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SU(N) Mott insulators have been proposed and/or realized in solid-state materials and with
ultracold atoms on optical lattices. We study the two-dimensional SU(N) antiferromagnets on the
triangular lattice. Starting from an SU(N) Heisenberg model with the fundamental representation
on each site in the large-N limit, we perform a self-consistent calculation and find a variety of
ground states including the valence cluster states, stripe ordered states with a doubled unit-cell
and topological chiral spin liquids. The system favors a cluster or ordered ground state when the
number of flavors N is less than 6. It is shown that, increasing the number of flavors enhances
quantum fluctuations and eventually transfer the clusterized ground states into a topological chiral
spin liquids. This chiral spin liquid ground state has an equivalent for the square lattice SU(N)
magnets. We further identify the corresponding lowest competing states that represent another
distinct type of chiral spin liquid states. We conclude with a discussion about the relevant systems
and the experimental probes.

I. INTRODUCTION

SU(N) Mott insulators are representative examples of
quantum systems with a large local Hilbert space where
quantum fluctuations can be strongly enhanced and ex-
otic quantum phases could be stabilized. All the SU(N)
spin operators are present in the effective model for the
Mott insulators and would be able to shuffle all the
spin states rather actively in the local Hilbert space.
The system can be quite delocalized within the local
Hilbert space, that is to enhance quantum fluctuations
and induce exotic quantum phases. This aspect is funda-
mentally different from the SU(2) Mott insulators with
large-S local moments that also has a large local Hilbert
space. For the large-S SU(2) Mott insulators, the pair-
wise Heisenberg interaction is quite ineffective to delocal-
ize the spin states in the large-S Hilbert space, and thus
quantum fluctuations are strongly suppressed. Thus, it
is the conventional wisdom not to search for exotic quan-
tum phases among the large-S SU(2) Mott insulators,
but among the spin-1/2 quantum magnets with a strong
frustration. In contrast, the emergence of the SU(N)
Mott insulators brings a new searching direction for ex-
otic quantum phases.

SU(N) Mott insulators are not a theoretical fantasy,
but exist in nature. It has been shown that the ultracold
alkaline-earth atoms (AEA) on optical lattices can sim-
ulate quantum many-body physics with an SU(N) sym-
metry without any fine-tuning [1]. The nuclear spin of
fermionic AEA can be as large as I = 9/2 for 87Sr, while
the outer shell electrons give a total spin S = 0 and makes
the hyperfine coupling inactive. This observation effec-
tively extends the realization of SU(N) magnets up to
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N = 2I + 1. Early efforts by Congjun Wu explored total
spin-3/2 alkaline fermions on optical lattices where the
SU(4) symmetry can be achieved with fine tuning [2–
5]. Quantum Monte Carlo simulations were introduced
later to study magnetic properties of the SU(2N) Hub-
bard model [6, 7]. There is also some effort in search-
ing for an emergent SU(N) symmetry in real materials
particularly for the SU(4) case. The two-orbital Kugel-
Khomskii model can become SU(4) symmetric after some
fine tuning [8, 9]. Experimental and numerical evidence
also suggests that Ba3CuSb2O9 could be a prominent
candidate on a decorated honeycomb lattice [10], though
the Cu-Sb dumbbell is quenched rather than an active
degree of freedom. The SU(4) Heisenberg model has fur-
ther been proposed for the spin-orbit-coupled Mott in-
sulator α-ZrCl3 where the degree of freedom is the spin-
orbit-entangled J = 3/2 local moment [11] on a honey-
comb lattice [12]. More recently, it has been proposed
that the Mott insulating and superconducting behaviors
in twisted bilayer graphenes can be captured by a two-
orbital Hubbard model with an emergent SU(4) symme-
try on a moiré triangular lattice [13]. Other work even
suggested that double moiré layers, built from transition
metal dichalcogenides or graphenes, separated from one
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FIG. 1. (a) Triangular lattice with background U(1) gauge
flux φ within each plaquette. (b) The spinon dispersions for
chiral spin liquids with φ = 5π/6.
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TABLE I. The SCM results of the ground and lowest com-
peting states for 2 ≤ N ≤ 9. The average background fluxes
of doubled unit-cell stripe states for N = 4 and 5 satisfy
φavg = π − π/N .

