates.
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A Implementation of iPEPO algorithm

As noted above, iPEPO is a simple extension of the iPEPS algorithm to nonequilibrium steady
states of Lindblad superoperators. As with other extensions of tensor network methods [10]
the main idea is to frame the density matrix evolution through superoperators applied to
vectorized many body density matrices, which we denote |ρ〉]. In this appendix we first briefly
summarize the iPEPS algorithm and then discuss its extension to open quantum systems.
While these algorithms are standard and have been described in full by Orús in [3], we
summarise them here to provide a self-contained description of the method that we apply to
the open quantum systems.

A.1 Summary of the iPEPS algorithm

The basic idea behind PEPS is to parameterize the quantum state tensor Ψk1,k2,...,kN by a
two-dimensional array of interconnected rank-5 tensors (see Fig. 7). Each individual tensor
represents a single site of the quantum many-body system, with one vertical leg corresponding
to the local Hilbert space of dimension d, and four in-plane legs corresponding to the bonds
between different lattice sites. We denote the bond dimension of PEPS by D, which limits
the amount of entanglement that can be captured by PEPS.

9
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For translationally invariant systems, one may use the infinite PEPS (iPEPS) ansatz [24]
working directly in the thermodynamic limit. We can construct an iPEPS by choosing a unit
cell and representing its sites with tensors. We will consider problems with a square unit cell.
Since we use a Trotterised time evolution that propagates pairs of sites, we will need only
two on-site tensors A and B to define iPEPS. We next describe the two main ingredients of
the iPEPS approach: the imaginary time propagation of iPEPS and the calculation of the
environment needed to extract observables.

Λ[U]

Λ[D]

Λ[R]

Λ[U] Λ[D]

Λ[L]

Λ[R] Λ[L]

Λ[L]

Λ[D]

Λ[R]

Λ[U]

Γ[A]

Γ[B]

Γ[B]

Γ[A]

L

U
R

D

Figure 7: The iPEPS time evolution using Eq. (5) involves propagating four different bonds
‘U’, ‘D’, ‘R’, and ‘L’, indicated by different colours. The SU algorithm uses Vidal form with
Γ[A,B] site tensors and Λ[U,R,D,L] diagonal bond matrices to represent iPEPS with a two-site
unit cell.

A.1.1 Time evolution: simple update

Time evolution can be performed by the Simple Update (SU) method, which follows essentially
the same main steps as the imaginary time infinite Time Evolving Block Decimation (iTEBD)
algorithm [48–51]. In two dimensions we perform Trotter decomposition by splitting our
Hamiltonian into four terms HU , HD, HR and HL, describing respectively the ‘U’ (up), ‘D’
(down), ‘R’ (right), and ‘L’ (left) bonds of the lattice:

H = HU +HD +HR +HL (4)

The first order Trotter decomposition of the time evolution operator U(δτ) = e−Hδτ then
reads:

U(δτ) = e−δτHU e−δτHRe−δτHDe−δτHL +O(δτ2) (5)

where δτ is the imaginary timestep. Similarly to iTEBD in one dimension, in SU we represent
iPEPS using Vidal form: i.e. the iPEPS with a two-site unit cell is fully specified by two Γ[A,B]

site tensors and four Λ[U,R,D,L] diagonal matrices that store the singular values of iPEPS bonds,
as seen in Fig. 7. We denote the local Hilbert space dimension by d, and the bond dimension
by D. The SU then consists of the following steps:

1. Absorb Λ[R,D,L] tensors on the external bonds into Γ[A,B] to obtain Q[A,B].

2. Decompose each of Q[A,B] into subtensors vA,B and XA, YB using an exact SVD or
QR/LQ decompositions. The original rank-5 tensors Γ[A,B] had the dimensionality
of dD4 giving rise to a large computational cost O(d3D9) of the update procedure.

