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Abstract

In this paper, we mainly investigate the Cauchy problem of the non-resistive MHD equation.
We first establish the local existence in the homogeneous Besov space BE ; ' X BE ; with p < oo, and
give a lifespan 1" of the solution which depends on the norm of the Littlewood-Paley decomposition
of the initial data. Then, we prove that if the initial data (ug,bi) — (uo,bo) in 35;1 X BEI,
then the corresponding existence times 7, — 1", which implies that they have a common lower
bound of the lifespan. Finally, we prove that the data-to-solutions map depends continuously on
the initial data when p < 2d. Therefore the non-resistive MHD equation is local well-posedness in

the homogeneous Besov space in the Hadamard sense. Our obtained result improves considerably

the recent results in [5LIT13].
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1 Introduction

In this paper, we mainly investigate the Cauchy problem of the incompressible non-resistive magneto-

hydrodynamic (MHD) equations:

u — Au + VP = bVb — uVu,
by +uVb = bVu,
div u=divb=0,

(1, b)|t=0 := (uo0, bo),

where the unknowns are the vector fields u = (uy,ug, ..., uq), b= (b1,ba,...,bq) and the scalar function
P. Here, u and b are the velocity and magnetic, respectively, while P denotes the pressure. The
magnetohydrodynamic equation is a coupled system of the Navier-Stokes equation and Maxwell’s
equation. This model describes the interactions between the magnetic field and the fluid of moving
electrically charged particles such as plasmas, liquid metals, and electrolytes. For more physical
background, we refer to [4]].

The MHD equations are of great interest in mathematics and physics. Let’s review some well-
posedness results about the MHD equations. In the case when there is full magnetic diffusion in
system (), G. Duvaut and J.-L. Lions, [9] firstly established the local existence and uniqueness
result in the Sobolev spaces. They also prove the global existence of strong solutions with small initial
data. M. Sermange, and R. Temam [I8] proved the global well-posedness in the Sobolev spaces with
d = 2. For the system ([I]) with magnetic diffusion, one may refer to the survey paper [14] written by
F-H. Lin and the references therein for recent progress in this direction.

In the physics of plasmas the magnetic diffusion is very small such that it can be neglected. In this
case, the study of well-posedness will become more difficult. We refer to [II2/[I5HI7] about the global
existence results with initial data sufficiently close to the equilibrium. The L? decay rate was studied
by R. Agapito and M. Schonbek [2]. C. Fefferman, D. McCormicket, J. Robinson and J. Rodrigo

consider the critical Sobolev space about the well-posedness of the system (III). They obtained a local
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existence result in R?, d = 2,3 with the initial data (ug, By) € H*(R?) x H*(R?),s > d/2 in [10] and
(ug, Bo) € H*'7¢(R%) x H*(RY), s > d/2,0 < € < 1 in [I1]. J. Chemin, D. McCormicket, J. Robinson
and J. Rodrigo [5] improved Fefferman et al.’s results to the inhomogenous Besov space with the initial
data (ug, Bo) € Bi;l(Rd) X BQ%J(]Rd), (d = 2,3) and also proved the uniqueness with d = 3. R. Wan
in [19] obtained the uniqueness with d = 2. Recently, J. Li, W, Tan and Z. Yin in [I3] obtained the
existence and uniqueness of solutions to (1)) with the initial data (ug, By) € BE;l(Rd) X Bil(Rd)
(1<p<2d).

However, whether or not the solution for the non-resistive MHD equations is local well-posedness
(local existence, uniqueness and continuous dependence of the solution) in homogeneous Besov spaces
is an open problem which was proposed by Chemin et al. in [5]. In [13], J. Li, W, Tan and Z. Yin
proved the local existence and uniqueness of solutions to (L)) in (ug, By) € BE;l(Rd) X le(]Rd)
(1 < p < 2d). But the continuous dependence of the solution for the Cauchy problem of the non-
resistive MHD equations in homogeneous Besov spaces has not been proved yet. In the paper, our aim
is to solve this open problem by establishing the local well-posedness for the Cauchy problem (L.IJ) in
homogeneous Besov spaces. Meanwhile, we generalized the local existence’s index from 1 < p < 2d [13]
to 1l <p< 0.

For convenience, we transform the system (1.1) into an equivalent form of compressible type. By

using divu = divB = 0, we have
uVu =div(u®@u), BVB=diw(B®B), BVu=div(u® B).
Therefore, the system (L2) is formally equivalent to the following equations

uy — Au = P(bVb — uVu),
by +uVb = bVu, (1.2)
(U, b)|t:0 = (UO, b0)7

where P = I + V(—A)~!div is the Leray project operator, and the initial data is divergence free
div ug = div by = 0.

To solve ([[2)), the main difficulty is that the system is only partially parabolic, owing to the
magnetic equation which is of hyperbolic type. This means it’s hard to get the concrete expression
for the lifespan T (especially the lower bound of T'), which creates the main difficulty for proving the
continuous dependence. Therefore, we would like to present a general functional framework to deal
with the local existence of the solution of (L2) in the homogeneous Besov spaces. By obtaining the

expression of the lifespan, we get the uniformly lower bound of the lifespan T' by a constructive way
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(see the key Lemma[d Il below). Finally, we use the frequency decomposition (see Theorem 4] below)
to get the continuous dependence.

Our main theorem can be stated as follows.

e
13

Ld_ :
Theorem 1.1. Let (uo,bo) € B, 1(}Rd) x B (R%) with d > 2. Then there erists a positive time T

D,
such that

1) Local existence: if p € [1,00), then the system has a local solution (u,b) in EY. with
( T

"3@\@.

