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ABSTRACT

We calculate the single-particle excitation spectrum and the Landau Fermi liquid parameters for the archetypal model of
solids, the three-dimensional uniform electron gas, with the numerically exact variational diagrammatic Monte Carlo method.
In the metallic range of density, we establish benchmark values for the wave-function renormalization factor Z, the effective
mass m∗/m, and the Landau parameters Fs

0 and Fa
0 with unprecedented accuracy, and we resolve the long-standing puzzle of

non-monotonic dependence of mass on density. We also exclude the possibility that experimentally measured large reduction
of bandwidth in Na metal can originate from the charge and spin fluctuations contained in the model of the uniform electron gas.

Introduction
The uniform electron gas (UEG) is the most fundamental model for understanding the electronic properties of metallic materials.
The ground-state properties of the model have been very precisely calculated by quantum Monte Carlo methods1, and this
allowed one to build approximate density functionals2, 3, which are at the heart of the ab-initio approaches in material science
and modern theory-driven materials design. The knowledge of the low energy excitations of the same model remain challenging
to evaluate accurately4–10, even though such calculations are important for building more sophisticated density functionals11–13,
and these excitations are directly measured in experiments on simple metals, such as alkaline materials. Some aspects of the
excitation spectra, such as the quasiparticle renormalization amplitude, were recently determined by extention of the variational
Monte Carlo method in Ref.14, which turn out to be in remarkable good agreement with our current results.

In the metallic regime, the low-energy properties of the electron liquid are dominated by the long-lived quasiparticles near
the Fermi surface, and their dynamics is described by a handful of the Fermi liquid parameters. These parameters completely
characterize the low energy excitation spectra of the metallic state. Unfortunately, they are very challenging to calculate by a
first principle approach, therefore they are usually treated as phenomenological parameters requiring input from experiments.

Here we develop an extension of the recently introduced variational diagrammatic Monte Carlo (VDMC) method15, which
fills this void, and allows us to determine the single-particle excitations of UEG with unprecedented accuracy. In this letter, we
calculate the single-particle excitation spectra, and in particular, we give controlled values of the wave-function renormalization
factor Z, the quasiparticle effective mass ratio m∗/m and also the Landau Fermi liquid parameters Fa

0 and Fs
0 . Our computed

values are free of systematic error, and their uncertainty is mainly controlled by the statistical error, and hence our established
value can be used as a precise benchmark for new method development. Moreover, these precise Fermi liquid parameters are
also useful for building more sophisticated density functionals. Finally, the method we develop here can be used to solve more
sophisticated models, and can also be used in the ab-initio framework on models of realistic materials, a development which is
currently underway16.

Results

The Feynman expansion algorithm
The VDMC method15 is a flavor of diagrammatic Monte Carlo method (DMC)17–24, which samples high-order Feynman
diagrams with a Monte Carlo importance sampling. The novelty of VDMC is two-fold: i) it optimizes the starting point of
the perturbative expansion in such a way that the expansion converges very rapidly with the increasing perturbation order. ii)
it efficiently combines an exponentially large number of Feynman diagrams, which mostly cancel among themselves due to
alternating fermionic sign so that the groups of diagrams can be efficiently sampled with the Monte Carlo importance sampling
hence avoiding the explosion of statistical error with perturbative order.
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In Ref. 15 we computed the spin and the charge response functions of the UEG model with VDMC by evaluating the
Feynman diagrams for the polarization function. A similar type of Feynman expansion in terms of non-interacting single-particle
Green’s function, and statically screened Coulomb interaction does not converge rapidly enough to establish a reliable infinite
order result, hence we here develop an alternative approach.
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Figure 1. Feynman diagrams for the self-energy in terms of the three leg vertex Γ3, which is expanded in bare series in
terms of G0

k and partially screened interaction vq = 8π

q2+λ
and counter-terms ( λ

8π
)N( 8π

q2+λ
)N+1.

In this work, we show that extremely rapid convergence with perturbation order can be achieved by using a Hedin-type
equation, in which we first compute the numerically exact screened interaction Wq (previously developed in Ref. 15), and
we then expand only the three-point vertex function Γ3 in powers of the bare electron propagator G0

k, and statically screened
interaction vq(λ ), with proper counter terms defined in the Method section. Here the screened Coulomb interaction vq(λ )
has a Yukawa form, characterized by the inverse screening length λ . This screening parameter has to be determined by the
principle of minimal sensitivity in order to achieve rapid convergence of the perturbative series, so that the extrapolation to
infinite order is possible. Fig. 1 shows the sketch of the corresponding Feynman diagrams up to the third order. Below we
apply the algorithm to the UEG model, although the method is completely general and could as well be carried out for realistic
material in the ab-initio framework.