10
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However, an update performed using the new rank-3 subtensors has a substantially
reduced cost of O(d6D3) since the dimensions of vA,B are considerably smaller and
equal to d× dD ×D and d×D × dD respectively.

3. Contract the two-body propagator e−δτHU with vA,B and Λ[U ] to form θ tensor.

4. Decompose θ tensor into ṽA,B and Λ̃[U ] tensors using SVD. To prevent the bond di-
mension of our tensors from growing indefinitely, we must truncate ṽA,B and Λ̃[U ] by
retaining D largest singular values and discarding the rest.

5. Recover the updated rank-5 tensors Q̃[A,B] by contracting the rank-3 subtensors ṽA,B
with XA, YB respectively.

6. To restore Λ[R,D,L] on the external bonds, we divide each of Q[A,B] by Λ[R], ΛD, and
Λ[L]. This procedure brings iPEPS back to its original Vidal form, with updated tensors
Γ̃[A,B] and Λ̃[U ] for each ‘U’ bond on the lattice.

All other steps are the same as in the one dimensional iTEBD algorithm. To find the
ground state we propagate iPEPS for N imaginary timesteps δτ until a steady state is achieved
with respect to the spectrum of singular values in Λ[U,R,D,L].

The SU algorithm is both simple and very efficient, with computational cost O(D3d6) of
the time evolution. However, SU is suboptimal since it employs local truncations without
taking into account the full environment of a unit cell. For MPS, this issue can be resolved
relatively easily by transforming the tensor network into a canonical form, which orthonor-
malizes other bonds surrounding the bond being truncated. This solution is not possible
in 2D, since there is no known canonical form for PEPS. To achieve an optimal truncation,
one must use a variational update scheme that computes the full environment at every step.
This procedure, known as the Full Update (FU) [3, 24], is considerably more expensive and
bears the computational cost of O(Nχ3D6 +Nχ2D8) where N is the number of steps of the
imaginary time evolution. In practice, SU has been applied extensively to various models
and yields sufficiently accurate results for systems with large gaps and sufficiently short cor-
relation lengths [52]. Due to its simplicity and efficiency, it allows shorter computation times
and significantly higher bond dimensions than FU, and thus remains popular. However, the
suboptimal truncation becomes an issue near quantum critical points when correlation lengths
become long, and in these cases FU should be used instead.

A.1.2 Contraction: corner transfer matrix

For the iPEPS representation to be of practical use, we must be able to extract expecta-
tion values from it. Unlike MPS where we could evaluate overlaps exactly at a polynomial
cost, the exact contraction of two PEPS is an exponentially hard problem that scales as
O(eL) with PEPS size L [3]. Fortunately, there exist various computational algorithms that
can perform this contraction approximately with high precision. For infinite systems, these
methods typically proceed by computing the approximate environment of an iPEPS unit cell.
This effective environment consists of a small set of tensors that represent the infinite ten-
sor network surrounding the unit cell. Possibly the most successful technique for computing
iPEPS environments is the corner transfer matrix (CTM) method [25, 53, 54], which will be
the method we use. In this section we will explain the details of the CTM algorithm.
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Since observables for quantum states involve the overlap of two copies of the state, the
starting point for CTM is the contraction of two iPEPS, which produces an infinite 2D network

made of reduced tensors a. Each reduced tensor a results from the contraction of
[
MA

]†
and

MA iPEPS tensors by their physical indices, except at the sites where any operator is applied,
leading to a different reduced tensor aO. Supposing the bond indices of MA had dimension
D, the reduced tensors a now have bonds of dimension D2.