Ep = (0, T By (RY) N 1([0,T];B§,fl(Rd))XC([O,T]; 1(RT)).

(2) Uniqueness: if p € [1,2d], then the solution of (I2) is unique.
(8) Continuous dependence: if p € [1,2d], then the solution depends continuously on the initial data

: 7
in L.

Remark 1.2. Comparing to [13], we generalized the local existence’s index from p € [1,2d] to p €

[1,00) and prove the continuous dependence with p € [1,2d] in homogeneous Besov spaces.

The remainder of the paper is organized as follows. In Section 2 we introduce some useful prelimi-
naries. In Section 3, we prove the local existence and the uniqueness of the solution to (L2) with the
expression of local time being given. In Section 4, we firstly prove that if the initial data (uf, Bg)

d_
tends to (uo, Bo) in B}, fx B then their local existence times T,, — T, which implies that they

p,1?
have the common existence time 7" — ¢ (0 is small enough). Then we use the method of frequency

decomposition to obtain the continuous dependence.

Notations: =~ Throughout, we donate B;T(Rd)) = Bpr, ||u||B (mey T ||vHBS (RY) = = ||u, v||B
and C([O,T];B;T(Rd)) = CT(B;T), Lp([O,T];B;T(Rd)) = L’%(B;T). For convenience, we donate
Cg, ~ C(1 + Ey + e¥0) for C large enough.

2 Preliminaries
In this section, we will recall some propositons and lemmas on the Littlewood-Paley decomposition

and Besov spaces.

Proposition 2.1. [3] Let C be the annulus {{ € R : 2 < |¢| < 8}. There ewist radial functions x

and ¢, valued in the interval [0,1], belonging respectively to D(B(0, %)) and D(C), and such that

VEER, X(§) + D _p(277¢) =1,

>0
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Ve € RI\{0}, > p(277¢) =1,
JEL
7 =51 =2 = Supp ¢(277) NSupp p(277") = 0,
j = 1= Supp x(-) N Supp ¢(277:) = 0.
The set C = B(0, 2) 4+ C is an annulus, and we have

lj—j'|>5=2cn2'C=0.

Further, we have

VEER!, T <O+ PeT <,
Jj=0
ve € RA(0), 5 < > o<

Definition 2.2. [3] Denote F by the Fourier transform and F 1 by its inverse. Let u be a tempered
distribution in S'(R?). For all j € Z, define
Aju=0if § <=2, A qu=F '(xFu), Aju=F (p279)Fu) if § >0, Sju= Z Ajru.
J'<J
Then the Littlewood-Paley decomposition is given as follows:
u= Z Aju in S'(RY).
JEZ

Let s e R, 1 < p,r < oo. The nonhomogeneous Besov space B;T(Rd) 1s defined by

By = By (RY) = {ue 'R : full s, ey = || Agulle)s|, < o0}

™(2)

Similarly, we can define the homogeneous Besov space.
By, = By (R = {u € SLRYulg, . = 12718 ull e i < o),
where the Littlewood-Paley operator Aj is defined by
Aju=F (o277 )Fu) if j € Z.

Lemma 2.3. Lets € (—ﬁ, %] (s = %, r=1). Assume ™ is uniformly bounded in B;TQB(;‘?OO(V(S > 0)
or B;yr NL> . Then ¢f™ is bound in B;yr N B;;fl 0<ea <s+ %), and the map " — @f™ is

compact in B;;e (0 < e <€), where ¢ € S(R?).

Proof. The proof is based on Theorems 2.93-2.94 in [3], we omit it here. |
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Lemma 2.4. [6] Let s1, 59 < % and s1 + s2 > dmax{0, % —1}. Assume f € B;h and g € B;21 Then
there holds
I8l cen- < Ol
Definition 2.5. [3] Let s € R;1 < p,q, 7 < 00 and T € (0,00]. The functional space EqT(B;T) is
defined as the set of all the distributions f(t) satisfying || fllza 5. )= ||(2k5||Akf(t)HLqTLp)k||lT < 0.
T p,T

By Minkowski’s inequality, it is easy to find that

”f“fg,(]?;m) < ”f”L"T(B;,r) qg<r, ||f||Z%(Bg’T) > HfHLqT(Bf,,T) q>T.
Finally, we state some useful results about the heat equation and the transport equation

w+Au=G, xR t>0,

(2.1)
u(0, ) = uo(),
fi+v-Vf=g, xR t>0,

FQ0,2) = fo(x),

which are crucial to the proof of our main theorem later.

(2.2)

Lemma 2.6. [7] Let s € R,1 < q,q1,p,7 < 00 with ¢ < q. Assume ug in st:,r’ and G in Zqu (B;T)
~ g2
Then (211) has a unique solution u in LqT(B;;q) satisfying

< : .
Jull s, vz, < o (luollgy, + G, oz )

T

In particular, if ¢ = r =1, by Minkowski’s inequality we have

H“HLTOS(B;J)mLQT(B;ﬁl)ﬂLlT(B;f) <Ci (HUO| B + ||GHL1TB’;,1)'

