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Large deviation theory and instanton calculus for stochastic systems are widely used to gain insight
into the evolution and probability of rare events. At its core lies the realization that rare events are,
under the right circumstances, dominated by their least unlikely realization. Their computation
through a saddle-point approximation of the path integral for the corresponding stochastic field
theory then reduces an inefficient stochastic sampling problem into a deterministic optimization
problem: finding the path of smallest action, the instanton. In the presence of heavy tails, though,
standard algorithms to compute the instanton critically fail to converge. The reason for this failure
is the divergence of the scaled cumulant generating function (CGF) due to a non-convex large
deviation rate function. We propose a solution to this problem by “convexifying” the rate function
through a nonlinear reparametrization of the observable, which allows us to compute instantons even
in the presence of super-exponential or algebraic tail decay. The approach is generalizable to other
situations where the existence of the CGF is required, such as exponential tilting in importance
sampling for Monte-Carlo algorithms. We demonstrate the proposed formalism by applying it to
rare events in several stochastic systems with heavy tails, including extreme power spikes in fiber
optics induced by soliton formation.

I. INTRODUCTION

In many situations of physical relevance, rare events
are tremendously important despite their infrequent oc-
currence: Heat waves, stock market crashes, or earth
quakes all occur with small probability but devastating
consequences. Unfortunately, due to their rareness, these
events are hard to observe in experiment or numerical
simulation, and require special treatment. Rare event al-
gorithms [1] are typically based on one of the two follow-
ing ideas: Either to increase the rate of occurrence of the
rare event by biasing the underling system (importance
sampling), or to substitute all possible ways of observ-
ing a rare event by its most common realization (large
deviations/instanton theory). Under the hood both are
connected to the exponentially tilted measure and the cu-
mulant generating function. As we will see, when naively
implementing standard schemes, both become ill-defined
when the underlying probability densities become heavy-
tailed.

Here, we focus on numerical algorithms connected to
instanton theory and its rigorous counterpart, large devi-
ation theory, to recover the tails of probability distribu-
tions in a stochastic system. A large deviation principle
(LDP) states that the probability of rare events decays
exponentially, and its exponential scaling is given by the
minima of the corresponding rate function I [2, 3]. More
precisely, let P ε be a family of probability measures on a
suitable space X . We say P ε satisfies an LDP with rate
function I : Ω→ R if for all Ω ⊂ X , we have [4],

P ε (Ω) � exp

(
−ε−1 inf

x∈Ω
I (x)

)
, (1)

where � denotes log-asymptotic equivalence in the limit
ε→ 0.

In a physical sense, the probability P ε(Ω) can formally
be written as a path integral, and the estimate (1) be-

comes a saddle point approximation or Laplace method.
In large deviation theory, the Gärtner-Ellis theorem [5]
provides a direct formula for the rate function I. Roughly
speaking, if the limiting behavior of a scaled CGF is well-
defined, then its Legendre-Fenchel (LF) transform is the
rate function of the LDP of the process under consider-
ation. The LF transform of a real-valued function f (x)
defined on Rn is defined as

f∗ (y) = sup
x∈Rn

(〈x, y〉 − f (x)) , (2)

where 〈x, y〉 = xT y is the inner product on Rn. Let zε be
a sequence of random variables in Rn, with probability
measures P ε, and assume that its scaled CGF, defined
as the limit,

G (λ) ≡ lim
ε→0

ε log E
[
eε

−1〈λ,zε〉
]
, (3)

exists for each λ ∈ Rn and is differentiable in λ. Then,
the Gärtner-Ellis theorem states that the family of prob-
ability measures {P ε} satisfy an LDP, where the rate
function I is the LF transform of G, I = G∗.

Intuitively, one can interpret λ as a Lagrange multiplier
to condition on an outcome z. Crucially, though, if the
probability measure P ε is super-exponential, or has even
heavier tails, the expectation in equation (3) diverges and
the CGF is no longer defined. Notably this does not mean
that the corresponding rare events are special in any way,
but merely that the duality between the parameter λ and
rare event observable z is broken. As a consequence, no
tilt exists to realize an outcome z, and standard rare
events algorithms fail.

In what follows, we will show how a nonlinear tilt al-
lows to modify the connection between tilt λ and outcome
z, so that heavy tails can be probed regardless of the
non-convexity of their rate function. We will concentrate
specifically on the case of small noise sample-path large
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deviations for stochastic differential equations (SDEs),
which will we introduced in section II. Here, we focus
on the numerical computation of the instanton in section
II A, and highlight the connection to a change of mea-
sure in path-space in II B. We demonstrate the problem
in the heavy-tailed case by reviewing the convex analysis
for the Gärtner-Ellis theorem in section III, and propose
a solution modifying the instanton computation to yield
finite outcomes for heavy tails and non-convex rate func-
tions in section III A. To demonstrate the applicability
of our approach, we show several examples of instantons
for heavy-tailed distributions in section IV: Toy mod-
els with super-exponential (section IV A) and powerlaw
(section IV B) tails, and a banana-shaped potential (sec-
tion IV C), and finally high-amplitude events in fiber-
optics described by the focusing nonlinear Schrödinger
equation (section IV D). We summarize our findings in
section V.

II. INSTANTONS AND FREIDLIN-WENTZELL
THEORY

Consider a stochastic system,

dXε
t = b (Xε

t ) dt+
√
εσ dWt , Xε

t0 = x0, (4)

where Xε
t ∈ Rn is a family of random processes in-

dexed by the noise strength ε. The deterministic drift
b : Rn → Rn satisfies the Lipschitz condition, dWt is an
n-dimensional Brownian increment, and the noise covari-
ance χ = σσT is assumed to be invertible for σ ∈ Rn×n.
Intuitively, equation (4) describes the temporal evolution
of a system perturbed by stochasticity, where we later as-
sume the fluctuations to be small, ε� 1. This situation
is ubiquitous in many application areas, where for ex-
ample ε plays the role of the temperature in a chemical
reaction, or the inverse number of particles in a thermo-
dynamic system.