For simplicity of exposition, we will start by considering a one-site unit cell. However,
methods based on Trotter decomposition into even and odd bonds modify the translational
invariance from one-site to two-site. Therefore, in practice we always use the two-site version
of the CTM algorithm. Let us now subdivide this network into a 1 × 1 unit cell made of
a tensors, and its environment that contains the remaining infinite tensor network in which
the unit cell in embedded (see Fig. 8). The key idea is to represent the environment by a
set of four corner matrices {C1,2,3,4}, and four transfer tensors {T1,2,3,4} – these tensors are
connected by new virtual bond indices of size χ. Similarly to the bond dimension of MPS
and PEPS, the environmental bond dimension χ is the parameter that controls the accuracy
of the CTM approximation of environment. The goal of CTM algorithm is to obtain the
environmental tensors by performing a series of coarse graining moves:

1. Initialize the CTM tensors, e.g. using a random-number initialization, or a mean field
environment with χ = 1.

2. Perform four coarse graining moves in the left, right, up, and down directions. The left
move involves the following steps, illustrated graphically in Fig. 8(a):

3. Insertion: insert an extra column into the CTM network that contains the unit cell
tensor a, and the transfer tensors T1,3.

4. Absorption: absorb the new column into the left side of the CTM environment by
contracting their respective tensors. This increases the environmental bond dimension
by χ → D2χ: to prevent the bonds from growing indefinitely we must implement an
appropriate truncation scheme.

5. Renormalization: truncate the environmental tensors by inserting appropriate isometries
ZZ+ = I that reduce the bond dimensions D2χ → χ by projecting onto a relevant
subspace, as shown in Fig. 8(b).

6. Repeat steps (2-5) to let the CTM environment grow in all four directions until it
converges. Convergence is typically achieved when the eigenspectrum of each corner
matrix {C1,2,3,4} reaches the fixed point.

The CTM algorithm for a two-site unit cell, containing two a and b tensors, follows the
same steps as the one-site algorithm outlined above. The environment is now specified by a
set of four corner matrices {C1,2,3,4}, and eight transfer tensors {T a1,2,3,4, T b1,2,3,4}. The main
difference is that in the ’Insertion’ step we now insert two new columns instead of just one,
as shown in Fig. 8(c). There are now two ’Absorption’ and ’Renormalization’ steps in the
algorithm: the absorption of each column is followed by renormalization to reduce the bond
dimension D2χ→ χ. The two-site algorithm also needs two types of isometries ZZ+ = I and
WW+ = I in the ’Renormalize’ step, to obtain renormalized transfer tensors T̃ a,b4 and corner
tensors C̃1,4 in Fig. 8(d).
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Figure 8: (a) The main steps (3-5) of the left move of the CTM algorithm for a one-site
unit cell containing tensor a. (b) The renormalization step (5) is done by inserting isometries
ZZ+ = I into the left edge of CTM network. (c) The insertion step of the left move of the
CTM algorithm for a two-site unit cell containing tensors a, b. (d) The renormalization step
for a two-site unit cell is done by inserting two types of isometries, ZZ+ = I and WW+ = I.
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Figure 9: (a,b) The steps to compute W,W+ isometries for the bonds split by the ’cut-1’. (c)
To compute Z,Z+ isometries for the bonds split by the ’cut-2’, we perform a translationally-
invariant shift by inserting two extra rows of tensors in the green box, and repeat the steps
in (a).

Clearly, the crucial step of CTM algorithm is calculating the isometries. Several different
methods exist, for instance the ones described in Refs. [25,37,55], which we have implemented
and tested in the process of developing our iPEPS code. The prescription we have found to
work best was the one in Ref. [37], which achieved a smoother convergence and a more efficient
representation of the environment than its predecessors. Figure 9 illustrates graphically the
calculation of Z,W isometries to be used in the ’Renormalize’ step of the left move. In
Fig. 9(a,b) we compute W,W+ isometries to be inserted into the bonds split by the ’cut-1’. In
the first stage in Fig. 9(a), we contract the lower and upper parts of the network, producing the
tensors QA and QB respectively. In the second stage, also in Fig. 9(a), we decompose QA and

QB using an exact SVD to obtain the RA,B and V †A,B tensors. In the third stage in Fig. 9(b),

we form the product I = RA
[
R−1
A R−1

B

]
RB, and decompose

[
R−1
A R−1

B

]
= UΛV † using SVD,

this time truncating to the χ dominant singular values. The RA,B matrices and the SVD
matrices are then combined in the symmetrized fashion I ≈