The single particle excitations

rs=1 rs=3

rs=4

a) b)

c)d)

rs

Figure 2. The wave-function renormalization factor Z versus screening parameter λ for various perturbation orders
N = 1...5 and for rs = 1,2,3 and 4. The insets show the convergence of Z with perturbation order N when its value is taken at
the extremal λ . The numbers next to each point show the value of λ used for each calculated point. Panel d) compares current
VDMC results with prior Monte Carlo results from Ref.14 and G0W0 from Ref.25.

We first present the single-particle excitation spectral results. Fig. 2a-c show how the wave-function renormalization factor
Z depends on the screening parameter λ in our theory. To determine the optimized parameter λ , we scan Z(λ ) for each rs,
and determine it with the principle of minimal sensitivity. For efficiency, we here sample the self-energy only at the Fermi
wave vector kF and at the two lowest Matsubara frequencies, which is sufficient to determine Z. We notice that for the first two
orders, no counter term in the parameter λ occurs, therefore the curve Z(λ ) displayed in Fig. 2 does not have extremum, while
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rs Z m∗/m Fa
0 Fs

0
1 0.8725(2) 0.955(1) -0.171(1) -0.209(5)
2 0.7984(2) 0.943(3) -0.271(2) -0.39(1)
3 0.7219(2) 0.965(3) -0.329(3) -0.56(1)
4 0.6571(2) 0.996(3) -0.368(4) -0.83(2)

Table 1. Landau liquid parameters: The wave-function renormalization factor Z, effective mass m∗/m, and the Landau
parameters Fa

0 , Fs
0 for various values of the density parameter rs with the estimated error.

all higher-order terms have a well-defined maximum, which broadens and develops into a broad plateau with increasing order.
The insets of Figs. 2a-c show optimized Z versus perturbation order, where the first two orders are evaluated at the optimal λ of
the third order, and for later orders, we take the value in the maximum. We also display the value of λ used at each order. From
Fig. 2 it is apparent that beyond order three the rate of convergence to limiting value of Z is extremely fast, and therefore we can
confidently determine the first three digits of Z. The values and the estimated error-bar from the extrapolation and statistical
errors are shown in Table 1.

In Fig. 2d we compare our computed Z(rs) with the previous best available estimates, obtained by various flavors of
Monte Carlo (MC) methods, which are reproduced from Ref.14. Note that all these published MC methods rely on fixed node
approximation and the thermodynamic limit extrapolation, hence they have an inherent systematic error, nevertheless they turn
out to be in very good agreement with current VDMC results. Our current work based on VDMC has only statistical error,
and a small error in extrapolating in perturbation order, and is thus far more precise than previous best results. We notice that
previous MC results are broadly consistent with our results, with SJ-VMC method predicting slightly too large and BF-VMC
and BF-RMC slightly too small value. It is also well known that G0W0 predicts quite accurate Z values, however, we can now
confidently claim that in the range of metallic densities, G0W0 consistently underestimates Z.

1 2 3 4 5
N
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0.98
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m
* /

m rs = 1
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rs = 4
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m
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G0W0
G + & G
G +

Figure 3. Electron effective mass: The upper panel shows our calculated effective mass versus perturbation order for
rs = 1−4. The lower panel compares the rs dependence of the effective mass of this work (VDMC) with the prior analytic and
numeric work from Ref. 26.

Once the extremal value of λ is determined, we compute the entire momentum and frequency dependence of the self-energy,
which allows us to determine also the momentum derivative of the self-energy, and hence the effective mass of the electron
through the relation

m
m∗

= Z
(

1+
m
kF

dΣ(kF ,ω = 0)
dk

)
(1)

The convergence of the effective mass ratio m∗/m with perturbation order is shown in Fig. 3a, and its dependence on rs is
displayed in Fig. 3b.
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The dependence of the effective mass m∗/m on rs has been controversial for many decades. Some theories predict that
the ratio is monotonically decreasing with increasing rs

7, 27, while others predict the existence of a turning point r∗s
26, 28–31 at

which the trend is reversed. Our controlled results confirm the correctness of the later theories. Furthermore, we compare our
controlled VDMC results with previous best estimates, which are based on the theory of many-body local field factors26. This
theory includes vertex corrections associated with charge and spin fluctuations, extracted from available Monte Carlo data. We
notice that G0W0 overestimates the effective mass in the entire range of metallic densities. The density fluctuations beyond
RPA are included in theory with G+ local field corrections, which reduce the mass substantially and bring it very close to our
VDMC results at small rs. However, beyond rs > 3 our VDMC results are closer to the theory which contains both the charge
and the spin fluctuations (G+&G−), hence we can infer that at moderate correlations strength, the spin fluctuations start to play
an important role, and charge fluctuations are no longer sufficient in determining the mass of the electron gas.