With vanishing noise, ε = 0, the solution x ∈ Rn of
the unperturbed (deterministic) system

ẋ(t) = b (x(t)) , x(t0) = x0, (5)

converges to one of its attractors for long times. For ex-
ample, consider a point attractor, or asymptotically sta-
ble fixed points, x̄ ∈ Rn, with basin of attraction B, such
that x(t) → x̄ for t → ∞ for all initial conditions x0

in B. Solutions of the stochastic system (4) converge to
solutions of the deterministic system (5) in probability,
P (lim

ε→0
max

t0≤t≤t1
|Xε

t − x(t)| = 0) = 1 [4]. This is an in-

stance of the law of large numbers, stating that for small
noise and large times we expect solutions of the stochastic
system to end up near the attractors of the deterministic
one.

Nevertheless, for any non-zero ε � 1 there is a small
but non-vanishing probability of finding the system far
from the attractor. This can only happen if the noise con-
spires in just the right way to overcome the deterministic

dynamics, and is consequently a rare event. Concretely,
consider any domain D ⊂ Rn attracted to x̄, i.e. D ⊂ B.
We are interested in the chance of trajectories Xε

t depart-
ing from x̄ and eventually leaving D. These trajectories
belong to the set

Az := {ϕ ∈ Ct0 t1 (Rn) |ϕ(t0) = x̄, ϕ(t1) = z /∈ D} , (6)

and we want to quantify the probability

p(z) = P [Xε ∈ Az] as ε→ 0 , (7)

which is a question about the probability of large devia-
tions. Under the stated conditions, there is a trajectory
ϕ∗ ∈ Az such that the probability measure over Az ac-
cumulates near ϕ∗ for ε → 0, namely if N (ϕ∗) is any
neighborhood of ϕ∗,

lim
ε→0

P [Xε ∈ Az \N (ϕ∗)]
P [Xε ∈ N (ϕ∗)]

= 0. (8)

In other words, in the small noise limit we will almost
surely find our sample trajectory close to ϕ∗, such that
max

t0≤t≤t1
|Xε

t − ϕ∗t | ≤ δ, for an arbitrary small δ.

In order to find this most likely trajectory ϕ∗, Freidlin-
Wentzell theory [4] states that ϕ∗ is actually the mini-
mizer of large deviation rate function S(ϕ) associated
with the stochastic system (4), given by

S(ϕ) =
1

2

∫ t1

t0

‖ϕ̇t − b (ϕ(t))‖2χ dt, (9)

where the integral exists, and S(ϕ) =∞ otherwise. The

norm ‖f‖2χ =
〈
f, χ−1f

〉
is induced by the noise covari-

ance χ. With this rate function we can quantify the
probability (7) of departing the domain D as

lim
ε→0

ε log p(z) = −I(z) = −S (ϕ∗) , (10)

where

ϕ∗ = argmin
ϕ∈Az

S (ϕ) . (11)

The problem of finding the rare event probability is now
reduced to finding the minimizer ϕ∗.

In analogy to the principle of least action in classical
mechanics or quantum mechanics, the rate function is
often termed action, and the corresponding minimizer ϕ∗

is called instanton. The integrand of S can be understood
as a Lagrangian,

L (ϕ, ϕ̇) =
1

2
‖ϕ̇t − b (ϕ)‖2χ , (12)

so that the maximum likelihood pathways leaving the
attractors of (4) correspond to semi-classical trajectories
of the field theory defined by L.
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A. Instanton equations and large deviation
Hamiltonian

It is helpful, both to increase understanding, and to
simplify the numerical implementation, to rephrase the
optimization problem (11) into the corresponding Hamil-
tonian formulation. To this end, we introduce the large
deviation Hamiltonian H(ϕ, ϑ) as the Legendre trans-
form of the Lagrangian L (ϕ, ϕ̇),

H (ϕ, ϑ) = sup
ϕ̇

(〈ϑ, ϕ̇〉 − L (ϕ, ϕ̇)) , (13)

which, for the Lagrangian (12), corresponds to

H(ϕ, ϑ) = 〈b(ϕ), ϑ〉+ 1
2 〈ϑ, χϑ〉 . (14)

Here ϑ = ∂L/∂ϕ̇ is the conjugate momentum of ϕ [6].
Now, the minimizer ϕ∗ can also be expressed as the so-
lution of Hamilton’s equations,

ϕ̇ = ∂ϑH(ϕ, ϑ) = b (ϕ) + χ ϑ,

ϑ̇ = −∂ϕH(ϕ, ϑ) = − (∇ϕb (ϕ))
T
ϑ.

(15)

with boundary conditions,

ϕ(t0) = x̄, ϕ(t1) = z. (16)

Equations (15) and (16) are often termed instanton equa-
tions.

The fact that we are looking only for trajectories that
will eventually leave the attractor, ϕ∗ ∈ Az, implies
that the optimization problem (11) is a constrained one,
i.e. we are looking only for solutions of the instanton
equations conditioned on the endpoint z. Practically, this
constrained optimization problem can be transformed
into an unconstrained one,

ϕ∗ = argmin
ϕ∈Ct0 t1 (Rn)

(S (ϕ)− 〈λ, ϕ(t1)− z〉) , (17)

by using a Lagrange multiplier λ ∈ Rn to enforce the
final constraint [7]. Note that the variation of this un-
constrained action,

[δS (ϕ)− 〈λ, δϕ(t1)〉]ϕ=ϕ∗ = 0, (18)

results in the same instanton equations,(15), but with
different boundary conditions

ϕ (t0) = 0, ϑ (t1) = λ. (19)

We can solve the instanton equations (15) iteratively with
these conditions, by solving the ϕ-equation forward in
time, and using the result to solve the ϑ-equation back-
ward in time, until convergence [8, 9]. Note that this
choice of temporal direction of integration is not only the
one suggested by the boundary conditions, but is further
the numerically stable choice of direction for the drifts b
and ∇bT .