[
RAUΛ1/2

] [
Λ1/2V †RB

]
= WW+

to construct the isometries W =
[
RAUΛ1/2

]
and W+ =

[
Λ1/2V †RB

]
. To obtain the Z,Z+

isometries for the bonds split by the ’cut-2’, we perform a translationally-invariant shift by
inserting two extra rows of tensors in the green box, as shown in Fig. 9(c). Contracting the
lower and upper parts of the network then gives tensors QA,B for the cut-2. We can now
compute Z,Z+ repeating exactly the same steps as for the W,W+ before. Once all isometries
Z,Z+ and W,W+ are available, one can finally use them to carry out the renormalization in
Fig. 8(d).

The CTM algorithm described above has a computational complexity of O(χ3D6
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+ χ2D8). Once we have found a converged CTM environment, it can be used to compute
various observables.

A.2 Extension to iPEPO

To extend the above method to an open quantum system, as noted above, one may first
represent the density matrix ρ as a Projected Entangled Pair Operator (PEPO), and then
reshape (vectorize) it into a PEPS |ρ〉] by combining both physical indices at each site. The
problem of computing NESS for an infinite 2D lattice thus becomes equivalent to the problem
of finding the ground states of Hamiltonians using the SU iPEPS algorithm, by replacing
imaginary time Hamiltonian propagation with the real time Liouvillian propagation. To
distinguish between the iPEPS representing wavefunctions and vectorized density operators,
we will refer to the density matrix version as the iPEPO algorithm.

The main steps of the iPEPO algorithm are the same as in Sec. A.1, except for two
differences that we discuss next. The first difference is the propagator. The imaginary time
two-body propagators Uα(δτ) = e−δτHα with Hamiltonian Hα for a bond α ∈ {U,R,D,L}
are replaced by the real time two-body propagators Uα(δt) = e−δtLα , where Lα is the two-
body Liouvillian for a bond α ∈ {U,R,D,L} and t is the real time. The second difference
is that observables are calculated using 〈O〉 = Tr [Oρ], instead of 〈O〉 = 〈Ψ|O|Ψ〉. Similarly,
the correct normalization Tr [ρ] = 1 in contrast to 〈Ψ|Ψ〉 = 1. As such, when extracting
observables from iPEPO, the reduced tensors that are contracted to find the environment
come from tracing out local indices instead of computing inner products. We may then apply
the CTM method from Sec. A.1.2 to observables.

We have implemented our iPEPO code in Fortran [36], including the CTM algorithm,
the functionality required for computing local observables and two-point correlators, the SU
procedure for both NESS and ground state calculations, as well as the FU procedure for
ground state calculations (for benchmarking purposes only). In our calculations we gradually
decrease the time step δt during the simulation to reduce the effects of Trotter error while
keeping the computational cost low. To determine when the calculation has reached a steady
state we require that the spectrum of singular values contained in each diagonal bond matrix
Λ ∈

{
Λ[U,D,R,L]

}
in Fig. 7 stops changing within some accuracy ε. More specifically, we take

the largest difference between singular values in diagonal matrices Λn and Λn−1, at timesteps
n and n − 1 respectively, rescaled by the largest singular value |Λn|max and by timestep size
δt:

εΛ =
|Λn − Λn−1|max

δt |Λn|max
. (3)

For a steady state we expect εΛ to approach zero (or more precisely, a value depending
on machine precision), as the eigenvalue spectrum should cease changing. To determine
numerically when to stop, we define a steady state as being reached when εΛ < ε for each
Λ ∈

{
Λ[U,D,R,L]

}
.