Lemma 2.7. [J] Let s € [max{—%, —ﬁ}, % +1] (s = 1+%,r =1;s= max{—%, —ﬁ},r = 00). There
exists a constant C' such that for all solutions f € L>([0,T]; B ,.) of (Z2) with initial data fo in B;)T,

and g in Ll([O,T];B;T), we have, for a.e. t € [0,T],

t
1Ol <V O (Ul + [ OOl at),

where V'(t) = ||V . a (ifs=1+Lr=1, V)=V a )
BY .NL> P Br,
Remark 2.8. [3] If div v =0, we can get the same result with a better indicator: max{—g, —1%}—1 <

s<%+1(0rs:max{—g,—§ —1,r=00).
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Lemrzla 2.9. Let s € (max{l — %,1 — ﬁ},%] (s = %,r =1), fo € B, go € Li(B;,) and Vv €
LlT(Bpgl) If v(t, x) satisfies one of the following conditions (p > 1):

1) when s > 1, v e LL,(L> N BEOO);

2) when s =1, v € L (L>® N BET,);

3) when s <1 and1<p<2,v ELf}(L“ﬁBéooﬁBir,);

4) when s <1 and p > 2, v e L (L™ QBET,).

Then (2.2) has a unique solution f € CT(B;)l) with r < oo (f € OTw(B,S,,OO) with 7 = 00).

Proof. Without loss of generality, we only give the proof with s = %, r =1, other cases are similar.

Firstly, we smooth out the data:
fOn = Snf07 gn ‘= Pn ¥t Sngu v = Pn *t Snv'

Hence, the function )
i) = @) + [ g7 @)ds
is a solution to
S (@) = 8" ().
Further, by Theorem 3.14 in [3], we have

STl g ds T
n B n n
T nlumn@+/|mwgm. (2.3)
B B:l 0 Bpp,l

da
P
p,1

Then, setting f* := f" — fot g"(s)ds = — fg V"V f"ds, by the Bony decomposition, we get

[[v™] M e, when s > 1,
LP(L>®°NBy o) L=BY,

||Un||Lp(meBg )an”LooB% , when s = 1,

V"V e, < e “ (2.4)
LB o [lv™]] P a [f* a4, whens<1,1<p<2,

LP(meBPP,,,OmB;/m) L>BF,

[[v"] RPN VA when s < 1,p > 2.
Le(L=NBE ) L=BP,

d

_ L4 .
This implies that f™ is uniformly bounded in Cg (B,f,ool) NLF(B, ;). Lemma 23] guarantees that the
map

"= of*, VeeCyr

Ld_q
1S compact 1n o - Lombinin scoll's theorem an antor’'s diagonal process thus ensures tha
i pact in Bf . . Combining Ascoli’s th d Cantor’s diagonal p th that

_ - .d_q
of" = of in Cr(Bj).
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_ _ .d
By the Fatou property, we have o f" — ¢f € L¥ (B;,l)- By interpolation, we get
of" = of in Cp(Bry"), 0<e<Ll

Finally, applying the above results we can pass the limit in the weak sense:

¢
f = lim f" :f+/0 g(s)ds.

n—roo

. d
It is easily to deduce that f(t, ) is a solution of 2.2) and f € C7(B ) (For more details see Theorem

3.19 in [3]). This completes the proof. O
Remark 2.10. Ifdiv v =0, we can get the same result with a better indicator: max{—g, —ﬁ} <s< %

(s = %,r =1). The proof is similar to Lemma[Z10, we omit the detail here.

Definition 2.11. [3] Let a > 0, u(r) be a continue non-zero and non-decreasing function from [0, al

to RT, 1(0) = 0. We say that u is an Osgood modulus of continuity if

“1
——dr = +o0.
/0 p(r)

Lemma 2.12. [3] Let p be a measurable function from [0,T] to [0,a], v a locally integrable function

from [0,T] to RY, and p be an Osgood modulus of continuity. If for some py > 0,

p(t) < po + / V()ulp(s)ds  for ae. te[0,T],

then we have
dr

p(r)

= Mol + Mp0) < [ 2(ds with MGa) = | '

For example, if u(r) = r, we obtain the Gronwall inequality:
p(t) < poelo 7(5)ds, M(z) = lna — Inz.

If u(r) = rin(e+c¢/r), it’s easy to check that it is still an Osgood modulus of continuity. Then we have

el ) ) 5 i D
t ) - P + po) = N~
c— po(efo ’Y(S)ds _ e) ln(e + m)

-

p(t) < po

Since 7 is locally integrable, we deduce that if py small enough such that py < , then

C
2(edd Y )

[§ v (s)as

p(t) < 2poe”
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3 Local existence and uniqueness

We divide the proof of local existence and uniqueness into 4 steps:

Step 1: An iterative scheme.
Set (ug, bf) == (Spuo, Spbo) and define the first term (u°,b°) := (e*®ug, ¢"by). Then we introduce
a sequence (u™,b™) with the initial data (uf,by) by solving the following linear transport and heat
conductive equations:
up ™ = Aumtt = POV — u" V),
AR A T (3.1)
(ugt, b2 := (Spuo, Snbo),
where S'ng = ken Akg, it makes sense in Besov spaces when s < % or s = %, r=1.
Step 2: Uniform estimates.
Taking advantage of Lemmas 2.6H2.7] we shall bound the approximating sequences in E%.. Now we

claim that there exists some T independent of n such that the solutions (u™,b™) satisfy the following

inequalities :
(Hy) = 0" e w4 < 6E,
LF(Bg 1) LFE(Bg,
9 4 1,7 44
(H2):  u"l[ar <2a, Ap:=Lyp(By,) N Lp(Byy ),
where Ey := ||bo]| .« + |Juo|l .a_,. Now we suppose that a is small enough such that (a will be
By By

determined later):

E
a < min{ ﬁ, c}, (3.2)
where ¢ is any positive real number satisfying ¢ < %, eC2¢ < %, 4cCy < % Suppose that T satisfies
that
1
C1ET < 0 36CIET <1, llet®ul|ap < a, (3.3)

where Cq and C5 are the constants in Lemmas (Indeed, we should take C; and Cy more large
as we need.)