As we will see below, the mapping between Lagrange
multipliers λ and final points z is nontrivial, and it is
not clear a priori how to choose the correct λ to obtain
a final configuration z = ϕ∗(t1). If we are interested
in pε(z) for a whole range of z, we can instead choose
to simply solve the instanton equations for a range of
λ to cover a range of z without specifically needing to
know the duality mapping λ(z). Exactly this procedure
is often used in the literature to work out probability
distributions of stochastic systems, from Burgers [8, 10]
or Ginzburg-Landau [11] equations to the Kardar-Parisi-
Zhang [12] and Kipnis-Marchioro-Presutti model [13]

Crucially, however, the existence of a corresponding
dual λ for a given final point z = ϕ∗ (t1) is not necessar-
ily guaranteed, as the next section clarifies. As a conse-
quence, the above methodology might fail, in particular
in situations with heavy tails.

B. Exponentially tilted measures

Interestingly, there is a probabilistic interpretation of
the introduction of the Lagrange multiplier λ to the op-
timization problem (18) in the form of the exponentially
tilted measure [14, 15], as for example employed in im-
portance sampling for Monte-Carlo estimators [1]. Intu-
itively, by the procedure of tilting, one replaces the orig-
inal random process (4) by a modified one, under which
the rare events under consideration become more likely,
while correcting for this modification a posteriori when
computing their probability. As a consequence, with tilt-
ing, the rare event probability, or expectations over its
realizations, can be estimated more efficiently, and with
possibly smaller variance.

To be more precise, we denote by pλ the measure ex-
ponentially tilted towards the outcome z, defined for our
purposes as

pλ(z) =
exp

(
ε−1 〈λ, z〉

)
Ep [exp (ε−1 〈λ, z〉)] p (z) , (20)

where Ep [.] is the expectation under the original measure
p. In equation (20), the probability measure pλ of events
resulting in z, i.e. trajectories in Az, have been awarded
extra weight by the Radon-Nikodym derivative of pλ with
respect to p, which is:

pλ (z)

p (z)
=
dpλ (z)

dp (z)
=

exp
(
ε−1 〈λ, z〉

)
Ep [exp (ε−1 〈λ, z〉)] . (21)

Rearranging equation (20) gives:

pλ (z) = exp
(
ε−1 {〈λ, z〉 −G (λ)}

)
p (z) , (22)

where

G (λ) = ε log Ep
[
exp

(
ε−1 〈λ, z〉

)]
(23)
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is the scaled CGF, G : Rn → R. This change of measure
is optimal, in the sense of maximizing the tilted proba-
bility pλ, at the choice λ = λz with

λz = argmax
λ∈Rn

{〈λ, z〉 −G (λ)} . (24)

This can be seen, given the Gärtner-Ellis theorem, I(z) =
G(λ)∗ = supλ∈Rn(〈λ, z〉 −G(λ)), by realizing that

log pλ (z) = ε−1 (〈λz, z〉 −G (λz)) + log p (z)

= ε−1 sup
λ∈Rn

{〈λ, z〉 −G (λ)} + log p (z)

= ε−1 I (z) + log p (z)

ε→0−→ 0,

(25)

where the last line is just the definition of the LDP,
ε log p(z) = −I(z) for ε→ 0.

It is in this sense that the optimal tilting parameter of
the end-point distribution corresponds to the Lagrange
multiplier in the instanton equations constraining the
endpoint to z.

III. CONVEX ANALYSIS AND THE
GÄRTNER-ELLIS THEOREM

In order to use the described methodology to find the
instanton for a rare outcome z, or equivalently make
sense of the corresponding exponentially tilted measure
pλ(z), we must demand that the mapping z → λ(z) is a
bijection: For every outcome z there must be a unique
tilt λ such that the instanton ϕ, solution of (15) with
boundary conditions (19) have a unique solution with
ϕ(t1) = z. If that is the case then we can estimate the
probability

p(z) � exp(−ε−1S(ϕ∗)) = exp(−ε−1I(z)) . (26)

The precise properties of the duality mapping between
tilting parameter λ and outcome z can be understood
by the interplay between the Gärtner-Ellis theorem and
convex analysis. We have,

G (λ) = sup
z∈Rn

(〈λ, z〉 − I (z))

= 〈λ, z (λ)〉 − I (z (λ)) ,
(27)

where the solution z (λ) of the form

∇I (z) = λ , (28)

does only hold when the rate function is strictly con-
vex. If instead the rate function is not strictly convex
(i.e. has concave, and/or affine linear regions or is even
just asymptotically linear), the LF transform is applied
only to the region at which I (z) admits supporting hy-
perplanes. If there exists λ ∈ Rn such that [16],

I (y) ≥ I (z) + λ (y − z) , ∀y ∈ Rn, (29)

then we say I admits a supporting hyperplane at z, where
the slope of the supporting hyperplane is λ. In this sense,
we can define non-convex regions to be the ones that do
not admit any supporting hyperplane, so do not have
any corresponding λ. Note that the absence of these
hyperplanes can affect the LF transform I∗ (z) = G (λ)
in two different ways,

Case I: Having an asymptotically linear part of I (z)
leads to a divergent LF transform G (λ).

Case II: Having a concave or affine linear part of I (z)
leads to an existent but nondifferentiable LF
transform G (λ).

Both cases will be discussed specifically in the applica-
tions in section IV.