N Ground state Lowest competing state

2 dimer state CSL φ = π/2

3 three-site complex VCS CSL φ = 2π/3

4 four-site VCS doubled unit-cell stripe

5 doubled unit-cell stripe CSL φ = 4π/5

6 ≤ N ≤ 9 CSL φ = π − π/N CSL φ = π − π/(2N)

another by a thin insulating layer would be a natural plat-
form to realize Hubbard models on the triangular lattice
with SU(4) or SU(8) symmetries [14, 15].

Owing to enhanced quantum fluctuations for SU(N)
Mott insulators, the pioneering theoretical works [16, 17]
by Hermele et al, have obtained the topological chiral
spin liquid (CSL) ground states with intrinsic topologi-
cal orders even for an unfrustrated square lattice when
N ≥ 5 [16–18]. Depending on the atom occupation num-
bers, the system can support both Abelian and non-
Abelian statistics for the anyonic excitations. Since un-
frustrated lattices such as square and honeycomb lattices
already bring exotic and interesting physics [19–21], the
frustrated lattices could further harbor nontrivial quan-
tum phases, for example the triangular lattice with SU(3)
and SU(4) spins [22–24]. In this work, we focus on the
SU(N) Heisenberg model on a triangular lattice where
each lattice site comprises the fundamental representa-
tion of the SU(N) group. For AEA, this corresponds to
one atom per lattice site and is known to be most stable
against the three-body loss. Because the 1/N filling is
kept throughout, the large-N limit differs fundamentally
from the large-N extension of the spin-1/2 SU(2) models
where the 1/2 is kept and two sites can form a SU(2) spin
singlet [25]. Here, as N sites are needed to form a singlet,
the valence cluster solid (VCS) state is generically disfa-
vored in the large-N limit. Instead, by our large-N cal-
culation, two types of CSL states with background U(1)
gauge flux φ = π − π/N and π − π/(2N) (see Fig. 1(a))
are identified as the ground and lowest competing states
for 6 ≤ N ≤ 9, respectively. For smaller N ’s, various
symmery-broken cluster/stripe states are obtained. We
expect the large-N results are more reliable when N is
large.

The rest of this paper is organized as follows. The gen-
eral Heisenberg model of SU(N) spins is introduced and
simplified at the large-N saddle point in Sec. II. The
self-consistent minimization algorithm is implemented
to solve the reduced mean-field spinon Hamiltonian.
The technique details of this algorithm are described in
Sec. III. It is emphasized that the optimized solutions
strictly satisfy the local constraints. In Sec. IV, both the
ground states and lowest competing states for 2 ≤ N ≤ 9
are reported and analysed, especially for two types of
CSL states. Finally, in Sec. V, this work conclude with a
discussion about relevant systems and the experimental
probes.

II. THE SU(N) HEISENBERG MODEL IN THE
LARGE-N APPROXIMATION

We begin with an SU(N) Heisenberg model on the tri-
angular lattice where each site comprises the fundamen-
tal representation of the SU(N) group. This model can
be obtained from the strong coupling limit of an SU(N)
Hubbard model with 1/N filling or one particle per site.
The SU(N) Heisenberg model is given as

H = J
∑
〈rr′〉

Sαβ(r)Sβα(r′), (1)

where J is the antiferromagnetic exchange interaction
and the sum is taken over the nearest neighbor bonds
and spin flavors. The SU(N) spin operators can be
simply expressed with the Abrikosov fermion representa-
tion Sαβ(r) = f†rαfrβ , and α, β = 1, . . . , N . Hereafther,
a summation over repeated indices in the form of Greek
letters is supposed unless otherwise specified. A local
constraint on the fermion occupation f†rαfrα = 1 is im-
posed to reduce the enlarged Hilbert space. In principle,
an SU(N) singlet could be formed by N sites. But the
SU(N) exchange rapidly transforms one N -site singlet to
other sets of N -site singlets, resulting in a failure of the
conventional understanding. Instead, the spin Hamilto-
nian Eq. (1) is solvable in the limit N →∞ via a large-N
saddle point approximation in the imaginary-time path
integral formulation. The corresponding partition func-
tion can be expressed as

Z =

∫
Dχ†DχDµDf†Dfe−S . (2)

The action S is given as

S =

∫ β

0

dτ
[∑

r

f†rα∂τfrα +
∑
〈rr′〉

(
χrr′f†rαfr′α + h.c.