It’s easy to check that (H;) — (Hz) hold true for n = 0. Now we will show that if (H;) — (Hz) hold
true for n, then they hold true for n 4+ 1. In fact, by 32)-B3) and Lemmas 2Z.GHZT we have

" ay < e uollar + [Bdiv(—u" ©u + 0" @b

Lip(Bys )
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< a+ Ci4a* + 3601 E3T < 2a, (3.4)
[ M ey < e Puoll L asy + [Pdiv(—u" @ut 0" @) 4,
LFEB, LFEBS, Ly B,

< lluoll a—y + [[Pdiv(—u" @ u™ + 0" @b")|| a4,
By LBy,

< Ey + C14a® + 36C1 E3T < 3E,. (3.5)

and
" g < e (|lboll 4+ [ldiv(u" @) 4
L (BY)) BY, LL(BE)

< €C2a(EQ + 12aE))

< 3E,. (3.6)

This implies (Hy) — (H3) hold true for n + 1.
Finally, we have to obtain the relationship between the existence time T and the initial data via

B3). It is easy to deduce that

a 1

T <Tp := mi .
< To:=min{ e 72 350,

Now we turn to study the condition |e®uo||a, < a of 3). For this purpose, we have to classify the
initial data.
(1) For ||lugll 4 SC= min{AllTl,c} we let a :=

p,1
Then we have

e uollar < lluoll 4, <
BP

p;1

¢} < min{ 4E—C°1, ¢}, which also implies

(2) For HUOHB%A >c= min{ﬁ,c}, we let a := min{ %, <

B2).

p,1

.d_q
Since ug € By , there exists an integer jo such that (jo may not be unique):
. d__ . a
> 1A uoll2Y < 4. (3.7)
[71>3d0
. 2
Deﬁnlng that T1 = %m and T2 = %W, we get
Bo Bp;ffl
le®uoll
Ly (BPy )

10
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T ) T ’ ) .
<> / et Ajuo |25 TV dt + Y / e || A juol| 25 T dt
0 0

[71<d0 [71>4o
. G . d . G 25 . d .
< %o Z/ 1A juol| 202~ dt + Z/ e 27N Ajug | o2 T dt
151 <jo *© 151> 4o *©
< 25T uol| gy + 0 (1= e ) Aguo 2
By [71> 3o
) . |
< flugl 4+ > [Ajuol 25V < Sa, (3.8)
BP — 2
Pl [71>Jo
and
le"Puoll
L3, (B 1)
" tA A 2 1545 " —t2%7 ) A 2 313545
< 0 N Ajuolzedf)z2s + > [ (e[ Ajuoll o) ?dt] 2 2%
141 <do *© l41>3o0 *°

. 1 i . .
<L fluoll gy + D (L= ™) Ajuof o261
p
[71>40

1 . d_1) 1
< 20T fuoll 1 + > N1 Ajuoll 2~ < 50 (3.9)
[71>4o
Letting T' = min{Ty, Ty, T}, we get

le®uollar < a.

Finally, if we choose T to satisfy that

T, luoll 2+ < g7
T o (3.10)
min{To, 71, Toh, - fuoll g-1 > 57

then ([3.3) holds true. For this T, we have the approximate sequence (u™,b") is uniformly bounded in

L.

Remark 3.1. By (Z10), we know that if the initial data is small, the local existence time T depends

only on Ey. However, for large initial data, the local existence time T depends on both Ey and the jo

which satisfies (3.7)).

Step 3: Existence of a solution.

This step is similar to the process of [3,[6,[13], we also use the compactness argument in Besov

spaces for the approximate sequence (u™,b™) to get some solution (u,b) of [L2). Since (u™,d") is

11



4 CONTINUOUS DEPENDENCE

Lis also uniformly bounded in

uniformly bounded in Ef., the interpolation inequality yields that u™*
L4142
LBy, "

(for fixed 0 < € < 9):

) for 1 < ¢ < co. Then, by Lemma R2GH21 after some calculations, we can easily get that

2 .d_g_ - 41
dpu™ s uniformly bounded in L} ° (Bpa o+ By,

da

dyb" s uniformly bounded in L2T(Bpp7; 1).

Let {x;}jen be a sequence of smooth functions with value in [0, 1] supported in the ball B(0,j +

1

1) and equal to 1 on B(0,j). The above argument ensures that u"*! is uniformly bounded in

Ld_q e  .d_ Ld_

C’;(e)(B;1 ey By, 1) NnCr(B,, 1) (o(e) > 0 for fixed € > 0 small enough), and v is uniformly
Ld_ . d

bounded in CT% (B4 1) NCr(B),). Then by Lemma 23 with €; = 2¢ (d > 2), since the embedding

. 571725 . %71 . %7175 . 571725 . % %71 . .

o1 NBy, < By, and B, NB,, = B;; arelocally compact, by applying Ascoli’s
theorem and Cantor’s diagonal process, there exist some functions (uj,b;) such that for any j € N,
x;u" tends to uj, and x;b" tends to b;j. As x;jxj+1 = Xj, we have u; = xju;j1 and b; = x;bj41. From
that, we can easily deduce that there exists (u,b) such that for all y € D(R?),

Ld_q_
xu™ = xu in OT(B;f,ll E),

Ld_q (3.11)
X0 = xb in Cr(Bj, ),
as n tends to oo (up to a subsequence). By interpolation, we have
RN )
u" — yu in LL(B? , 0<e<1+e,
X X By ) (3.12)

b = xb in CT(BEI(;), 0<d<l.
Note that (u",b™) is uniformly bounded in E¥. By the Fatou property, we readily get
S Loedtl Y
(u,b) € (L=(Byy )N L (B, ) x (L*(By 1))
Finally, it is a routine process to verify that (u,b) satisfies the system ([2]). Following the argment
of Theorem 3.19 in [3], we have (u,b) € Ef.