The Landau liquid parameters
With precisely calculated effective mass, as well as the spin and charge susceptibility determined in our previous work15, we
can calculate Landau parameters Fa

0 and Fs
0 , which are obtained from χs

χ0
s
= m∗

m
1

1+Fa
0

and Pq=0

P0
q=0

= m∗
m

1
1+Fs

0
. Here χs and Pq are the

spin susceptibility and charge polarization, while χ0
s and P0

q are their non-interacting analogues. In table 1 we list our calculated
Landau parameters Fa

0 and Fs
0 , together with the estimation of their error, which mostly comes from error in determining spin

and charge susceptibility in Ref. 15. While the Landau parameters, which determine the interaction between quasiparticle, have
been estimated by various approximate numerical methods before7, to our knowledge their numerically controlled value has not
be obtained before.

The spectral function and the bandwidth

2 1 0 1 2
/EF

4

2

0

2

/E
F

Re
Im
A( )

Figure 4. The spectral function and Σk=0(ω) at rs = 4 and k = 0 as relevant for bandwidth of Na metal.

The present VDMC algorithm also allows us to compute a numerically controlled value for the dynamic self-energy
on the imaginary axis. Analytic continuation is needed to obtain the self-energy on the real frequency axis. We use the
maximum entropy method to compute the quasiparticle energy at the k = 0 point, which determines the bandwidth of the
electron dispersion, i.e., the energy difference between the Fermi level and the lowest possible quasiparticle energy. In Fig. 4
we display the self-energy, as well as the spectral function at momentum k = 0 and finite frequency. We notice that the
imaginary part of the self-energy starts to grow rapidly when the energy of the single-particle excitations exceeds the plasma
frequency ωp ≈ 1.881EF . Consequently, there appears a strong pole at ω ≈−2.4EF due to such plasma excitations, and makes
quasiparticle approximation invalid at a frequency below ω < −EF , as the real part of the self-energy is no longer a linear
function of frequency. However, around EF the real-part of Σ is still quite close to a linear function, and only minor deviations
are noticed. Consequently, the renormalization of the dispersion can not substantially deviate from our earlier estimation of
m∗/m, which is valid at the Fermi level. Our numerical estimation based on the analytically continued self-energy is that the
spectral function at rs = 4 and k = 0 has a peak around −0.96EF , which deviates from the non-interacting value for only 4%,
hence the bandwidth reduction due to interactions at rs = 4 is only of the order of 4%. This value is much smaller than the
experimental estimation of the bandwidth reduction in Na metal, in which the measured ARPES bandwidth appears to be
renormalized for about 18-25%32, 33. However, our estimated bandwidth is definitely not substantially larger as compared to
the non-interacting bandwidth, in contrast to several other many-body calculations34, 35, and is neither substantially smaller
as in early GW calculations36 or GW with paramagnon vertex corrections8. Based on our very precise estimation of the
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single-particle self-energy, we can confidently exclude a possibility of such a dramatic reduction of the bandwidth in the model
of electron gas due to correlation effects at the density corresponding to Na metal. This large reduction of the effective mass in
ARPES thus requires an alternative explanation, which was assigned to the interaction in the final states35, 37 in ARPES, surface
effects38, and possibly the lattice effects, i.e, deviation of Na metal from the continuous model of the uniform electron gas.

In summary, we established the low energy excitation spectrum of the uniform electron gas at metallic density using recently
developed VDMC. Controlled values of Z, m∗/m, Fs

0 , and Fa
0 are given, which agree with the state of the art calculations in the

field, but here we provide much more precise values than previously known.

Methods
The Hamiltonian of UEG problem is

Ĥ = ∑
kσ

(
k2−µ

)
ψ̂

†
kσ

ψ̂kσ +

1
2V ∑

q6=0
kk′σσ ′

8π

q2 ψ̂
†
k+qσ

ψ̂
†
k′−qσ ′ψ̂k′σ ′ψ̂kσ , (2)

where ψ̂/ψ̂† are the annihilation/creation operator of an electron, µ is the chemical potential controlling the density of the
electrons in the system, and the long-range Coulomb repulsion is 8π/q2, as we measure the energy in units of Rydbergs, and
the wave number k,q in units of inverse Bohr radius.