)
+N

∑
〈rr′〉

|χrr′ |2

J
+
∑
r

µr(f†rαfrα − 1)
]
, (3)

where µr is the Lagrangian multiplier to enforce the Hilbert space constraint, χrr′ is the auxiliary field to decouple
the fermion operators, and J ≡ NJ . As the action S scales linearly with N , the large N limit leads to a saddle point

approximation that results in the saddle point equations, χrr′ = −J 〈f†r′αfrα〉/N , 〈f†rαfrα〉 = 1, and the saddle point
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or mean-field Hamiltonian for the fermionic spinons is

HMF =
N

J
∑
〈rr′〉

|χrr′ |2 +
∑
〈rr′〉

(χrr′f†rαfr′α + h.c.) +
∑
r

µr(1− f†rαfrα). (4)

In the following, we will search for the saddle point with
the lowest mean-field energy EMF numerically and dis-
cuss the properties of ground states. Before that, we
first discuss the lower bound of EMF and the bound sat-
uration conditions for reference. An exact lower bound
on EMF for generic lattices [26] was first obtained by
Rokhsar for the half-filling, and was shown to be satu-
rated by valence bond states with various spin singlet
coverings. These states break the lattice translation but
preserve the spin-rotation symmetry, and fluctuations be-
yond the mean field can break the high degeneracy among
them [25]. The lower bound was generalized to the 1/N
filling with [17]

EMF ≥ −Ns
N − 1

2N
Jmax, (5)

where Ns is the number of lattice sites.

We set Jmax = J for each bond. The saturation for
Eq. (5) is reached by a N -simplex VCS state composed
by N -site simplices. That is, every site on the lattice
is directly connected to the other N − 1 sites within the
same cluster by a single bond with an exchange coupling
Jmax. On a d-dimensional lattice, the N -simplex VCS
with N > d + 1 is prohibited without fine-tuning of the
exchange. Thus, there are only two-simplex and three-
simplex VCS’s on the triangular lattice. For N ≥ 4, pos-
sible cluster states are general N -site ones satisfying a
stricter energy bound [17] EMF ≥ −NbJmax/N , where
Nb is the total number of isolated bonds in the lattice.

TABLE II. The SCM results of the ground state and the
lowest competing state energies for 2 ≤ N ≤ 9. The energy is
in units of NJNs = N2JNs.

N Ground state Lowest competing state

2 −0.1250000 −0.1202034

3 −0.1111111 −0.0999171

4 −0.0781250 −0.0760440

5 −0.0581877 −0.0581046

6 −0.0455285 −0.0443810

7 −0.0364651 −0.0357994

8 −0.0297864 −0.0293744

9 −0.0247509 −0.0244826

III. THE SCM ALGORITHM

To determine the saddle-point solutions, we closely fol-
low the numerical self-consistent minimization (SCM) al-
gorithm developed in Refs. 16 and 17. The technical de-
tails of the algorithm are described in the following. Dur-
ing one energy optimization process for a given geometry
and periodic boundary conditions, the algorithm starts
from initializing the fields χrr′ at each bond randomly
with χrr′ = |χrr′ |eiφrr′ , with a uniform distribution of
amplitudes |χrr′ | ∈ [0.02, 0.20] and phases φrr′ ∈ [0, 2π].
The chemical potentials are set to be the default value
µr = 0 in the beginning. Obviously, the local constraints
are violated here in general and the deviation of the local
fermion density can be denoted as δnr = 1 − 〈f†rαfrα〉.
The expectation value is taken using the ground state of
HMF with the unchanged µr at this stage. To obtain the
correct density, one must adjust the chemical potential
µr by δµr at each site. It is found that to the lowest
order, the desired adjustment of chemical potentials δµr