Step 4: Uniqueness.

The proof of the uniqueness of (2)) is similar to [13] with p < 2d, we omit it here.

4 Continuous dependence

Before proving the continuous dependence of solutions to ([L2), firstly we need to prove that let T be

. d_q .4
a lifespan corresponding to the initial data uo by @G.I0), if (uf,by) tends to (ug,bo) in B), x B},

12
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then there exists a lifespan T™ corresponding to (ug,by) such that 7™ — T. This implies that T — &
(for some small §) is a common lifespan both for u™ and u when n is sufficiently large. We first give a

useful lemma:

Ld_q .4
Lemma 4.1. Let (ug,bo) € By, ' BJ, be the initial data of (L2) with p < 2d, if there exists another

L d_q . 4
initial data (ug,by) € By, x B such that |lug — uol| a_,,[bf — boll .
’ ’ B!, B
can construct a lifespan T™ corresponding to (uf, bfy) such that

=0 (n— o), then we
1

Tl

T — T, n — 0o,
where the lifespan T correspondsto (ug, bo).

Proof. By virtue of Remark Bl we only consider the large initial data. Thus, we need to prove that

T — T, when |Jugl| a_, > ﬁ. For convenience, we write down the definitions of Ty, T}, 7% here:
BT’

p,1

1 a 1 a? 1

a
) B T = _.7, T = _.77
72C,E2 3601E0} LT 2200wl 4, 2T 42 2%0 [y |2
BP B

d_;
P

To = min{
p,;

where jp is a fixed integer such that

. 1\ a
> 1140l r2 7 < 2.
|71=30
.d_q
Since ug € By ; , we can suppose that jo is the smallest integer such that the above inequality holds
true. Since Fj — Ey, it follows that 7§ — Tpy. In order to prove that T7* — T7 and 15" — Tb, it is
sufficient to show that there exists a corresponding sequence j§ satisfying
. 1\ a
> IAugll257 < 3,
l71>3¢
and ]67' — jo.

a

For any 0 < e < 7, there exists N such that for n > N, we have

lug —uol| 4, <e
BY,

For this €, we define that j§ is the smallest integer such that
S HAjuellre2 i < S -
71>36

By the definition of jo, we have jo < jg.

Replacing € by < (m € NT), we can find N< such that for n > N,
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For this =, we define that j(;i” is the smallest integer such that

m7
. 4—1 . a €
Zi 1A juo| Lp2> M7 < YR
l1>4g™
Since § — .= > 7 — %, it follows that
Jo < dg" <jg"
Now letting ji* := j(;i”,m =1,2,3,..., we deduce that
ol (-1) n_ A - (¢-nj €, _€_¢a .
3 182 < ol g S [Aguolle2® < g G D=z Ny
l71=38" P l71>38"
(4.1)

Since j§* is a monotone and bounded sequence, we deduce that j§* — jo (m — oo) for some integer

Jo > jo. For any 0 < € < 1 there exists N such that if m > N
|j(1)n_50| <e<l,

Note that ji*, jo are integers, we deduce that jo = jo when m > N and jo is the smallest integer such
that
: a1y , a1y a €
D2 IAzuollr25 ™ = 37 Azuolr25 T < 3 -

- . - m
71=Jo [71>38"

We claim that jo = jo. Otherwise, if jo > jo, we deduce from the above inequality that

VYm > N.

)

> 1A uollr25 70 >

71=do

€
m

a
4
Since the left hand-side of the above inequality is independent of m, we have

> IAuollr2E T 2 1.
3130
This contradicts the definition of jo. So we have j0* — jo = jo (m — o0).

Finally, taking e = ¢ < %, we can construct a sequence {j§'} by {j§"} when n > N.:

j&a N6§n<N§a

14



4 CONTINUOUS DEPENDENCE

By virtue of ([@1l), one can check that
S 1Al 2 < 2
71238

Using the monotone bounded theorem, one can prove that j§ — jo(n — o0). Therefore, we have
I —"1,1y =T, =T"—=1T, n— .
This completes the proof of the lemma. O

Remark 4.2. The sequence ji* we construct in the proof of Lemma[f1] is only a subsequence since
m # n but depends on n. And one can obtain a subsequence T™™ of T™ such that T™ — T. This is

much weaker than previous one. Therefore , we have to construct the j™ by ([E2).

Remark 4.3. By Lemma [{.1) letting T be the lifespan time of (u®,b>), then we can define a T"
corresponding with (u™,b™) such that T — T,n — oco. That is, for fized any small § > 0, there exists
an integer N, when n > N, we have

|T" —T| < 6.

Thus, we can consider T,, := min{T™, T} as the common lifespan both for (u>°,b>°) and (u™,b™).
Then we still have

T,—T, n— oo.