The expansion in terms of the bare interaction is divergent, therefore we first transform the original problem into an
equivalent but a more appropriate problem for power expansion, which describes the emergent degrees of freedom at the lowest
order, and the corrections are perturbatively included with very rapid convergence. Motivated by the well-known fact that the
long-range Coulomb interaction is screened in the solid and that the effective potential of emerging quasiparticles differs from
the bare potential, we introduce the screening parameter λq and an electron potential vk into the quadratic part of the emergent
Lagrangian L0 of the form

L0 = ∑
kσ

ψ
†
kσ

(
∂

∂τ
−µ +k2 + vk(ξ = 1)

)
ψkσ

+ ∑
q6=0

φ−q
q2 +λq

8π
φq, . (3)

We then add the following interacting part to the Lagrangian

∆L =−∑
kσ

ψ
†
kσ

vk(ξ )ψkσ −ξ ∑
q6=0

φ−q
λq

8π
φq

+
√

ξ
i√
2V ∑

q6=0
(φqρ−q +ρqφ−q) . (4)

so that, when the number ξ is set to unity, L(ξ ) = L0(ξ )+∆L(ξ ) is Lagrangian of UEG. Indeed integrating out the bosonic
fields φq from Lagrangian L, we get the Lagrangian corresponding to the original Hamiltonian Eq. (2). Here ρq is the density
fluctuation of the problem ρq = ∑kσ ψ

†
kσ

ψk+qσ . Note that the first two terms in ∆L are the counterterms39 which exactly
cancel the two terms we added to L0 above. We use the number ξ to track the order of the Feynman diagrams so that order N
contribution sums up all diagrams carrying the factor ξ N . We set ξ = 1 once we enumerate all the diagrams of a certain order.

The emergent screening length λq and effective potential vk are not a-priory known and need to be properly optimized to
achieve an optimal speed of convergence. We note in passing that determining those parameters self-consistently, i.e., λq from
the self-consistent polarization, and vk from the single-particle self-energy, is not the most optimal choice for the speed of
convergence. Determining them by the principal of minimal sensitivity is a much better choice, as pointed out by Kleinert and
Feynman40–43. They showed that when an effective parameter of a theory is optimized with this principle, the perturbative
expansion converges very fast, and can succeed even when the interaction is strong, and regular perturbation theory fails.

To make algorithm sufficiently simple to implement, we take λq to be q independent constant (λ ), which is already sufficient
for rapid convergence of the series. We emphasize that for any choice of these parameters we are guaranteed to converge to the
same answer, provided that the series converges. Furthermore, we found that the convergence of the expansion is best when the
Fermi surface of both the dressed Gk and the bare G0

k Green’s function at each order is fixed with the Luttinger’s theorem so
that the density and the Fermi surface volume is not changed with the increasing perturbation order. We therefore, expand vk
in power series vk = (Σx

k(λ )−Σx
kF
(λ ))+ξ s1 +ξ 2 s2 · · · , and we determine sN so that all contributions at the order ξ N do not
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alter the physical volume of the Fermi surface. Similarly to optimizing λq, we found that it is sufficient to take sN constants
independent of the momentum. Since the exchange (Σx

k) is static and is typically large, we accommodate it at the zeroth-order
into the effective potential, so that at the first order we recover the GW type self-energy with Gk at the screened Hartree-Fock
(screened by screening length λ ) and exact Wq.

As mentioned before, the algorithm depicted in Fig. 1 needs a numerically exact (converged) Wq, which is first computed with
the algorithm of Ref. 15. It was shown in Ref. 15 that the most rapidly converging scheme for charge and spin-susceptibilities
is the so-called vertex correction scheme, in which we add an infinite sum of ladder diagrams on both sides of a polarization
Feynman diagram. To do that, we first precompute the three-point ladder vertex and then attach it to both sides of a polarization
Feynman diagram while the diagrams are sampled, and at the same time, we eliminate all ladder-type diagrams from the
sampling, to avoid double-counting of diagrams. Next, we use Hedin’s type equation depicted in Fig. 1 in which one fermion
propagator is dressed and requires self-consistent G. It easy to see that it is sufficient to use bold G of the lower order N−1
when evaluating self-energy at order N, to avoid the expensive self-consistent calculation. Finally, we use the finite temperature
imaginary-time formalism, and we set the temperature to T = 0.04EF , which is sufficiently below the Fermi liquid scale, so
that is essentially equivalent to zero temperature.
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