can be expressed as

δµr =
∑
r′

G−1(r − r′, 0)δnr′ , (6)

where G−1(r − r′, 0) is nothing but the inverse of the
density-density correlation at zero frequency. The ele-
ments of the correlation G(r−r′, 0) can be calculated at
the single particle level from the mean-field Hamiltonian
HMF, with the help of the standard linear response the-
ory in principle. However, it follows that the inversion
of G(r − r′) naively diverges. Physically, this is because
a uniform adjustment of the chemical potential at every
site is trivial and the fermion density will keep intact.
This obstacle is overcome by following the treatment sug-
gested in Ref. 17; that is diagonalizing G(r − r′, 0) and
only focusing on its non-zero eigenvalues gi. Note that
the index i refers to the basis where G(r−r′, 0) is diago-
nalized. In such a basis, the relationship Eq. (6) becomes

δµi = δni/gi. (7)

Here, the index i should not be summed. For all in-
dices with vanishing eigenvalues gi, µi is taken to be
zero concurrently. Then, the adjustment of the chemical
potential δµr is well-defined. A simple replacement of
µr → µr + δµr gives a new mean-field Hamiltonian HMF

and related ground state. In consequence, it affects the
local fermion density conversely, resulting in a new de-
viation δnr. These processes construct a self-consistent
procedure and the problem of searching for an appropri-
ate set of chemical potential deviation δµr can be solved
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(a) N = 2 (b) N = 3

(c) N = 4 (d) N = 5

1
FIG. 2. Ground states in the large-N limit for (a) N = 2,
(b) N = 3, (c) N = 4 and (d) N = 5. For 2 ≤ N ≤ 4, any
state covering all sites by the same dimer/cluster unit has the
same energy in each case. We merely show one of such con-
figurations. For N = 5, there is a stripe pattern with doubled
unit-cell along one of lattice vectors. The grayness of bonds
indicates the relative magnitude of expectation values |χrr′ |.
Black (white) bonds refer to maximal (zero) |χrr′ |.

by iterating the procedure until the density is uniform.
This is the core of the algorithm to preserve the local
single-occupation constraints nr = 〈f†rαfrα〉 = 1.

With the modified chemical potentials calculated in the
previous step, an update set of auxiliary fields χrr′ can

be determined via χ′rr′ = −J 〈f†r′αfrα〉/N , but the local
constraints may be violated once again. The amended
auxiliary fields and chemical potentials can be treated as
a new and better starting point. The procedure described
in the previous step is thus implemented iteratively until
reaching a converge of the ground state energy within
a given numerical error. It has been shown in Ref. 17
that the energy of the final state must be less or equal
to that of the initial state after the optimization process.
Therefore, we eventually obtain a local energy minimum.
In order to reach the global minimum as much as possible,
we start from at least 50 randomly initialized fields, and
reap a collection of local minima satisfying the single-
occupation constraints. The lowest two are accepted as
the best results of the ground state and lowest competing
state energies.

IV. THE MEAN-FIELD RESULTS

We describe the ground states and lowest competing
states of the mean-field Hamiltonian Eq. (4) from the
SCM algorithm. Because different geometries can ac-
commodate different candidate ground states especially
cluster states with unknown dimensions, in the calcula-
tion, we consider all unit cells of a parallelogram geome-
try `1×`2 with `1,2 ≤ 2N for 2 ≤ N ≤ 5 and `1,2 ≤ N for
N ≥ 6, respectively. In some ordered cases for N = 4, 5,
larger unit-cell sizes are also considered for confirmation.
Each unit cell is repeated by L1,2 (≥ 20) times along the

1
FIG. 3. The lowest competing state in the large-N limit for
N = 4. This is a stripe pattern with doubled unit-cell along
one of lattice vectors. The grayness of bonds indicates the
relative magnitude of expectation value |χrr′ |.

triangular Bravais lattice vectors to form a superlattice.
The superlattice itself has periodic boundary conditions.
In practice, for each case, we ran the SCM procedure at
least 50 times with different random seeds to avoid any
missing of ground states caused by numerical problem.
The results are listed in Table I and Table II.