Roughly, we can choose T — 6 as the common lifespan both for (u™,b>°) and (u™,b™), which is inde-

pendent of n.
Now we begin to prove the continuous dependence.

Theorem 4.4. Let p < 2d. Assume that (u™,b")nen be the solution to the system (IL2) with the

. d_q . d
initial data (ug, by )nen. If (ug,by) tends to (ug®,b3°) in B}, x By, then there exists a positive T

p,17
Ld_ . d . d
independent of n such that (u™,b") tends to (u>,b>) in Cr (B}, 1) N LlT(B;jl) x Cr(By,)-

Proof. Our aim is to estimate [|u™ —u™| 4, ay, and [[b" —b>°| 4 when n — oo.
LBy INLp(B, ) LF(Bg1)
Note that
Hun_uoo” .4 L4y
LFE(Byy INLL(B), )
< ||u" —u? d_ dyy +flut —use d_ dyy +||us® —u™ d_ d
| ]HLgf’(B;ll)leT(B;lﬂ) o =5 HL;%B;SWT(B;TS I HL?(B;SmL;(B;f)’
o = b=l 4
LE(By )
<ot =0l a4 67 =05 g BT
LE (B ) LF(By, LF(Bga)

15



4 CONTINUOUS DEPENDENCE

where

(u™,b") corresponds to the initial data (ug,by), n € NU oo,
(u”?,b") corresponds to the initial data (Sjuy, S;by), n € NU oo.

R

By Lemma [L1] we find that T — § (we still write it as T') is the common lifespan for (u™,d"),

(uf,b7), (u>,0>) and (u$°,b3°) when n, j are large enough By the argument as in Step 2, since
. Ld_
(ug, b)) — (ug®, b)) and (S;uly, S;bi) — (uf,by) in By ' Bp 1, it follows that for any large n and j,
1
us, U a_y, |07, 07 a < Cgy, u" a i, <2a< —- 4.4
(AR i 167 b5 ||L%O(B:1) or ||L%(B:1)M1T(B:1+1) 1c (4.4)
where Ef := |lug]l . a_, + ||b§]| < , a is a small quantity satisfying [82). For any ¢ € [0.T], we now
BY, BY,
divide the estimations of @3) into 4 steps.
Step 1. Estimate |u —u$°|| 4 4y, and [[b} — 57| 4 for fixed j.
LE(BYy INLL(BY, ) LFE(By 1)
Recall the equations of (u},b%), n € NU {oo}

uly — Ault = P(OTVO? +ulVu}),
bl +ui Vo =b7Vuy, (4.5)
(. 05) := (S, S3b5).
Multiplying both sides of the first equation in (@3] by 7 (n is determined later) and applying
Lemmas 2.6H2.7 to (@A), we have

n([u7]]

a +||uf + |luj
b I g I

)

<nll$juf] %+n/WWﬂ|%Wﬁw%H+nww
p P, Bp,l

da
P
Bp,l

16711 a11ds
J B;,1

< pl|Siul| a4, + / w?|| g [[ul| oan, FOH| o |67 a..ds 4.6
ISyl N g T D 1851 (16)
and
IIb}’II. < 1S5bg d+1+CEo/ ||b"|| d+1||U"|| d+1+||b"|| %IIU"II 44,8
p,l p Bp,l
<2802 4 + Cly |lu” 4 +C/ | a0 4. ds 4.7
115; OIIBE Eol JIILIT(Bﬁz) ; | JIIBETIII JIIBEF : (4.7)

where we used the fact that ||SJg|| < C2m||Sgg|| m > 0.

—7711,7

Then setting n > 4CY, , combmmg @9, @ and the Gronwall inequality, we thus have

(e

d
P
BP

—|—un d+un d + |[6%]]  a
51 o FI, ) I

p,1 t

16



4 CONTINUOUS DEPENDENCE

< 27(|lbg ]l si T 1S5ugll a_.) (4.8)
Pvl BPJ
t
+Cp, | M7l g gl g + 1051 g (105 i gl g b5l g4ads
0 P P 1 p p 1 1
< Cro b0l 53, ||u0|| ] (4.9)
/ luzll mIIU"II gt 1167 1 5 (LA g gl g lBF] g 4ads
p p p 1 ,1
< o 0081 g+ 1) (4.10)
which along with the Gronwall inequality leads to
"7 n n n n n n
Uil g +llugll , aen +lugll | ase) + 11051 2 < O (IVG1 2+ llugll ay). (411)
2 B, L?BF, Lth,l By, By, By
For fixed j, letting 6"u = u} — uj° and 6"b = b7 — b3°, we have
6"up — Ad"u + ufVotu + 0" uVui® + V(P — PP°) = bl Vb + 6"bVbe,
§7by + u V" + 5V = bV u + §"bVu, (4.12)

(07, 8™D) |e=0 = (Sjuf, S;by).