Assuming for now there are supporting hyperplanes
(i.e. existent λ) for all z ∈ Rn, then equation (28) leads
to,

z (λ) = (∇I)
−1

(λ) , (30)

i.e.∇I must be invertible for z(λ) to be so. Up to a choice
of sign, this implies that ∇I is strictly monotonically in-
creasing (SMI), which is equivalent to I being a strictly
convex function [14]. Also note that if z (λ) is invertible,
this implies that G (λ) is a differentiable function, since
equation (27) gives,

∇G (λ) = z (λ) + (∇z (λ))
T
λ− (∇z (λ))

T ∇I (z (λ))

= z (λ) ,

(31)

where equation (28) is used. What we have demonstrated
above is nothing but the well-known fact that the LF
transform of a convex, differentiable function G(λ) is
strictly convex. This perspective, though, makes it clear
that the existence of a tilting parameter (Lagrange multi-
plier) λ to enforce an outcome z depends on the finiteness
and differentiability of the scaled CGF. In other words,
both exponential tilting, and finding a Lagrange param-
eter to constrain the endpoint to z, depends on the rate
function being strictly convex.

Since in the low noise limit we have p(z) ∼
exp(−ε−1I(z)), it is easy to construct cases where the
rate function I(z) is not strictly convex. In fact, every
situation where the tails of p(z) are fat, i.e. exponential
(I(z) ∼ z), stretched exponential (I(z) ∼ zα, α < 1), or
even algebraic (I(z) ∼ α log(z), α < 0) tails will break
the above assumption. Examples of fat tailed distri-
butions are ubiquitous in physical systems of relevance,
such as the energy dissipation in fluid turbulence and
the phenomenon of intermittency [17], wealth distribu-
tions in economies [18, 19] or stock price changes in fi-
nance [20, 21].

The main contribution of this paper is the realization
that the introduction of a nonlinear map F : Rn → Rn

allows us to loosen the restriction of the convexity of
I(z). The idea is to define a nonlinear tilt through F
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via exp(ε−1〈λ, F (z)〉), such that the map λ → z(λ) is
replaced by a new map λ → F ◦ z(λ). We are free to
choose any appropriate F . As we will see next, this allows
us to suitably reparametrize the space of outcomes, so
that the effective rate function I ◦F−1 is strictly convex.

A. Nonlinear tilt

In analogy to equation (22) and the description in sec-
tions II B and III, we can now define the nonlinearly tilted
measure

pFλ (z) =
exp(ε−1〈λ, F (z)〉)

Ep exp(ε−1〈λ, F (z)〉)p(z)

= exp
(
ε−1(〈λ, F (z)〉 −GF (λ))

)
p(z)

(32)

where the nonlinearly tilted CGF is given by

GF (λ) = sup
z∈Rn

(〈λ, F (z)〉 − I (z))

= 〈λ, F (z (λ))〉 − I (z (λ)) ,
(33)

(compare equation (27)) which is assumed to be finite
and differentiable. Its gradient fulfills

∇GF (λ) = F (z (λ)) + (∇z(λ))
T

(∇F (z(λ)))
T
λ

− (∇z(λ))
T ∇I(z(λ))

= F (z (λ)) ,

(34)

where the last equality is due to z (λ) being the solution
of ∇I (z) = λT∇F (z) in equation (33).

This proposed remapping can be chosen to overcome
the above problem by creating a new function GF (λ),
which plays the role of the CGF, while simultaneously
being a bounded and differentiable function. At the same
time, I ◦ F−1 (y) can be understood as the effective rate
function, since equation (33) can be written as,

GF (λ) = sup
F−1(y)∈Rn

(
〈λ, y〉 − I ◦ F−1 (y)

)
. (35)

Obviously, the right choice of F depends on the nature
of the tail scaling at hand. We will derive the necessary
properties of F (.) next.

B. Properties of the reparametrization and the
nonlinearly tilted instanton

In the following, we denote by y ∈ Rn the reparame-
trized outcome, y = F (z). Our goal is to choose F such
that F ◦z(λ) = y(λ) is a bijection. From above, it is clear
that

λT = ∇I(z)(∇F (z))−1 . (36)

Following the same argument as in section III, y(λ) is
bijective if

• F is a diffeomorphism, and

• I ◦ F−1(y) is strictly convex, i.e.

〈v,Hess(I ◦ F−1)(y) v〉 > 0 ∀ v ∈ Rn . (37)

Assuming these conditions on F implies that the gradi-
ent of the reparametrized rate function I ◦ F−1(y), given
by λ ◦ F−1 (y), is an SMI function, implying that it is
invertible. The desired bijective mapping then becomes
λ→ F (z (λ)) = ∇GF (λ) (compare equation (34)). For
a non-convex I, intuitively, F must be chosen to suitably
reparametrize the space of outcomes for the effective rate
function to become strictly convex. For example for the
n = 1 case with heavy tails, one might imagine a strong
enough compression of the observable z such that a fat
tail becomes non-fat.

To harness this nonlinear tilt in the computation of
instantons for distributions with heavy tails, we need to
modify the approach outlined in section II A as follows:
The variation of the unconstrained action (18) now reads

[δS (ϕ)− 〈λ, ∇F (ϕ(t1))δϕ(t1)〉]ϕ=ϕ∗ = 0 . (38)

Consequently, the boundary conditions of the instanton
equations are modified to

ϕ (t0) = 0, ϑ (t1) = λ∇F (ϕ(t1)) , (39)

which will yield an instanton trajectory ϕ∗ that reaches z,
ϕ(t1) = z, despite the fact that the rate function I(z) =
S(ϕ∗) is not convex around z. Since F is continuous, the
probability measure P ε ◦ F−1 (y) in the limit ε → 0 is
the same as P ε (z) for a continuous F , according to the
contraction principle [3, 4].

Note that this reparametrization through F is in-
troduced solely to adequately define the tilted mea-
sure, or equivalently numerically compute the instan-
ton without encountering divergences. Afterwards, the
reparametrization can be reverted to obtain the proba-
bility distribution in the original coordinates z.

As additional remark, methods that compute the in-
stanton by solving the global optimization problem, for
example by solving the associated Euler-Lagrange equa-
tions instead of integrating the instanton equations [22,
23], do not require the above treatment: The tilting pa-
rameter disappears in these cases as the boundary con-
ditions are fixed in the field variable instead of the con-
jugate momentum. Therefore, in principle, these meth-
ods can be chosen in the non-convex case. The solu-
tion of the instanton equations, though, is generally pre-
ferred [24] due to numerically efficiency, and sometimes
even required (such as when the noise covariance in (4)
is not invertible).