A.3 Benchmarking with ground state calculations

Due to the similarity between the iPEPS and iPEPO algorithms, we may benchmark our
implementation against the known numerical results from ground state calculations of two
models: the transverse field Ising model, and the hardcore Bose-Hubbard model.
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Transverse-field Ising model Our first test problem is the transverse field Ising model
on an infinite square lattice,

H = −J
∑
〈i,j〉

σzi σ
z
j − g

∑
i

σxi . (6)

Here σx,zi are Pauli matrices at site i, J is the nearest-neighbour coupling between spins, and
g is the transverse magnetic field along the x axis. The ground state of this model exhibits a
second order phase transition between a paramagnetic phase at large g, and a ferromagnetic
phase at small g; the order parameter of this transition is the longitudinal magnetization
Mz = 〈ΨGS|σz|ΨGS〉. We show results in units where J = 1.

Figure 10(a,b) shows the longitudinal magnetization Mz and transverse magnetization Mx

as a function of transverse field g in the vicinity of phase transition, for different values of
iPEPS bond dimension D. Our implementation of iPEPS reproduces accurately both the SU
and FU results reported in Refs. [24–26]. As expected, the SU and FU calculations match well
far from the critical point where correlations are short-ranged, and the results converge fast
with increasing values of D. Near the critical point FU becomes considerably more accurate
than SU at a given bond dimension. That is, due to the diverging correlation length, a much
higher value of D is needed for SU to achieve the same level of accuracy as FU with D = 2, 3.
As seen from Fig. 10(a), the FU calculation with D = 3 predicts the critical point around
g = 3.05, in good agreement with previous iPEPS results in Refs. [24–26] and Quantum Monte
Carlo results in Ref. [56].
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Figure 10: Ground state results benchmarking our iPEPS implementation. Panels (a,b) show
(a) the longitudinal magnetization Mz and (b) transverse magnetization Mx as a function of
transverse field g (in units of J) in the vicinity of phase transition of the transverse field Ising
model. These are computed for different iPEPS bond dimensions D using both SU and FU
as indicated. Panel (c) shows number density of bosons n per lattice site and the condensate
fraction n0 for the hardcore Bose-Hubbard model as a function of chemical potential µ (in
units of J), computed for different iPEPS bond dimensions D using SU.

Hardcore Bose-Hubbard model Our second test case is the Bose-Hubbard model (BHM)
on an infinite square lattice,

H = −J
∑
〈i,j〉

(
a†iaj + H.c.

)
− µ

∑
i

a†iai, (7)

where the occupations are restricted to 0 or 1 bosons on each lattice site. Here, a†i , ai are
hardcore bosonic creation and annihilation operators at site i, satisfying the commutation
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relation
[
a†i , aj

]
= (1 − 2a†iai)δij . J is the hopping rate between adjacent sites, and µ is the

onsite chemical potential. This model undergoes a second order phase transition between
the superfluid and the Mott insulator phases at the critical value of µ/J . As before, we
present results in units where J = 1. Figure 10 shows the number density of bosons n =
〈ΨGS|a†a|ΨGS〉 and the condensate fraction n0 = | 〈ΨGS|a|ΨGS〉 |2 as a function of chemical
potential µ, for different bond dimensions D of SU iPEPS. Again, our iPEPS calculations
reproduce accurately the ground state results of Refs. [26, 57,58].
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gorithm for two-dimensional thermal states, Phys. Rev. Lett. 122, 070502 (2019),
doi:10.1103/PhysRevLett.122.070502.

20

http://arxiv.org/abs/2004.07267
2012.12233
http://arxiv.org/abs/1907.07079
https://doi.org/10.1103/PhysRevLett.119.010501
https://doi.org/10.1103/PhysRevB.94.155123
https://doi.org/10.1103/PhysRevB.94.035133
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.1103/PhysRevB.81.165104
https://doi.org/10.1143/JPSJ.65.891
https://doi.org/10.1143/JPSJ.66.3040
https://doi.org/10.1103/PhysRevB.82.245119
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1103/PhysRevLett.122.070502


SciPost Physics Submission
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