Multiplying both sides of the first equation in [@I2) by A; (A; is determined later) and applying
Lemma 2.6 for (I12)), we have

(||5”UI| ¢ 1+II5”UII g F 6"l ay, )
pl Bpp) 1 pp,l)
< NS (ug = ug)Il 4y + OAjlluf, ug || 4 ||5”UI| 4 +COX / 165,051 .« (67| L
Bpl BP thl Bp, P
A‘ t
< Njllug — ug® s CX\; | Cgll6™ 4.13
<l =g+ 18 | cmlam, e (413)

where [[u},u°]| 4 <4a < 55 by B2). Taking advantage of Lemma 7} we get
LB},
78l g < 13,068 s / 157l I g+ I3 170+ 57700
BPJ p p P pyl
<lbo =667l 4+ Cro(ll0"ull | s +||5"U|| 58 / llusell . d+1||5"b|| 4
p Lt(Bpl ) p ;)
(4.14)

Combining (£I3)) and [@I4), selecting A; large enough such that A; > 4(Cg, ; + 1), for fixed j we

obtain that

>\ n n
J||5 ull 4y da + (070

— da 4
BP, NL3(BP ONLIBL, ) BY,

17
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< Cry,; (165 — 6571l

d
P
By

+ 1~ 5-) /CE”||5"b|| ds =0, n—oo,  (415)

da
P
p
where the last inequality is based on the Gronwall inequality. This implies that for any fixed j, we
have

[ — u3e|| ds +||b"—b°°|| e —0, n—oo. (4.16)

L“’(Bp HnLis b1 ) L (Byy)

Step 2. Estimate [|u”" — u?|| 44 for any n € NU {co} .

L%O(Bp%; )NLL(BY
Letting dju = u™ —u} and ;b = b" — b7, then we have
(5jut — A(S]u + u"V(SJu + 5]uVu;‘ + V(Pn — Pjn) = an6Jb + (%be;l,
8ibe + UV b+ 6uVbl = b"Voju + §;bVul, (4.17)
(5juo,5jb0)|t:0 = ((Id S; )UO, (Id S )bn)

. Using Lemmas 26127 to ([@I7), we

By Lemma 2.4 for p < 2d we have [[fg]| 4 < |Ifll 4]l .4
By oo B oo B,
have
||5U|| gzt l0sull, g A0l
L} (Bpos ) Li(Bypoo)
< ||(Id—5j)ug||3g72+0||u "||~ B ||5 ull, o +/ 105 6™ 4 1195 bll 4 lds
p,1 r p oo p
<27|[(Jd = Sj)ugll 4, + ||5 ul, 4 / Cro[100] g -1s, (4.18)
B:l t p oo ) p oo
where we used the fact that [, u" || 4 <4a< 55, and
L3(B} )
t
165 b|| a1 < [|(1d = 5;)b1l 4 / (07, 0%(1  a N05ull o +[|lufll, a:all650] 4_rds
By 0 BYy By By, B oo
<277 (Id = S)b5ll 4 +Ch,9; ul e (4.19)
BP, LiBT,)
where we used the fact that ||(Id—S;)v|| dom < Cl|(Id—S;)v|| .4 27, m > 0, and the last inequality
B 51 B ,1
is based on the Gronwall inequality. ’ ’
By interpolation, it follows that
oyl oo I s
6jull 4 < Cldjull In(e+ = ), (4.20)
Li(B;) EH(B] ) 18 UII~

da
(B o)

which together with ([I])) and [@I9)) yields that

[[djull . 772+|I6 u||~ oy + |65 u||~ 4
L2(BY o) LI(BY o)

18



4 CONTINUOUS DEPENDENCE

n Cr
< Cg,(||(Id - S; )u0|| 4y + [|[(Id — S;)bg ]| . % —l—CEO/ 16, u||~ ‘% ln(e—|— W)ds
pl p P J Zé(BE,oo)
(4.21)
By Lemma 212 with p(r) = rin(e + CEO ), ¥(s) = Cg,, we obtain
dju d_, +||05u a_, +||05u a
L P P L I
< Cy(I(7d = Sj)ugll 4 +[1(7d = S;)bll 4 )
p 1 p 1
—0, j—o0, VneNU{oo}. (4.22)
Thus, by (@19) and (@20) we have
[l6;0]| dy |65 u|| a —0, j—oo, VYneNU{oo}. (4.23)
L*(Byoo) By,
Next we estimate ||d;ul| a 4, . Similarly, we have
LE(Br, Hn (LiB}, )
Hogull _ oams FlOull | g +l05ull | g
L=(By, ) L¥(B1) Ly(BYy )
e L IR L Iy +c/ 51,5 16sbl 5 s
p 1 Lt( B, By,
- 1 ¢
<|Id = Sj)ugll g+ 5llo5ull 4 / Cr, [16;0]] , 4 (4.24)
B, L¥(BY 1) ppl

which implies that

(10l d a4 < C||(Id - S, )u0|| - +CE0/ 1050 a ds, VneNU{oco}. (4.25)
Le(BPy LB B,
Thus, we must combine the estimation of (£25]) with ||§;b]| « to prove the continuous dependence of
BY,
((5ju, 5][))
Step 3. Estimate |[|b" — 07| 4 for any n € NU {0} .

L (Byy)
Define that b7 :=b", v = u™ ‘and recall the equations of b with n,j € NU {oo}:

dn n n __ pn n
307 +uiVbl = biVuy,

) (4.26)
b;?(O,x) = 5;by.
We let b;-“ = w;l + z}l such that
d
wi +uyVwi = F>,
@ (4.27)

’LU] |t:0 = b07

19



4 CONTINUOUS DEPENDENCE

and
u .
zi +uiVzi =F) — F>,
& (4.28)
Z}lltzo = Sjbg — bg,
where FJ = b"Vu" and F*° := b2 Vul,.

Since F*°, FJ are bounded in L} (BP )N LQT( ) by Remark 210, we deduce that ([EZT) an
)-

'E\Q-

([£.28) have a unique solution w?, 2}' € Cr(B o1

. d
Our main idea is to verify that (w},z7) — (w%,,0) in B}, for any n € N U {oc}, which implies

that b7 — b7, in B pl. For this purpose, we divide the verification into the following three small parts.