IV. APPLICATIONS

We will now consider a number of examples that show
how to compute tail probabilities in stochastic systems.
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To demonstrate the wide applicability of our approach,
we consider several cases that highlight different com-
plications. We start with two toy models that feature
stretched exponential (section IV A) or powerlaw (sec-
tion IV B) tails. Then, in section IV C, we consider a
two-dimensional system with a bent (“banana-shape”)
potential, where the non-convexity is not due to heavy
tails, but due to the shape of the unimodal invariant
probability density. Lastly, we demonstrate the practi-
cal applicability of our method by considering an example
motivated from fiber optics in section IV D. Here we com-
pute the probability of measuring extreme power spikes
at the end of extended optical fibers, where the proba-
bility distribution of the input signal is known. Due to
soliton formation, this distribution features heavy tails
for long fiber lengths (L� 10 m), so in order to compute
probabilities via an instanton approach, our corrections
are necessary.

A. Stretched exponential

Consider the stochastic gradient flow,

dXε
t = −∇U(Xε

t ) dt+
√

2 ε dWt , t ∈ [t0, t1] . (40)

The potential U : Rn → R determines completely the
stationary probability distribution function (PDF)

ρ∞(z) = Z−1 exp
(
−ε−1U (z)

)
(41)

with normalization constant Z. We further assume that
U has a unique minimum, i.e. we are only considering uni-
modal distributions. For large times, t1 − t0 = T → ∞,
the distribution of endpoints of Xε

t1 = z will converge
to ρ∞(z). From the perspective of large deviation the-
ory (LDT), comparing (26) to (41), the rate function for
the final point distribution is equivalent to the potential,
I(z) = U(z), and

lim
ε→0

ε log p(z) = − U (z) . (42)

Therefore, in order to approximate the tails of the sta-
tionary distribution, we can compute the instanton ϕ∗

ending at z and estimate ρ∞(z) ≈ exp(−ε−1S(ϕ∗)).
We choose n = 1 and consider the non-convex poten-

tial,

U (z) =

(
z4

1 + |z|3

)α
, 0 < α ≤ 1 , (43)

which corresponds to a stretched exponential stationary
distribution: At the tails, the dominant exponent is α,
and ρ∞(z) ≈ exp(−ε−1 |z|α) for large z, as shown in
figure 1. For this distribution, E[exp(ε−1λz)] diverges
for large λ as in case I, and hence numerical methods to
find the instanton fail in the tail.

This can be seen in figure 2: We employ the numerical
scheme by Chernykh-Stepanov [8, 10] to compute the in-
stanton starting at ϕ∗(t0) = 0 and ending at ϕ∗(t1) = z.
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FIG. 1. The potential U (z) =
(
z4/(1 + |z|3

)α
, 0 < α ≤ 1, for

the gradient flow SDE (40) leads to heavy (stretched expo-
nential) tails of the stationary density ρ∞(z) as α decreases.

−4 −3 −2 −1 0 1 2 3 4

z

10−7

10−5

10−3

10−1

101

ρ
∞

(z
)

Instanton

Instanton (rescaled)

exact

FIG. 2. Stationary density with exponential tails (equa-
tion (43) for α = 1). Probing the tails with the traditional
instanton method (light blue) leads to numerical divergence
around the non-convex tail region. Reparametrizing the ob-
servable via F (z) = sign(z) log |z| convexifies the tail, so that
the instanton (dark blue) correctly predicts the exact tail
probabilities (solid black).

The iterative algorithm converges towards the minimizer
of the action, and once converged, we can estimate the
probability of reaching z by p(z) ≈ exp(−ε−1S(ϕ∗)). As
expected, though, computing the instanton fails beyond
the inflection points at z ≈ ±1.26, where the tails become
stretched exponentials (light blue dots): No choice of λ
leads to endpoints z of the instanton beyond these, as the
linear tilt diverges and the CGF is undefined. Instead,
we need to choose a non-linear tilt, such as

F (z) = sign(z) log |z| , z ∈ R \ {0} , (44)

for which even in the tails the reparametrized expecta-
tion E[exp(ε−1λF (Xε

t1))] <∞ remains bounded. Conse-
quently, the derivative of the CGF GF (λ) is a bijection,
so that every value of λ has a corresponding z. This map



7

−4 −3 −2 −1 0 1 2 3 4

z

0

1

2

3
I′′ < 0 I′′ > 0 I′′ < 0

I′′

(I ◦ F−1)′′

FIG. 3. Convexity condition for the stretched exponential
tails: The second derivative of the rate function becomes neg-
ative beyond the inflection points at z ≈ ±1.26. The nonlin-
early tilted rate function, instead, remains strictly convex in
the whole domain, (I ◦ F−1)′′ > 0.

is explicitly given by

λ(z) = λ ◦ F−1 (x) = e4x
(
4 + e3x

)
/
(
1 + e3x

)2
(45)

(for z > 0, and negative for z < 0).
With this choice, the instanton prediction for the sta-

tionary PDF is almost exact far into the heavy tails (dark
blue dots vs black solid in figure 2). Here, we again em-
ploy the iterative instanton computation, but are solving
the instanton equations with the boundary condition (39)
instead. The underlying reason for convergence is that
the reparametrization with F convexifies the rate func-
tion, i.e. creating supporting lines with slopes λ for all
the domain of I ◦ F−1. As shown in figure 3, while the
second derivative of the rate function becomes negative
beyond the inflection points, the second derivative of the
nonlinearly tilted rate function remains positive through-
out.

For the numerics in this example, we chose α = 1, with
Nt = 103 timesteps, and a time interval of T = 6.