For N = 2 and 3, the lowest energies we found saturate
the bound Eq. (5), meaning that the ground states are
dimer and three-site simplex VCS, respectively. Actually,
the obtained ground states are highly degenerate because
any state with each site covered by one dimer/cluster unit
has the same energy in the large-N limit. An ordered
dimer or three-site simplex VCS state, as illustrated in
Figs. 2(a-b), is expected to be selected beyond the mean
field. Note that, the non-zero expectation values |χrr′ |
in Fig. 1(a) and (b) can only take 1/2 and 1/3, respec-
tively. The true ground state for N = 2 is the well-
known 120◦ Néel state and differs from the mean-field
here. The N = 3 case was also shown to have a three-
sublattice magnetic order in previous numerics [27, 28].
This reflects the deficiency of the large-N approximation
for small N cases. In Table I, we further find that the
lowest competing states are CSL states with φ = π−π/N .

The N = 4 case is more compelling due to the rapid
growth of experimental proposals [14, 15, 29, 30] and
large-N approximation could provide useful insight here.
We find the ground state energy do not saturate the
bound Eq. (5) as excepted, but saturate the stricter
bound discussed previously. The ground states are four-
site VCS depicted in Fig. 2(c), accompanied by a large
degeneracy for the same reason as N = 2 and 3. The
non-zero expectation values are |χrr′ | = 1/4. A similar
plaquette order was also reported in a recent work [15]. In
Fig. 3, we depict the lowest competing state for N = 4.
One can see that the lattice is covered by stripes with
three different bond expectation values |χrr′ | ≈ 0.030,
0.158, and 0.224. Along one of lattice vectors, there is a
unit-cell doubling that breaks the lattice translation. The
background fluxes through each plaquette are inhomoge-
neous as well and manifest the same unit-cell doubling
pattern. Specifically, the average flux is a constant value
φavg = π − π/N where N = 4. The same ordered pat-
tern has also been obtained through the DMRG study
from the Kugel-Khomskii model [31]. They attribute the
symmetry breaking to symmetry allowed Umklapp inter-
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actions in certain finite geometries. In our results, how-
ever, such a stripy state is not the ground state even in
the two-dimensional limit.

From N = 5, neither the bound Eq. (5) nor the stricter
one can be saturated. Thus, the ground states are no
longer VCS. Our numerical calculation finds that the
ground state for N = 5 is very similar to the lowest com-
peting state for N = 4 (see Fig. 2(d)), except that the
bond expectation values can only take |χrr′ | ≈ 0.072,
0.145, and 0.179, and the average background flux φavg =
π − π/N shifts accordingly. It also breaks the lattice
translation symmetry along one of lattice vectors and
manifests itself as a stripe pattern with a doubled unit-
cell. The lowest competing state for N = 5 is a CSL with
φ = 4π/5. With further increasing N , the frustration is
enhanced. Eventually, the ground states become CSL
states with φ = π − π/N when 6 ≤ N ≤ 9. Correspond-
ingly, the lowest competing states we found share the
identical form. They are CSL states as well except that
the background magnetic fluxes shift to φ = π−π/(2N).

With the two types of CSL states identified, we now
discuss the properties of these topological liquid states.
The CSL is characterized by the mean-field saddle point

χrr′ = |χ|eiarr′ , (8)

µr = 0. (9)

All bonds on the lattice have a uniform expectation value
for |χ| but modulated by a U(1) gauge field arr′ so that
the flux φ on each plaquette is a constant. The CSL
breaks both parity and time-reversal. The bond phase
field arr′ is treated as a fluctuating U(1) gauge field cou-
pled to the fractionalized spinons. By checking the be-
havior of the mean-field Hamiltonian Eq. (4) at the CSL
saddle points, we find that both types of CSL states have
a fermion band structure with N bands where only the
lowest is filled (see Fig. 1(b)). The Fermi level lies in the
gap between the lowest two bands, thus all discussion
can be applied to both CSL states. Furthermore, the
first type of CSL with φu,d = π − π/N on the triangular
lattice can be mapped to the counterpart on a square lat-
tice up to a time-reversal. If we regard the adjacent up
and down triangles as a unit shown in Fig. 4, the phase
of the shared bond has no contribution to the total flux,
and we have the relationship