Firstly, we estimate ||w} — wi,|| 4 . Similarly to (£3]), we see that
L (Byy)
Jwj —will g <lwf —will 4 Fllwi —wipll e+ lwgy —will a0 (429)
L%O(Bf,l) LT (Bpp,l) L%O(B;I L%O(Brﬁl)
where
Ew?k+“??(w?k) = Sk, (4.30)
’w?kh:o = Skbg
i. Estimate [|w}, —wl,|| ~a for fixed k .
L*(By,
From ({30) we deduce that:
%(w?k —whyy) +ufV(wh —wl,) = —(u] —ul)Vwl,, (4.31)
(w?k —whop) =0 = 0.
By Lemma 2.7 we have
lwhorll  apn < 11Sk05° Htu1+W%F”H can S2VIEN 4 +28|FZ 4 < 2%Cp,,
T ;1 p 1 Ly, ;1 ; L%“(B;,I)
and
e~ / o5 =l ol g
P p 1
k
< [ -l g @ cma
P
n —
< 2 CE()”uj UOOHLI(BZI)
—0, j— o0, (4.32)
where the last inequality is based on (23]
ii. Estimate [lw] —w} || a for any j € NU {oo}.
L (B,
From ({.27) and (£30), we obtain
J B .
a7 (w? — w?k) +ul V(w} — w;lk) = (Id — S;)F, (4.33)

(wi — wy)|=o = (Id — Sg)bo

20
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By Lemma 2.7 we have

Jwf —whll 4 < |(Id—Sk)boll /II (Id — Sk) Pl 4
L*(By, By, 5

=0, k—oc. (4.34)

By [@34), for any € > 0, there exists N (independent on j and n) such that when k& > N we have

€
s — wiell a < 3

n €
9 .
3 LE(BE))

[[wj — wi| <

d
Ly (By )

For this € and k > N, by ([{£32), there exists M (independent on n) such that when j > M we have

€
[wie — wikl 4 S
Ok et T3
Thus we get
lwj —will o <lwf —will 4 el —wipll a4+ lwf w4 <e
P g T T I ) T T T Emr)
(4.35)
that is
[w} —w, || a —0, j—oo, VYneNU{oo}. (4.36)
L (By )
Next, we estimate ||z} |] a . Recall that
F (B 1)
J o
qicf TuiVzl =F — P, (4.37)
Z;ltzo = (SJ — Id)bo,
where F7 := b?Vuy. By the Bony decomposition, we have
[F) = F>] 4
o
< by — )Vl s+ BV — )]
BPJ Bp,l
<167 = booll g Mgl s + My = uccll g lIbooll Lo
BP BP 1 BP 1 pyl
< Ul g+ f =l e+ 0 =] gl (4.38)
p,1 p,1 p 1 p,1 p,1

where the last inequality is based on [[b} — b || <w} —w|| a + |27 4 . Combining 23) ,

H3]) and (£31), we have

da d
P p
Bpl p

ﬁﬁ\&

271l 2
BY,
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4 CONTINUOUS DEPENDENCE

t
<[|(1d - S)bg | 4 C/ U2l g+l —wiell g JIuFll, a4ads + Coo lluj —uccll | a4
By 0 Bp, By By B
<Cr,(ITd =S|l 4 +(Id = Sj)ugll a_y +llw} —wil 4 )Cp +Ilufl | a4.1)
Bpp B:l L’?O(Bpp,l) t(Bpp,l )
t
+ a5l g+ DI ¢ (4:39)
0 p,1
Applying the Gronwall inequality and ([£30), we obtain
271l 4 <Cr(l(Id—=5)bgll a +[(Id=S5)ugll 2\ +[lwj —will a)
t (Bpp,1) B:l Bp 1 B:I
—0, j—o0, ¥YneNU/{oo}. (4.40)
Finally, combining ([@36]) and ([{.40), we have
167 — b || e —0, j—oo, VneNUf{c}, (4.41)
Ly*(Byy)
and
Juf —uloll a4y 4
L(Byy )NL{(BYy )
< OISl 5 +0Eo/ It —b2] g d
p
—0, j—o00, VneNU{oo}. (4.42)
Thus, we complete the estimations of [|b7 — b, || o and [Ju} —ul | d_, d, -
Ly (B 1) Ly (Bgy INLi(By, )
Step 4. Proof of the continuous dependence
Finally, combining ([A42)) and ([@41]), we obtain
fluf —u™| d, d + (|6} — b%, || e —0 ,j—00,VneNU{oo}. (4.43)
L (Byy NLY(BY, ) L(By 1)

By ([A3), for any € > 0, there exists N (independent of n) such that when j > N we have

<
Y

vn € Nt U {c}.

Wl m

Ly dy
Le(BP, )le(BP

For this € and j > N, by ([@I0]) there exists M such that when n > M, we get

<
)

wl o

||u —uj

.4 .44
L(Byy )NLH(BY,

Thus we deduce
|

”un_u 4y

L4 .
LBy, NLyBY, )
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< fut — | R s [ =

oo ‘%71 1 prtt oo'%71 1(BP oo'%71 1‘%+1
Lg (BPJ )ﬁLt(prl ) L? (prl )r']Lt(Bu1 ) L7 (prl ﬂLthJ )

<e (4.44)

Similarly, we have

" — b a < [o" =07 o + 0% — b 4 4|05 — b a <e 4.45
L O A R L S (4.45)
This completes the proof of the continuous dependence in t € [0, T7. O
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