B. Powerlaw distribution

Even heavier tails are given by power law distributions,

p(z) ∼ |z|−β , (46)

which are associated with a multitude of phenomena in
wide areas of science, in part due to their connection to
scale invariance, self-similarity, universality classes and
criticality in phase transitions. Here, we construct a sim-
ple SDE in n = 1 dimensions which has a powerlaw in-
variant density. Consider

dXε
t = − βXε

t

1 + (Xε
t )2

dt+
√

2ε dWt . (47)

−4 −3 −2 −1 0 1 2 3 4

z

0

2

4

6

8

10
I′′ < 0 I′′ > 0 I′′ < 0

I′′

(I ◦ F−1)′′

FIG. 4. Convexity condition for the powerlaw test case: The
second derivative of the rate function is negative in the tails
beyond the inflection points at z = ±1 (light blue). The
nonlinearly tilted rate function is strictly convex in this region
instead (dark blue).

−4 −3 −2 −1 0 1 2 3 4

z

10−7

10−5

10−3

10−1

101

ρ
∞

(z
)

Instanton

Instanton (rescaled)

exact

FIG. 5. Stationary density with powerlaw tails (β = 2, ε =
0.25). Naively computing the instanton for tail events fails
beyond z = 1 (light blue). The nonlinear tilt F (z) =
sign(z) log log |z| yields probabilities of events with z � 1
within the non-convex powerlaw tail (dark blue) in good
agreement with the theoretical result (black solid).

It can easily be shown that the invariant density for the
process (47) is given by

ρ∞(z) = Z−1(1 + z2)−β/2ε , (48)

where Z is a normalization constant. For z � 1 and
ε = 1, this takes the limiting form (46), but is regular-
ized for small z. Again, we are interested in computing
tail probabilities for this toy model, by computing the
instanton ϕ∗ realizing large values of z, which yields the
respective probability by evaluating the corresponding
action.

As in section IV A, the LDT rate function, given here
by

I(z) = 1
2β log(1 + z2) , (49)
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does not admit supporting lines in the tails, and conse-
quently its LF transform is undefined (case I as well).
This is reflected in the fact that the moment generating
function

E exp(ε−1λz) =

∫
R

exp(ε−1λz)(1 + z2)−β/2ε dz, (50)

diverges. We can convexify the rate function (49) by
reparametrizing via

F (z) = sign(z) log log |z| , z ∈ R \ [−1, 1] , (51)

which is an even more drastic tail compression than
needed for the stretched exponential. Note that here we
only convexify in the tails, |z| > 1, where the problem oc-
curs, and do not attempt to find a global map. Indeed,
for this choice of F , the reparametrized rate function
I ◦ F−1(z) is convex in the tails, as shown in figure 4:
Its second derivative remains positive in the tails, which
is not true for the original rate function I(z). We can
explicitly map λ to z via

λ(z) = λ ◦ F−1 (x) = βe(2ex+x)/
(

1 + e2ex
)

(52)

(for z > 1 and negative for z < −1). Numerically, as
before, we solve the optimization problem posed by the
instanton equations with tilted boundary conditions (39)
to obtain instantons ϕ∗ for events with large z. The
corresponding action, S(ϕ∗), yields the tail probability.
This computation is shown in figure 5: The naive instan-
ton computation (light blue) leads to numerically diverg-
ing results in the tail region, |z| > 1, which are captured
accurately by the reparametrized instanton (dark blue).
Parameters are β = 2, ε = 0.25, Nt = 103, and T = 10.

C. Banana potential

In higher dimensions, non-convexity can manifest in
more subtle ways than in 1D. Consider for example the
2D system,

dXε
t = b(Xε

t ) dt+
√

2ε dWt , (53)

where,

b(x) = −2

[
x1

(
1− 2

(
x2 − x2

1

))
x2 − x2

1

]
. (54)

This system is a gradient flow for the potential U(x) =
x2

1 + (x2 − x2
1)2, so that again we have that the rate

function for the stationary distribution is equivalent to
this potential, I(z) = U(z), i.e.

I (z) = z2
1 +

(
z2 − z2

1

),
. (55)

The system has a unique stable fixed point at the origin,
which is the deepest point of a banana-shaped valley (the
set of points

{
(x1, x2) | x2 = x2

1

}
) of the potential, as

−2 −1 0 1 2

−2

0

2

4

6 I

−2 −1 0 1 2

I ◦ F−1

FIG. 6. Left: Contour plot of the rate function (55) shows a
banana-alike valley surrounding a non-convex plateau. The
black dashed line represents the position of the marginal
shown in figure 7. Right: The rate function composed with
the inverse of the nonlinear observable (56) deforms the land-
scape so that the rate function becomes strictly convex.

can be seen in figure 6 (left). The rate function I (z)
(55) does not admit supporting hyperplanes (29) at the
region

{
z = (a, b) | b > a2

}
, leading to no tilt variables

λ ∈ R2 to reach an outcome z within that region.
Unlike the previous examples, the challenge in this case

is therefore not the far tails of the stationary density, but
actually probing the core of the distribution. The non-
convexity of the rate function of the previous examples
amounted to the divergence of its LF transform, the CGF
(case I), while here the non-convexity leads to the non-
differentiability of the CGF (case II).

To fix this non-differentiability of the CGF G(λ), we
propose a nonlinear reparametrization that satisfies the
criteria of (III B). Consider

F (z) =

[
z1

z2 − z2
1

]
. (56)

This reparametrization “straightens the banana”, i.e. it
deforms the space of outcomes such that the rate func-
tion becomes strictly convex, as figure 6 (right) shows.
Using this reparametrization produces a continuous and
differentiable CGF of the observable F , resulting from
the LF transform of I ◦ F−1 (y),

GF (λ) = sup
F−1(y)∈R2

(
〈λ, y〉 − I ◦ F−1 (y)

)
,

=
1

4

(
λ2

1 + λ2
2

)
,

(57)

which allows Lagrange multipliers to reach any outcome
z, in particular ones within the nonconvex region.