φu + φd = −φs mod 2π, (10)

where φs is the background U(1) flux through each square
plaquette. In Ref. [16], Hermele et al, found that, the
CSL states are ground states for 5 ≤ N ≤ 10 on the
square lattice in the mean-field calculation. As the spinon
is gapped out by the emergent U(1) gauge flux pattern,
the Chern-Simons term enters the theory for U(1) gauge
fluctuations. After integrating the gapped spinons, one
obtains a topological quantum field theory with a Chern-
Simons term corresponding to the chiral Abelian topolog-
ical order and anyonic statistics. The spinon is converted
in anyons with a statistical angle π ± π/N . Gapless chiral

ϕs
ϕu

ϕd

(a) (b)

1
FIG. 4. The definition of the emergent U(1) gauge flux φ
for CSL on the (a) square and (b) triangular lattices. The
subscripts s, u and d refer to the square, up triangular and
down triangular plaquettes, respectively.

states carrying spin degree of freedom are also supported
by the CSL as edge modes and the low-energy theory is
described by the SU(N)1 WZW model.

V. DISCUSSION

To summarize, we study the Heisenberg antiferromag-
nets with SU(N) symmetry on the triangular lattice. In
the large-N approximation, a variety of ground states
and lowest competing states are identified for different
parameter N . At the mean-field level, the ground state
for 2 ≤ N ≤ 4 is a N -site VCS state with a large degen-
eracy. Specifically, ordering patterns with doubled unit
cell and average background flux φavg = π − π/N are
found in the N = 4 and 5 cases. These ordered states
break the lattice translation symmetry along one of lat-
tice vectors and become the lowest competing state and
ground state for N = 4 and 5, respectively. The frustra-
tion from SU(N) exchange interaction is enhanced when
N > 5, resulting two types of CSL states as the low-
est two states for 6 ≤ N ≤ 9. Among them, the CSL
states with φ = π − π/N have a lower energy, and have
its counterpart on the square lattice. Although the true
ground states are not what we found for N < 4, our cal-
culation can provide useful insight for cases N ≥ 4 where
large-N approximation becomes more reliable. In a very
recent DMRG study of an SU(4) spin model on the tri-
angular lattice, phase diagrams for integer fillings were
obtained and compared with conventional MFT ones [15].
The quite good agreement of the phase boundaries deter-
meted by two methods suggests that N = 4 is perhaps
large enough for the mean-field analysis we performed in
this work.

Thanks to the development of ultracold experimen-
tal techniques, the SU(N) Mott insulators have been
realized with AEA on various optical lattices using the
Pomeranchuk cooling [32], even the Mott crossover and
SU(N) antiferromagnetic spin correlations were recently
observed with 173Yb atoms [33, 34]. Nontrivial physics
of multicomponent fermions with broken SU(N) sym-
metry were also proposed on this platform [35]. The
emergency of the widely concerned SU(4) or even SU(8)
symmetric interaction has been proposed in the twisted
bilayer graphene and double moiré layers systems re-
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cently [12, 14]. This moiré lattice system could be an
novel platform to detect possible phases in this work.
The ultracold atom systems may have many restric-
tions in the detection of anyonic spinon excitations
and edge states. Nevertheless, spin-dependent Bragg
spectroscopy may be used to detect the spinon contin-
uum [16–18], singlet-triplet oscillation technique can de-
tect the nearest-neighbor spin correlation [34] for CSLs,
and the lattice potential could be adjusted to local-
ize and manipulate the anyonic quasiparticles [16–18].
For solid-state systems, more techniques are available.
These include but are not restricted to quantized thermal
Hall transport [36] for the edge modes, scanning tunnel-
ing microscope of anyons at defects [37], or even angle-
resolved photon emission measurement for the spinon sig-
natures [38].
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