As numerical experiment, we choose to look at the
marginal stationary distribution µ in z1 direction for a
fixed value of z2 = 3

2 , i.e. µ(z) = ρ∞(z, 3
2 ). Since at

any fixed value z2 > 0 we cut through the non-convex re-
gion z2 > z2

1 , the marginal distribution µ(z) looks like a
double-well potential. We stress, though, that the whole
system indeed has only a single fixed point. We then solve
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FIG. 7. The marginal distribution µ(z) = ρ∞(z, 3
2
) (as de-

noted by the blacked dashed line in figure 6 (left)). In-
stantons with linear tilt (light blue) fail to reach the region
−1 < z < 1 without supporting hyperplanes of the rate func-
tion I (z) (55). Performing a reparametrization using the ob-
servable (56) produces an strictly convex effective rate func-
tion I ◦ F−1 (x) that admits supporting hyperplanes every-
where. The corresponding instanton actions successfully cap-
ture the non-convex region (dark blue).

the optimization problem posed by the instanton equa-
tions with linear tilt, and compare to the minimization
problem with nonlinear tilt. As shown in figure 7, the lin-
early tilted instanton computation produces acceptable
results in the tails of the probability density (light blue
dots), it fails to converge within the non-convex region
−1 < z < 1: Since in that region there are no supporting
planes of the rate function (55), there is no λ ∈ R2 cor-
responding to the slope of the supporting plane at that
z, and consequently no tilt exists to produce the desired
outcome z.

For the reparametrized observable (56), on the other
hand, the effective rate function I ◦ F−1(x) is convexi-
fied and admits supporting planes at every z. Indeed, as
demonstrated in figure 7, the reparametrized optimiza-
tion problem leads instanton trajectories reaching out-
comes (shown as dark blue dots) within the non-convex
region −1 < z < 1.

As a final remark, convexifying the rate function by
the above method, even though it guarantees the exis-
tence of a tilt for every outcome, might nevertheless lead
to numerical convergence issues. For example, in regions
where the original rate function was convex, the rescaled
optimization problem might be harder to solve, or neces-
sitate more iterations or smaller time-steps. Similarly,
even in the convexified region, the problem might be-
come ill-posed, for example for z1 � 1 and z2 > 2, where
the observable is approximately linear.

D. Nonlinear Schrödinger equation

As a practical example for our proposed method, we
consider the formation of extreme events in nonlinear
wave equations [25–28]. In the field of nonlinear op-
tics and photonics it has been established that heavy
tailed statistics frequently occur [29]. Physical mecha-
nisms such as soliton formation [30, 31] and nonlinear
amplification [32] are responsible for the emergence of
extreme power spikes out of incoherent, Gaussian initial
conditions, and have been subject to investigation by a
multitude of rare event algorithms [33, 34].

Here, we consider the one-dimensional propagation of
an optical pulse along a fiber, described by the nonlinear
Schrödinger equation (NLS)

−i∂xψ = 1
2∂

2
t ψ + |ψ|2ψ , ψ(x=0, t) = ψ0(t), (58)

for a complex wave envelope ψ : [0, L] × [0, T ] → C.
Boundary conditions are given at location x = 0 at the
beginning of the fiber for all times t ∈ [0, T ], and the
output is measured at the end of the fiber at x = L.
The input signal is considered random, with a Gaussian
distribution of known energy spectrum. Specifically, we
are mimicking an experimental setup such as [35] of a
partially coherent light source, where the input signal is
designed as a Gaussian shape in frequency space with
covariance

χn ∼ exp(− 1
2ω

2
n/∆ν

2) , |n| < N , (59)

with spectral bandwidth 1/∆ν and truncation frequency
ωN , so that the input signal is given by

ψ0(t) =

N∑
n=−N

eiωt
√
χnξn , (60)

where ξn are i.i.d. mean zero, unit variance complex
Gaussian random variables.

For this setup, we are interested in the probability of
measuring large spikes in the optical power A(x, t) =
|ψ(x, t)|2 at the fiber end, x = L. Within the presented
instanton formalism, this can be achieved by tilting the
distribution of initial conditions towards a high-power
outcome at the fiber end, and estimating the tail proba-
bility by its most likely (“instantonic”) realization. The
corresponding LDP is given by

p(z) = P [A(L, T/2) ≥ z] � exp(−I(z)) , (61)

for a power spike of size z taken arbitrarily at the center of
the temporal domain, t = T/2. Due to the Gaussianity
of the initial conditions, the rate function I(z) simply
is [34]

I(z) = inf
ξ∈C2N+1

(
1
2 |ξ|2 − λ(z)|ψ(L, T/2)|

)
. (62)

Here, ξ determines the source signal ψ0(t) through (60),
while, λ(z) can be interpreted as a Lagrange multiplier
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FIG. 8. Left: PDF of optical power A at the end of the fiber. Compared are Monte-Carlo simulations (MC, light color) with
instanton prediction (dark color) for different fiber lengths, L ∈ {10 m, . . . , 60 m}. The tails become fatter with increasing L. A
vertical marker is inserted at the maximal power achievable with the naive instanton method, highlighting how fat tails prevent
useful instanton predictions. Right: The same, but for the instanton with nonlinear tilt, equation (71). The LDP computation
now reaches far into the fat tails. The vertical markers of the naive instanton are copied over here for comparison, highlighting
the increased tail reach (e.g. by more than a factor 3 for L = 60 m). Only lengths L > 30 m are shown.

enforcing the power constraint |ψ|2 = z at the end of
the fiber. Equation (62) is therefore simply saying that
the rate function is given by the most likely random con-
figuration ξ that determines a source signal with high
power output. Note that, similar to the examples above,
the tilt in (62) is linear, and we can therefore expect the
expectation

E exp(−λ|ψ(L, T/2)|) (63)

over light source signals to diverge for fiber lengths L
long enough for solitons to emerge and for the tails of
the power distribution to become fat.

Since the probability of high power output signals at
the fiber end is not known analytically, the only option
we have to get comparison data is to perform Monte-
Carlo (MC) simulations to sample the power distribution.
To this end, we simulate the evolution of a wave packet
along the fiber with a random input signals with energy
spectrum (59) by numerically integrating equation (58).
This equation is non-dimensionalized, with x, t and ψ
normalized by characteristic parameters L0, T0 and P0

respectively, such that

x = x̃/L0, t = T̃ /T0, ψ = ψ̃/
√
P0, (64)

where x̃, t̃ and ψ̃ are the corresponding dimensional vari-
ables. These parameters L0, T0 and P0 also determine
the dispersion β2 and nonlinearity γ properties of the
optical fiber via

β2 = T 2
0 /L0, γ = 1/ (L0 P0) . (65)

We chose these parameters according to the experimental
setup in [35], where they are given as

L0 = 160.3 m, T0 = 1.8778 ps, P0 = 2.6 W . (66)

Therefore, the optical fiber has dispersion parameter
β2 = 0.022 ps2/m and nonlinearity constant γ =
0.0024 (Wm)−1. The spectral bandwidth 1/∆ν is taken
to be (∆ν = 0.5 THz). We pick fiber lengths between
10 m and 60 m, periodic boundary conditions in time
treated pseudo-spectrally, and integrate with a second-
order Runge-Kutta exponential time differencing method
(ETDRK2) [36] in the spatial variable. The discretiza-
tion is ∆x = 6.24 × 10−3, ∆t = 1.3 × 10−2, T = 106,
and frequency cut-off N = 45. As expected, and shown
in figure 8, the tails of the PDF of optical power become
heavier with increasing fiber length L. Its samples num-
ber is 106, where the property of A being statistically
homogeneous in time is used to improve the statistics.

To compare these brute-force sampling estimates to the
instanton prediction, we have to solve the optimization
problem (62). This is done by defining the cost functional

E(ξ) = 1
2 |ξ|2 − λ|ψ(L, T/2)| (67)

for a given λ and performing gradient descent, where the
gradient is given by

dE/dξ = ξ − λJ(L, T/2)d|ψ(L, T/2)|/dψ , (68)

with Jacobian J(x, t) = dψ(x, t)/dξ. This gradient
can be evaluated by simultaneously integrating the NLS
equation (58) and the evolution equation of the Jacobian,

∂xJ = i
(

1
2∂

2
t J + ψ2J̄ + 2|ψ|2J

)
, (69)

(where ā is the complex conjugate of a ∈ C). The itera-
tive gradient descent algorithm yields the optimal choice
ξ∗ that will lead to the desired outcome of the final power
exceeding the power threshold z. As can be seen in fig-
ure 8 (left), the corresponding prediction for the probabil-
ity, exp(−I(z)) (from equation (61)) correctly describes
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the tail decay of high power events at the fiber end, but
crucially only as long as the the rate function admits sup-
porting lines, i.e. remains convex. Therefore, the instan-
ton prediction is basically useless for optical fibers longer
than L = 30 m. As a side note, the gradient computa-
tion could instead be performed in the adjoint formalism,
leading to two coupled forward-backward equations sim-
ilar in spirit to the instanton equations (15), but identi-
cally yielding meaningful results only in the convex region
of the rate function.

Now, applying the idea from above, we can instead
nonlinearly tilt the probability distribution of input sig-
nals towards high power outcomes. For this, we choose
instead the nonlinearly tilted rate function

I(x) = inf
ξ∈C2N+1

(
1
2 |ξ|2 − λ(x)F (ψ(L, T/2)

)
(70)

with

F (z) = log log |z| , |z| > 1 . (71)

For this tilt, the cost functional becomes

E(ξ) = 1
2 |ξ|2 − λF (ψ(L, T/2)) (72)

and the gradient is

dE/dξ = ξ − λJ(L, T/2)dF (ψ(L, T/2))/dψ , (73)

instead. The results of this are shown in figure 8 (right)
for the four longest fiber lengths of 30 − 60 m in 10 m
increments, where the tails are fattest. In the revised
formalism (dark color), the nonlinearly tilted instanton
prediction is able to reach far into the stretched tail and
gives the right order of magnitude for the probability of
power spikes obtained from sampling (light color). The
end of the region of convergence for the naive instanton
is shown for comparison (vertical markers).

Note that due to the choice of reparametrization F
in (71), the nonlinearly tilted instanton prediction is re-
stricted to the region of normalized power |ψ|2 > 1, but
of course this is exactly the tail region that we care about.

V. CONCLUSION

Estimating the probability of tail events can efficiently
be done via large deviation theory and instanton cal-
culus, which transforms an inefficient sampling prob-
lem into a deterministic optimization problem. Unfor-
tunately, for systems with heavy tails, or more generally
non-convex rate functions, standard mechanisms of expo-
nentially tilting the measure, or numerically solving the
optimization problem, fail. The reason is the absence
of a bijective map between Lagrange multiplier (tilting
parameter) and desired outcome, caused by the break-
down of their Lagrange duality, or equivalently by the
non-convexity of the rate function.

We put forward the idea of a nonlinear tilt that
reparametrizes the output space, effectively convexify-
ing the rate function of the observed probability distri-
bution. We discuss the necessary conditions required for
this reparametrization to yield a unique outcome variable
and ensure a bijective mapping between tilt and outcome:
It needs to be a diffeomorphism chosen such that its com-
position with the rate function is strictly convex. Note
further that the reparametrization can be chosen locally,
i.e. the conditions on the nonlinear observable need only
apply in a subdomain of the events of interest.

Finding such nonlinear observable can be subtle, espe-
cially when the system is highly nonlinear, influencing the
rate function landscape. However, drawing inspiration
from toy problems with stretched exponential and alge-
braic tails, which can be treated analytically, yields can-
didate reparametrizations for physically relevant prob-
lems. We show the applicability to real-world problems
by demonstrating how instantons determine the proba-
bility in extreme optical power events in a fiber optical
cable, where solitons lead to a heavy-tailed power distri-
bution at the fiber end.
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